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Abstract

Similarity functions are a fundamental component of many learning algo-
rithms. When dealing with string or tree-structured data, measures based
on the edit distance are widely used, and there exist a few methods for learn-
ing them from data. In this context, we recently proposed GESL (Bellet
et al., 2012), an approach to string edit similarity learning based on loss min-
imization which offers theoretical guarantees as to the generalization ability
and discriminative power of the learned similarities. In this paper, we argue
that GESL, which has been originally dedicated to deal with strings, can
be extended to trees and lead to powerful and competitive similarities. We
illustrate this claim on a music recognition task, namely melody classifica-
tion, where each piece is represented as a tree modeling its structure as well
as rhythm and pitch information. The results show that GESL outperforms
standard as well as probabilistically-learned edit distances, and that it is able
to describe consistently the underlying melodic similarity model.
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1. Introduction

Many applications require to deal with hierarchical information repre-
sented as trees such as Web/XML data processing in web information re-
trieval, syntactic analysis in natural language processing, structured databases,
structured representations in images or symbolic representations in music in-
formation retrieval. In these areas, pattern recognition algorithms are used
to perform classification or clustering tasks. Many of them rely on a notion
of distance or similarity such as the k-Nearest-Neighbors, k-means or kernel-
based classifiers. In the context of tree-structured data, tree edit distance
(TED) (Bille, 2005) is a widely-used measure that extends the concept of
string edit distance. TED is defined as the least costly set of basic oper-
ations to transform one tree into another. Typically, these edit operations
include substitution, insertion or deletion of tree nodes.

TED-based approaches generally make use of an a prior: fixed edit cost
matrix. In most cases, the absence of explicit background knowledge about
the problem at hand leads to a matrix that takes the form of a uniform dis-
tribution over the edit operations. However, it is worth noting that using
a distance tailored to a specific task is key to improve the success of the
recognition algorithm.

Following this idea, some research effort has been devoted to learning
the edit costs from training data. Most of them use an EM-like algorithm:
Neuhaus and Bunke (2004) learn a (more general) graph edit distance. Zig-
oris et al. (2006) train a parameterized tree alignment model for extracting
fields from HTML search results. Boyer et al. (2007) optimize in the form of a
stochastic transducer a stochastic version of the tree edit distance presented
in Zhang and Shasha (1989). Bernard et al. (2008) extend the latter work
to the Selkow algorithm (Selkow, 1977), while Dalvi et al. (2009) propose
a solution to improve the two previous approaches using a more complex
conditional transducer. Mehdad (2009) proposes a rather different method
based on the Particle Swarm Optimization. In a recent paper, continuing
the line of work initiated in Boyer et al. (2007), Emms (2012) proposes an
EM cost adaptation algorithm for the Viterbi variant.

From this short survey, we see that relatively few methods have been
proposed in the literature to deal with tree edit distance learning. Moreover,
their most striking limitation is essentially due to algorithmic constraints
coming from the underlying complexity of evaluating the tree edit distance



combined with the use of the EM algorithm that requires to iteratively recom-
pute the updated distances. In this probabilistic context, tree edit distance
learning quickly becomes intractable and the need of a new class of learning
methods has emerged.

In a previous paper (Bellet et al., 2012), we proposed a new framework
for learning string edit similarities addressing the main drawbacks described
above. We presented a new algorithm, called GESL for Good Edit Similarity
Learning, tailored to binary classification and originally designed for string-
structured data. In GESL, we suggest to optimize the costs of the edit
operations involved in the classical string edit distance (Levenshtein, 1966) to
fulfill a goodness criterion according to the theory of (e, 7, 7)-good similarity
functions presented in Balcan et al. (2008). This method has been shown to
be well suited to string edit similarity learning (Bellet et al., 2012), providing
a procedure that (i) is very efficient (edit scripts need to be computed only
once), (ii) has strong theoretical guarantees in the form of a generalization
bound (suitable for problems with large alphabet), and (iii) can be used to
learn low-error classifiers for the task at hand.

