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ABSTRACT 
 

 

Gold interdigitated microelectrodes (Au-IDA) modified with either graphene flakes exfoliated using 

flavin mononucleotide (FMN) (Gr-FMN) or graphene flakes and platinum nanoparticles (Pt-Gr-

FMN) have been studied in the oxidation of uric acid (UA). An electrochemical method for the 

detection and quantification of UA in phosphate buffer solution at physiological pH (PBS, 0.25 M, 

pH 7) in the absence and presence of ascorbic acid (AA) has been studied by cyclic voltammetry. 

The quantification of UA was investigated by cyclic voltammetry, presenting an oxidation peak at 

0.99 V with both modified electrodes. Linearity range of 60-578 µM and 60-345 µM has been 

found for Gr-FMN/Au-IDA and Pt-Gr-FMN/Au-IDA electrodes, respectively. Limits of detection 

of 18 µM were obtained for both electrodes, and the repeatability was studied at 177 µM providing 

4% and 8% for Gr-FMN/Au-IDA and Pt-Gr-FMN/Au-IDA, respectively. AA interference has been 

studied by cyclic voltammetry, showing two clearly separated oxidation peaks, at 0.99 V for UA 

oxidation and at 0.74 V for Gr-FMN/Au-IDA and 0.70 V for Pt-Gr-FMN/Au-IDA for AA 

oxidation. Linearity range has been studied in presence of 250 µM AA obtaining a working range of 

60-578 µM for Gr-FMN/Au-IDA electrode and of 60-288 µM with Pt-Gr-FMN/Au-IDA electrode. 

Limits of detection remain at 18 µM for both electrodes and the repeatability was studied at 177 µM 

providing 8% and 14% for Gr-FMN/Au-IDA and Pt-Gr-FMN/Au-IDA electrodes respectively. 
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1. Introduction 
 

Uric acid (2,6,8-trihydroxypurine, UA) is the primary end product of purine metabolism. The 

human normal range of UA is from 240 to 520 µM in serum and 1.4-4.4 mM in urine [1], [2], [3]. 

In the last years the detection and quantification of UA has assumed a major role due to the fact that 

high levels of this analyte are related with several diseases such gout, obesity, Lesch-Nyan disease, 

diabetes, high cholesterol or heart diseases [4],[5],[6],[7]. However, concentrations lower than the 

established minimum have been linked with Parkinson, Alzheimer or multiple sclerosis [1]. For the 

reasons described above, the establishment of a method to determine accurately UA levels in human 

physiological fluids is mandatory. 

 

The common method employed in clinical laboratories to determine the concentration of UA in 

human fluids is based on the specific enzymatic oxidation of UA [2]. Other method is high 

performance liquid chromatography with UV absorbance detection [8]. However, the use of the 

electrochemical methods provides some advantages, such as short analysis time, simple 

experimental procedures, relatively economical instrumental requirements and high selectivity and 

sensitivity [2]. As a result, electrochemical techniques have been widely employed for the 

determination of several analytes, including UA and AA. 

 

In spite of all the advantages described above, the most important disadvantage of the 

electrochemical detection and quantification of UA is its high oxidation potential that produces the 

interference of several compounds, obtaining an overlapped signal. Then, the development of 

electrode materials with an efficient capability towards separating the oxidation peaks of UA from 

those of other compounds in its voltammetric determination is highly demanded. In this context, 

carbon materials are usually employed for electroanalysis as a result of their attractive 

electrochemical properties such as low residual current, readily renewable surface and wide 

aqueous potential window [9]. Colín-Orozco et al. [10] studied the electrochemical behaviour of 

UA, dopamine (DP) and AA by cyclic voltammetry and differential pulse voltammetry (DPV) in a 

0.1 M NaCl aqueous solution and by using a bare carbon paste electrode (CPE), achieving by DPV 

a suitable sensitivity ((23.79 ± 0.05) µA·mM-1) and low limit of quantification of (18.18 ± 0.05) µM 

for UA quantification. However, the electrochemical study performed by Colín-Orozco et al. was 

carried out in media where UA, DA and AA were not mixed [10], and the simultaneous detection of 

UA in the presence of AA was not studied. Actually, the direct electrochemical detection of UA in 

the presence of other species (e.g., xanthine and hypoxanthine) using a glassy carbon electrode has 

been reported by other groups [11]. However, when AA is in the sample, the electrochemical 
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detection of UA is not possible, due to the adsorption of the AA oxidation product on the glassy 

carbon electrode surface, resulting in an unusable electrode [12]. Therefore, several modified glassy 

carbon electrodes [13] and the use of other carbon material have been proposed for this application 

[14],[15],[16]. 

