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Abstract

The Adapted PageRank Algorithm (APA) proposed by Agryzkov et al. provides us a method to establish
a ranking of nodes in an urban network. We can say that it constitutes a centrality measure in urban
networks, with the main characteristic that is able to consider the importance of data obtained from the
urban networks in the process of computing the centrality of every node. Starting from the basic idea of
this model, we modify the construction of the matrix used for the classification of the nodes in order of
importance. In the APA model, the data matrix is constructed from the original idea of PageRank vector,
given an equal chance to jump from one node to another, regardless of the topological distance between
nodes. In the new model this idea is questioned. A new matrix with the data network is constructed so that
now the data from neighbouring nodes are considered more likely than data from the nodes that are farther
away. In addition, this new algorithm has the characteristic that depends on a parameter «, which allows
us to decide the importance attached, in the computation of the centrality, to the topology of the network
and the amount of data associated with the node. Various numerical experiments with a network of very
small size are performed to test the influence of the data associated with the nodes, depending always on the
choice of the parameter a. Also we check the differences between the values produced by the original APA
model and the new one. Finally, these measures are applied to a real urban network, in which we perform a
visual comparison of the results produced by the various measures calculated from the algorithms studied.

Keywords: Adapted PageRank algorithm; PageRank vector; networks centrality; eigenvector centrality;
urban networks.

1. Introduction

One of the fundamental questions in network analysis is to determine the importance of a particular
vertex (or edge) in a network. We associate the idea of relative importance of a vertex with the mathematical
concept of centrality.

Over the years, network researchers have introduced a large number of centrality indices, measures that
give us the importance of the vertices in a network according to a criterion [7]. These indices have proved
to be of great value in the analysis and understanding of the roles played by networks like social networks
[12, 23, 24], citation networks [17], computer networks [6, 16], urban networks [8, 9, 25], and others.

Depending on the type of the network studied, they are proxies for the structural importance of an element
for the overall functioning of the network. Centrality is one of the most studied concepts in network analysis
(see [14] for a detailed description of this concept). Numerous measures have been developed, including
degree centrality, closeness [11] , betweenness [5, 20], eigenvector centrality [3], information centrality, flow
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betweenness, the rush index, the influence measures of Katz [18], Hubbell [15], and so on. In this context, it
is not often recognized that the formulas for these different measures make implicit assumptions about the
manner in which things flow in a network. For instance, some measures, such as closeness and betweenness,
count only geodesic or topological paths, apparently assuming that whatever flows through the network
moves only along the shortest possible paths.

Some measures, such as flow betweenness [13], do not assume shortest paths, but do assume proper
paths in which no node is visited more than once. Other measures, such as Bonacich ([3, 4]) eigenvector
centrality and Katz influence, count walks, which assume that trajectories can not only be circuitous, but
also revisit nodes and lines multiple times along the way. Regardless of trajectory, some measures (e.g.
betweenness) assume that what flows from node to node is indivisible (like a package) and must take one
path or another, whereas other measures (e.g. eigenvector) assume multiple paths simultaneously (like
information or infections).

The city is a complex system where a large amount of information and data are generated and this is
used as an essential part of the characteristics of the system itself. The source of this vast information can be
very diverse: collected from fieldwork, or from Web services supported by social networks, or from existing
databases (open or protected). See, for instance, [10] for a detailed study of the structure and behaviour of
complex networks.

Nowadays, it is essential to have a fast and reliable classification system for the nodes of a graph to bring
order to the data that we can find. As a starting point, we need to define the graph. For instance, the
nodes in the graph can represent entities and the directed arcs or edges represent the links. The graph is
used to analyse several characteristics of the network and collect statistics, such as the number of incoming
and outgoing links of a node, calculation of a strongly connected component of the graph, number of nodes
without links, mean diameter of the network and calculation of PageRank. Examples of the calculation
of the PageRank is the Adapted PageRank Algorithm (see [1]), in which the authors adapted the concept
of PageRank vector to urban networks. In this scenario, the Adapted PageRank Algorithm establishes
a ranking of importance of the different nodes in the graph considering external factors to carry out the
classification.

This paper presents a new centrality measure based on the Adapted Pagerank Algorithm with a profound
modification. In the APA model, the data matrix is constructed from the original idea of PageRank vector,
given an equal probability to jump from one node to another, regardless of the distance between nodes. In
the new model this idea is modified. A new matrix containing all the data network is constructed so that
now the data from neighbouring nodes are considered more likely than data from the nodes that are farther
away.

The paper is organized as follows: Section 2 describes the Adapted PageRank Algorithm, that serves as
a starting point to establish a new centrality measure. In section 3 we introduce the Adapted PageRank
Algorithm Modified (APAM). Section 4 reports the numerical results taking two different networks: first, a
small network with 10 nodes and, secondly, a real urban network, in order to analyse differences between the
Adapted PageRank Algorithm and the Adapted PageRank Algorithm Modified. Finally, some conclusions
are presented in Section 5.

