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Concise asymmetric syntheses of novel phenanthroquinolizidines  

Cintia Anton-Torrecillas,
a
 María Isabel Loza,

b
 and José Brea

b 
and Jose C. Gonzalez-Gomez*

a 

The first preparation of enantioenriched phenanthroquinolizidines with a quaternary center at C14a was accomplished in 

seven steps from readily available starting materials. Key steps were an efficient dynamic kinetic allylation of a 

diastereomeric mixture of chiral tert-butylsulfinyl ketimines and the construction of piperidine E ring by rhodium catalyzed 

hydroformylation. The Stevens rearrangement of the corresponding N-benzyl derivatives took place smoothly, allowing 

the installation of a benzyl moiety at C9 in a trans relationship with the methyl group. The cytoxycity of the prepared 

phenanthroquinolizidines was evaluated against different human cancer cell lines. 

Introduction 

Compared with synthetic drugs, natural product derivatives 

show lower toxicity and easier decomposition, which is also 

more environmentally friendly.
1
 These advantages, in addition 

to their unique mode of action, are responsible for the 

growing interest in the synthesis and biological evaluation of 

natural based compounds. Among natural alkaloids are a small 

group of phenanthroquinolizidines (e.g. cryptopleurine and 

boehmeriasin A in Figure 1) which are produced by the 

Lauraceae, Vitaceae, and Urticaceae family of plants.
2
 

Remarkably, these compounds exhibit very high cytotoxic 

activities with IC50 in the nanomolar range, being in some cases 

more potent than taxol.
3
 Moreover, they have shown higher 

antiproliferative activity than their structurally related 

phenanthroindolizidine alkaloids.
4
 It is reported that these 

alkaloids and their analogs display a wide range of biological 

activities and they are currently being used as lead compounds 

in order to optimize these activities.
5 

Some natural phenanthroindolizidine alkaloids bearing a 

methyl group at the 13a-position (e.g. hypoestestatin 1 and 2, 

Figure 1) have been identified as extremely potent antitumor 

agents.
6
 Recent studies have shown that the inclusion of a 

substituent next to the nitrogen atom disrupts the molecular  

 

Fig.1 Some phenantroizidine alkaloids 

planarity, decreasing the crystal packing energy and therefore 

increasing their water solubility.
7
 It is worth to mention that 

enhance the hydrophilicity of these compounds is an 

established strategy to improve their bioavailability, so as to 

lower their blood-brain barrier permeability, which potentially 

might minimize their CNS toxicity.
8
 In this context, the 

asymmetric syntheses of some 13a-substituted 

phenanthroindolizidine alkaloids have been successfully 

accomplished, using proline derivatives as chiral building 

blocks.
9
 However, to our best knowledge, the enantioselective 

synthesis of structurally related phenanthroquinolizidines with 

a quaternary center at C14a remains unexplored. Given the 

unique biological activities of 7-methoxycryptopleurine,
10

 we 

considered that this compound would offers a good platform 

to explore this strategy.  

Results and discussion 

We describe herein a protocol for the asymmetric preparation 

of 7-(R)-and (S)-methoxy-14a-methylcryptopleurine,
11,12

 as 

well as the first regio- and diastereoselective Stevens 

rearrangement of the corresponding N-benzyl ammonium salt.  
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Scheme 1 Retrosynthetic analysis of the target molecule. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 2 Syntheses of phenanthroquinolizidines 8 and ent-8. 

 

In our retrosynthetic analysis (Scheme 1), we envisaged that a 

benzyl group could be diastereoselectively installed at C-9 by 

N-benzylation of the corresponding phenanthroquinolizidine, 

followed by Stevens rearrangement. The synthesis of this 

scaffold was planned by building ring D in the last step using 

Pictet-Spengler annulation, while ring E could be formed by 

hydroformylation of the corresponding homoallylic amine.
13

 

Importantly, the chiral quaternary center was anticipated to be 

formed by allylation of the chiral tert-butylsulfinyl ketimine 

derived from the corresponding methylketone. As outlined in 

Scheme 1, the target molecule was traced back to: 9-bromo-

2,3,6,7-tetramethoxyphenanthrene, chiral tert-
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butylsulfinamide, allylindium reagent, formaldehyde and 

isoprenylacetate; all of them commercially or easily available 

starting materials.  

The realization of our synthetic plan is outlined in Scheme 2. 