 

Among carbon nanomaterials, graphene has acquired an important role as a material for 

electrochemical sensing [9],[17], due to its unique properties including fast electron transport, high 

thermal conductivity, mechanical flexibility and good biocompatibility [9]. Furthermore, single-

layer graphene has a high surface area (theoretically 2630 m2 g-1) [17], which makes it ideal as a 

support material, and also the presence of defects that can act as electroactive sites [18]. Several 

papers have been found in the literature where graphene or graphene-related materials have been 

employed for the development of electrochemical sensors. For instance, Shang et al. [19] use 

multilayer graphene nanoflake films for the simultaneous detection of UA, AA and dopamine (DP), 

achieving a great separation of the signals obtained by cyclic voltammetry. Sun et al. [20] have 

developed a UA sensor based on graphene oxide modified with thionine, obtaining a low detection 

limit of 7 µM without any interference from AA and DP. However, in the cases describe above, the 

materials preparation was tedious and the use of uricase enzyme was necessary, resulting in an 

increase in the total cost of the sensor. Other references related with UA quantification by 

voltammetric detection have been found in the literature, showing linear ranges in biological fluids. 

However the sensitivity achieved in these works is lower than the desirable [3], [21], [22], [23]. In 

order to increase the sensitivity, metal nanoparticles are used. Then, platinum nanoparticles 

supported on a graphene material should be a suitable strategy to reduce costs while maintaining the 

electrocatalytic activity of platinum [24]. In addition, another drawback that needs to be solved is 

the use of organic solvents for the dispersion of the electrode material, especially graphene. 

Aqueous suspensions of high concentrations of graphene flakes for the preparation/modification of 

electrodes are desirable; however, due to hydrophobic properties of graphene these dispersions are 

difficult to prepare. Then, the dispersants should fulfil some requirements to be employed: 1) It 

should lead to very high concentrations of colloidal stabilized graphene sheets. 2) The amount of 

dispersant has to be very low and 3) it should be innocuous and nontoxic [25]. Regarding these 

points, Ayán-Varela et al. [25] have very recently developed a method to prepare stable aqueous 

graphene dispersions using the sodium salt of flavin mononucleotide (FMN), achieving extremely 

concentrated dispersions of high quality graphene flakes. These dispersions have been used in the 

preparation of supported metallic nanoparticles (Pt, Pd, Ag) [25].  

 



4 
 

Based on the work above, taking advantage of the attractive properties of graphene and using the 

method developed to prepare highly concentrated aqueous dispersions of graphene, in this work 

graphene-modified arrays of gold interdigitated microelectrodes are presented for UA voltammetric 

detection in the presence of AA. The gold interdigitated microelectrodes have been modified with 

FMN-stabilized graphene dispersion (Gr-FMN) and with Pt nanoparticles on FMN-stabilized 

graphene dispersion (Pt-Gr-FMN). To our knowledge, this is the first time that these modified 

electrodes have been used for this purpose. 

 

2. Experimental 
 
2.1. Reagents and equipment 

 
Uric acid (≥99%, crystalline) and L-Ascorbic acid (reagent grade, crystalline) standard chemicals 

were provided by Sigma-Aldrich. Potassium dihydrogen phosphate (KH2PO4) and dipotassium 

hydrogen phosphate (K2HPO4) obtained from Emsure® and Sigma-Aldrich, respectively, were 

used to prepare phosphate buffer solution (PBS, 0.25 M, pH 7). Sulphuric acid (98%) was provided 

by AnalaR Normapur® and sodium hydroxide (NaOH) from Merck. All the solutions were 

prepared with 18.2 MΩ cm ultrapure water obtained from an Elga Labwater Purelab system.  

Graphene flakes exfoliated and stabilized with flavin mononucleotide (Gr-FMN) and Gr-FMN 

hybridized with Pt nanoparticles (Pt-Gr-FMN) were prepared according to the procedure described 

in the literature [25]. 

 

Transmission electron microscopy (TEM) imaging was carried out using a JEOL TEM, JEM-2010 

microscope, which was furnished with an Oxford X-ray detector (EDS) (INCA Energy TEM 100 

model) and GATAN acquisition camera (ORIUS SC600). 