2. The Adapted PageRank Algorithm (APA) and its characteristics

The PageRank method [21] was proposed to compute a ranking for every Web page based on the graph
of the Web. Therefore, PageRank constitutes a global ranking of all Web pages, regardless of their content,
based solely on their location in the Web’s graph structure. The purpose of the method is obtaining a vector,
called PageRank vector, which gives the relative importance of the pages. Since this vector is computed
based on the structure of the Web connections, it is said to be independent of the request of the person
performing the search. For a more detailed description of the PageRank algorithm, see [22].

In [1], Agryzkov et al. propose an adaptation of the PageRank model to establish a ranking of nodes in
an urban network, taking into account the influence of external activities or information. In the following, we
refer to this algorithm as the Adapted Pagerank Algorithm (APA algorithm). Although the APA algorithm



is applied to urban networks, this is perfectly applicable to any network, whenever we want to analyse or
represent additional information from the network itself, by means of a numerical assignment of data to the
different nodes on the network.

The central idea behind the APA algorithm for ranking the nodes is the construction of a data matrix D,
which summarizes the numerical value of the data that we are measuring. This matrix allows us to represent
numerically the information of the network that we are going to analyse and measure. This information
is placed in columns, where each column represents a specific characteristic or type of information that we
want to evaluate or analyse.

It is also important the weight vector vy because it is the key that allows us to establish the importance
we assign to any of the type data that we are measuring in the network.

The algorithm proposed in [1] is summarized as:

Algorithm 1. APA Algorithm. Let us assume that we have a graph G = (V, E) representing an urban
network with N nodes n;, representing squares or streets intersections. We proceed with the following steps.

Step 1 Obtain the transition matriz A* from the graph of the network.

Step 2 Consider the different characteristics k; associated to each of the modes for the problem studied;
evaluate them in each node. With these numerical values, we construct the matriz D.

Step 8 Construct a vector vg, according to the importance of each of the characteristics evaluated. This
vector represents a multiplicative factor.

Step 4 Obtain a vector v by multiplying D - vg = v.

Step 5 Transform v into a probability vector v — v*, using the standard method.
Step 6 Construct the matriz V, from v*.

Step 7 Construct the matric Mapa = (1 — «)A* +aV, from A and V.

Step 8 Compute the eigenvector 1 associated to the dominant eigenvalue A\ = 1 for the matriz Mg. That
s our ranking vector.

Figure 1 shows an overview of the different steps and the set of mathematical operations involved in the
computation of the APA centrality.
The result of applying this algorithm to a network is a ranking vector

L1 = {3?1(1),371(2), .. .,.’1’,‘1(]\7)}

with N components, where the i-th component represents the ranking of the i-th node within the overall
network. This vector is the dominant eigenvector @y associated to the dominant eigenvalue A\ of the matrix
Mapa.

Note that the matrix which is initially taken in Algorithm 1 (step 1) is not exactly the adjacency matrix
of the graph. It is a different matrix A*, that we define as A* = (a;;)7;_; € R"*", where

CLij = l, lf Cj 7£ O, (].)
Cj
with ¢;, for j = 1,2,...,n, to be the number of connections of the vertex ¢;. In other case, we have that
Q5 = 0.

We can say that the mean feature of this algorithm is the construction of the data matrix D and the
weight vector vg. Firstly, the matrix D allows us to represent numerically the information we want to study;
secondly, the vector vg allows us to establish the importance of each of the factors or characteristics that
have been measured by means of D.
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As an example, if we take the graph displayed in Figure 2, we have that

A* =
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Now, let us assume that the data vector v is v = [1;1;1;1;1;1;1;1;1;1], that is, all the nodes in the
graph have one data associated to them.
We transform v into a probability vector dividing every component by 10 and construct V as
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From A* and V', we construct the matrix Mapa as Mapa = (1 — a)A* + oV, taking o = 0.15. The result

18:
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Finally, we compute the eigenvector @, associated to the dominant eigenvalue A\; = 1 for the matrix Map4.

That is,

@1 = [0.1947;0.4369; 0.1896; 0.1947; 0.3551; 0.4965; 0.3398; 0.2630; 0.2662; 0.2630] .



From the vector 1, we have a ranking of the nodes according to its importance in the network. In this
example node ng is the most central one, followed by node nsy. In section 4 we will analyse more numerical
results in order to obtain the characteristics of this centrality measure.

In other words, we can say that the APA algorithm constitutes a model to establish a ranking of nodes
in a network, with the primary feature that assigns a value to each node according to its significance within
the physical network taking into account both the geometry of the network and the data stored in the nodes.