In this paper, our claim is that GESL deserves to be extended to tree-
structured data to overcome the limitations of state of the art tree edit
distance learning methods. In this context, our contribution is three-fold:
first, we show that GESL can be easily adapted to trees without increasing
the algorithmic complexity of the learning process and that we can derive
generalization guarantees of the learned tree edit similarity. Second, we pro-
vide experimental evidences that GESL is well suited to deal with music
recognition tasks. Indeed, musical pieces encoded in symbolic format (e.g.
MIDI or MusicXML) can be efficiently represented by structured data such
as trees (Rizo, 2010) (see Fig.3). We show on the PASCAL database that
GESL outperforms state of the art tree edit distance algorithms. Our last
contribution aims at showing that the models learned by GESL can provide
a posteriori valuable knowledge from a music information retrieval point of
view. Indeed, the learned edit similarity directly works on the structure of
the data and thus on the melody structure itself. Therefore, it can give
some insights about, e.g., the most common changes that make the tune still
recognizable.

The rest of this paper is organized as follows. Section 2 introduces the
background on trees and edit distance. Section 3 presents the adaptation
of GESL to trees in the context of two variants of TED proposed in Selkow



(1977) and Zhang and Shasha (1989). Our experimental study is described
in Section 5. We conclude in Section 6.

2. Background
We begin this part by making a little recap on the definition of a tree.

Definition 1. Let t = v(ty,...,t,) be a tree where v is a node and tq,. .., t,
is an ordered sequence of (sub)trees. v is called the root of t. tq,...,t, are

called the children of v. A node with no child (n =0) is a leaf.

The size of the tree t is denoted by [t| and corresponds to the number
of nodes constituting the tree. In the following, we assume each node to be
labeled by a symbol o coming from a set of labels >. We denote by Ty, the
set of trees that can be built from .

In this paper, we stand in a classical supervised learning setting for binary
classification. We assume we are given some labeled examples z = (t,/)
drawn from an unknown distribution P over Ty x {—1,1}, where {—1,1}
are the binary labels of the examples. K : Ts x Ty, — [—1,1] defines a
pairwise similarity function over Ty, K is symmetric if for all ¢, € T%,
K(t,t') = K(t',t). A binary classifier h is a function h : Ty, — {—1,1}.

The binary classifiers we consider rely on a similarity function that is
based on the notion of edit distance over trees. The tree edit distance (TED)
(Bille, 2005) can be seen as an extension or a generalization of the string
edit distance (also known as the Levenshtein distance) and is based on three
elementary edit operations: substitution, insertion or deletion of nodes. It is
defined as follows.

Definition 2. Let X be a set of labels and $ be the empty symbol, T, being the
set of all possible trees (including the empty tree $). The tree edit distance
(TED) er(t,t') between two trees t and t' is the minimum number of edit
operations to change t into t'. The set corresponding to the minimum number
of operations allowing one to change t into t' is called the optimal script.

Like in the case of strings, TED can be computed using dynamic pro-
gramming: when considering two trees of sizes m and n, where m < n, the
best known algorithms for this problem, due to Zhang and Shasha (1989)
and Klein (1998), have an O(n®logn) time complexity and an O(mn) space
complexity. In these approaches, when a tree node is deleted, all its children



are connected to its father. A less costly variant of these algorithms has been
proposed by Selkow (1977), where deleting a node leads to the removal of the
entire (sub)tree rooted at that node (see Figure 1 for an illustration). The
insertion of a (sub)tree is also allowed and requires the iterative insertion of
its nodes. Such a distance is relevant to specific applications. For instance, it
would make no sense to delete a <UL> tag (i.e., a node) of an unordered list in
a HTML document without removing the <LI> items (i.e., the subtree). In
this case, the tree edit distance can be computed by dynamic programming
in quadratic time.

a substitution (d,b) ,

deletion of ¢(a, b(c)) insertion of ¢
- s
/ a a\b a a\b \

a a
b c d b b
al a/ b\ /a \b c b
c

Figure 1: An optimal edit script according to Selkow tree edit distance algorithm Selkow
(1977). The script begins by the deletion of the subtree c(a,b(c)), then it considers the
substitution of two labeled nodes (d,b) and terminates with the insertion of the one node
subtree c. Following this script between the two trees, the non-zero entries of the corre-
sponding matrix # of Section 3.1 are: #(4.8), #(b,$)s #(c,$)> F($,c)> and #(qp); all these
entries receive the value 1 since they are exactly used once in the script.

In the next section, we present the framework for learning good tree edit
similarities.

3. Good Edit Similarity Learning for tree-structured data

We now present our procedure for learning good tree edit similarity. This
procedure follows the principle of the algorithm GESL introduced by Bellet
et al. (2012) which is based on three main steps. In this section, we detail
each step of this process. First, we define a simple edit similarity based
on edit scripts. Second, we optimize this similarity according to the frame-
work of (e,7,7)-good similarity of Balcan et al. (2008). This step leads to



good similarities allowing one to build, during a last step, powerful linear
separators.

