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Abstract. Product codes can be used to correct errors or recover erasures. In this work we

consider the simplest form of a product code, this is, the single parity check (SPC) product code.

This code has a minimum distance of four and is thus guaranteed to recover all single, double,
and triple erasure patterns. The code is actually capable of recovering a higher number of erasure

patterns. We count the number of uncorrectable erasure patterns of size n × n with t erasures,

for t = 8, 2n− 3, 2n− 2 and 2n− 1, using a the relation between erasure patterns and bipartite
graphs.

1. Introduction

The binary erasure channel (BEC) is one of the simplest non-trivial channel models. It was
introduced by Elias [4] as a toy example. In this model, single bits are transmitted and either
received correctly or known to be lost. Therefore, information may be lost but is never corrupted.
The decoding problem is to find the values of the bits given the locations of the erasures and
the non-erased part of the codeword. In this model, each codeword symbol is lost with a fixed
independent probability and an [n, k, d]-code can recover up to d − 1 erasures. Given a fixed
redundancy, maximum distance separable (MDS) codes (i.e., codes with d − 1 = n − k) provide
maximal reliability.

The single parity-check (SPC) code is a very popular MDS error detection code, since it is very
easy to implement [7]. One bit is appended to an information sequence of n − 1 bits, such that
the resulting codeword has an even number of ones. Two or more SPC codes can be used jointly
to obtain an SPC product code. SPC product codes have been proposed for applications such as
cell loss recovery in ATM networks [8, 11], since they achieve a good performance under various
decoding schemes [10]. This code has four as minimum distance and is thus guaranteed to recover
all erasure patterns with one, two and three erasures. However, it can be proven that, in some
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Figure 1. Codeword of a product code with systematic encoding

cases, up to 2n− 1 erasures can be corrected. In [7], the author derived a tight upper bound of the
post-decoding erasure rate of the SPC product code, which helps to identify the correctable and
uncorrectable erasure patterns. In [9], the author obtained the number of uncorrectable erasure
patterns of size n × n with t erasures, for t = 4, 5, 6 and 7. In this work, we perform a counting
method to obtain the number of uncorrectable erasure patterns with 8 erasures following a similar
argument as in [9]. We also provide an expression for the number of uncorrectable erasure patterns
when t = 2n − 1 and a process to obtain this number when t = 2n − 3 and 2n − 2. This process
can be generalized for a fixed t.

This work is organized as follows. In Section 2 some preliminaries about coding theory are
introduced. In Section 3 we provide the number of uncorrectable erasure patterns with 8 erasures.
In Section 4, the connection between erasure patterns and bipartite graphs is established and we
provide the number of uncorrectable erasure patterns when t = 2n− 1, 2n− 2 and 2n− 3. Finally,
in Section 5 we give some conclusions.

2. Preliminaries

Let Fq be the Galois field of q elements. A linear product code C over Fq is formed from two
other linear codes Ch and Cv with parameters [nh, kh, dh] and [nv, kv, dv] over Fq, respectively. The
product code C = Ch ⊗Cv has parameters [nhnv, khkv, dhdv] over Fq (see [10]). Since the minimum
distance is dhdv, the product code corrects up to dhdv − 1 erasures over the erasure channel.

The codewords of C have length nhnv and can be seen as arrays with size nh×nv. The columns
are codewords of Cv and the rows are codewords of Ch. If the component encoders are systematic,
the structure of the codeword can be seen in Figure 1.

In this work, we consider the product code C = Ch ⊗ Cv, where Ch = Cv is a linear binary
code with parameters [n, n − 1, 2], which is the SPC code. In this case, the parameters of C are
[n2, (n− 1)2, 4].

Here, Ch and Cv correct only one erasure, since the minimum distance of the codes is 2. As the
minimum distance of C is 4, the code corrects up to three erasures, but we will see in Section 4.2
that the code can correct, in some special cases, up to 2n− 1 erasures.

Now, we are ready to introduce the concept of erasure pattern.

Definition 1. Given an SPC product code C with parameters [n2, (n−1)2, 4], an erasure pattern
of size k × k, with t erasures, where 0 ≤ t ≤ k2 and 1 ≤ k ≤ n, is an array of size k × k where t of
the entries correspond to the position of the erasures.
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Figure 2. Examples of erasure patterns of size 6× 6 with 11 erasures

An erasure pattern of size n × n represents a codeword of size n × n, where we only consider
the location of the erasures. Given a codeword with t erasures, the decoder performs iterative
row-wise and column-wise decoding to recover the erased bits [2]. When a single bit is erased in a
row (column), it can be recovered. If more than one bit is erased in a row (column), it is skipped.
Decoding is performed until no further recovery is possible.