X-ray photoelectron spectroscopy (XPS) was performed using a VG-Microtech Mutilab 3000 

model. 

 
2.2. Preparation of graphene modified electrodes 

 

Thin-film interdigitated array microelectrodes (IDA) of gold (Micrux Technologies) have been used 

as support electrodes. The following procedure has been implemented for the preparation of the 

graphene-modified electrodes. Firstly, the gold interdigitated array electrodes (Au-IDA) was 

cleaned by cyclic voltammetry performing ten cycles between -1.5 V and 1.5 V vs gold pseudo-

reference at 0.1 V·s1 in 0.05 M H2SO4 . Then, the Au-IDA was modified by drop casting a given 

graphene dispersion. The concentration of the dispersion was 0.188 mg·mL-1 and 0.116 mg·mL-1 

for graphene (Gr-FMN) and Pt-decorated graphene (Pt-Gr-FMN) dispersions, respectively. The 
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weight of the deposited graphene or Pt-graphene hybrid was 2.35 µg for all the electrodes. The 

method for the deposition was the addition of a defined number of 0.5 µL drops (25 and 40 drops 

for Gr-FMN and Pt-Gr-FMN dispersions, respectively), which were allowed to dry with the use of 

an infrared lamp. Two different electrodes were prepared, one of them modified with Gr-FMN (Gr-

FMN/Au-IDA) and the other one modified with Pt-Gr-FMN (Pt-Gr-FMN/Au-IDA). Finally, the 

electrodes were stored in PBS at room temperature until their use. 

 

2.3. Electrochemical methods 
 

All electrochemical measurements were carried out with a cyclic voltammetry sep-up (EDAQ EA 

163 Model potentiostat, EG&G PARC model 175 Universal Programmer and e-corder EDAQ 410). 

A three-electrode configuration has been used, with the modified electrodes (Gr-FMN/Au-IDA and 

Pt-Gr-FMN/Au-IDA) acting as the working electrodes, a reversible hydrogen electrode (RHE) 

immersed in the same electrolyte as a reference electrode and a gold wire as a counter electrode. 

The electrochemical cell, was completely deoxygenated during the measurements by nitrogen 

bubbling. 

 

The calibration curves have been obtained by adding several aliquots from a concentrated stock 

solution of 100 mM UA in PBS with a pH higher than 8.4 until reaching the desired concentration, 

between 60 and 578 µM. When the interference of AA was studied, a fixed AA concentration of 

250 µM was added to the electrochemical cell and the same UA concentration range has been 

studied.   

 

All measurements were carried out in PBS (37 mL, 0.25 M, pH 7) and by triplicate in order to 

determine analytical parameters. For all replicates, one modified electrode was used, and a new AA 

and UA solutions were prepared for each replicate. 

 
3. Results and Discussion 

 
3.1. Modified electrode characterization 

 
The electrochemical behavior of the modified electrodes was investigated in the electrolyte in 

absence of UA by cyclic voltammetry. Figure 1 shows the voltammograms for Gr-FMN/Au-IDA 

and Pt-Gr-FMN/Au-IDA electrodes in PBS. For Gr-FMN/Au-IDA (Figure 1A), the voltammogram 

exhibits different redox processes; two overlapped at around 0.07 V and 0.17 V and a third one at 
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0.3 V during the positive going sweep. During the reverse scan, three reduction peaks are clearly 

observed.   

 

It is widely accepted that, in aqueous media and when the riboflavin is present in solution, fully 

oxidized flavin (FMN) is reduced to flavin-hydroquinone (FMNH2) in “one-step” in a 2e-/2H+ 

reduction (scheme 1) [26]. These processes occur at around -0.4 V vs Ag/AgCl, with the peaks 

referred to as B-B´ being related to these faradaic reactions [27]. 

 

 
 

Scheme 1 

 

However, it has been reported that in neutral and weak basic media the oxidation of flavin-quinone 

to flavin-hydroquinone goes through the formation of an intermediate (radical semi-quinone), 

leading to two different overlapped signals [28]. In our case, the redox processes are related to the 

adsorbed FMN because the peak current increases linearly with the scan rate [25]. The presence of 

oxidized, semiquinone, and reduced forms of riboflavin has been studied using SERS coupled to 

electrochemical techniques [29]. Then, the immobilization of FMN on the graphene layers could 

stabilize the intermediate semiquinone during the oxidation process, with two peaks being clearly 

observed in the voltammogram. Then, we propose that FMN adsorbed on the graphene surface 

undergoes two-step reduction, with the overlapped signals A-A´ and B-B´ being related to the 

reduction/oxidation of FMN to flavin-hydroquinone. Finally, the redox processes C-C´ are more 

difficult to assign and could be related to some impurity belonging to the flavin family (the purity of 

FMN employed here was between 73% and 79%). 

