
Randomness Analysis and Generation of
Key-Derived S-Boxes?

Rafael Álvarez and Antonio Zamora

Dpt. of Computer Science and Artificial Intelligence (DCCIA)
University of Alicante (Campus de San Vicente)

Ap. 99, E-03080, Alicante, Spain
{ralvarez,zamora}@dccia.ua.es

Abstract. Although many ciphers use fixed, close to ideal, s-boxes (like
AES for example), random s-boxes offer an interesting alternative since
they have no underlying structure that can be exploited in cryptanalysis.
For this reason, some cryptosystems generate pseudo-random s-boxes as
a function of the key (key-derived).
We analyse the randomness properties of key-derived s-boxes generated
by some popular cryptosystems like the RC4 stream cipher, and the
Blowfish and Twofish block ciphers with the aim of establishing if this
kind of s-boxes are indistinguishable from purely random s-boxes.
For this purpose we have developed a custom software framework to
generate and evaluate random and key derived s-boxes.
We also detail and analyse several mechanisms for the generation of
proper key-derived s-boxes, including fixed point filtering and different
sizes based on 8x8 s-boxes.

Keywords: S-Boxes, Key-Derived, Random, RC4, Blowfish, Twofish

1 Introduction

Substitution boxes (or s-boxes) are simple substitution tables where an input
value is transformed into a different output value. They are employed in many
sizes, but the most prevalent are 8x8 bits (byte as input and output) and 8x32
bits (byte as input and four byte word as output). They are essential in many
cryptosystem designs (see [2, 3, 8, 14, 23, 24]) since they can introduce the re-
quired non-linearity characteristics, making cryptanalysis a more difficult en-
deavour (see [11]).

Regarding their design, there are two basic schools of thought:

– Crafted s-boxes. These are carefully designed to achieve certain desirable
characteristics and often have an underlying generator function. The advan-
tage is they can be chosen so they are optimum in terms of non-linearity,
avalanche, bit independence, etc. On the other hand, the fact that they are
fixed or based on some kind of underlying structure could make cryptanalysis
easier (see [8, 9, 12, 13]).

? Partially supported by grant TIN2011-25452 (TUERI)

Usuario
Texto escrito a máquina
This is a previous version of the article published in Logic Journal of the IGPL. 2016, 24(1): 68-79. doi:10.1093/jigpal/jzv044

http://dx.doi.org/10.1093/jigpal/jzv044


2 Rafael Álvarez and Antonio Zamora

– Random or key-derived s-boxes. Unlike crafted s-boxes, random s-boxes
cannot be guaranteed to have certain values of non-linearity or other metrics
but many cryptographers think that the fact they do not have any exploitable
underlying structure is a distinct advantage against cryptanalysis. Further-
more, pseudo-random s-boxes that are generated as a function of the key
(key-derived s-boxes) allow the cryptosystem to use a different s-box per
each key, possibly making cryptanalysis even more difficult.

In general, random s-boxes offer acceptable security characteristics although
not as high as the best crafted s-boxes (see [4]).

How random are key-derived s-boxes is, therefore, an interesting question to
ask. Ideally, they should approximate purely random s-boxes as much as possible
so that they have the advantage of being free of underlying structure while at
the same time permitting the cryptosystem to use a different s-box for each key.

We have developed a testing framework capable of generating and analysing
8x8 s-boxes and we have tested 340,000 different s-boxes corresponding to ran-
dom s-boxes, those generated by the RC4 stream cipher (see [14]), the Blowfish
block cipher (see [23]) and its improved sibling, Twofish (see [24]). We have
computed useful metrics for each s-box and summarized the resulting data to
extract meaningful conclusions.

Since key-derived s-boxes have a great number of applications as a non-linear
element in cryptographic primitives, it is also interesting to consider some aspects
regarding their generation process in order to achieve satisfactory results.

The rest of the paper is organised as follows: a description of the tests per-
formed is given in section 2, the results are analysed in section 3, some concepts
and algorithms for key-derived s-box generation are described in section 4 and,
finally, the conclusions are in section 5.