3. The Adapted PageRank Algorithm Modified, APAM

In this section a new algorithm, based on the APA algorithm studied in the previous section, is proposed.
It constitutes a new centrality measure applied to urban networks.

3.1. The algorithm

The ranking obtained by the APA algorithm is based on the construction of a matrix M4p4 which is
the sum of two normalized matrices A* and V', with essential features to understand the philosophy behind
the model. For this, we reformulate the meaning of these matrices in probabilistic terms. So,

e The matrix A* can be interpreted as the probability of going from one node to any of its neighbouring
nodes.

e The matrix V represents the probability of jumping from one node to any other in the network,
considering the amount of data associated with each of the network nodes. Recall that in the original
APA algorithm, following the PageRank vector concept, the term oV was related to the probability
that a surfer jumps from a site to another one of the network, without there being a link between
them. This probability was the same for every page. In our case, the jump from one node to another
is given by the influence of the data present in the network, although the probability of jumping from
one node to another does not depend on its topological distance.

However, this feature to jump between nodes with the same probability regardless of the distance between
nodes, is certainly debatable when working with urban networks. Recall that the urban networks are a type
of complex networks with features that make them very particular when applying traditional algorithms
of classical network theory. One of these features, absolutely crucial, is that the degrees of the nodes in
urban networks have fairly uniform values and not excessively high. The distribution of the degrees of the
nodes on an urban network concentrate their values mostly between 2 and 5. Also, consider equiprobable
the fact of jumping from one network node to any other node in the network is at least debatable. In urban
networks, the influence that neighbouring nodes exert on the node itself is an aspect that should be taken
into consideration.

All these considerations are a fundamental motivation that leads us to propose a new centrality measure
based on the idea of PageRank vector, but taking into account the particular characteristics of the networks
in which we operate.

A new centrality measure is proposed, denoted by APAM, based on the APA centrality but introducing
some modifications with the aim to associate a higher probability to adjacent nodes in the data matrix V,
as previously discussed.

Now, the steps we follow are:

Step 1. We start from the graph G = (V, E) and construct the adjacency matrix A and the transition
matrix A* using the expression (1). We also construct the data matrix D and the weight vector vy.

Step 2. We construct the data vector v as v = D - vg. Then, we use the data vector v to construct the
matrix V adding the vector v as columns N times. Therefore, V is square of size N.

Step 3. Construct the matrix K, with the idea of collecting the data in the network.

We construct a matrix K as

K=A®V +€F, (2)
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Figure 3: APAM theoretical scheme.

where A is the adjacency matrix, V' is the matrix with the data, e represents a small quantity related to
the inverse of the total amount of data in the network, and the matrix F' is a N x N matrix whose all its
elements are 1. To compute the product of A and V' we use the Hadamard product (®) of matrices, which
multiplies the elements that occupy the same position in both arrays.

Step 4. Normalize K, Ky so its columns are probability vectors. Then, in the following, we denote
Ky = K*.

Step 5. Construct the matrix Mapaps from A* and K* as

MAPAM:(lfoé)'A*#*Oz'K*.

Step 6. Obtain the dominant eigenvector vy of Mapaps. This vector constitutes the ranking of the
nodes of the graph.
According to these steps described above, the algorithm proposed is:

Algorithm 2. APA Algorithm modified, APAM. Let us assume that we have a graph representing an
urban network with N nodes n;, representing squares or streets intersections. We proceed with the following
steps.

1 Obtain the adjacency matriz A from the graph of the network and the matriz A*.

2 Consider the different characteristics k; associated to each of the nodes for the problem studied; evaluate
them in each node. With these numerical values, we construct the matriz D.

3 Construct a vector vg, according to the importance of each of the characteristics evaluated. This vector
represents a multiplicative factor.

4 Obtain a vector v by multiplying D - vg = v.
5 Construct the matriz V, from v.

6 Construct the matriz K according to the expression (2).
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7 Transform the matrix K in stochastic, K — Ky = K*.
8 Construct the matric Mapay = (1 — a)A* + aK*, from A and V.

9 Compute the eigenvector v1 associated to the eigenvalue 1 for the matrix Mapans. That is our ranking
vector.

Figure 3 shows an overview of the steps and mathematical operations involved in the computation of the
APAM centrality. We highlight some characteristics of the algorithm.

In this new model two stochastic matrices are constructed. On one hand, the matrix A* representing, in
probabilistic terms, the probability that a node would jump to one of its neighbouring nodes. This matrix
is determined by the topology of the urban network studied, without showing anywhere the influence of the
data in it. Moreover, we have the stochastic matrix A*, which itself is related to the data associated with
the nodes of the network. On the other hand, we can also make an interpretation of K* in probabilistic
terms, since it represents the probability that a node jump to any of its neighbours, according to the amount
of data in each node. This statement leads us to examine in a more detailed way the construction of K*.

Note that K* is constructed by normalizing the matrix K, that has been defined as

K=AQV +¢€F.