3.1. Tree Edit Script Based Similarity

Let C' be a positive cost matrix of size (|X] + 1) x (|X| 4+ 1) defining
the possible edit operations over nodes of trees. C;; gives the cost of the
operation changing the symbol ¢; into ¢;, ¢; and ¢; € ¥ U {$}. Let #(¢,t')
be a (|X]| 4+ 1) x (|2] 4+ 1) matrix whose elements #; ;(¢,t') correspond to the
number of times each edit operation consisting in changing ¢; into ¢; is used
to turn ¢ into ¢’ in the optimal script obtained from any tree edit distance
variant (Zhang and Shasha, 1989; Selkow, 1977). In other words, we consider
the script corresponding to the minimum set of tree edit operations allowing
one to change one tree into another one with respect to the tree edit distance
considered (see Figure 1 for an illustration).

From these two matrices, the following edit function is then considered:

ec(t,t) = Y Cijx#i;t.1).

0<i,j<%

An important point here is that the computation of ec does not depend
on the optimal script with respect to C'. In other words, eq is evaluated by
considering the operations used in the optimal script, weighted by the custom
costs C'. Therefore, since the edit script defined by #(t,t') is fixed, ec(t,t")
is nothing more than a linear function of the edit costs and can be optimized
directly. Bellet et al. (2012) define then the edit similarity function as:

Ko(t,t') = 2e7ec®) 1,

The use of the exponential allows K¢ to introduce non-linear information in
the model and to belong to [—1, 1] as required by Balcan et al.’s framework
presented in the next section.

3.2. Learning Good Similarity Functions

In this section, we present our algorithm for learning good edit similar-
ities. We first define the notion of good similarity. It relies on a relaxed
version of Balcan et al.’s framework (Balcan and Blum, 2006; Balcan et al.,
2008).



Definition 3 (Relaxed good tree edit similarity). A similarity function
K : Ty x Ty, — [—1,1] is an (€,7,7)-good similarity function for a learn-
ing problem P if there exists a (random) indicator function R(t) defining
a (probabilistic) set of “reasonable trees” such that the following conditions

hold:
1. A 1 — e probability mass of examples (t,) satisfy

Eqo [Ewe) [1 - CKo(t,t)/7, |RE)]] <€ (1)

where [1 — ¢4 = max(0,1 — ¢) corresponds to the hinge loss.
2. Pry[R(t)] > 7.

The first condition is essentially requiring that on average a 1 — € propor-
tion of trees t are 2 more similar to random reasonable trees of the same
class than to random reasonable trees of the opposite class' and the second
condition that at least a T proportion of the trees are reasonable. Note that
the reasonable instances are either provided by the application at hand (in
this case, they can be viewed as prototypes) or are automatically selected
from a set of so-called landmarks by solving a simple linear problem which
is essentially a 1-norm SVM problem (see Balcan et al. (2008) for details -
in this case, they can be viewed as support vectors).

Definition 3 is very interesting in two respects. First, it does not impose
strong constraints on the form of the similarity functions considered. Second,
these conditions are sufficient to learn a good linear space, i.e., to induce a
linear separator a in the space of the similarities to the reasonable trees:
h(-) = 2w oy~pir@y UK (1), as illustrated in Figure 2 (see Balcan et al.
(2008) for a formal proof).

!The original definition of Balcan et al. (2006; 2008) requires the property 1 to be
true only on average over the reasonable examples. However, the use of the exponential
in our similarity implies a non-convex formulation of the optimization problem considered
for learning the costs. As a consequence, we propose to relax the original formulation by
considering the surrogate version presented in Definition 3.
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Figure 2: Linear separator « learned from a training set of trees

{(4,41),(B,+1),(C,+1),(D,+1),(E,-1), (F,-1),(G,-1),(H,—1)} thanks to an
(e,7,7)-good similarity function. A, B and E are reasonable trees. The good linear
separator is learned in the 3D-space of the similarities to that reasonable points with
respect to K.