2 Description

In order to test the randomness of key-derived s-boxes we have compared several
algorithms against random s-boxes. During our study, we have generated 10,000
random s-boxes, 10,000 RC4 s-boxes, 40,000 8x32 Blowfish s-boxes (separated
into 160,000 8x8 s-boxes) and 40,000 Twofish s-boxes (also separated into 160,000
8x8 s-boxes); totalling 340,000 tested s-boxes.

We have developed a custom testing framework capable of generating and
analysing s-boxes, computing multiple metrics for each s-box. It is comprised
of two separate components: a completely new element written in Go (see [10])
that generates s-boxes in a parallel, concurrent, fashion using hooks into the
cryptosystems to obtain the required s-boxes and other custom generators; and
an element written in C (evolved from previous work, see [4]) that batch tests
groups of s-boxes and is simultaneously executed in as many cores as possible.

Then, the results have been statistically analysed to find meaningful distin-
guishing characteristics in each set.



Randomness Analysis and Generation of Key-Derived S-Boxes 3

2.1 Random S-Boxes

Random s-boxes have been generated as bijective 8x8 s-boxes using random
permutations of the values 0, 1, . . . , 255. This guarantees perfect balance but can
introduce fixed points. If fixed points are not desired, then some kind of filtering
must be introduced to eliminate the offending s-boxes or transform them into
valid ones.

These random s-boxes form a standard of randomness that other key-derived
s-boxes can be compared to.

2.2 RC4

The RC4 stream cipher algorithm (see [14, 19]) is one of the most widely used
software stream ciphers since it is part of the Secure Sockets Layer (SSL, see [7]),
Transport Layer Security (TLS, see [5]) and Wired Equivalent Privacy (WEP,
see [6]) protocols, among others. It does not employ a s-box per-se, but its
internal state consists of an 8x8 bijective table that dynamically changes as data
is encrypted. The key used with RC4 solely determines the initial state of this
internal s-box, so we consider that initial state as a key-derived s-box.

2.3 Blowfish

Blowfish (see [23]) is a popular block cipher that, due to its slower key schedule
algorithm, is commonly used as a password hashing algorithm in operating sys-
tems and applications (see [18]). It uses four 8x32 key-derived s-boxes that are
generated during the key schedule phase.

Since some of the metrics require extensive calculations with a computational
complexity on the order of O(n) = 2b, being b the output bit size, they are too
big to be analysed natively. For this reason we consider each 8x32 s-box as 4
adjacent 8x8 s-boxes, obtaining 16 8x8 s-boxes per each different key.

2.4 Twofish

Twofish (see [24]) is the successor to Blowfish and was one of the five finalists of
the Advanced Encryption Standard (AES) contest. It also generates four 8x32 s-
boxes during the key schedule algorithm, which have been considered as sixteen
8x8 s-boxes so they can be tested for all metrics.

3 Results

3.1 Balance

Balance can be defined in terms of just the component functions (columns) of
the s-box, or of all the linear combinations of the component functions. The
latter definition is probably more correct, since unbalanced linear combinations



4 Rafael Álvarez and Antonio Zamora

Table 1. Balance test results

Random RC4 Blowfish Twofish

Min. 255 255 1 255
Max. 255 255 39 255
Med. 255 255 13 255
Inv. 0% 0% 100% 0%

imply also some type of statistical bias towards 0 or 1 in the output. See [4, 15,
25] for more information.

When bijective s-boxes are used, then measuring balance can act as a way of
checking that they are really bijective. In those cases where unbalanced s-boxes
may be used, the ratio of balanced linear combinations to total number of linear
combinations is an useful metric.

As shown in table 1, we can see that, depending on the algorithm, they
are either all valid (all s-boxes have all linear combinations balanced) or all
invalid (no s-box has all linear combinations balanced). This table includes the
minimum (Min.), maximum (Max.) and median (Med.) number of balanced
linear combinations found in an s-box of that set. It also includes the percentage
of unbalanced s-boxes (Inv.) in each set.