The matrix K consists of two terms. The term A® V represents the Hadamard product of the adjacency
matrix with the data matrix V', which has the data vector v in its columns. The term eF' represents a small
quantity which adds to all the terms of the matrix and which takes into account the existing global data
in the urban network. This small amount remains, in a sense, the idea of jumping from one node in the
network to any other, at random and without regard to the topological distance between two nodes. This
idea is similar to that posed by the PageRank algorithm in the Google search engine.

From the matrices A* and K* we construct the matrix Mapap whose dominant eigenvector provides
us a ranking of the nodes, according to their importance in the network. It is important to point out that
Mapap takes into account, firstly, the network topology and, on the other hand, the importance of the
data network in general, and mainly of our data nodes neighbours. This is a fundamental idea behind the
design of this new model and is a distinguishing aspect of the original model based on the APA algorithm
1.

Although the idea behind both measures are similar, we can find some differences between Algorithms
1 and 2. In the case of the APAM algorithm 2, the normalization of the matrix K occurs at the end of the
process, just before the matrix Mapaps is computed. Besides, an important fact is that the data vector v is
not normalized, in order to give more importance to the amount of data that is associated with each node.

Following the example given by the graph shown in Figure 2, we can compare the results that we obtain
for both algorithms, in order to clarify the differences between them. Although the most interesting is to
compare the results obtained in the matrices that reflect the influence of the data on the network. In the
APA algorithm, the data matrix is given by V' as we have already mentioned, while in the case of the APAM
algorithm, the data matrix is K*, which is the matrix K = A ® V + ¢F' normalized.

In this example, taking v = [1;1;1;1;1;1;1;1;1;1], we have that, after performing the appropriate
computations,

[ 0.0333 0.1833 0.0333 0.0333 0.2200 0.0143 0.0200 0.0250 0.0250 0.0250
0.3667 0.0167 0.4333 0.3667 0.2200 0.1571 0.0200 0.0250 0.0250 0.0250
0.0333 0.1833 0.0333 0.0333 0.0200 0.1571 0.0200 0.0250 0.0250 0.0250
0.0333 0.1833 0.0333 0.0333 0.2200 0.0143 0.0200 0.0250 0.0250 0.0250
0.3667 0.1833 0.0333 0.3667 0.0200 0.1571 0.0200 0.0250 0.0250 0.0250
0.0333 0.1833 0.4333 0.0333 0.2200 0.0143 0.2200 0.2750 0.0250 0.2750
0.0333 0.0167 0.0333 0.0333 0.0200 0.1571 0.0200 0.2750 0.2750 0.2750
0.0333 0.0167 0.0333 0.0333 0.0200 0.1571 0.2200 0.0250 0.2750 0.0250
0.0333 0.0167 0.0333 0.0333 0.0200 0.0143 0.2200 0.2750 0.0250 0.2750

| 0.0333 0.0167 0.0333 0.0333 0.0200 0.1571 0.2200 0.0250 0.2750 0.0250




The comparison of these two matrices is quite revealing. If we think in probabilistic terms and you look
at the matrix V, we see that all their entries are equal to 1/10, which indicates that the probability of
jumping from one node to another taking into account the data on the network is the same and equal to
1/10. This is normal when you consider the data vector chosen.

But this is not the case when considering the new APAM algorithm. Failure to normalize the vector
data before constructing the matrix K™ and its own definition means the probabilities now are not the same.
However, we note that the probabilities increase when we jump to a neighbouring node. Looking at, for
example, the first column of the matrix K* note that the most likely jump from node 1 is to nodes 2 and
5, which are precisely its neighbouring nodes. The same happens if you look at the other columns. The
influence of the data is greater in our neighbouring nodes, which, as already mentioned above, makes more
sense in urban networks.

3.2. The parameter a

The APA algorithm 1 is based on the idea of PageRank model used by the Google search engine to
classify websites in order of importance. The PageRank model [2, 19, 21] proposed by the founders of
Google, was devised to compute a ranking for every Web page based on the graph of the Web; that is,
PageRank constitutes a global ranking of all Web pages, regardless of their content, based solely on their
location in the Web’s graph structure. The purpose of the method is to obtain a vector, called PageRank
vector, which gives the relative importance of the pages.

To perform this, the model is based on the construction of a matrix called Google matrix given by the
expression

G=(1-a)A+aB,

where A is the transition matrix, B is a matrix defined as B = (1/n)I,, with n the number of nodes
(websites). The parameter « is called the dumping factor and is related to the idea that a surfer jumps
from a website to any other in the web network without any existing link between them. This parameter is
usually taken as o = 0.15.

If we analyse the Google matrix G we have two terms, (1 — a)A related to the network topology and
aB related to the probability that a surfer jumps from a page to another without a link between them. If
we take a = 0.15 we are giving great importance to the connectivity in the network and considering less
relevant the possibility to surf from one page to another with no link between them.