The algorithm GESL has for objective to optimize the goodness of the
similarity K¢ so as to satisfy Condition 1 over all the pairs (z;,z;) of a
training set of Ny labeled examples T = {z; = (t;,£;)}1%. The optimization
problem GESL for learning the costs C, which takes the form of a sparse
convex program, is expressed as follows:

(GESL)  min 3z > V(Czz) + BlCI%
Y 1<i,j<Np
) N [Bl — €C(ti7tj)]+ lf 67, 7é Ej
st V(C’ %ir %) = { leo(ti t;) — B2], if & = £,
—log(%), 0 S B2 S —lOg(%), Bl — B2 = 7’],Y
szo, 0<i,j<A,

where 5 > 0 is a regularization parameter on edit costs, || - || denotes the
Frobenius norm and 7, > 0 a parameter corresponding to the desired “mar-
gin”. The relationship between the margin v and 7, is given by v = :Z::

The loss V' essentially penalizes the violations of the goodness defined by




Equation 1.

Then, we optimize the costs of these edit operations by solving this opti-
mization problem. This allows us, once again, to avoid using a costly iterative
procedure: we only have to compute the tree edit script between two trees
once, which dramatically reduces the algorithmic complexity of the learning
algorithm. Moreover, the procedure of GESL allows one to learn good tree
edit similarities with respect to Definition 3 implying the ability to learn
good linear separators for tree structured data which is presented in the next
section.

3.3. Classifier Learning: Automatic Selection of the Reasonable Trees

As mentioned previously, reasonable points play an important role be-
cause the optimal linear classifier, named «, is built in the space of the
similarities to that points. In areas where some ground truth is available,
these reasonable points can be given by an expert. In this case, provided that
we have access to a similarity that satisfies the goodness property of Defini-
tion 3, the optimal classifier is directly obtained by using the similarities to
that points. In complex domains such as in music recognition, setting the set
of reasonable points is a tricky task. To overcome this problem, a strategy,
as suggested by Balcan et al. (2008), consists in using d (unlabeled) examples
as landmarks, d; labeled examples and in solving the following simple linear
problem which is essentially a 1-norm SVM problem:

d; d
i=1 j=1

where || - ||; corresponds to the L;-norm.

An important feature of (2) is the Lj-regularization on a, which induces
sparsity. Therefore, it allows automatic selection of reasonable points con-
trolling the sparsity of the solution: the larger A, the sparser . Moreover,
by solving (2), we directly get a good (with generalization guarantees) linear
separator in the space of the similarities to the reasonable points. In the
experimental section, we will show that these points provide valuable infor-
mation.

+ ey, (2)
+

We present in the next section the formalism used for tree representa-
tion of melodies and we use the properties of GESL to derive theoretical

9



guarantees in this context.

4. Tree-structured representation of melodies and theoretical guar-
antees

We use a tree-based symbolic representation of melodies as suggested by
previous works for melody classification (Habrard et al., 2008; Rizo et al.,
2009). The representation uses rhythm for defining the tree structure and
pitch information for node labeling. To represent the note pitches in a
monophonic melody M, we use symbols ¢ from a pitch representation al-
phabet >,. In this paper, the interval from the tonic of the song mod-
ulo 12 is used as a pitch descriptor and the symbol ‘—’ represents rests
(X, ={peN|0<p<11}U{-}). In the tree representation, each melody
bar is represented by a tree, ¢ € Tx,. Bars are coded by separated trees and
then they are linked to a common root (see Fig. 3 for an illustration). The
level of a node in the tree determines the duration it represents. During the
tree construction, nodes are created top-down when needed and guided by
the meter, to reach the appropriate leaf level corresponding to the associ-
ated note duration. The corresponding leaf node is labelled with the pitch
representation symbol, o € ¥, (for the details see Rizo et al., 2009; Rizo,
2010). Once the tree has been built, a bottom-up propagation of the pitch
labels is performed to label all the internal nodes, using melodic analysis
rules (Illescas et al., 2007).

This tree representation of melodies defines a particular class of data for
which we can derive a consistency theorem tailored to our method. For any
bar of duration dp,,, the duration of a note encoded by a node v in a tree is
defined according to its depth in the tree: nodedur(v) = W X dpgr, where
depth(v) denotes the depth of the node v. In order to limit the depth of the
tree, a minimum note duration is generally fixed (Rizo, 2010) and defined
by a constant Ming. Symmetrically, the depth of a node v encoding a note
of duration d is given by: depth(v) = logQ(d”T‘l”). If Max, is the maximum
duration of a bar, we have for any bar of duration dp,. and any note of
duration d encoded by a node v,

dpar Max,
depth(r) = loz,(") < log, ( Mmj) .