 

The voltammogram obtained with Pt-Gr-FMN/Au-IDA electrode (Figure 1B) shows the 

characteristic profile of Pt, the region between 0.05 V and 0.4 V corresponds to the so-called 

adsorption-desorption of hydrogen and anions on the platinum surface, where the redox processes 

of FMN are also overlapped. The zone between 0.5 V and 1.2 V corresponds to the oxidation-

reduction of the Pt surface. Moreover, an oxidation peak is clearly observed at around 0.65 V that 

can be attributed to some oxygen surface groups present in the graphene layers. 
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Figure 1. Steady state voltammograms in PBS (0.25 M, pH 7) for: A) Gr-FMN/Au-IDA electrode; 

B) Pt-Gr-FMN/Au-IDA electrode. v scan = 0.1 V s-1. 

 
Figures 2-3 show the TEM images of Gr-FMN and Pt-Gr-FMN dispersions, respectively. It can be 

seen from Figure 2 the expected lamellar nature of the exfoliated graphene sheets. The number of 

monolayers in each flake obtained with this method (exfoliation and stabilization of graphite using 

FMN) is between one and five [25].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. TEM images for Gr-FMN flakes at different magnifications (A-B). 
 

Figure 3 shows a homogeneous distribution of Pt nanoparticles on the graphene layers, with 

nanoparticle sizes typically between 3 and 6 nm (Figure 3b). The amount of Pt on graphene was 

determined by EDS, resulting in a (2.52 ± 0.52) wt%. 
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Figure 3. TEM images of Pt-Gr-FMN hybrids at different magnifications (A-B). 
 

 
3.2. Electrochemical behavior of UA and AA 

 
The electrochemical behavior of UA on bare electrode (Au-IDA) and both modified electrodes has 

been studied by cyclic voltammetry. The Gr-FMN/Au-IDA electrode has been investigated in the 

potential range in which the redox processes of FMN are not observed. Figure 4 shows the 

voltammograms obtained during the oxidation of different concentrations of UA on the different 

electrodes. Figure 4A exhibits the UA oxidation on bare electrode (Au-IDA microelectrode), 

showing an oxidation current at 1.25 V. Figures 4B-C display the oxidation of UA for Gr-FMN/Au-

IDA and Pt-Gr-FMN/Au-IDA electrodes. As it can be seen in Figures 4B and 4C, for both 

electrodes, the oxidation peak related with UA oxidation appears at 0.99 V, providing high 

oxidation currents than with the bare electrode. According to the results obtained, both modified 

electrodes with Gr-FMN and Pt-Gr-FMN dispersions show an electrocatalytic effect because the 

oxidation potential decreases and current increases in comparison to the bare electrode for similar 

concentrations. In addition, the presence of platinum on graphene also enhances the results obtained 

with Gr-FMN/Au-IDA (Figure 4B-C) providing higher current intensities than Gr-FMN/Au-IDA 

electrode. Then, the calibration curves for UA oxidation has been obtained with these two modified 

electrodes (Figure 4D). All voltammograms have been obtained by triplicate. The oxidation current 

of UA (iUA) is linear in the UA concentration range between 60 µM and 578 µM for Gr-FMN/Au-

IDA electrode and between 60 µM and 345 µM for Pt-Gr-FMN/Au-IDA electrode, with LODs of 

18 µM with both electrodes. The regression models obtained are the following: 

Gr-FMN/Au-IDA:           iUA (µA) = (0.065± 0.003) CUA (µM) + (1.7 ± 1.0); r = 0.999 (N = 10). 

Pt-Gr-FMN/Au-IDA:         iUA (µA) = (0.10± 0.02) CUA (µM) + (6 ± 4); r = 0.992 (N = 6). 