The main contribution of the APA algorithm is that using the basic idea of PageRank model, introduces
an important factor in the process of establishing the ranking of the nodes, as it is the presence of data
within the network itself. So, the matrix M 4p4 that allows us to establish the ranking for the nodes of the
network is given by

MAPAZ(I—Q)A*—F(XV, (3)

where the first term (1 — a)A* is related with the network topology and the second term o'V is related with
the data in the network. The matrix V represents the amount of data associated to each of the nodes. So,
we introduce the importance of the data in the network by the term «V. This means that if we consider
the same value for the parameter « as in the PageRank model, that is, o = 0.15, we are giving much more
importance to the network topology than to the weight of the data. In urban networks, this is questionable,
due to the characteristics of urban networks, where the great majority of nodes have very low degree values
and their distribution is fairly homogeneous. Therefore, it is necessary to perform numerical experiments to
study what happens for different parameter values.

The same reasoning can be applied to the algorithm APAM. The matrix from which we get the classifi-
cation or ranking of the nodes consists of two distinct terms. On one hand the term related to the topology
of the network and, on the other hand, the other term relating to the data network. It is multiplied by
a parameter alpha, which allows us, in principle, to determine the importance we attach to the network
topology or to data. Obviously, if we take o = 0.5 would mean that we consider equally important for the
classification of the nodes both the aspect of network connectivity as the amount of data present therein.

Therefore, when we study the nodes centrality of an urban network analysing some specific data, we can
determine whether we give more or less weight to the amount of data present in each node and its nearest

9



Nodes Data Centrality
v APA APAM
a=015 a=03 a=05 a=07 a=0.9

1 1 0.1947 0.1792 0.1841  0.1906  0.1971  0.2037
2 1 0.4369 0.4339 0.4318 0.4280 0.4231  0.4173
3 1 0.1896 0.1788 0.1835  0.1900  0.1966  0.2035
4 1 0.1947 0.1792 0.1841  0.1906  0.1971  0.2037
5 1 0.3551 0.3490 0.3492  0.3488  0.3477  0.3461
6 1 0.4965 0.5166 0.5109  0.5032  0.4953  0.4872
7 1 0.3398 0.3468 0.3459  0.3452  0.3450  0.3451
8 1 0.2630 0.2625 0.2642  0.2671  0.2704  0.2741
9 1 0.2662 0.2624 0.2642  0.2671  0.2705  0.2741
10 1 0.2630 0.2625 0.2642  0.2671  0.2704  0.2741

Table 1: Numerical values of the centrality measures studied for the graph shown in Figure 2 for v = [1;1;1;1;1;1;1;1;1; 1].

neighbours. And, what is more important, this can be easily determined by the a parameter. Obviously,
when a value closer to 1 is chosen for the a parameter, we are providing greater importance to the data.

4. Numerical results

First, we develop experiments on a small network of 10 nodes, modifying the data values to display its
influence on the centrality. After that, we take a real urban network to develop the numerical experiments.

4.1. Numerical examples in a small network

The common denominator, in the measures proposed, is the use of data from the network. For this
reason, we show a simple example in which it can be analysed, on a small scale, the differences between
both measures and how they depend in greater or lesser extent of data.

In Figure 2 we represent a simple graph with ten nodes and the connections among them. Looking at the
graph we realize some characteristics that we must consider. For instance, it is clear that the most relevant
node in this graph, from the topological point of view, is the node 6, which presents the highest degree (in
this case 6). We also note that if we remove this node of the graph it will split into two unconnected parts.
It is evident that if we compute classical centrality measures for this graph, as for example, closeness or
betweenness centrality, the most important will be this node 6. Therefore, we can say that it is an essential
node when establishing paths between nodes. We can also add that node 4, at first glance, it is the least
important in the graph, since it is the one with less connectivity with the rest.

Before computing the centrality measures given by the APA and APAM algorithms to check differences
and similarities between them, we must realize that the APAM centrality measure is determined by the
value of the parameter «, so we will study this algorithm numerically for different values of the parameter.
This means that we run the algorithm giving greater or lesser importance to the presence of network data.

Following with the example presented in the previous section and considering the data vector used, ie,
v = [1;1;1;1;1;1;1; 1; 1; 1], we proceed to compute the measures of centrality that the APA and APAM
algorithms produce, running the APAM algorithm for different parameter values, as shown in Table 1.

In this table, we note that the most relevant node, for all the cases studied, is the node 6, which is
not surprising since it is the node with a higher degree (exactly, 6). We have very few data associated
to the nodes of the graph; consequently, the weight of the connections between the elements of the graph
significantly predominates over the weight of the data, due to the small quantity of these. However, we can
also check how the value of the centrality of the node 6 (most important one), is decreasing when increasing
the parameter « in the APAM algorithm. Another consequence of the low number of data in v is that the
changes in the centrality values are quite soft.