The palladium catalyzed cross coupling of isoprenyl acetate 

with the readily available 9-bromo-2,3,6,7-

tetramethoxyphenanthrene
14

 was efficiently promoted by 

tributyltin methoxide to afford the desired methylketone 2 in 

high yield.
15

 Condensation of ketone 2 with (Ss)-tert-

butylsulfinamide afforded the corresponding ketimine as a 4:1 

mixture of E/Z isomers-3, which upon addition of in-situ 

formed allylindium reagent furnished the expected chiral 

amine 4 with an -quaternary center as a single isomer (>98:2 

dr according to NMR).
16

 This efficient dynamic kinetic 

transformation of tert-butylsulfinyl ketimines to homoallylic 

amines has been previously reported
17,18

 and it is worth 

mentioning that the one-pot indium mediated direct 

aminoallylation of the methyl ketone- a procedure that we 

have previously developed and successfully used in our 

group
19

- gave significantly lower conversion in this case (up to 

30 %). Our next key step was the rhodium catalyzed linear 

hydroformylation to build ring E as an enamine. Given our 

previous experience with this strategy,
13

 the sulfinyl group was 

replaced by an N-Boc protecting group. We thus submitted 

compound 5 to rhodium(I) catalyzed hydroformylation with 

formalin, using two different phosphane ligands (BIPHEP and 

NiXantphos). The characteristics of this hydroformylation 

protocol are unique because the syngas (CO/H2) is 

conveniently substituted by formaldehyde, with excellent 

linear selectivity.
20

 Under these conditions, the formation of 

the corresponding terminal aldehyde was followed by in-situ 

cyclization to furnish the protected enamine 6. We were 

pleased to observe that by only increasing the loading of 

rhodium catalyst from 1 mol % to 3 mol %, the isolated yield of 

compound 6 increased from 61% to 90%. Catalytic 

hydrogenation of enamine 6 using Adams’s catalyst, followed 

by acidic removal of the Boc group and Pictet Spengler 

cyclomethylenation under standard conditions (formalin, HCl, 

EtOH, 100 ºC),
21

 allowed the preparation of the target 

compound 8 with very good overall yield. The same synthetic 

sequence was applied to obtain ent-8 from (Rs)-tert-

butylsulfinamide with similar efficiency in terms of isolated 

yields. Chiral HPLC analysis of both enantiomers (8 and ent-8) 

shows that racemization did not take place over the synthetic 

sequence (96:4 er, see ESI). 

During the optimization of the biological activities of 

phenanthroquinolizidines, diverse substituted compounds 

have been reported in the literature.
4b,

 
10d, 22

 However, 

substitutions at C-9 of this skeleton remain scarce.
23

 With this 

in mind, we decided to explore the Stevens rearrangement
24

 of 

the N-benzyl isoquinolinium salts 9 and ent-9, which were 

efficiently prepared using conventional methods (Scheme 3). It 

is worth noting that the NMR data (
1
H and 

13
C) obtained for 

these compounds is consistent with a single diastereoisomer. 

In contrast with other related alkaloids that contains the 

quinolizidine moiety (e.g. berbines),
25

 inversion at the N 

bridgehead of the starting material is unlikely in phenanthro- 

 

Scheme 3 Regio-and Stereoselective Stevens Rearrangement of compound 9 

quinolizidines and the adjacent methyl group should stabilize 

the trans isomer. It is generally assumed that, either by 

formation of an iminium ion or via recombination of radical 

pairs in solvent-cage,
26

 the Stevens rearrangement is 

suprafacial. Given that only trans-isoquinolinium isomer 9 

seems to be present, deprotonation at the benzylic C-9 

position, followed by the rearrangement should only afford 

trans-10 compound. Given the good results obtained in the 

synthesis of 8-benzylberbines, by using in-situ prepared dimsyl 

sodium solution at room temperature for the Stevens 

rearrangement, we adopted these conditions and compound 

10 was obtained in a moderate yield.
 27

 Although we were not 

able to identify the by-products formed in this reaction, we 

reasoned that hydrogens at β-positions (H12eq, H14eq and H15eq) 

make Hofmann eliminations competitive pathways. 

Importantly, a significant H,H-n.O.e was observed between the 

Me at C14a and H9 of compound 10 (see SI), confirming the 

presumed trans-configuration for this compound. Using the 

same method, ent-9 was transformed into ent-10. Having 

prepared both enantiomers, the enantiomeric purity of the 

samples was determined by chiral HPLC analysis, being above 

90% ee in both cases. 

Compounds 8, 9, 10 and their enantiomers were tested against 

four human cancer cell lines, using the MTT (3-[4,5-

dimethylthiazol-2-yl]-2,5- diphenyltretrazolium bromide) 

method and CDDP [cis-diaminedichloroplatinum (II)] as 

positive control. The IC50 values were determined from the 

corresponding inhibition/concentration curves (see SI) when 

more than 50% cellular growth inhibition was achieved at 100 

M and the results are shown in Table 1. The best results were 

obtained for compound 8, with the (R)-configuration (as in 

natural cryptopleurine), against human breast cancer cell lines 

(MCF-7) and with leukemia cells (HL-60). The potency of this 

compound was 20-fold (for MCF-7) or 10-fold (for HL-60) 

superior to that its enantiomer, but it was significantly lower 

than the one of the (R)-7-methoxycryptopleurine, without a 
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methyl group at C14a.
13

 Unfortunately, when the benzyl group 

was attached to the nitrogen atom and then rearranged to C9, 

the obtained compounds showed poorer cellular growth 

inhibition. 