 

A B 
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Results obtained by both modified electrodes are outlined in Table 1. It can be observed that the 

working range for the Pt-Gr-FMN/Au-IDA electrode is shorter than the one obtained in the absence 

of Pt nanoparticles (Figure 4D, Table 1). This result can be ascribed to the fact that the surface 

active sites on the Pt nanoparticles are approaching full saturation with UA molecules or the 

products of their oxidation at the higher UA concentrations tested. The blockage of the platinum 

surface can be observed in the voltammetric profile, in which the charge of the so-called hydrogen 

adsorption-desorption zone (between 0 V and 0.4 V) decreases when the UA concentration 

increases (Figure 4C). When the UA concentration is higher than 345 µM, it can be considered that 

all active sites are blocked, and consequently, the oxidation current remains constant with UA 

concentration. 
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Figure 4. Voltammograms in PBS (0.25 M, pH 7) for successive additions of UA(A-C): A) Bare 
Au-IDA: solid line: 0 µM; dashed: 120 µM; dotted: 380 µM; dash dotted: 450 µM; short dashed: 
578 µM; B) Gr-FMN/Au-IDA electrode: solid line: 0 µM; dashed: 60 µM; dotted: 120 µM; dash 

dotted: 288 µM; short dashed: 578 µM. C) Pt/Gr-FMN/Au-IDA electrode: solid line: 0 µM; dashed: 
60 µM; dotted: 116 µM; dash dotted: 231 µM; short dashed: 345 µM; vscan = 0.1 V·s-1; D) 

Calibration curve for UA quantification in the absence of AA obtained with Gr-FMN/Au-IDA 
electrode (solid line) and with Pt-Gr-FMNS/Au-IDA electrode (dashed line). 

 
 
The limit of detection (LOD) was determined empirically, measuring progressively more diluted 

concentrations of the analyte. The LOD was the lowest concentration whose signal could be clearly 

distinguished from the blank. Moreover, the limit of quantification was calculated as 3.3 times LOD 

A B 

C D 
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(LOQ = 3.3LOD). On the other hand, the coefficient of variation values (CV) were obtained for 3 

replicates at 177 µM concentration level of UA. 

 

In order to identify the voltammetric peaks belonging to AA oxidation, the electrochemical 

behaviour of bare (Au-IDA) and modified electrodes (Gr-FMN/Au-IDA and Pt-Gr-FMN/Au-IDA) 

towards the oxidation of AA in the absence of UA was investigated by cyclic voltammetry. Figure 

5A shows the voltammograms obtained with a bare Au-IDA electrode in buffer solution and for 

successive additions of AA to obtain the different concentrations as indicated in the figure. As it can 

be seen, an anodic signal appears at 0.67 V belonging to the oxidation of AA. No cathodic signal 

can be observed in the reverse scan due to the irreversibility of this oxidation. Figure 5B exhibits 

the voltammograms obtained with the Gr-FMN/Au-IDA in PBS (solid line), AA solution (dashed 

line) and a mixture of AA and UA (dotted line). Two different oxidation peaks belonging to AA and 

UA, at potentials around 0.71 V and 0.99 V respectively, can be clearly observed. Figure 5C shows 

the voltammetric behaviour of Pt-Gr-FMN/Au-IDA towards successive additions of AA, which 

exhibits two anodic peaks at around 0.74 V and 1.1V. Then, this second peak could interfere in the 

determination of UA.    

 

Table 1. Analytical parameters obtained for UA quantification with both modified electrodes 

(Gr-FMN/Au-IDA and Pt-Gr-FMN/Au-IDA). 

Parameter 
Electrode 

Gr-FMN/Au-IDA Pt-Gr-FMN/Au-IDA 

Sensitivity (µA·µM-1) 0.065 ± 0.003 0.10 ± 0.02 

Intercept (µA) 1.7 ± 1.0 6 ± 4 

r 0.999 0.992 

N 10 6 

Working range (µM) 60-578 60-345 

LOD (µM) 18 18 

LOQ (µM) 60 60 

CV (%) 
(n = 3; 177 µM) 4 8 

 
 
Table 1 exhibits how the presence of Pt nanoparticles provides an enhanced sensitivity as a 

consequence of the electroactivity of Pt towards UA oxidation; however, the working range 

decreases in relation to the Gr-FMN/Au-IDA electrode. Linear ranges obtained allow the developed 

sensor to measure UA levels in serum or urine fluids. 
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Figure 5. Voltammograms in PBS (0.25 M, pH 7) for successive additions of AA(A-C): A) Bare 

Au-IDA: solid line: 0 µM; dashed: 100 µM; dotted: 300 µM; B) Gr-FMN/Au-IDA electrode: solid 
line: 0 µM; dashed: 600 µM; dotted: AA 600 µM + UA 600 µM; C) Pt/Gr-FMN/Au-IDA electrode: 

solid line: 0 µM; dashed: 177 µM; dash dotted: 351 µM; dotted: 522 µM; vscan = 0.1 V·s-1. 
 