It is also observed that in this case, with this particular data vector, the centrality values of the nodes
when executing the APA algorithm and the APAM algorithm, for a = 0.7 are similar. It may be interesting
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datavector v=[3 3 3 20 3 2 2 2 2 2]

APA APAM (0.15) APAM (0.3)
APAM (0.5) © APAM(0.7) < APAM (0.9)

0512

osslgy 0,425

0210 [/

0.0
NODE 1 2 3 a4 5 6 7 8 9 10

Figure 4: Centrality measures for APA and APAM algorithm taking data vector vy.

to study several numerical examples for this simple network, modifying the data vector to analyse the

influence of the data on this network.
Then, let us assume that we have the following set of vector data:

3 20 7 40 1
3 20 1 1
3 3 1 1
20 3 1 1
S N T IR I IR S I
2 2 1 1
2 2 1 10
2 2 1 10
2 2 1 10
| 2 | 2 | L 1] | 10 |

The first vector v; has a set of homogeneous data, with the exception of the node 4 having 20 data
associated, a much higher number than the rest. Furthermore, it has been located in the node 4 as it is one
of the most isolated in the graph, as has degree equal to 2. In the second data vector vy we have increased
the number of data associated to the nodes 1,2 and 5, which are nodes that are connected to each other in
the graph (see Figure 2). In data vector vs we concentrate most of the data existing in the network around
the node 1, which is a node with degree 2 and is located in a corner of the graph. Finally, in data vector vy
we have most of the data in the last four nodes in the graph, those located on the right part of the graph.

Table 2 shows the centrality measurement obtained by applying the original APA algorithm 1 and the
APAM algorithm 2, taking o = 0.15 as usually in the APA algorithm and taking o = 0.15, « = 0.3, a = 0.5,
a = 0.7, « = 0.9 in the new one.

The numerical results in Table 2 show some similar behaviours, for different data vectors, that we will
analyze with more detail.

In Figures 4-7, we have graphically displayed the centrality values computed with the APA and APAM
algorithms, shown in Table 2, for different values of the parameter «, for data vectors vy, vs,vs, and vy4.
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Nodes Data Centrality
v APA APAM
a=015 a=03 a=05 a=07 a=09

1 3 0.2099 0.1785 0.1767  0.1659  0.1484  0.1273
2 3 0.5121 0.4714  0.4970  0.5143 0.5148  0.5027
3 3 0.1784 0.1741 0.1695  0.1577  0.1417  0.1241
4 20 0.3860 0.2498 0.3282  0.4298  0.5217  0.6003
5 3 0.4316 0.3836 0.4111  0.4343 0.4433 0.4411
6 2 0.4253 0.4889 0.4482  0.3870  0.3238  0.2637
7 2 0.2304 0.3144 0.2815  0.2411  0.2067  0.1791
8 2 0.1783 0.2371 0.2134  0.1841  0.1590  0.1388
9 2 0.1707 0.2362 0.2126  0.1845 0.1614  0.1436
10 2 0.1783 0.2371 0.2134  0.1841  0.1590  0.1388
1 20 0.3105 0.2460 0.3115  0.3841  0.4421  0.4899
2 20 0.5685 0.5286 0.5895 0.6280  0.6358  0.6278
3 3 0.1710 0.1666 0.1488  0.1183  0.0877  0.0605
4 3 0.2170 0.1943 0.1947  0.1736  0.1397  0.1012
5 20 0.4886 0.4369 0.5004  0.5497  0.5721  0.5795
6 2 0.4085 0.4608 0.3824  0.2766  0.1850  0.1107
7 2 0.1909 0.2665 0.1911  0.1138  0.0644  0.0366
8 2 0.1478 0.2009 0.1448  0.0869  0.0495  0.0283
9 2 0.1353 0.1990 0.1426  0.0856  0.0498  0.0302
10 2 0.1478 0.2009 0.1448  0.0869  0.0495  0.0283
1 40 0.5167 0.2765 0.3847  0.5248  0.6447  0.7360
2 1 0.5190 0.4615 0.4794  0.4856 04714  0.4424
3 1 0.1478 0.1623 0.1459  0.1181  0.0867  0.0560
4 1 0.1920 0.1640 0.1481  0.1186  0.0833  0.0470
5 1 0.4490 0.3796 0.4051  0.4252  0.4276  0.4155
6 1 0.3617 0.4838 0.4334 0.3509  0.2603  0.1732
7 1 0.1643 0.3219 0.2899  0.2402  0.1881  0.1400
8 1 0.1271 0.2420 0.2184  0.1816  0.1427  0.1065
9 1 0.1153 0.2417 0.2183  0.1824  0.1450  0.1106
10 1 0.1271 0.2420 0.2184  0.1816  0.1427  0.1065
1 1 0.0902 0.1412 0.1058  0.0632  0.0327  0.0150
2 1 0.2386 0.3522 0.2629  0.1555  0.0783  0.0335
3 1 0.1137 0.1426 0.1077  0.0645  0.0325  0.0135
4 1 0.0902 0.1412 0.1058  0.0632  0.0327  0.0150
5 1 0.1904 0.2819 0.2106  0.1248  0.0631  0.0272
6 1 0.4519 0.4885 0.4278  0.3219  0.2123  0.1142
7 10 0.4814 0.4288 0.4955  0.5533  0.5806  0.5895
8 10 0.3726 0.3164 0.3600  0.3940  0.4055  0.4042
9 10 0.4049 0.3370 0.4061  0.4773  0.5249  0.5569
10 10 0.3726 0.3164 0.3600  0.3940  0.4055  0.4042