The depth of the tree represents the number of nodes on the path from

10
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Figure 3: Above: tree representation of a one-bar melody with an example of how pitch
labels are propagated. Below: tree representation of a melody (each bar is represented as
a tree).

the root to the node and needed to encode the note in the tree; log, (Maxd)

Min,
represents the maximum node depth and thus the maximum number of nodes
needed to encode a note in a tree. Now, if N, is the maximum number

of bars in a melody, 1\1\//[[?;1(‘1 gives the maximum number of notes in a bar and
d

then we can bound the maximum size of a tree encoding a melody by:

Maxd Maxd
Nmasz Min X10g2( >

i d Mind
Then, we have the following generalization bound for the GESL tree edit
version. Indeed, one can relate the true loss of the learned matrix Cr,
L(Cr) = E(..)[V(Cr, 2, 2')], with its empirical expected loss Ly (Cr) (over
the pairs of the set T') with the following theorem.

Theorem 1. Let Ny, Mazxy and Ming be respectively the maximum num-
ber of bars, the mazximum duration of bars and the minimum duration of a
note in the melodies. Let T be a sample of Nt trees drawn i.i.d. from an un-
known distribution P, Cp the matriz learned by GESL (using all the possible
pairs from T ), with probability 1 — § we have the following bound for L(Cr):

L(Cr) < Ly(Cr) + 2+~ + <2n + (3B, <2N"0t68 i 3>) In(2/9)

Nr \/ﬁ_Bw 2Nr

11



2
with Nyotes = Nomazb X %axd xlog, (%%ﬂ K= GN’L% and B, =max(n,, —log(1/2)).

Proof. The proof follows the same principle as in Bellet et al. (2012), and
uses the fact that the maximum number of nodes in a tree is bounded by
Nnotes- []

The previous result highlights important aspects of our method. First, it
has a convergence rate in O(y/1/Nr) which a classical rate for concentration
bounds. Another point is that the method is independent from the alphabet
size - i.e. from the pitch representation - which indicates that the method
should scale well with large alphabets. Lastly, by considering the framework
of Section 3.2, it provides a consistency justification of our approach by
showing that the goodness of the similarity is ensured, which implies the
existence of a good linear classifier in the space defined by the reasonable
trees.

One drawback of this result is the dependency on a given maximum tree
size Npores- Fortunately, this constraint can be relaxed by assuming the trees
to be generated from probabilistic models where the probability to generate
trees with size larger than an integer k is bounded, like probabilistic finite
tree automata. Indeed, it can be shown that with probability 1 — ¢ for any
sample of N trees, we have for any tree ¢ belonging to this sample,

log(NrU/0)
log(1/p)

with U > 0 and 0 < p < 1 some constants (Denis et al., 2008). By
combining this result with the previous theorem, one can obtain a bound
independent from the maximum tree size, see (Bellet et al., 2012) for the
technical details.

t] <

5. Experiments in melody recognition

In this section, we provide an experimental evaluation of GESL for tree
edit distance learning. Our objective is two-fold: first, we show that this
approach allows us to learn good similarities leading to very accurate linear
classifiers. Second, we illustrate how the notion of reasonable points can
be used in this framework to extract semantic information from the learned
similarity.

12



5.1. Pascal database

To perform our experiments, we focus on a standard task in music infor-
mation retrieval, namely melody classification. We evaluate GESL using the
Pascal database? consisting of a set of 420 monophonic 8-12 bar incipits of
20 worldwide well known tunes of different musical genres. For each song, a
canonical version was created using a score editor. Then it was synthesized
and the audio files were given to three amateur and two professional mu-
sicians (a classical and a jazz player). Each musician listened to the songs
(to identify the part of the tune to be played) and they played them on
MIDI controllers (four keyboards, one guitar), real-time sequencing them 20
times with different embellishments and without avoiding performance er-
rors. This way, for each of the 20 original scores, 21 different sequences were
built. The task consists in identifying a target melody using a set of different
variations played by musicians for the 20 different tunes corresponding to
the target classes. In this context, we use the symbolic representation with
trees, as presented in the previous section, using rhythm for defining the tree
structure and pitch information for node labeling.