Example 1. Consider the SPC code with parameters [6, 5, 2] denoted by Ĉ. We can construct the

binary product code C = Ĉ ⊗ Ĉ with parameters [36, 25, 4]. As the minimum distance is 4, we can
only correct up to 3 erasures. Consider the erasure pattern in Figure 2(a). Since every row is a

codeword of Ĉ, we can correct rows with 1 erasure, that is, erasures in every row but the last one.

On the other hand, every column is a codeword of Ĉ as well, so we can correct columns with 1
erasure and, then, we can correct completely this erasure pattern.

On the other hand, consider the erasure pattern in Figure 2(b). We can only correct 7 erasures.
The erasure subpattern of size 2× 2 in grey cannot be corrected.

Definition 2. An erasure pattern is said to be correctable (uncorrectable) if it can (not) be
completely corrected.

Remark 1. If an erasure pattern is uncorrectable, it means that after the iterative row-wise and
column-wise decoding algorithm mentioned in Section 2, there are still erasures that can not be
recovered. Therefore, in each row and column in error, there must be two or more erasures, otherwise
we could correct the column or row with only one erasure. As a consequence, we can say that an
uncorrectable erasure pattern always contains a subpattern of size m × p, with m, p ≤ n and two
or more erasures in each row and each column.

For a codeword of size n × n, erasure patterns with 3 of fewer erasures are always correctable
(see Figures 3(a), 3(b) and 3(c)). On the contrary, we will see in Section 4.2 that erasure patterns
with 2n erasures or more are always uncorrectable (see, for example, Figure 3(f)).

We would like to count the number of possible correctable and uncorrectable erasure patterns
with t erasures, where 4 ≤ t ≤ 2n− 1.

3. Counting erasure patterns

The next theorem provides the number of uncorrectable erasure patterns of size n × n with
t erasures, t = 4, 5, 6, 7. This result can be proven performing an exhaustive counting process.
However, these results were already proven in [9], so we do not include a proof.
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Figure 3. Examples of erasure patterns of size 3× 3

Theorem 1. The number of uncorrectable erasure patterns of size n × n with t erasures, for
t = 4, 5, 6, 7 is given by:

a) For t = 4,
(
n
2

)2
.

b) For t = 5,
(
n
2

)2(n2−4
1

)
.
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2

)
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(
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2

)(
n
3

)
+ 6
(
n
3

)2
.

d) For t = 7, T1 + T2 + T3 + T4, where
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3

)2(
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)
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+
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1

)(
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2

)
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)(
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,

T4 =

(
n

2

)2
[

2

(
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1

)2

+ 4

(
n− 2

1

)2(
(n− 2)2 − 1

1

)
+

(
(n− 2)2

3

)]
.

Following a similar counting process, we can find the number of uncorrectablbe erasure patterns
of size n× n with t = 8 erasures.

Theorem 2. The number of uncorrectable erasure patterns of size n× n with 8 erasures is

S1 + S2 +

[(
n

2

)2(
n2 − 4

4

)
− 5S3 − 2S4 − 4S5 − S6

]
,
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where
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Proof. We consider all the possible uncorrectable patterns of size n×n with 8 erasures. To illustrate
this proof, examples for all the possible uncorrectable patterns of size 5 × 5 with 8 erasures are
given in Figure 4.

1. We start considering patterns with a complete uncorrectable subpattern (none of the erasures
can be corrected) of size 4 × 4 with 8 erasures (see Figure 4(a)). We take four columns and
four rows from n, that is,

(
n
4

)(
n
4

)
. There are 72 ways to place the corresponding 8 erasures

in the 16 positions considering two erasures in each row and column (without obtaining two

subpatterns of size 2× 2, see first pattern in Figure 4(f)) and, thus, we have 72
(
n
4

)2
options.

Then, the number of uncorrectable erasure patterns with this form is S1 = 72
(
n
4

)2
.

2. We consider now patterns with one uncorrectable subpattern of size 3×3 with 6 erasures and
two additional erasures (see Figure 4(d)). We take three rows and three columns from n and
consider the 6 possible ways to locate 6 erasures in these 9 positions: 6

(
n
3

)(
n
3

)
. In this case,

there are four different ways to locate the two extra erasures. According to the order that
appears in Figure 4(d), we obtain the following results:
• In the first case, we consider two erasures from the area that does not share a row nor

a column with the subpattern. This area contains (n − 3)2 positions, then, we consider(
(n−3)2

2

)
cases.