Table 2: Numerical values of the centrality measures studied for the graph shown in Figure 2 for data vectors from v1 to va.
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datavector v=[20 20 3 3 20 2 2 2 2 2]

o APA & APAM (0.15) APAM (0.3)
$ & APAM (0.5) © APAM(0.7)  © APAM (0.9)
3

\

031

0,0
NODE 1 2 3 a 5 6 7 8 9 10

Figure 5: Centrality measures for APA and APAM algorithm taking data vector va.

datavector v=[40 1 1 1 1 1 1 1 1 1]

o APA © APAM (0.15) APAM (0.3)
& APAM(0.5) © APAM(0.7)  © APAM (0.9)

0.0
NODE 1 2 3 a4 5 6 7 8 9 10

Figure 6: Centrality measures for APA and APAM algorithm taking data vector vs.
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datavector v=[1 1 1 1 1 1 10 10 10 10]

APA APAM (0.15) APAM (0.3) Y «
APAM (0.5) © APAM(0.7)  © APAM (0.9) E

D.Arv“zl

0,405 ‘\

0,373, 0,373

0,239

0,190

0,114,

0,000 0,000

0.0
NODE 1 2 3 a4 5 6 7 8 9 10

Figure 7: Centrality measures for APA and APAM algorithm taking data vector va.

It has been indicated in the graphs by an oval, the node where a greater dispersion of the values of the
centrality occurs when you execute all the algorithms.

We look at the results for data vector vy, where data are distributed evenly across all the nodes, except
for node 4, which is receiving a greater amount of data (20 versus an average of 2.5 per node). After executing
the APA algorithm, node 2 is identified as the most central and important in the network. However, when we
apply the APAM algorithm, for different values of the o parameter, it is observed that the most important
node in the network is changing. So, when o = 0.15, that is, we do not give much influence to the data
associated to each node, the most important one in the network is the node 6, which is the one with the
highest degree. When we increase the value of «, in the range from 0.3 to 0.6, the most important node in
the network changes to node 2, the same as when executing the APA algorithm. Only when « takes high
values, particularly greater than 0.6, we found that the weight of the data is decisive, which means that
the most important node is the one with a greater amount of associated data, which in this case is node 4.
So, in Figure 4, we can see that the node that presents a higher dispersion of the centrality values for the
different cases studied is the node 4.

We now look at the values of Table 2 corresponding to vector data wg. In this case we choose to place
a greater amount of data in the three vertices connected to each other on the left side of the graph. In this
example, we observed a very different behaviour in the centrality values of the nodes from previous case.
Now, in all cases studied, the most central node is the node 2. The explanation for this fact is that node
2 has two essential characteristics: first, a good connectivity within the graph and, on secondly, a large
amount of data associated to it. Logically, give more or less importance to these features, this node in the
network is critical. It is also noted that the three nodes with more data associated are the nodes with higher
values of centrality.

If we see the centrality values of the data vector vg we realize that it is similar to the case of data vector
v1; the difference is that now, the data are centralized in node 1, which has a small degree and it seems
isolated in the left part of the network. Only when « takes high values, particularly greater than 0.6, we
found that the weight of the data is decisive and this node is the most important one in the network.

The case of the vector vy is similar to the case of va. Now the data are centralized on the right side of
the graph (last four nodes of the graph). In all cases except one, the most important node is 7, which has
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a connectivity a bit higher than the rest of the nodes with the same data.

In view of the graphs shown in Figures 4-7 we can see that the values of the ranking that both models
offer have some differences, especially when using extreme values of the parameter alpha domain. Notice
a similarity ranking of the APA and APAM models, especially when the alpha parameter takes domain
central values, in which case it is given the same importance to the topological connection of the nodes of
the network and the data associated with the same.

In the graphs, we have highlighted with oval shapes the nodes that have a higher value of the centrality
range. If we look at node 6 in all graphics, we see that it is always among the first or second in the ranking
of dispersion values. This is completely logical if we think that the node 6 is the one with the highest degree
of the graph, making it the most important network node, from the topological point of view.