Table 1 Cytotoxicity of compounds evaluated. 

 

Compounds 

IC50 ( M)a 

MCF-7b NCI-H460c HL-60d NCI/ADR-RESe 

CDDP 16 ± 1 5.7 ± 0.2 8.3 ± 0.2 6.3 ± 0.2 

8·HCl 1.1 ± 0.1 34f ± 7 0.51 ±0.02 69f ± 26 

ent-8·HCl 21 ± 2 42 ± 1 4.9 ± 0.1 26 ± 1 

9 80f ± 14 n.dg 65f ± 5 n.dg 

ent-9 76f ± 7 393f ± 168 n.dg n.dg 

10 35f ± 1 n.dg 80f±3 n.dg 

ent-10 36 ± 1 n.dg n.dg n.dg 

a Average of three assays each. b MCF-7 = human breast carcinoma. c NCI-H460 = 

human lung carcinoma. d HL-60 = human promyelocytic leukemia. e NCI-ADR-RES= 

drug-resistant human ovarian adenocarcinoma. f Extrapolated values from an 

incomplete concentration-response curve (see SI). g Not determined. 

Conclusions 

We have developed a seven step procedure to prepare 

enantioenriched 14a-methyl-7-methoxycryptopleurine in 18-

21% overall yield from readily available starting materials. 

Salient features of the synthetic procedure are: (a) the 

straightforward formation of methyl ketone 2; (b) the efficient 

dynamic kinetic allylation of tert-butylsulfinyl ketimines 3 (4:1 

E/Z mixture) to obtain compound 4 as a single isomer; and (c) 

a rhodium catalyzed linear hydroformylation with formalin 

that allows construction of ring E in excellent yield. N-

benzylation of phenanthroquinolizidine 8, followed by Stevens 

rearrangement at room temperature allows for regio- and 

stereoselective placement of a benzyl group and C9. The 

cytotoxic evaluation of compound 8 (ent-8) indicates that the 

introduction of a methyl group at C14a decreases the potency 

of 7-methoxycryptopleurine. In addition, the introduction of a 

benzyl group at C9 of the same scaffold had a more significant 

negative impact on its cytotoxicity. The synthetic route 

developed herein opens the access to enantioenriched 

phenathroquinolizidines with a quaternary center at C14a and 

trans-C9 benzyllic derivatives, which hopefully can display 

different biological activities. 

Experimental 

General information 

TLC was performed on silica gel 60 F254, using aluminium plates 

and visualized by exposure to ultraviolet light. Flash 

chromatography was carried out on handpacked columns of 

silica gel 60 (230 − 400 mesh). Optical rotations were 

measured using a polarimeter with a thermally jacketted 5 cm 

cell at approximately 20 ºC and concentrations (c) are given in 

g/100 mL. Infrared analysis was performed with a 

spectrophotometer equipped with an ATR component; 

wavenumbers are given in cm
-1

. HRMS analyses were carried 

out using the Electron Impact (EI) mode at 70 eV or by Q-TOF 

using Electro Spray Ionization (ESI) mode. HPLC analyses were 

performed using a Chiralpak IB column for enantiomeric ratios.
 

1
H NMR spectra were recorded at 300 or 400 MHz for 

1
H NMR 

and 75 or 100 MHz for 
13

C NMR, using CDCl3 as the solvent and 

TMS as an internal Standard (0.00 ppm). 
13

C NMR spectra were 

recorded with 
1
H-decoupling at 100 MHz and referenced to 

CDCl3 at 77.16 ppm. DEPT-135 experiments were performed to 

assign CH, CH2 and CH3. 

1-(2,3,6,7-tetramethoxyphenanthren-9-yl)propan-2-one (2). A 

dry flask was charged with 9-bromo-2,3,6,7-

tetramethoxyphenanthrene
14

 (391 mg, 1.04 mmol), Pd(OAc)2 

(11.67 mg, 0.05 mmol, 5 mol %) and tri-ortho-tolylphosphine 

(33 mg, 0.10 mmol). The reaction mixture was evacuated and 

backfilled with argon (3 cycles) before adding toluene (1.21 

mL), tributyltin methoxide (463 L, 1.60 mmol) and isoprenyl 

acetate (174 L, 1.57 mmol). The reaction mixture was stirred 

while heating at 100 ºC during 6 h. The reaction mixture was 

cooled down to room temperature and diluted with EtOAc (2.0 

mL) and 4 M aqueous potassium fluoride solution (1.5 mL) and 

stirred for 15 min, before being filtered through a short pad of 

Celite, washed with EtOAc and concentrated under vacuo. The 

residue was purified by flash chromatography (6:4 to 1:1 

hexane/EtOAc), recovering the starting material (98 mg, 25%) 