5.2. Experimental setup

A three-fold cross-validation scheme is carried out to perform the exper-
iments, where 2/3 of the database is used for training and 1/3 for testing.
We compare five edit similarities: (i) the Selkow tree edit distance (Selkow,
1977), which constitutes the baseline, (ii) a stochastic version of the Selkow
distance, Selkowg, (Bernard et al., 2008) learned from an EM-like algorithm
based on the software SEDIL (Boyer et al., 2008), (iii) the Zhang-Shasha
tree edit distance (Zhang and Shasha, 1989), (iv) Kgeikow, learned by GESL
using the Selkow edit scripts, and (v) K znang—Shasha, learned by GESL using
the Zhang-Shasha edit scripts. Note that it was not possible to evaluate the
stochastic version of the Zhang-Shasha distance learned with SEDiL: because
the learning procedure was intractable, that confirms our claim mentioned
in the introduction.

Let us remind that GESL is specifically dedicated to optimize similari-
ties that are then efficiently used in the learning of a linear separator (by
solving problem (2) of Section 3.3). Therefore, in a first series of experi-
ments, the melodies are classified using this linear separator, learned from

2 This name comes from the Pascal European Network of Excellence (Pattern Analysis,
Statistical Modeling and Computational Learning).
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the five similarity measures (Selkow, Selkowg,, Zhang-Shasha, Kgerew and
K Zhang,ghasha)3. Even though GESL has not been designed for nearest-
neighbor-like algorithms, we perform a second series of experiments where
the melodies are classified with the 1-nearest neighbor rule by directly making
use of the five similarities.

To deal with the multi-class setting, we use a standard one versus one
procedure: a binary linear classifier is learned for each pair of classes (C;, Cy),
that is, the binary linear classifier h(; ) is learned considering the instances
of the class C; (resp. Cj) as positive (resp. negative) data. Therefore, we
learn (%) (binomial coefficient) binary classifiers, where n is the number of
classes (in our problem 20 classes and 190 binary classifiers). Each classifier
determines if a melody belongs to the class C; or to the class Cj. Then,
we apply a majority vote strategy to decide the final classification for each
melody.

5.3. Results and edit cost analysis
Results are reported in Table 1. We can make the following remarks.

e Using a linear classifier, the similarities learned by GESL allow signifi-
cant improvements of the classification accuracy. Kzpang—shasha achieves
the best overall performance (95.0%) improving the results mentioned
in Habrard et al. (2008) for the same dataset. These results confirm
the interest to optimize with GESL a tree edit distance (according to
the goodness criterion of Definition 3) which is then used to learn a
simple linear separator in the space of the similarities to the reasonable
points.

e In the second series of experiments, we can note that the tree edit
distance Zhang — Shasha allows us to reach the best result (however,
smaller than 95.0%). Even though Kgejkow and K zpang—Shasha have not
been optimized for a nearest neighbor classifier, it is worth noting that
the tree edit cost learning procedure of GESL remains competitive with
the two others.

In order to analyze the understandability of the inferred models, let us
compare the edit cost matrices learned on the one hand with GESL for both

3Note that the distances are used as a similarities and normalized to stand in the
interval [—1,1].
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Table 1: Success rates (%) and standard deviation obtained from the five edit similarities
in INN and linear classifications on the Pascal corpus.

Approach Success rate Linear Classifier Success rate 1-NN
Selkow 90.2+ 1.2 90.5+0.9
Selkow g, 88.6 0.9 91.5+04
Zhang-Shasha 91.9+0.9 93.6 £0.5
Kselkow 93.14+0.5 90.5+0.2
K Zhang—Shasha 95.0 + 0.7 90.2 4+ 1.4
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(a) SEDIL (Selkow). (b) GESL (Selkow). (c) GESL (Zhang and Shasha).

Figure 4: Learned edit costs by GESL and SEDiL algorithms.

Selkow and Zhang & Shahsha tree edit distances, and on the other hand
with SEDIL (only for Selkow, because Zhang and Shasha’s is intractable).
In order to represent graphically these matrices, they have been averaged
and normalized over the three folds. Our aim here is to see if the learned
edit costs are able to model the changes and mistakes that can be found
in the corpus. Mistakes correspond in general to note elisions, grace notes
insertions, the substitution of the intended note by another at a distance of
a semitone or a tone, and note duration and onset changes.