Another important aspect to note is related to the deviation of the values given by the APAM ranking
model, compared to the values generated by the APA model, when a@ = 0.1 and o = 0.9 are used. For
a = 0.9 we are giving the highest importance to the quantity of data associated to the nodes and barely
consider the degree of each node, while for a = 0.1 we are giving the highest importance to the connectivity
of the graph.

4.2. An example in a real urban network

We take a real urban network as it is the historic center of the city of Murcia, Spain. We create the
network (primal graph) from a connected graph where the streets become undirected edges. Nodes usually
represent the intersections of the streets, but we can also assign nodes to some points of interest in long
streets. The network is composed of 267 nodes and 391 edges.

Geolocated Data

Figure 8: Network of the city area studied and data geolocated on the map.

For this example, we will work only with a part of the city, the historical center and the neighbourhoods
that are placed around it. The reason that motivates this limitation lies, on the one hand, in reducing the
amount of data to work with and, on the other hand, because the historical center is the most active area
of the city and where most activity takes place.

The data collection used for this example starts with fieldwork that consists of collecting the data or
information from visual inspection or pictures. These data were assigned to the nodes of the network so that
each node has a set of numerical values associated with the information that is being studied. We collected
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data about existing facilities and commercial activity. Figure 8 displays the primal graph of the city area
object of this study and the data geolocated on the map. These data are related to the food-service sector,
more exactly with the geolocation of restaurants, bars, coffees, fast food chains, ...

We have developed several numerical experiments with this urban network. The most significant results
are shown in Figure 9. Note that the results obtained by running the original APA algorithm are very
similar to those obtained when taking into account the overall amount of data on the network. It is therefore
necessary to develop a process for the allocation of network data to each node in the graph.

Geolocated Data APA Centrality

0.0058 0.0043

alpha=0.1 [ alpha=0.9
APAM Centrality APAM Centrality

Figure 9: Different centrality measurements, for the urban network shown in Figure 8.

In Figure 9 we display the studied network in four different ways. The upper left image shows the graph
associated to the urban network with the geolocated data extracted from it. The top right image shows
the display of the network after applying the APA algorithm. The lower left and right images represent the
network after applying the APAM algorithm, for « = 0.1 (left) and « = 0.9 (right).

These quantitative differences in the nodes that constitute the network can be displayed graphically in
many different ways. To display the data, we are opting for a chromatic scale of values called Hot-Cold
scale, based on the RGB model (Red, Green, Blue). This color domain comprises the following values:
Blue[0,0,255], Cyan|0, 255, 255], Green[0, 255, 0], Yellow[255, 255, 0], Red[255, 0, 0].

Consequently, we have two distinct scales: first, the scale of the domain of values that provides quan-
tification of information and, on the other hand, the scale that provides us with the graphic scale. It is
necessary to enhance a linear interpolation to set the color that is assigned to each of the nodes, according
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to the amount of information associated with it.

Looking the graphics of Figure 9 we can appreciate the differences in the values of centrality of some
very central points and visualize the centrality in the different areas of the urban network. We note the
influence of the data in the computation of centrality.

It is also observed something that has already been discussed in Section 4.1. Regarding the fact that
increasing the value of the o parameter the ranges of values of centrality became more dispersed. Accordingly,
the visualization for values close to a = 1 is much less smooth than when « takes smaller values. No more
graphics have been included with other values of the parameter because the differences are not significant.

5. Conclusions

A model based on the centrality APA algorithm, which provides a classification of network nodes accord-
ing to their importance within the same is proposed. The proposed new model is not intended to correct
the APA model but offers an alternative measure of centrality in which the amount of data associated with
the node has a greater participation in the stochastic process.

In the process of computation of the APA and APAM centralities, two components are involved: the
topology of the network and the data associated with it. The component related to the topological structure
of the network in both models remains unchanged, while the component related with the presence of data
is different between models.

The idea behind the construction of the data matrix APA algorithm could be interpreted as the proba-
bility of making a jump from any node to all other nodes in the network, taking into account the amount
of global data network, regardless of the topological distance to nodes of the same. However, in the new
model, the data matrix is interpreted as the probability of making a jump from any node to its adjacent
nodes, considering the amount of data that each node has associated to it. Thus, the construction of the
data matrix takes implicit the topological relationships of the data in the network.

From the studied numerical examples we can conclude that, using the APAM model with extreme values
of the alpha parameter, a node, despite having a high degree, if it has few data associated to the same will
have little significance in the network. In contrast, if the node has many associated data, regardless of its
degree, will have high values of centrality, which does not happen when applying the APA model.

Both models have their practical application in urban networks; each provides a different measure of
centrality. For the APA model priority is given the global distribution of data, while the APAM model is
focused on the topological data distribution.
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