3.3. Electrochemical determination of UA in the presence of AA 
 

Possible AA interference was investigated by cyclic voltammetry using a high concentration 3 

times higher than the normal levels in serum [30]. The concentration ratios between AA and UA 

ensure the selectivity of the method towards UA quantification. Figure 6A displays the 

voltammogram obtained for a bare electrode (Au-IDA) in which two oxidation peaks are clearly 

observed, the first one corresponding to AA oxidation at 1.07V and the second one at 1.28 V 

corresponding to UA oxidation. Then, it can be concluded that with this electrode is not possible 

to separate the oxidation of both compounds. Figures 6B and 6C exhibit the voltammograms 

obtained for the Gr-FMN/Au-IDA and Pt-Gr-FMN/Au-IDA electrodes respectively at different 

concentrations of UA in the presence of 250 µM AA. Figure 6B shows the behaviour of Gr-

FMN/Au-IDA electrode, the voltammograms show an oxidation peak at 0.74V that corresponds to 

AA oxidation, while the oxidation peak corresponding to UA is maintained at 0.99V, the same 

potential than the observed in the absence of AA. Figure 6C exhibits the voltammograms for Pt-

Gr-FMN/Au-IDA electrode obtained for successive additions of UA in a 250 µM AA solution. It 

A 

B C 
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is can be observed in all the voltammograms, an oxidation peak corresponding to AA at 0.70 V 

and the AA oxidation peak at 0.99V.  

 

The comparison of the results obtained with modified and non-modified electrodes shows that the 

modified electrodes show a lower oxidation potentials and higher oxidation currents than the bare 

electrode for both analytes. Moreover, a larger separation of the oxidation peaks is observed that 

could improve the resolution of the determination method. The successful separation of the signals 

related to oxidation of AA and UA was ascribed to the properties of graphene, which offer several 

advantages for electrochemical sensing applications. Some authors claim that the larger decrease 

in the oxidation overpotential for AA is probably caused by the interaction between AA and 

graphene surface, which may accelerate the electron transfer on the modified electrodes. On the 

other hand, the enhancement in current response may be attributed to the increase of the electrode 

surface [31]. Moreover, the presence of Pt nanoparticles on the graphene support also produces a 

slight improvement, showing high currents for lower UA concentrations, due to the high 

electroactivity of Pt towards several reactions. Moreover, the surface of the electrode contains 

FMN molecules, which can act as intermediates by accepting electrons from many functional 

groups and donating electrons to other molecules [26-28]. Then, FMN can act as a mediator of the 

oxidation of these compounds, thus producing some interactions between the analytes and the 

surface. 

 

In addition, voltammetric studies for the dependence of the current of AA and UA with the scan 

rate were performed by using a Pt-Gr-FMN/Au-IDA electrode, indicating that both analytes show 

the typical behavior of a process where the reactant is in the solution (results not shown). 

The calibration curves obtained in the presence of AA are also shown in Figure 6D. It can be 

observed that the UA oxidation current in the presence of AA (250 µM) is linear in the 

concentration range between 60 µM and 578 µM with Gr-FMN/Au-IDA and in the range from 60 

µM to 288 µM for Pt-Gr-FMN/Au-IDA. The following linear relations have been calculated: 

Gr-FMN/Au-IDA:        iUA (µA) = (0.065± 0.003)·CUA (µM) + (3.0 ± 1.0);  r = 0.999 (N = 10) 

Pt-Gr-FMN/Au-IDA:    iUA (µA) = (0.123± 0.010)·CUA (µM) - (0 ± 2);  r =0.999 (N = 5) 
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Figure 6. Voltammograms obtained for: A) Bare Au-IDA electrode in 3 mM AA and 87 µM UA 
solutions in PBS; B) Gr-FMN/Au-IDA electrode in 250 µM AA solution in PBS for successive 
additions of UA: solid line: 0 µM; dashed: 60 µM; dotted: 120 µM; dash dotted: 288 µM; short 

dashed: 578 µM.; C) Pt-Gr-FMN/Au-IDA electrode in 250 µM AA solution in PBS for successive 
additions of UA: solid line: 0 µM; dashed: 60 µM; dotted: 116 µM; dash dotted: 231 µM; short 

dashed: 288 µM vscan = 0.1 V·s-1, D) Calibration curve for UA quantification in the absence of AA 
obtained with Gr-FMN/Au-IDA electrode (solid line) and with Pt-Gr-FMNS/Au-IDA electrode 

(dashed line). 
 