The random s-boxes, and the ones generated by RC4, are all balanced since
they are permutations of the values 0 to 255 (bijective).

Blowfish, on the other hand, fails the balance test since, once you subdivide
each 8x32 s-box into four 8x8 adjacent s-boxes, they do not contain all possible
values achieving terrible results in this test with a median of 13 and a minimum
of 1 or 2 balanced linear combinations (so, in most cases, not even the component
functions are balanced). This is a problem, since you can always consider an 8x32
s-box as four adjacent 8x8 s-boxes and attack those accordingly.

Twofish is, certainly, an improvement in this regard, generating 8x32 s-boxes
that are balanced when separated as 4 distinct 8x8 s-boxes.

3.2 Fixed Points

Direct (S(i) = i) or reverse (S(i) = 255 − i) fixed points are generally not
desirable in s-boxes since they imply that the output is equivalent to the input
and not modified in some cases (see [4]).

Fixed points are not an absolute requirement since there is no known attack
exploiting this characteristic, although it is generally desirable that all input
bytes are transformed into something different by the s-box.

As shown in table 2, none of the studied algorithms prevent fixed points
from happening. The occurrence rate is of 1 direct and 1 reverse fixed point per
s-box on average, which is on par with random s-boxes. This table includes the
minimum (Min.), maximum (Max.) and median (Med.) number of direct and
reverse fixed points found in an s-box of that set. It also includes the percentage
of invalid s-boxes (Inv. – having fixed points) in each set.



Randomness Analysis and Generation of Key-Derived S-Boxes 5

Table 2. Fixed points test results

Direct

Random RC4 Blowfish Twofish

Min. 0 0 0 0
Max. 7 8 8 7
Med. 1 1 1 1
Inv. 63% 57% 64% 63%

Reverse

Random RC4 Blowfish Twofish

Min. 0 0 0 0
Max. 7 6 8 7
Med. 1 1 1 1
Inv. 64% 62% 64% 63%

3.3 Non-linearity

Table 3. Non-linearity test results

Random RC4 Blowfish Twofish1 Twofish2

Min. 78 78 77 78 80
Max. 98 98 98 98 98
Med. 92 92 93 92 94
Inv. 19% 19% 41% 19% 50%

Non-linearity (see [4, 15]) is a measure of resistance to linear cryptanalysis
and is defined for Boolean functions. In the case of s-boxes we take the minimum
non-linearity of all linear combinations of the component functions of each s-
box. Although the theoretical minimum is 0, we consider that a better minimum
threshold is 2n−2 because, generally, random s-boxes are above that value. The
maximum non-linearity considered is 2n−1 − 2

n
2 .

As can be seen in table 3, all algorithms present similar values to random
s-boxes in minimum (Min.) and maximum (Max.) non-linearity values ranging
from 78 to 98 approximately.

The median value (Med.) shows some interesting characteristics with random
and RC4 s-boxes having a median of 92, Blowfish a median of 93 and Twofish
92 for the first half of s-boxes (denoted by Twofish1) and 94 for the second half
(Twofish2). These could be used, to a certain degree, as a distinguishing factor for
Blowfish or second half Twofish s-boxes. The table also includes the percentage
of not-as-good, or invalid, s-boxes (Inv.) that have non-linearity values below
the median value.



6 Rafael Álvarez and Antonio Zamora

Please note that the maximum non-linearity considered would be 2n−1−2n/2,
or 112 for n = 8. The AES s-box achieves a non-linearity of 112 (see table 7).

3.4 XOR Table

Table 4. XOR Table test results

Random RC4 Blowfish Twofish

Min. 8 8 8 8
Max. 16 18 18 18
Med. 12 12 12 12
Valid 91% 91% 91% 91%

The XOR table is a metric related to differential cryptanalysis (see [1, 16]).
There are two possible metrics for the XOR table: the first corresponds to the
number of valid entries (entries with values 0 or 2) of the XOR table, with the
second being the maximum entry in the table. See [4, 15, 25] for more information.