The matrix learned by SEDiL is shown in Fig. 4(a), while matrices learned
by GESL are presented in Fig. 4(b) and (c). We can see that in the edit cost
matrix learned with SEDIL from an EM-like algorithm, small costs (repre-
sented by bright cells) are mainly located in the diagonal of the matrix. This
means that substitutions of a pitch by itself are favored. However, this re-
duces the ability of the model to adapt to small variations caused by the
musicians. In this case, the model will prefer to delete and insert a pitch
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(the last row and last column contain indeed brighter cells too) to fit the
canonical version. We claim that this does not model well the reality. Unlike
matrix (a), the edit cost matrices (b) and (c) learned with GESL allow some
distortions. We can see that the smallest costs are found not only in the
substitution of a pitch by itself (the diagonal) but also in substitution of a
pitch by a close pitch of about one or two semitones. This corresponds to
the substitution of the intended note by another at a distance of a semitone
or a tone caused by mistakes of the musicians when they played the songs.

Moreover, in both plots issued from GESL, we can identify two bright
row and column that correspond to the operation of replacing a symbol o
by the rest symbol ‘—’ ((¢ — —) or (— — 0¢)). It is worth noting that this
perfectly models the insertions or deletions of rests by the musicians when
they want to produce some effect to the melody feeling.

5.4. Reasonable points analysis

Finally, we provide a brief analysis of the reasonable points automatically
selected by solving problem (2) of Section 3.3. Intuitively, these representa-
tive points should be some discriminative prototypes the classifier is based on.
To make the analysis easier, we consider a restricted task where the goal is to
predict if a melody belongs to the classical music genre or if it is a children’s
song. These two styles correspond to two classes allowing us to turn the task
into a binary classification problem. The examples of the classical genre cor-
respond to songs belonging to the classes ‘Toccata and fugue’, ‘Avemaria’,
‘Ode to joy', ‘Bolero’ and ‘Lohengrin, wedding march’ of the Pascal cor-
pus. The children’s class is formed by the songs coming from ‘Alouette’, ‘Oh!
Susanna’, ‘Happy birthday’, ‘Twinkle twinkle little star’and ‘Jingle
bells’ classes. From these data, we build a learning and a test sample such
that there are 7 instances for each Pascal class in the test and 14 in the
training set. Therefore, each class has 35 examples in test and 70 for train-
ing. Table 2 shows the number of reasonable points for each class. We can
see that (beyond a high accuracy) in the classical class there are 4 reasonable
points that belong to ‘Toccata and fugue’ and 5 to ‘Lohengrin, wedding
march’. These two songs seem thus to be good representatives for that class.
In the same way, the ‘Oh! Susanna’ and ‘Happy birthday’ songs provide
many (9 out of 15) discriminative prototypes for the children class. All in all,
these four songs provide about 62% (18 out of 29) of the reasonable points
while they represent only 40% of the training songs. Said differently, the
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Table 2: Number of reasonable points used to learn a linear classifier between classical
and children’s music.

Song # reasonable points
Toccata and fugue 4
Avemaria
Ode to joy
Bolero
Lohengrin, wedding march
Alouette
Oh! Susanna
Happy birthday
Twinkle twinkle little star
Jingle bells

Success (%) \ 94.29

DN DN O NN N~

predicted label of a new song will be mainly defined by its similarity to those
4 songs.

6. Conclusions

In this paper, we investigated a new framework for learning tree edit
distances thanks to a convex optimization problem based on the framework
of GESL, originally developed for strings. We have shown that this frame-
work is adequately tailored to tree edit distance allowing us to have strong
theoretical justification while having an efficient procedure to deal with com-
plex distance, such as the Zhang-Shasha one, which is a clear advantage in
comparison of EM-based methods that quickly become intractable.

We experimentally showed on a music recognition task that this frame-
work is able to build very accurate classifiers improving state-of-the-art re-
sults for this problem. This experiment was done in a multi-class setting
showing that GESL can also deal with this context. Moreover, we illustrated
that the produced models can be used to provide a semantic analysis of the
knowledge learned from the data.

A perspective of this work would be to study other definitions of tree edit
similarities. Indeed, GESL is based on a linear combination of the edit script
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operations plugged in an exponential but we could imagine other strategies
tailored to the application at hand. Another interesting future work would be
to adapt the similarity learning procedure directly to the multi-class setting
instead of binary classification. Finally, the efficiency of this tree edit distance
learning framework (both in terms of accuracy and running time) opens the
door to an extensive use of tree edit distance in larger-scale applications such
as natural language processing or XML data classification.
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