and obtaining the desired product as a ochre yellow solid (274 

mg, 74%): Rf 0.24 (1:1 hexane/EtOAc);
 1

H NMR (300 MHz, 

CDCl3) δ 7.83 (s, 1H), 7.78 (s, 1H), 7.53 (s, 1H), 7.28 (s, 1H), 7.21 

(s, 1H), 4.12 (s, 3H), 4.12 (s, 3H), 4.06 (s, 2H), 4.04 (s, 3H), 4.02 

(s, 3H), 2.09 (s, 3H); 
13

C NMR (75 MHz, CDCl3) δ 208.0 (C), 

149.5 (C), 149.2 (C), 149.1 (C), 127.3 (C), 126.6 (CH), 126.34 (C), 

125.6 (C), 125.1 (C), 124.4 (C), 108.2 (CH), 105.1 (CH), 103.5 

(CH), 102.9 (CH), 56.2 (CH3), 56.19 (CH3), 56.0 (CH3), 50.8 (CH2), 

28.7 (CH3); HRMS (ESI) calcd for C21H23O5  355.1545, found 

355.1549. 

(E/Z,SS)-N-(tert-Butylsulfinyl)-1-(2,3,6,7-tetramethoxy-

phenanthren-9-yl)propan-2-imine (3). To a dry flask were 

sequentially added (SS)- tert-butylsulfinamide (1.83 mg, 1.50 

mmol), compound 2 (531 mg, 1.5 mmol) and THF (3.0 mL), 

followed by Ti(OEt)4  (675 µL, 3.0 mmol). The reaction mixture 

was stirred overnight at 65 ºC. After cooled to room 

temperature, it was carefully added over a stirring mixture of 

4:1 EtOAc/brine. The resulted white suspension was filtered 

through a short pad of Celite, washed with EtOAc and 

concentrated to dryness. The residue was purified by flash 

chromatography (4:6 to 3:7 hexane/EtOAc,), affording the 

imine as a yellow foam solid (401 mg, 76%, 80:20 E/Z): 
 
Rf 0.23 

(3:7 hexane/EtOAc);
  1

H NMR (300 MHz, CDCl3) δ 7.83 (s, 1H), 

7.78 (s, 1H), 7.55 – 7.48 (m, 1H), 7.47 – 7.42 (m, 1H), 7.23 – 

7.19 (m, 1H), 4.13 (s, 6H), 4.04 (s, 3H), 4.02 (s, 3H), 2.29 (s, 

1.84H, E-isomer), 2.09 (s, 0.36H, Z-isomer), 1.23 (s, 1.31H, Z-

isomer), 1.20 (s, 5.69H, E-isomer); 
13

C NMR (75 MHz, CDCl3) δ 

149.5 (C), 149.2 (C), 149.1 (C), 149.0 (C), 128.1 (C), 126.6, 126.2 

(C), 125.8 (C), 125.1 (C), 124.4 (C), 108.2 (CH), 105.6 (CH), 

103.5 (CH), 102.9 (CH), 56.6 (C), 56.3 (2CH3), 56.2 (CH3), 56.1 

(CH3), 49.3 (CH2), 22.3 (CH3), 21.8 (CH3); HRMS (ESI) calcd for 

C25H31NO5NaS  480.1821, found 480.1827. 

(ent-3). It was prepared from (RS)- tert-butylsulfinamide (228.7 

mg, 1.89 mmol), following the same procedure described for 
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the preparation of 3, with similar yield (571 mg, 66 %). It was 

obtained as a 4:1 E/Z mixture with identical characterization 

data than compound 3. 

(1R,SS)-N-(tert-Butylsulfinyl)-1-allyl-1-methyl-2-[2,3,6,7-

tetramethoxyphenanthren-9-yl]-ethylamine (4). To a mixture 

of imine 3 (505 mg, 1.10 mmol) in dry THF (2.2 mL) were 

sequentially added indium powder (159 mg, 1.38 mmol) and 

allyl bromide (144 L, 1.66 mmol). The reaction mixture was 

stirred overnight under argon atmosphere at 65 ºC. 