As shown in table 4, there are no differentiating factors among the algorithms
tested; they all present a minimum value (Min.) of the maximum entry of 8, a
maximum value (Max.) of the maximum entry of 18 (except 16 for the random
s-boxes) and a median value (Med.) of the maximum entry of 12. The number
of valid entries in the table is also the same, stable at 91%.

3.5 Avalanche

Table 5. Avalanche (DSAC(1)) test results

Random RC4 Blowfish Twofish

Min. 12 10 10 10
Max. 28 28 29 30
Med. 16 16 17 16

Defined for Boolean functions, we consider the distance to the strict avalanche
criterion of order 1 or DSAC(1). The DSAC(1) for the complete s-box is the
maximum of the distances of the component functions (columns) (see [4, 15]).
The lower boundary is determined as 2n−2.

As shown in table 5, all algorithms present similar minimum (Min.) and
maximum (Max.) values, while Blowfish presents a slightly higher median (Med.)
value.



Randomness Analysis and Generation of Key-Derived S-Boxes 7

Table 6. Bit Independence (DBIC(2,1)) test results

Random RC4 Blowfish Twofish

Min. 16 16 16 16
Max. 30 32 36 30
Med. 20 20 20 20

3.6 Bit Independence

Defined for the whole S-box, this corresponds to bit independence DBIC(2,1)
(see [4, 15]).

This metric presents no differentiating factors among the tested algorithms,
as shown in table 6 that includes minimum (Min.), maximum (Max.) and median
(Med.) values.

3.7 Comparison with AES

Table 7. Comparison between AES and random s-boxes

AES Random (best) Random (average) Random (worst)

Balance 100% 100% 100% 100%
Fixed points (0,0) (0,0) (1,1) (7,7)
Nonlinearity 112 98 92 78

XOR table 4 8 12 16
DSAC(1) 8 12 16 28
DBIC(1) 8 16 20 30

If we compare random s-boxes to the AES s-box, we can see in table 7 that
the AES s-box achieves better values in all non-trivial metrics. It is for this
reason that cryptosystems based on key-derived s-boxes trade off ideal metric
values for no underlying structure or generator function (see [4]).

4 Key-Derived S-Box Generation

It is important to consider some aspects when generating 8x8 key-derived s-
boxes in order to achieve proper results. This process involves transforming the
key into a pseudorandom sequence of the adequate length (key expansion) that
can be used as the input for the permutation process that generates the final
s-box. Other aspects are fixed point filtering mechanisms and accounting for
different sizes that are also common in cryptography.



8 Rafael Álvarez and Antonio Zamora

4.1 Key Expansion

In order to generate a key-derived s-box, the key usually requires stretching (ex-
pansion) into a pseudorandom sequence of the proper length. In the simplest
case, this expansion process can consist on the repetition of the key up to the
desired length; in other instances, the expansion can involve more complex pro-
cedures such as using a password based key derivation function (PBKDF) or a
lightweight cryptographic primitive in pseudorandom mode: a key stream gen-
erator, a block cipher in a stream cipher mode or a hash function in repetitive
iterations, for example.

Regarding length, it would seem that the longer the sequence the bigger the
amount of swaps occurring during the permutation phase and, subsequently, the
more random the resulting s-box is. On the contrary, there is a limit to the useful
length because any sequence longer than the number of values of the s-box (256
for an 8x8 s-box) generates the same s-box as another sequence of 256 bytes or
less.

Another important concept is avalanche, since it is desirable that similar
keys (with very few differences) generate very different, unrelated, s-boxes. Us-
ing a complex expansion scheme or true pseudorandom generation rather than
repetition can optimize the avalanche; unfortunately, this usually implies worse
performance, also.