• In the second case, we consider one erasure in the area that shares a row with the sub-
pattern and the other one in the area that shares a column with the subpattern. Each

one of these areas contains 3(n − 3) positions and, then, we have to consider
(
3(n−3)

1

)2
cases.
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• In the third case, we consider one erasure in the separate area and one in the area that

shares a row. For the first erasure we have
(
(n−3)2

1

)
positions and for the other one we

have
(
3(n−3)

1

)
cases. We have to count this case twice (changing row by column).

• In the fourth case, both erasures are in the same area, the one that shares a row with
the subpattern. These erasures have to be located in different columns, otherwise, we are
considering also subpatterns of size 2×2 with 4 erasures, and this case will be considered
below. We take two columns from n − 3 and three rows in each case, that is, 32

(
n−3
2

)
.

We have to consider this case twice as well (row by column).
As a consequence, S2 agrees with the value that appears in Theorem 2.

3. Now, we consider patterns with one uncorrectable subpattern of size 2×2 and 4 extra erasures.
Naively, one would count as

(1)

(
n

2

)2(
n2 − 4

4

)
.

However, patterns in Figures 4(b),4(c),4(e) and 4(f) are counted more than once.
• Patterns in Figure 4(b) contain 6 subpatterns of size 2×2 with 4 erasures, therefore, these

patterns are counted 6 times. In this case we are considering 2 rows and 4 columns from
n, that is,

(
n
4

)(
n
2

)
. We have to consider this case twice (rows by columns). Therefore, S3

agrees with the value proposed in the theorem and it has to be subtracted 5 times from
expression (1).

• Patterns in Figure 4(e) contain 3 subpatterns of size 2 × 2 with 4 erasures. Therefore,
these patterns are counted 3 times. Considering the different areas, the separated one
and the two areas that share a row and a column with the subpattern, respectively, we
can count these cases in the same way we did for S2. It is possible to check that S4 is
correct and it has to be subtracted twice from expression (1).

• Patterns in Figure 4(c) contain 5 subpatterns of size 2×2 with 4 erasures. Therefore, these
patterns are counted 5 times. In this case we are considering 3 rows and 3 columns from
n, that is,

(
n
3

)(
n
3

)
and we can locate the empty position in 9 different places. Therefore,

S5 is correct and it has to be subtracted 4 times from expression (1).
• Patterns in Figure 4(f) contain 2 subpatterns of size 2 × 2 with 4 erasures. Therefore,

these patterns are counted twice. When we count
(
n
2

)2
for the first subpattern of size

2 × 2, we are considering all subpattern of size 2 × 2. Therefore, when we consider the
other pattern, we are counting twice each complete pattern. Thus, we have to divide the
total number by two.
In the first case, we have to consider 2 rows and 2 columns from n and again 2 rows and

2 columns more from n− 2. That is,
(
n
2

)2(n−2
2

)2
.

In the second case, we have to consider again
(
n
2

)2
cases for the first subpattern. The two

erasures that share a row with the subpattern can be located in 2
(
n−2
2

)
different positions.

Since the columns are fixed, the other two erasures in the separated area can be located
in
(
n−2
1

)
positions. We have to consider this case twice (changing rows by columns).

In the third case, we have to consider again
(
n
2

)2
cases for the first subpattern. The other

subpattern shares one erasure with the new subpattern. We have to consider 2 rows and
n− 2 columns for one of the erasures and 2 columns and n− 2 rows for the other erasure.
The third erasure of the subpattern is fixed, once we have chosen column and row for the

other one. Therefore, we have 4
(
n−2
1

)2
possibilities. For the extra erasure in the separate
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Figure 4. Examples of uncorrectable erasure patterns with 8 erasures correspond-
ing to Theorem 2

area, we can locate this erasure in any place but the ones that are already occupied with
erasures (7 places) and 2 other places that would create subpatterns of size 2× 3 or 3× 2

(considered for S4). Therefore, we have
(
n2−9

1

)
possibilities.

Finally, the value of S6 considered in the theorem is correct and it has to be subtracted
once from expression (1).

It is clear that the number of erasure patterns of size n × n with t erasures is
(
n2

t

)
, which is a

polynomial of degree 2t in n. Taking into account the results in Theorems 1 and 2, it is possible to
check that the number of uncorrectable erasure patterns with t erasures is a polynomial of degree
2t− 4 in n. Therefore, the probability of finding an uncorrectable erasure pattern of size n×n and
t erasures, when t is fixed, is close to zero when n grows.
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(a) Bipartite graph

(b) Different connected components of the graph

Figure 5. Bipartite graph with four connected components

Unfortunately, when the number of erasures grows, it becomes more difficult to count the number
of possible uncorrectable patterns of size n×n. At this point we need to use different tools to count
the number of uncorrectable patterns like graph theory.