 
Table 2 summarizes the results obtained for Gr-FMN/Au-IDA and Pt-Gr-FMN/Au-IDA electrodes 

in the presence of AA. The measurements obtained with Pt-Gr-FMN/Au-IDA electrode show 

slightly higher sensitivity than that of the electrode without Pt nanoparticles. However, its working 

range is shorter, similar to the case without AA, which is due probably again to saturation of the 

surface active sites on the metal nanoparticles. Also, the current associated to hydrogen adsorption 

and desorption (between 0 and 0.4 V) decreases when the UA concentration increases.  

 
 
 
 
 
 
 
 
 

A B 

C D 
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Table 2. Analytical parameters obtained for UA quantification in the presence of AA (250 µM) 

with the two modified electrodes (Gr-FMN/Au-IDA and Pt-Gr-FMN/Au-IDA). 

Parameter 
Electrode 

Gr-FMN/Au-IDA Pt-Gr-FMN/Au-IDA 

Sensitivity (µA·µM-1) 0.065 ± 0.003 0.123 ± 0.010 

Intercept (µA) 3.0 ± 1.0 -0 ± 2 

r 0.999 0.999 

N 10 5 

Working range (µM) 60-578 60-288 

LOD (µM) 18 18 

LOQ (µM) 60 60 

CV (%) 

(n = 3; 177 µM) 
8 14 

 

 
Comparing the results of Table 1 and Table 2, it can be concluded that the working range decreases 

(CUA = 288 µM) when AA is present in the solution and for the Pt-Gr-FMN/Au-IDA electrode. 

These results could be as consequence of the blockage of the active sites of platinum surface, which 

is produced at lower UA concentrations because both AA and UA are adsorbed on the platinum 

surface. Therefore, for 250 µM AA, the intensity of the oxidation peak for UA does not change 

when the concentration increases from 288 µM UA for Pt-Gr-FMN/Au-IDA electrode. 

If the values obtained for the sensitivity with and without AA are compared, no significant 

differences are observed for Gr-FMN/Au-IDA electrode, and only a slightly increase of the slope 

for Pt-Gr-FMN/Au-IDA electrode (0.10 ± 0.02 µA µM-1 (without AA) vs 0.123 ± 0.010 µA µM-

1 (with AA)) is obtained. 

 

Finally, in order to assess whether AA interferes in the UA measurements, that is, whether the 

results obtained in the presence of AA in the solution are the same as without AA, a statistical test 

was applied. It involves plotting the results of the measurement of UA without AA in one of the 

axis (Y axis), and the results obtained with AA in the other axis (X-axis), for the same electrode. If 

the results obtained with and without AA are the same, a straight line with a slope amounting to one 

and crossing the origin (intercept zero) will be obtained [32]. 

Figure 7 shows the plots obtained from the results for the UA oxidation with and without AA for 

the Gr-FMN/Au-IDA and Pt-Gr-FMN/Au-IDA electrodes. The plot obtained for Gr-FMN/Au-IDA 
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electrode (Figure 7A) shows a very good correlation between both results in the presence and 

absence of AA. The linear equation obtained is: iUA (µA) = (0.99± 0.04)·i UA+AA (µA) - (0.8 ± 0.9) 

with a correlation coefficient of 0.999. Then, it can be concluded that AA does not interfere in the 

UA quantification using the Gr-FMN/Au-IDA electrode. 
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Figure 7. Regression lines of iUA vs iAA+UA : A) Gr-FMN/Au-IDA electrode; 
B) Pt-Gr-FMN/Au-IDA electrode. Error bars are represented by the standard deviation obtained 

with three replicates. 
 

Figure 7B shows the correlation obtained for Pt-Gr-FMN/Au-IDA electrode with and without AA. 