Afterwards, the mixture was filtered through a short pad of 

Celite, washed with EtOAc and concentrated. The residue was 

purified by flash chromatography (hexane/EtOAc 3:7) to obtain 

the desired product as a white amorphous solid (398 mg, 72%, 

>98:2 dr according to 
1
H-NMR

16
): [α]

D
20 −3.0 (c 6.56, CHCl3); Rf 

0.18 (3:7 hexane/EtOAc); 
1
H NMR (300 MHz, CDCl3) δ 7.80 (s, 

1H), 7.74 (s, 1H), 7.60 (s, 1H), 7.43 (s, 1H), 7.18 (s, 1H), 6.09 – 

5.92 (m, 1H), 5.29 (d, J = 3.2 Hz, 1H), 5.23 (s, 1H), 4.11 (s, 3H), 

4.11 (s, 3H), 4.04 (s, 3H), 4.02 (s, 3H), 3.77 (s, 1H), 3.43 (d, J = 

14.2 Hz, 1H), 3.28 (d, J = 14.2 Hz, 1H), 2.66 (d, J = 7.3 Hz, 2H), 

1.23 (s, 3H), 1.07 (s, 9H); 
13

C NMR (75 MHz, CDCl3) δ 149.3 (C), 

149.1 (C), 148.9 (C), 148.6 (C), 133.7 (CH), 128.9 (C), 127.9, 

126.6 (C), 126.1 (C), 125.1 (C), 123.9 (C), 120.1 (C), 108.1 (CH), 

105.9 (CH), 103.5 (CH), 102.8 (CH), 59.4 (C), 56.8 (C), 56.3 

(2CH3), 56.2 (CH3), 56.1 (CH3), 46.0(CH2), 42.2 (CH2), 26.5 (CH3), 

22.8 (CH3); HRMS (ESI) calcd for C28H38NO5S 500.2471, found 

500.2478. 

(ent-4). It was prepared from ent-3 (925 mg, 2.02 mmol), 

following the same procedure described for the preparation of 

4, with better yield (819 mg, 81 %) and identical 

characterization data, except for the optical rotation: [α]D
20

 + 6 

(c 4.13, CHCl3). 

(2R)-tert-Butyl-(2-methyl-1-(2,3,6,7-tetramethoxy-

phenanthren-9-yl)pent-4-en-2-yl)carbamate (5). To a solution 

of compound 4 (313 mg, 0.76 mmol) in MeOH (7.6 mL) was 

added a solution of 4 M HCl in Dioxane (0.76 mL, 3.04 mmol) 

at 0 ºC. The reaction mixture was stirred 1.5 h at 25 ºC and 

then was concentrated to dryness. The residue was dissolved 

in CH2Cl2 (7.6 mL) and after cooled down the solution to 0 ºC, a 

2 M aqueous solution of NaOH (7.6 mL) and Boc2O (188.1 mg, 

0.84 mmol) were sequentially added. The mixture was stirred 

under argon atmosphere at 25 ºC during 2.5 h. The mixture 

was extracted with CH2Cl2 (3 x 20 mL), the collected organic 

layers were washed with brine (5 mL), dried over MgSO4 and 

concentrated to dryness. The crude product was purified by 

flash chromatography (7:3 hexane/EtOAc) to obtain the 

desired product as a white amorphous solid (286 mg, 76%): 

[α]D
20

 −18 (c 6.83, CHCl3); Rf  0.20 ( 7:3 hexane/EtOAc); 
1
H NMR 

(300 MHz, CDCl3) δ 7.82 (s, 1H), 7.78 (s, 1H), 7.71 (s, 1H), 7.43 

(s, 1H), 7.15 (s, 1H), 5.97 – 5.78 (m, 1H), 5.21 – 5.05 (m, 2H), 

4.44 (s, 1H), 4.13 (s, 3H), 4.12 (s, 3H), 4.09 (s, 3H), 4.02 (s, 3H), 

3.69 – 3.59 (m, 1H), 3.41 (d, J = 14.1 Hz, 1H), 2.87 (dd, J = 13.3, 

7.3 Hz, 1H), 2.34 (dd, J = 13.7, 7.4 Hz, 1H), 1.49 (s, J = 10.3 Hz, 

9H), 1.18 (s, 3H). 
13

C NMR (75 MHz, CDCl3) δ 154.7 (C), 149.2 

(C), 148.9 (C), 148.8 (C), 148.5 (C), 134.1 (CH), 130.2 (C), 127.1 

(CH), 127.0 (C), 126.2 (C), 124.9 (C), 123.8 (C), 118.9 (CH2), 

108.0 (CH), 106.6 (CH), 103.2 (CH), 102.9 (CH), 78.9 (C), 56.4 

(CH3), 56.3 (CH3), 56.1 (CH3), 55.9 (CH3), 43.4 (CH2), 40.1 (CH2), 

28.7 (CH3), 25.3 (CH3); HRMS (ESI) calcd for C29H37NO6Na 

518.2519, found 518.2523. 

(ent-5). It was prepared from ent-4 (819 mg, 1.64 mmol), 

following the same procedure described for the preparation of 

5, with similar yield (568 mg, 70%) and identical 

characterization data, except for the optical rotation: [α]D
20

 + 

15 (c 7.50, CHCl3). 