4. Graph theory approach

In this section we try to see our problem as a graph theory problem. We begin reminding some
preliminaries about graph theory.

4.1. Preliminaries. In this section we introduce some concepts we need for further results. All
these notions can be found in [3, 5].

A graph G(V,E) consists of a finite non-empty set of vertices V = {v1, v2, . . . , vn} and a set of
edges E which is a subset of the set of pairs {vivj | vi, vj ∈ V }. The incidence matrix A = (aij)
of the graph G(V,E), with E = {e1, e2, . . . , em}, is defined over F2 in the following way

aij =

{
1 if vi ∈ ej ,
0 otherwise.

A walk in G is a sequence of vertices v1v2 . . . vn such that vi ∈ V and vivi+1 ∈ E, for i =
1, 2, . . . , n − 1. A walk is called closed if v1 = vn. A walk is a path if the vertices and the edges
are all distinct. A walk is a cycle if all the vertices are distinct except the first and the last ones.

A graph is said to be connected, if there exists a path that connects every two vertices of
the graph. For example, every complete graph is connected. Remember that a complete graph,
denoted by Kn, is a graph with n vertices where every vertex is connected by an edge to all others.

A tree is an undirected graph in which any two vertices are connected by exactly one simple
path. In other words, any connected graph without simple cycles is a tree.

A connected component of an undirected graph is a subgraph in which any two vertices are
connected to each other by paths, and which is connected to no additional vertices in the graph.
For example, the graph shown in Figure 5 has four connected components.

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX
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Figure 6. Examples of complete graphs
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Figure 7. Erasure pattern with 8 erasures and the corresponding bipartite graph

A graph G(V,E) is a bipartite graph with vertex classes U and W , if V = U ∪W , U ∩W = ∅
and each edge joins a vertex in U to a vertex in W . A complete bipartite graph, denoted by
Kn,m, is a bipartite graph where |U | = n, |W | = m and every vertex in V is connected by an edge
to every vertex in W .

Example 2. In Figure 6 we have two examples of complete graphs. K4 is the complete graph with
4 vertices and K2,2 is the complete bipartite graph with 2 vertices in each vertex class.

4.2. Erasure pattern/Bipartite graph connection. An erasure pattern of size n × n with
t erasures, 0 ≤ t ≤ n2 can be represented by a bipartite graph with 2n vertices, n vertices in each
vertex class. Furthermore, there exists an edge joining vertices ui and wj , for 1 ≤ i, j ≤ n, if there
is an erasure in the position (i, j) of the erasure pattern. Any row (column) with one only erasure
can be corrected. This row (column) represents one vertex with only one incident edge.

Example 3. In Figure 7(a) we have an uncorrectable erasure pattern of size 4× 4 with 8 erasures.
This erasure pattern can be seen as a bipartite graph with 8 nodes and 8 edges (see Figure 7(b)).
It is possible to check that there is a cycle of length 4 in the corresponding bipartite graph (see
Figure 8(a)).

From now on, when we say a bipartite graph is correctable (uncorrectable), we mean that the
erasure pattern it represents is correctable (uncorrectable).

In order to check whether a graph is correctable or not, we go over the graph searching for
vertices with one single incident edge (any row or column with one erasure). If we find a vertex
with one single incident edege, we eliminate this edge and go over the rest of the vertices again.

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX
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(a) Cycle contained in

the graph in Figure 7(b)

×

×

×
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(b) Erasure pattern as-
sociated to the cycle

Figure 8. Cycle and its corresponding erasure pattern

We perform this search until each vertex has more than one incident edge or none. If we could
eliminate each and every edge, the graph is correctable. On the other hand, if there are still edges
that cannot be eliminated, the graph is uncorrectable.

Example 4. Consider again Figure 7. We have an erasure pattern of size 4×4 with 8 erasures and
the corresponding bipartite graph with 8 nodes and 8 edges. We start eliminating the edge u2w4.
Then, we can remove edges w4u4 and u4w2. Finally, the last edge that can be eliminated is w2u1.
After removing these four edges, we obtain a cycle. This cycle represents the erasure subpattern of
size 2× 2 with 4 erasures contained in the general erasure pattern, see Figure 8. As a consequence,
the graph (and the erasure pattern) is uncorrectable.