4.2 Permutation

The permutation process commences from a predetermined state (generally val-
ues 0 to 255 in ascending order) and takes each successive input byte from the
sequence (seq) to modify the s-box swapping two values.

func GeneratePermutation(seq []byte) (s [256]byte) {

for i := 0; i < 256; i++ {

s[i] = i

}

j := 0

for si := 0; si < len(seq); si++ {

i := si % 256

j = (j + s[i] + seq[si]) % 256

s[i], s[j] = s[j], s[i]

}

return s

}

The RC4 algorithm employs this mechanism for initialization [14], using an
expanded version of the key (through repetition, 256 bytes) as the pseudorandom
sequence. Some bias problems have been found recently in RC4 [22], although
s-boxes are usually employed in a different manner in other cryptosystems.

This scheme can also be repeated to generate multiple s-boxes, even using the
previous s-box as the initial state for the following one. The following example



Randomness Analysis and Generation of Key-Derived S-Boxes 9

code constructs the second s-box (s2) using the first s-box (s1) as the initial
state. In this case, the same sequence is used to construct both s-boxes but with
different initial states, although another possibility is having a different sequence
or sequence section for each s-box.

func GenerateMultiple(seq []byte) (s1,s2 [256]byte) {

for i := 0; i < 256; i++ {

s1[i] = i

}

j := 0

for si := 0; si < len(seq); i++ {

i := si % 256

j = (j + s1[i] + seq[si]) % 256

s1[i], s1[j] = s1[j], s1[i]

}

for i := 0; i < 256; i++ {

s2[i] = s1[i]

}

j = 0

for si := 0; si < len(seq); si++ {

i := si % 256

j = (j + s2[i] + seq[si]) % 256

s2[i], s2[j] = s2[j], s2[i]

}

return s1,s2

}

Recently, Spritz (see [20]), a sponge-based drop-in replacement for RC4, has
been proposed. In the paper, the authors include a new permutation algorithm
that was found to have the best statistical properties after significant computa-
tional testing. This is meant to provide security against the short term biases
found in RC4 (see [14, 17, 21]). This scheme includes an additional state variable,
k, among other constructions that relate to the sponge architecture of Spritz.



10 Rafael Álvarez and Antonio Zamora

We can summarize it as follows (although Spritz has additional functions):

func GenerateSpritzlike(seq []byte) (s [256]byte) {

for i := 0; i < 256; i++ {

s[i] = i

}

j := 0

k := 0

for si := 0; si < len(seq); si++ {

i := si % 256

j = (k + s[j + s[i]] + seq[si]) % 256

k = (k + i + s[j]) % 256

s[i], s[j] = s[j], s[i]

}

return s

}

Another approach would be to avoid swapping values and simply arrange the
values from a pseudorandom sequence onto the s-box without repetition. Unfor-
tunately, it is not possible to predetermine what sequence length will generate a
complete s-box and the computation time would be dependent on the key too,
enabling timing attacks.

4.3 Fixed Point Filtering

As described in section 3.2, it is desirable that the generated s-boxes do not ex-
hibit any direct or reverse fixed points. This can be performed by the application
of a post generation filter that performs a permutation on the offending values.

The straightforward approach is to check for each direct or reverse fixed point
and swap for an adjacent value in order to remove the problem.

func isFixed(i,v byte) bool {

if v == i || v == 255-i {

return true

}

return false

}

func FilterFixedPoints(s [256]byte) {

for i = 0; i < 256; i++ {

if isFixed(i,s[i]) {

j = i+1 % 256

if isFixed(i,s[j]) {

j++

}

s[i],s[j] = s[j],s[i]



Randomness Analysis and Generation of Key-Derived S-Boxes 11

}

}

}

Although this is very simple, the number of swaps (and the time taken)
depends on the amount of fixed points and the adjacent values, making timing
attacks possible. This problem can be solved if the filtering algorithm is coded in
a way where the number of swaps is constant regardless of the number of fixed
points in the s-box.