(2R)-tert-Butyl-2-methyl-2-((2,3,6,7-tetramethoxy-

phenanthren-9-yl)methyl)-3,4-dihydropyridine-1(2H)-

carboxylate (6). To a pressure tube were sequentially added 

[RhCl(cod)]2 (6.92 mg, 0.014 mmol), BIPHEP (14.97 mg, 0.028 

mmol), NiXantphos (15.80 mg, 0.028 mmol) and toluene (2.8 

mL). The system was then evacuated and filled back with 

argon before compound 5 (232 mg, 0.468 mmol) and aqueous 

formalin (37%, 0.3 mL, 12.65 mmol) were added. The reaction 

mixture was deoxygenated via three cycles of freeze-pump 

and thaw under argon atmosphere and heated to 90 ºC. The 

mixture was stirred for 40 h at the same temperature and then 

left to reach room temperature, before being concentrated 

and purified by flash chromatography (hexane/EtOAc 7:3) to 

obtain the desired product as a white amorphous solid (213 

mg, 90 %): [α]D
20

 − 21 (c 6.86, CHCl3);  Rf  0.21 ( 7:3 

hexane/EtOAc); 
1
H NMR (300 MHz, CDCl3) δ 7.95 (s, 1H), 7.81 

(s, 1H), 7.78 (s, 1H), 7.37 (s, 1H), 7.16 (s, 1H), 6.93 (d, J = 8.6 Hz, 

1H), 5.00 – 4.91 (m, 1H), 4.14 (s, 3H), 4.12 (s, 3H), 4.12 (s, 3H), 

4.04 (s, 3H), 3.97 (s, 1H), 3.08 (d, J = 14.0 Hz, 1H), 2.45 – 2.27 

(m, 1H), 2.17 – 1.95 (m, 2H), 1.80 – 1.65 (m, 1H), 1.45 (s, 3H), 

1.26 (s, 9H); 
13

C NMR (75 MHz, CDCl3) δ 152.7 (C), 149.0 (C), 

148.9 (C), 148.8 (C), 148.6 (C), 131.0 (C), 127.5 (C), 127.4 (CH), 

126.6 (CH), 126.2 (C), 124.8 (C), 123.9 (C), 108.0 (CH), 107.1 

(CH), 104.3 (CH), 103.0 (CH), 102.9 (CH), 80.5 (C), 58.3 (C), 56.3 

(CH3), 56.2 (CH3), 56.1 (CH3), 56.0 (CH3), 37.6 (CH2), 35.9 (CH2), 

28.2 (CH3), 25.9 (CH3), 19.2 (CH2); HRMS (ESI) calcd for 

C30H37NO6Na 530.2519, found 530.2510. 

(ent-6). It was prepared from ent-5 (473 mg, 0.95 mmol), 

following the same procedure described for the preparation of 

6, with similar yield (353 mg, 82 %) and identical 

characterization data, except for the optical rotation: [α]D
20

 + 

27 (c 4.6, CHCl3). 

(R)-tert-Butyl-2-methyl-2-((2,3,6,7-

tetramethoxyphenanthren-9-yl)methyl)piperidine-1-

carboxylate (7). A dry flask was charged with compound 6 (93 

mg, 0.18 mmol), PtO2 (83% content Pt, 10.0 mg, 0.04 mmol) 

and a mixture of EtOH/AcOH (3.4 mL : 1.4 mL). The flask was 

connected to a balloon of hydrogen through a three-ways 

valve and the reaction mixture was put under hydrogen 

atmosphere (1 atm) after 3 cycles of freeze-pump and thaw. 

The resulting suspension was stirred at 25 °C for 24 h, and then 

was filtered throught Celite and washed with EtOAc (3 x 15 

mL). The organic solution was concentrated to dryness and the 

desired product was obtained as white amorphous solid (90 

mg, > 99%): [α]D
20

 16 (c 7.90, CHCl3); Rf 0.21 ( 7:3 

hexane/EtOAc); 
1
H NMR (300 MHz, CDCl3) δ 7.95 (s, 1H), 7.83 

(s, 1H), 7.79 (s, 1H), 7.38 (s, 1H), 7.15 (s, 1H), 4.13 (s, 6H), 4.12 

(s, 3H), 4.04 (s, 3H), 3.86 – 3.71 (m, 2H), 3.43 (d, J = 14.0 Hz, 

1H), 3.11 – 2.96 (m, 1H), 1.98 – 1.84 (m, 1H), 1.77 – 1.57 (m, 

4H) 1.48 (s, 13H); 
13

C NMR (75 MHz, CDCl3) δ 155.9 (C), 149.0 
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(C), 148.9 (C), 148.79 (C), 148.5 (C), 131.3 (C), 127.5 (C), 126.5 

(CH), 126.3 (C), 124.9 (C), 123.8 (C), 108.1 (CH), 107.3 (CH), 

103.1 (CH), 103.0 (CH), 79.3 (C), 59.2 (C), 56.3 (2CH3), 56.1 

(CH3), 56.0 (CH3), 41.4 (CH2), 38.2 (CH2), 35.6 (CH2), 28.7 (CH3), 

26.3 (CH3), 23.3 (CH2), 17.6 (CH2); HRMS (ESI) calcd for 

C30H39NO6Na 532.2675 found 532.2663. 