According to the previous process, next theorem establishes the connection between bipartite
graphs and uncorrectable erasure patterns.

Theorem 3. An erasure pattern is uncorrectable if and only if there exists a cycle in the corre-
sponding bipartite graph.

Proof. According to Remark 1, if an erasure pattern of size n × n is uncorrectable, it means that
there is a subpattern of size m×p, for m, p ≤ n with two or more erasures in each row and column.
This subpattern represents a bipartite graph with m and p vertices in each vertex class, respectively,
and with two or more incident edges in each vertex, which is a subgraph of the bipartite graph that
represents the complete erasure pattern. Then, assuming that m ≥ p, the number of edges in this
subgraph is greater or equal than 2m ≥ m + p. According to [3, Corollary 1.5.3], this subgraph
must contain at least one cycle. Therefore, the bipartite graph that represents the complete erasure
pattern contains this subgraph and contains, then, at least one cycle as well.

On the other hand, assume the bipartite graph contains a cycle. According to [3, Proposition
1.6.1], a graph is bipartite if and only if it contains no odd cycle. Therefore, the length of the cycle
must be 2m, for 2 ≤ m ≤ n. This cycle is a bipartite subgraph with m vertices in each vertex class
and two incident edges in each vertex, that represents a subpattern of size m×m with two erasures
in each row and column. According to the iterative row-wise and column-wise algorithm mentioned
in Section 2, the erasure pattern that contains this subpattern cannot be completely corrected and
then, it is an uncorrectable erasure pattern.

Then, as a natural consequence of Theorem 3 we can obtain the following result.

Corollary 1. An erasure pattern of size m×m is uncorrectable if and only if there exists an erasure
subpattern with size m×m, for 2 ≤ m ≤ n and 2p erasures.

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX
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u4

u3

u2

u1

w4

w3

w2

w1

Figure 9. Graph considered in Examples 4 and 5

For instance, if we check Figure 8, it is possible to see that the cycle of length 4 represents an
erasure subpattern of size 2× 2 with 4 erasures.

According to the previous result, we can highlight the following ideas.

Remark 2. When we have t < 4 edges (erasures) we can always correct this graph (erasure
pattern), since it is impossible to find a cycle of length less than 4 in a bipartite graph. On the
other hand, when we have t > 2n− 1 edges (erasures) in a bipartite graph with n vertices in each
vertex class, it cannot be corrected (according to [3, Corollary 1.5.3] there must be at least one
cycle).

This is the reason why we only consider the cases where 4 ≤ t ≤ 2n− 1.

4.3. Connected components. We start this section with the following definition.

Definition 3. Given a connected graph, the cyclotomic number is given by

N = |E| − |V |+ 1.

The cyclotomic number indicates whether the graph contains cycles or not (see [5]). If N > 0, it
indicates the number of edges that must be eliminated to remove the possible cycles from the graph.
From the SPC product codes point point of view, the cyclotomic number provides the number of
erasures we should remove from the erasure pattern to be correctable.

Example 5. The graph given in Figure 7(b) is a connected graph. The cyclotomic number is
8− 6 + 1 = 1, so we should remove one edge to obtain a graph without cycles, see Figure 9. If we
remove the edge in bold, the graph becomes a tree, with no cycles.

Assume our graph has C connected components, then the cyclotomic number can be generalized
in the following way

N = |E| − |V |+ C.

As a consequence, we can introduce the following result.

Lemma 1. A bipartite graph is correctable iff N = 0.

Proof. If N = 0, it means that the graph contains no cycles and, therefore, the erasure pattern is
correctable.

Example 6. Consider the bipartite graph in Figure 5. We have four connected components, then
N = 4 − 8 + 4 = 0, so the graph contains no cycles and then, the erasure pattern defined by this
graph is correctable.

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX
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4.4. Counting trees. The number of uncorrectable erasure patterns with size n×n and t erasures
(4 ≤ t ≤ 2n − 1), equals the number of bipartite graphs with 2n nodes, n nodes in each vertex
class, t edges and that contain at least one cycle. Equivalently, the number of correctable erasure
patterns with size n×n and t erasures is the same as the number of bipartite graphs with 2n nodes,
n nodes in each vertex class, and t edges that only contain trees. These problems are equivalent to
count the number of subgraphs, with t edges, of the complete bipartite graph Kn,n that contain no
cycles (correctable), or that contain at least one cycle (uncorrectable).

4.4.1. 2n− 12n− 12n− 1 erasures. We start this section with some results whose proofs can be found in [1, 6].