4.4 Other common sizes

Although 8x8 s-boxes are the most common due to implementation reasons,
since they only require 256 bytes of memory and have a single byte input and
output that is compatible with most memory controller designs, other sizes are
also employed in other situations. One of these sizes is the 8x32 s-box, in which
a single byte of input generates a quadruple byte (32 bit) word. This can be
arranged as a single s-box filtering a group of 4 input bytes:

func Filter8x32(in uint32) (out uint32) {

inb = [4]byte(in)

out = S[inb[1]] ^ S[inb[2]] ^ S[inb[3]] ^ S[inb[4]]

return out

}

or even as four different 8x32 s-boxes that are combined to generate a single
32 bit word output, approximating a 32x32 s-box (that would take an enormous
amount of memory to implement directly):

func Filter8x32(in uint32) (out uint32) {

inb = [4]byte(in)

out = S1[inb[1]] ^ S2[inb[2]] ^ S3[inb[3]] ^ S4[inb[4]]

return out

}

The simplest way to generate 8x32 s-boxes is by concatenation of proper,
bijective, 8x8 s-boxes generated by the methods described above. In this way,
the resulting s-box will be balanced and indistinguishable from a purely random
8x32 s-box. The four 8x8 s-boxes (S1 to S4) are combined so that for each input
value, each s-box constitutes a single column of the resulting output (Sf):

Sf[i] = (S1[i]<<24) ^ (S2[i]<<16) ^ (S3[i]<<8) ^ S4[i]

In the case of a single 8x32 s-box, four 8x8 s-box must be generated and
concatenated. For the case of an approximated 32x32 s-box (four 8x32 s-boxes)
a total of sixteen 8x8 s-boxes are required.

Sometimes, smaller s-boxes like 4x4 are required. These can be generated
using the same mechanism as an 8x8 s-box but adapting for a permutation of
the values from 0 to 15, for example.



12 Rafael Álvarez and Antonio Zamora

5 Conclusions

We have analysed s-boxes generated by RC4, Blowfish and Twofish, comparing
them to pseudo-random s-boxes. During this study, we have found detectable
differences in some of the metrics that could allow, to a certain degree, distin-
guishing Blowfish s-boxes and some Twofish s-boxes from random ones. This
does not necessarily imply a vulnerable design but shows some small biases that
could be improved. Nevertheless, our testing shows that key derivation is a suit-
able way to obtain random-equivalent s-boxes.

Another point of concern is the lack of balance in Blowfish s-boxes that,
although they are employed as 8x32 s-boxes in the algorithm, when they are
analysed as four adjacent 8x8 s-boxes they present statistical biases that could
be exploited. This problem is corrected in its successor, Twofish, acknowledging
the importance of maintaining proper balance in the 8x8 sub-s-boxes. It must be
noted that despite being succeeded by Twofish, Blowfish is vastly more popular
and widely used, like in the bcrypt password derivation algorithm (see [18]) and
others.

We have established through randomness testing that key-derived s-boxes
are essentially equivalent to random s-boxes, and can be equally employed as
non-linear elements in many types of cryptosystems (stream and block ciphers,
hash functions, etc.). They can function as standard substitution tables and as
part of a key schedule algorithm. For this reason, we have analysed in detail
some concepts related to the generation of proper, bijective, 8x8 key-derived s-
boxes, in addition to fixed point filtering algorithms and generation of different
sizes. In order to conduct our analysis, we have developed a custom framework
for generating and testing 8x8 s-boxes.

Some open problems arise from the research performed for this paper, in-
cluding the extension and improvement of the custom s-box generation/testing
framework to support other generation algorithms and metrics, further crypt-
analysis research involving the detected biases and the design of new crypto-
graphic primitives based on the described techniques regarding key-derived s-
boxes generation.

References

1. Adams, C. M., Tavares, S. E.: Designing S-Boxes For Ciphers Resistant To Differ-
ential Cryptanalysis. Proc. 3rd Symposium on State and Progress of Research in
Cryptography, 181–190 (1993)

2. Álvarez, R., McGuire, G., Zamora, A.: The Tangle Hash Function. Submission to
the NIST SHA-3 Competition (2008)

3. Álvarez, R., Vicent, J. F., Zamora, A.: Improving the Message Expansion of the
Tangle Hash Function. Computational Intelligence in Security for Information Sys-
tems, LNCS 6694, 183–189. Springer (2011)