(ent-7). It was prepared from ent-6 (370 mg, 0.73 mmol), 

following the same procedure described for the preparation of 

7, with similar yield (568 mg, >99%) and identical 

characterization data, except for the optical rotation: [α]D
20

  

20 (c 2.42, CHCl3). 

(R)-2,3,6,7-tetramethoxy-14a-methyl-11,12,13,14,14a,15-

hexahydro-9H-dibenzo[f,h]pyrido[1,2-b]isoquinoline (8). To a 

solution of compound 7 (67 mg, 0.16 mmol) in MeOH (2.4 mL) 

at 0 ºC was added concentrated HCl (12 M, 0.5 mL) and the 

mixture was stirred for 24 h at room temperature. At this point 

the solvent was replaced by EtOH (4.5 mL), followed by the 

sequential addition of aqueous formaldehyde (37%, 0.83 mL) 

and concentrated HCl (12 M, 0.12 mL). The reaction mixture 

was put under argon atmosphere, protected from light 

irradiation and stirred at 90 ºC during 72 h. After cooled to 

room temperature, the mixture was concentrated under 

vacuum and the residue was distributed into CH2Cl2 (10 mL) 

and 2 M aqueous solution of NaOH (5 mL). The aqueous phase 

was extracted with CH2Cl2 (3 x 10 mL) and washed with brine 

(5 mL), dried over Na2SO4, and concentrated to dryness. 

Purification by flash column chromatography (7:3 hexane/(3:1 

EtOAc/EtOH with 2% NH4OH)) afforded the desired product as 

a pale yellow solid (50 mg, 74%): [α]D
20 

 52 (c 5.84, MeOH); Rf 

0.19 (7:3, hexane/(3:1 EtOAc/EtOH with 2% NH4OH)); 96:4 er 

according to chiral HPLC analysis [tR (minor) 16.69 min, tR 

(major) 18.95 min, see ESI for details]; 
1
H NMR (300 MHz, 

CDCl3) δ 7.85 (s, 2H), 7.30 (s, 1H), 7.16 (s, 1H), 4.18 (br. d, J = 

16.2 Hz, 1H), 4.12 (s, 3H), 4.12 (s, 3H), 4.08 (s, 3H), 4.06 (s, 3H), 

3.94 (br. d, J = 15.4 Hz, 1H), 3.09 (br. d, J = 15.8 Hz, 1H), 2.98 – 

2.84 (m, 2H), 2.74 – 2.58 (m, 1H), 1.91 – 1.64 (m, 6H), 1.06 (s, 

3H); 
13

C NMR (75 MHz, CDCl3) δ 148.8 (2C), 148.6 (C), 148.5 (C), 

125.9 (C), 124.8 (C), 124.2 (C), 124.1 (C), 123.8 (C), 123.4 (C), 

104.0 (CH), 103.7 (CH), 103.6 (CH), 103.2 (CH), 56.2 (CH3), 56.1 

(CH3), 52.1 (C), 51.9 (CH2), 50.3 (CH2), 40.2 (CH2), 39.7 (CH2), 

26.4 (CH2), 20.8 (CH2), 14.3 (CH3); HRMS (ESI) calcd for 

C26H32NO4 422.2331 found 422.2326. 

(ent-8). It was prepared from ent-7 (135 mg, 0.33 mmol), 

following the same procedure described for the preparation of 

8, with similar yield (196 mg, 72%) and identical 

characterization data, except for the optical rotation: [α]D
20

 

52 (c 5.81, CHCl3). 

(14aR)-10-benzyl-2,3,6,7-tetramethoxy-14a-methyl-

9,10,11,12,13,14,14a,15-octahydrodibenzo[f,h]pyrido[1,2-

b]isoquinolin-10-ium bromide (9). To a solution of 8 (362 mg, 

0.86 mmol) in dry CH2Cl2 (9.8 mL), were sequentially added 

K2CO3 (264 mg, 1.89 mmol) and benzyl bromide (114 µL, 0.95 

mmol) and the reaction mixture was stirred at 25 ºC overnight. 