Lemma 2. Consider the complete bipartite graph Kn,m. The number of trees with n+m− 1 edges
contained in Kn,m is nm−1mn−1.

Remark 3. The previous result provides the number of correctable erasure patterns of size n×m
with n+m− 1 erasures.

Due to Lemma 2, we can introduce the following result.

Theorem 4. If we consider a codeword of size n × n, the number of correctable erasure patterns
with 2n− 1 erasures is n2n−2.

Proof. A codeword of size n× n is represented by Kn,n. Then, according to Lemma 2, the number
of trees with 2n−1 edges contained in Kn,n is nn−1nn−1 = n2n−2. The number of trees with 2n−1
edges equals the number of correctable erasure patterns of size n× n with 2n− 1 erasures.

As a consequence, we can deduce the following result.

Corollary 2. The number of uncorrectable erasure patterns of size n × n and 2n − 1 erasures is

given by
(
n2

2n−1
)
− n2n−2.

According to Corollary 2, for n = 3, the number of uncorrectable erasure patterns with 5 erasures
is 45. This number coincides with the number obtained substituting n = 3 in the given expression
for t = 5 in Theorem 1.

For n = 4, the number of uncorrectable erasure patterns with 7 erasures is 7344. This number
matches as well with the number obtained substituting n = 3 in the given expression for t = 7 in
Theorem 1.

4.4.2. 2n− 22n− 22n− 2 erasures. Now, if we consider erasure patterns with 2n − 2 erasures, the cyclotomic
number associated to Kn,n is given by

(2) N = |E| − |V |+ C = 2n− 2− 2n+ C = C − 2.

For the erasure pattern to be correctable, the cyclotomic number must be N = 0. Therefore, we
need to consider C = 2 connected components in the corresponding bipartite graph. We have to
consider all the possible partitions {m, 2n−m} of the 2n vertices of Kn,n, where 1 ≤ m ≤ n, over
the two connected components, C1 and C2, taking into account that at least one vertex must appear
in each partition. Let us see an illustrative example of this idea.

Example 7. Let us consider the complete bipartite graph K4,4. Assume we are interested in the
subgraphs with 6 edges. According to expression (2), if we want the subgraph to be correctable,
there must be two connected components. In this case, we have 8 nodes and, therefore, the possible
partitions for the vertices into the two connected components are {1, 7}, {2, 6}, {3, 5} and {4, 4}.

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX
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C1 C2

1 3 3 1
2 2 2 2
3 1 1 3

Table 1. Possible combination of vertices for K4,4 and 6 edges for the partition
{4, 4}

(a) Subgraph associ-

ated to the partition
{(1,3),(3,1)}

(b) Subgraph associ-

ated to the partition
{(2,2),(2,2)}

(c) Subgraph associ-

ated to the partition
{(3,1),(1,3)}

Figure 10. Subgraphs of the complete graph K4,4 corresponding to Table 1

Consider, for example, the partition {4, 4}. Let C1 and C2 be the connected components of the
subgraph. Each connected component contains 4 vertices and these 4 vertices are divided into two
vertex classes. In Table 1, we can see the possible combination of vertices for C1 and C2, in this
case. In Figure 10 it is possible to check the corresponding subgraphs for each case consdered in
Table 1.

Consider again the partition {m, 2n − m} of the 2n vertices of Kn,n, where 1 ≤ m ≤ n. We
consider that C1 contains m vertices and C2 contains 2n − m vertices. Since both connected
components are bipartite subgraphs as well, we assume that C1 contains x11 and x12 vertices in
each one of its vertex classes and that C2 contains x21 and x22 vertices in each one of its vertex
classes, respectively.

Since each vertex class contains n vertices, we have that:

(3)

x11 + x12 = m
x21 + x22 = 2n−m
x11 + x21 = n
x12 + x22 = n


Given the possible partitions {m, 2n − m} of the vertices, we have to solve the system for

x11, x12, x21, x22.

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX
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m λ C1 C2

1
4 1 0 3 4
3 0 1 4 3

2 3 1 1 3 3

3
3 2 1 2 3
2 1 2 3 2

4
3 3 1 1 3
2 2 2 2 2
1 1 3 3 1

Table 2. Possible partitions over the connected components for K4,4 and 6 erasures

The solution of the system is

(4)

x11 = m− n+ λ,
x12 = n− λ,
x21 = 2n−m− λ,
x22 = λ,

where {
n−m < λ < n, if m 6= 1,

n−m ≤ λ ≤ n, if m = 1.