The linear relationship obtained is iUA (µA) = (0.8 ± 0.2)·iUA+AA (µA) + (4 ± 4) and a correlation 

coefficient of 0.984. In this case, the correlation is lower than with the other electrode, but it can be 

concluded that AA does not significantly interfere in the UA quantification using the Pt-Gr-

FMN/Au-IDA electrode. However, if the results obtained for Gr-FMN/Au-IDA and Pt-Gr-

FMN/Au-IDA electrodes are compared, it can be noticed several differences. The correlation 

coefficient is much higher for the Gr-FMN/Au-IDA electrode, indicating that the results obtained 

with and without AA are more similar with this electrode. However, the sensitivity obtained with 

Pt-Gr-FMN/Au-IDA electrode is higher than the value obtained without platinum, then, this Pt-Gr-

FMN/Au-IDA electrode provides the most auspicious results that can be ascribed to the synergistic 

effect between the high conductivity and large surface area of graphene and the high catalytic 

activity of Pt nanoparticles.  

 

The lifetime of the electrodes is another important parameter for practical application. The Gr-FMN 

and Pt-Gr-FMN dispersions are stable for at least six months, without showing significant 

precipitation [25]. After this time, the FMN could degrade in the aqueous graphene dispersion due 

to its photosensitivity. Then, it can be considered that the lifetime of the electrodes could be around 

six months.  

 

A B 
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Finally, Table 3 shows a comparison of some analytical parameters obtained in this work, with 

others obtained from the literature. It can be observed that the proposed material electrode is 

competitive, representing therefore a good and interesting alternative for sensor applications. In 

addition, no sensors based in cyclic voltammetry detection with sensitivity higher than the one 

reached in the present work were found in literature.   

 
Table 3. Comparison of analytical parameters for several electrochemical UA sensors by 

voltammetric detection. 
 

Parameter  Method  Sensitivity 
(µA·µM-1)  LOD 

(µM)  
Linear 
Range 
(µM) 

 Ref. 

MBI-Au  Cyclic 
Voltammetry  0.0152 ± 

0.0005  1  1-300  [3]  

Bare CPE  DPV  0.0238  5.63  0-100  [10]  

Ag-PPy/GCE 
 

DPV  0.1818  0.5  2-100  [21]  

GCE-
CoPc/MWCNT  Cyclic 

Voltammetry  0.02  260  260-4000  [22]  

AuNPs-
MWCNTs/GC  DPV  0.037  2  4-300  [23]  

MoS2/rGO 
 DPV  

0.141  0.46  1.38-745  [33]  

AuNPs(EDAS)-rGO 
 Cyclic 

Voltammetry 
 

0.008  0.5  0.5-50  [34]  

Pt-Gr-FMN/Au-
IDA 

 Cyclic 
Voltammetry 

 
0.123 ± 0.010  18  60-284 

 This 
work 

Gr-FMN/Au-IDA 
 Cyclic 

Voltammetry 
 

0.065±0.003  18  60-578 
 This 

work 
 
  
 

4. Conclusions 
 

Graphene flakes exfoliated using flavin mononucleotide and platinum nanoparticles supported on 

graphene flakes have been electrochemical characterized by cyclic voltammetry. The dispersions of 

these materials have been used in the modification of gold interdigitated microelectrodes. An 

electrochemical method has been developed for the quantification of uric acid in the presence of 

ascorbic acid by cyclic voltammetry. The analyses have been carried out in phosphate buffer 

solution to simulate physiological human fluids (PBS, 0.25 M, pH 7). Two different modified 

electrodes have been studied: Gr-FMN/Au-IDA and Pt-Gr-FMN/Au-IDA, with the Pt-Gr-FMN/Au-

IDA electrode. The Gr-FMN/Au-IDA electrode exhibits a working range of the UA oxidation 
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current with the UA concentration being between 60 µM and 578 µM, achieving a LOD of 18 µM. 

When AA is in the UA solution, these values remain constant for this electrode. For the Pt-Gr-

FMN/Au-IDA electrode, the working range obtained for the UA oxidation current with the 

concentration is not as good as with the Gr-FMN/Au-IDA electrode due to the adsorption of UA 

and AA on the Pt surface, resulting in a shorter working range (between 60 µM and 288 µM). Even 

though the Gr-FMN/Au-IDA electrode offers a larger linear range, the presence of Pt nanoparticles 

has its own advantages, including a higher sensitivity (0.123 ± 0.010 µA µM-1) that is 

approximately twice the sensitivity value of the Gr-FMN/Au-IDA electrode. As a consequence of 

the analytical figures of merit obtained in this work, the developed graphene based-materials 

becomes an alternative to develop electrochemical sensors, able to measure UA levels in some 

physiological fluids. 
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