Afterwards, the mixture reaction was filtrated and the organic 

layer was concentrated to dryness. The residue was purified by 

flash column chromatography (95:5 to 9:1 CHCl3/ MeOH), to 

obtain the desired product as an orange solid (508 mg, > 99%): 

[ ]D
20

 – 82.0 (c 7.34, CHCl3); Rf 0.36 (9:1 CHCl3/MeOH); 
1
H NMR 

(300 MHz, CDCl3) δ 7.88 (br s, 2H), 7.41 – 7.30 (m, 2H), 7.27 – 

7.12 (m, 2H), 7.01 (br s, 1H), 6.96 – 6.81 (m, 2H), 5.15 (br d, J = 

13.5 Hz, 2H), 4.56 (d, J = 17.3 Hz, 1H), 4.31 (d, J = 13.0 Hz, 1H), 

4.16 (s, 6H), 4.14 – 4.07 (m, 3H), 3.99 – 3.91 (m, 3H), 3.68 (d, J 

= 18.4 Hz, 1H), 3.51 – 3.33 (m, 2H), 2.81 – 2.63 (m, 1H), 2.60 – 

2.37 (m, 1H), 2.35 – 1.93 (m, 5H), 1.84 (s, 3H);
13

C NMR (75 

MHz, CDCl3) δ 150.0 (C), 149.9 (C), 149.8 (C), 149.6 (C), 132.7 

(2CH + C), 131.0(CH), 129.4(2CH), 126.9 (C), 124.8 (C), 124.4 

(C), 124.2 (C), 122.3 (C), 122.2 (C), 118.2 (C), 104.0 (CH), 103.7 

(CH), 103.6 (CH), 103.1 (CH), 68.0 (C), 56.9 (CH3), 56.5 (CH3), 

56.3 (CH3), 56.2 (CH3), 54.9 (CH2), 54.1 (CH2), 53.5 (CH2), 37.4 

(CH2), 32.7 (CH2), 21.9 (CH3), 20.3 (CH2), 17.7(CH2); HRMS (ESI) 

cald for C33H38NO4 512.2801 found 512.2799. 

(ent-9). It was prepared from ent-8 with similar yield (112 mg, 

91 %) and identical characterization data, except for the 

optical rotation: [ ]D
20

 86.6 ( c 6.33, CHCl3). 

(9S,14aR)-9-benzyl-2,3,6,7-tetramethoxy-14a-methyl-

11,12,13,14,14a,15-hexahydro-9H-dibenzo[f,h]pyrido[1,2-

b]isoquinoline (10). In a dry two-necked round-bottom flask, 

equipped with a condenser, was added NaH (60% mineral oil 

dispersion, 188.0 mg, 7.85 mmol). The solid was washed twice 

with hexane, removing the solvent and drying the solid with 

cycles of vacuum/ Argon, before dry DMSO (8 mL) was added. 

The mixture was heated to 60 ºC during 2 h until the evolution 

of gases (H2) ceased and complete dissolution of solids was 

observed. At this point, compound 9 (224.5 mg, 0.38 mmol) 

was added and the mixture was stirred 5 h at 25 ºC, before 

being quenched with H2O (15 mL). The resulting white 

precipitate was filtrated, washed with water and dried under 

vacuum. The obtained solid was purified by flash column 

chromatography (100% CHCl3 to 99: 1 CHCl3/ i-PrOH) to obtain 

the desired product as pale yellow foam solid (102 mg, 52%): 

[ ]
D

20 – 154.5 (c 5.95, CHCl3);  Rf 0.28 (99: 1 CHCl3/ 
i
PrOH); 95:5 

er according to chiral HPLC analysis [tR (minor) 7.67 min, tR 

(major) 8.43 min, see ESI for details]; 
1
H NMR (300 MHz, CDCl3) 

δ 7.89 (s, 1H), 7.85 (s, 1H), 7.40 (s, 1H), 7.09 (s, 1H), 6.99 (ddd, 

J = 6.3, 3.7, 1.3 Hz, 1H), 6.96 – 6.86 (m, 2H), 6.63 – 6.56 (m, 

2H), 4.37 (t, J = 3.7 Hz, 1H), 4.14 (s, 3H), 4.12 (s, 3H), 4.04 (s, 

3H), 4.00 (s, 3H), 3.15 (dd, J = 13.1, 4.1 Hz, 1H), 3.07 – 2.94 (m, 

2H), 2.74 – 2.58 (m, 2H), 1.93 (d, J = 15.1 Hz, 1H), 1.78 – 1.59 

(m, 6H), 0.76 (s, 3H).
13

C NMR (75 MHz, CDCl3) δ 148.8 (C), 

148.6 (2C), 148.2 (C), 139.0 (C), 130.6(2CH), 128.7(C), 128.3 (C), 

126.7(2CH), 125.62(C), 125.6(CH), 124.1(C), 123.9(C), 123.5(C), 

104.9(CH), 104.3(CH), 104.0(CH), 103.5(CH), 60.0(CH), 

56.2(2CH3), 56.1(CH3), 56.0(CH3), 51.2(C), 46.9(CH2), 41.9(CH2), 

41.1(CH2), 40.1(CH2), 26.8(CH2), 20.9(CH2), 13.9(CH3). HRMS 

(ESI) cald for C33H38NO4 512.2801 found 512.2794. 

(ent-10). It was prepared from ent-9 with similar yield (12 mg, 

45%) and identical data as 10 except for the optical rotation: 

[ ]D
20

 155.2 (c 4.50, CHCl3). 
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