Let us consider the following example to clarify the idea.

Example 8. Consider again the complete bipartite graph K4,4. If we want to count the possible
correctable subgraphs with 6 edges, we have to consider two connected components. We know that
1 ≤ m ≤ 4 and for any value of m, we have to consider several values of λ. In Table 2, it is possible
to see every combination of m and λ with the corresponding vertices for each connected component
C1 and C2, respectively.

The connected components C1 and C2, contain {m− n− λ, n− λ} and {2n−m− λ, λ} vertices
in each vertex class, respectively. Besides, each connected component is itself a subgraph of Kn,n

with 2n−m and m vertices and 2n−m− 1 and m− 1 edges, respectively.

Theorem 5. The number of correctable erasure patterns of size n×n with 2n−2 erasures is given
by

n∑
m=2

n−1∑
λ=n−m+1

g(m,λ) + 2nn−1(n− 1)n−1,

where

g(m,λ) =

{
f(m,λ)

2 if m = n,
f(m,λ) otherwise,

and

f(m,λ) =

(
n

m− n+ λ

)(
n

n− λ

)
(m− n+ λ)n−λ−1(n− λ)m−n+λ−1(2n−m− λ)λ−1λ2n−m−λ−1.

Proof. For m 6= 1, the connected component C1 has m − n + λ and n − λ vertices in each vertex
class. Then, we have to choose m − n + λ vertices from n, that is,

(
n

m−n+λ
)
, and n − λ from n,(

n
n−λ

)
. Therefore, we have to consider

(
n

m−n+λ
)(

n
n−λ

)
cases. Furthermore, it has m − 1 edges, so
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according to Lemma 2, there are (m − n − λ)n−λ−1(n − λ)m−n+λ−1 possibilities of locating these
edges in order for this subgraph to be a tree.

At the same time, C2 has left 2n −m − λ and λ vertices in each vertex class and 2n −m − 1
edges. According to Lemma 2, there are (2n−m− λ)λ−1λ2n−m−λ−1 possibilities of locating these
edges in order for this subgraph to be a tree.

When n = m, the variables in expression (4) are given by,

(5)

x11 = λ,
x12 = n− λ,
x21 = n− λ,
x22 = λ.

This means that our graph has two connected components with {λ, n− λ} vertices in each vertex
class, respectively. When have to consider the possible combination of vertices, we take λ vertices
from n and n− λ from n, that is,

(
n
λ

)(
n

n−λ
)
. Since both connected components are equal, when we

consider
(
n
λ

)(
n

n−λ
)

possibilities, we are counting the connected components twice. That is why we

divide f(m,λ) by 2.
On the other hand, when m = 1, there are two possibilities, λ = n or λ = n− 1. For λ = n− 1,

the variables in expression (4) are given by,

x11 = 0,
x12 = 1,
x21 = n,
x22 = n− 1.

In this case, we have to consider n nodes from n in one vertex class and n− 1 from n in the other
vertex class. Furthermore, according to Lemma 2, we have

(
n
n

)(
n
n−1
)
nn−2(n− 1)n−1 possibilities.

On the other hand, for λ = 1 we have that

x11 = 1,
x12 = 0,
x21 = n− 1,
x22 = n.

In this case we have the same number of possibilities. Therefore, when m = 1 we have in total
2nn−1(n− 1)n−1 cases to consider.

Example 9. For n = 4, we can check the values of g(m,λ) in Table 3. The number of correctable
erasure patterns of size 4 × 4 with 6 erasures is 5632. If we substitute n = 4 in Theorem 1, we
obtain that the number of uncorrectable erasure patterns of size n×n with 6 erasures is 2376. The
total number of erasure patterns of size 4 × 4 with 6 erasures is given by

(
16
6

)
, which agrees with

the sum of both numbers.
For n = 5, the number of correctable erasure patterns of size 5 × 5 with 8 erasures is 515625

(see computations in Table 4). If we substitute n = 5 in Theorem 1, we obtain that the number of
uncorrectable erasure patterns of size 5× 5 with 8 erasures is 565950. The total number of erasure
patterns of size 5× 5 with 8 erasures is

(
25
8

)
, which agrees with the sum of both numbers.