4. Álvarez, R., McGuire, G.: S-Boxes, APN Functions and Related Codes. Enhancing
Cryptographic Primitives with Techniques from Error Correcting Codes, vol. 23,
49–62. IOS Press (2009)



Randomness Analysis and Generation of Key-Derived S-Boxes 13

5. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol
Version 1.2. Internet Engineering Task Force (IETF), RFC 5246 (2008)
http://tools.ietf.org/html/rfc5246

6. Fluhrer, S., Mantin, I., Shamir, A.: Weaknesses in the Key Scheduling Algorithm
of RC4. Selected Areas in Cryptography, LNCS 2259, 1–24. Springer (2001)

7. Freier, A., Karlton, P., Kocher, P.: The Secure Sockets Layer (SSL) Proto-
col Version 3.0. Internet Engineering Task Force (IETF), RFC 6101 (2011)
https://tools.ietf.org/html/rfc6101

8. Fuller, J., Millan, W.: On linear redundancy in the AES S-Box. Cryptology ePrint
Archive, Report 2002/111

9. Fuller, J., Millan, W., Dawson, E.: Multi-objective Optimisation of Bijective S-
boxes. Congress on Evolutionary Computation, vol. 2, 1525–1532 (2004)

10. The Go Programming Language. http://www.golang.org
11. Hussain, I., Shah, T., Gondal, M. A., Khan, W. A.: Construction of Cryptograph-

ically Strong 8x8 S-boxes. World Applied Sciences Journal, vol. 13–11, 2389–2395
(2011)

12. Jing-mei, L., Bao-dian, W., Xiang-guo, C., Xin-mei, W.: Cryptanalysis of Rijndael
S-box and improvement. Applied Mathematics and Computation, vol. 170, 958–
975. Elsevier (2005)

13. Kavut, S.: Results on rotation-symmetric S-boxes. Information Sciences, vol. 201,
93–113. Elsevier (2012)

14. Klein, A.: Attacks on the RC4 stream cipher. Designs, Codes and Cryptography,
vol. 48–3, 269–286. Springer (2008)

15. Mister, S., Adams, C.: Practical S-Box Design. Selected Areas in Cryptography
(1996)

16. Murphy, S., Robshaw, M. J. B.: Key-Dependent S-Boxes and Differential Crypt-
analysis. Designs, Codes and Cryptography, vol. 27–3, 229–255. Springer (2002)

17. Paul, G., Maitra, S.: RC4 Stream Cipher and Its Variants. CRC Press (2012)
18. Provos, N., Mazeries, D.: Bcrypt Algorithm. USENIX (1999)
19. Rivest, R. L.: The RC4 Encryption Algorithm. RSA Data Security Inc. (1992)
20. Rivest, R, L., Schuldt, J.: Spritz – a spongy RC4-like stream cipher and hash func-

tion. http://people.csail.mit.edu/rivest/pubs/RS14.pdf. Presented at CRYPTO
2014 Rump Session (2014)

21. Sengupta, S., Maitra, S., Paul, G., Sarkar, S.: RC4: (Non-) random words from
(non-) random permutations. IACR Cryptology ePrint Archive, 2011:448. (2011)

22. Sepehrdad, P., Vaudenay, S., Vuagnoux, M.: Discovery and Exploitation of New Bi-
ases in RC4. Selected Areas in Cryptography, Lecture Notes in Computer Science,
vol. 6544, 74–91. Springer (2011)

23. Schneier, B.: Description of a New Variable-Length Key, 64-bit Block Cipher (Blow-
fish). Fast Software Encryption, Proc. Cambridge Security Workshop, 191–204.
Springer-Verlag (1994)

24. Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Hall, C., Ferguson, N.: The
Twofish encryption algorithm: a 128-bit block cipher. John Wiley & Sons (1999)

25. Youssef, A. M., Tavares, S. E.: Resistance of Balanced S-boxes to Linear and Differ-
ential Cryptanalysis. Information Processing Letters, vol. 56–5, 249–252. Elsevier
(1995)