4.4.3. 2n− 32n− 32n− 3 erasures. Now, we consider erasure patterns of size n × n and 2n − 3 erasures. In
this case, we have to consider subgraphs of Kn,n with 2n− 3 edges and 2n edges. For the erasure
pattern to be correctable, the cyclotomic number must be N = 0. Therefore, we need to consider

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX



16 Sara D. Cardell and Joan-Josep Climent

m 1 2 3 4
λ 4 3 3 3 2 3 2 1

g(m,λ) 1728 1728 1292 288 288 8 288 8∑
g(m,λ) 5632

Table 3. Different values of m, λ and g(m,λ) for n = 4

m 1 2 3 4 5
λ 5 4 4 4 3 4 3 2 4 3 2 1

g(m,λ) 160000 160000 102400 21600 21600 1600 32400 1600 12.5 7200 7200 12.5∑
g(m,λ) 515625

Table 4. Different values of m, λ and g(m,λ) for n = 5

C = 3 connected components in the corresponding bipartite graph. We have to consider all the
possible partitions for the vertices over three connected components, and at least one vertex must
appear in each partition.

Let us consider the three connected components C1, C2 and C3. Consider the partition {m1,m2, 2n−
m1 −m2} of the 2n vertices of Kn,n, where 1 ≤ m ≤ d 2n−d

2n
3 e

2 e and m1 ≤ m2 ≤ 2n− d 2n3 e −m1.
We consider that C1 contains m1 vertices, C2 contains m2 vertices and C3 contains 2n−m1 −m2

vertices. Ci contains xi1 and xi2 vertices in each vertex class, respectively, for i = 1, 2, 3.
Since each vertex class of Kn,n contains n vertices, respectively, we have that:

x11 + x12 = m1

x21 + x22 = m2

x31 + x32 = 2n−m1 −m2

x11 + x21 + x31 = n
x12 + x22 + x32 = n


Given the possible partitions {m1,m2, 2n−m1−m2} of the vertices, we have to solve the system

for x11, x12, x21, x22, x31, x32. The solution of this system is

(6)

x11 = m1 − λ1,
x12 = λ1,
x21 = m2 − λ2,
x22 = λ2,
x31 = n−m1 −m2 + λ1 + λ2,
x32 = n− λ1 − λ2,

where {
0 ≤ λ1 ≤ m1, if m1 6= 1,

0 < λ1 < m1, if m1 = 1,
and

{
0 ≤ λ2 ≤ m2, if m2 6= 1,

0 < λ2 < m2, if m2 = 1.

Following the same ideas considered in Section 4.4.2, we can introduce the following result.
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m1 1 2
m2 1 2 3 2 3
λ1 0 1 0 1 0 1 1 1
λ2 0 1 0 1 1 1 1 2 1 2 1 1 2

g(m1,m2, λ1, λ2) 192 648 648 192 576 576 48 288 288 48 288 72 72∑
g(m1,m2, λ1, λ2) 3936

Table 5. Different values of m1, m2, λ1, λ2 and g(m1,m2, λ1, λ2) for n = 4

Theorem 6. The number of correctable erasure patterns of size n×n with 2n−3 erasures is given
by

d
2n−d 2n

3
e

2 e∑
m1=2

2n−d 2n3 e−m1∑
m2=m1

m1−1∑
λ1=1

m2−1∑
λ2=1

g(m1,m2, λ1, λ2) + 2nn−2(n− 1)(n− 2)n−1 + n2(n− 1)2n−4,

where

g(m1,m2, λ1, λ2) =


f(m1,m2,λ1,λ2)

2 if m1 = m2,
f(m1,m2,λ1,λ2)

2 if m2 = 2n−m1 −m2,
f(m1,m2, λ1, λ2) otherwise,

and

f(m1,m2, λ1, λ2) =

(
n

m1 − λ1

)(
n

λ1

)(
n−m1 + λ1
m2 − λ2

)(
n− λ1
λ2

)
(m1 − λ1)λ1−1λm1−λ1−1

1

(m2 − λ2)λ2−1λm2−λ2−1
2 (n−m1 −m2 + λ1 + λ2)n−λ1−λ2−1(n− λ1 − λ2)n−m1−m2+λ1+λ2−1.

Example 10. For n = 4, we can check the values of g(m1,m2, λ1, λ2) in Table 5. The number of
correctable erasure patterns of size 4×4 with 5 erasures is 3936. If we substitute n = 4 in Theorem 1,
we obtain that the number of uncorrectable erasure patterns of size n × n with 5 erasures is 432.
The total number of erasure patterns of size 4 × 4 with 5 erasures is given by

(
16
5

)
, which agrees

with the sum of both numbers.

5. Conclusions

A study of the erasure patterns in SPC product codes has been developed. This approach finds
the uncorrectable erasure patterns for a given number of erasures using a counting method and the
connection between bipartite graphs and erasure patterns.
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