
A Novel Disjunctive Model for the Simultaneous Optimization and Heat Integration 1 

Natalia Quirante
a
, José A. Caballero

a,
* and Ignacio E. Grossmann

b
. 2 

a 
Institute of Chemical Processes Engineering. University of Alicante, PO 99, E-03080 Alicante, Spain. 3 

b 
Department of Chemical Engineering. Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213, 4 

USA. 5 

*Corresponding author: caballer@ua.es, Tel: +34 965902322. Fax: +34 965903826. 6 

E-mail addresses: natalia.quirante@ua.es (N. Quirante), caballer@ua.es (J.A. Caballero), grossmann@cmu.edu 7 

(I.E. Grossmann)  8 

 9 

Abstract 10 

This paper introduces a new disjunctive formulation for the simultaneous optimization and heat integration of 11 

systems with variable inlet and outlet temperatures in process streams as well as the possibility of selecting and 12 

using different utilities. The starting point is the original compact formulation of the Pinch Location Method, 13 

however, instead of approximating the “maximum” operator with smooth, but non-convex functions, these 14 

operators are modeled by means of a disjunction. The new formulation has shown to have equal or lower 15 

relaxation gap than the best alternative reformulation, thus reducing computational time and numerical problems 16 

related to non-convex approximations. 17 

 18 

Keywords: heat integration, variable temperatures, disjunctive model, simultaneous optimization. 19 

 20 

1. Introduction 21 

An important factor in determining the optimal design of a chemical process is heat integration because energy 22 

consumption contributes significantly to the total cost of a process. Therefore, minimizing energy consumption, 23 

minimizing energy losses, and increasing the energy efficiency increases the efficiency and the economic 24 

benefits of a chemical plant. 25 

The most important technique to decrease energy consumption is through the implementation of heat exchanger 26 

networks. The concept of heat integration making the concept of pinch analysis was introduced in 1978 by 27 

Linnhoff and Flower (1978). The idea was based on determining the minimum utility requirements of a process, 28 

and identifying the maximum possible grade of heat recovery as a function of the minimum temperature 29 

difference inside the heat exchanger network. In 1983, Linhoff and Hindmarsh (1983) showed that it is possible 30 

to save a significant part of the energy required by a plant. 31 

A detailed review of heat integration and heat integration alternatives is out of the scope of this paper. A simple 32 

search using the Scopus Database (SCOPUS Database, 2016) using the keywords «Heat Integration» yields 33 

more than 5400 results in just the last 5 years, and more than 1100 in the specific area of Chemical Engineering. 34 

Comprehensive information about the initial advances after the pinch introduction can be found in the reviews 35 

by Gundersen and Naess (1988) or Jezowski (1994a, 1994b). A comprehensive review with annotated 36 

bibliography that covers all the advances in the 20
th

 century was due to Furman and Sahinidis (2002). A general 37 

overview of the state of the art at the end of 20
th

 century in process engineering including heat integration can be 38 

found in the work by Grossmann et al. (1999) or Dunn and El-Halwagi (2003). More recent reviews including 39 

the most relevant advances in the last years are those by Morar and Agachi (2010), and Klemeš and Kravanja 40 

(2013). With the focus on heat exchanger networks retrofit, the recent review by Sreepathi and Rangaiah (2014) 41 

is also interesting. The importance of process integration in general and the combination of Heat Integration with 42 

some particular subsystems has also received considerable attention. For example, Ahmetovic reviewed the 43 

literature for water and energy integration (Ahmetović et al., 2015; Ahmetović & Kravanja, 2013). Wechsung et 44 

al. (2011) and Onishi et al. (2014a) introduced the concept of heat and mechanical power integration. Fernández 45 

et al. (2012) presented a comprehensive review of energy integration in batch processes, Quirante and Caballero 46 
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(2016) proposed the simultaneous optimization, heat integration, and life cycle assessment (LCA) for the 47 

optimization of a very large scale sour water stripping plant. 48 

A heat integrated flowsheet can be obtained using mainly two different approaches: Sequential or simultaneous 49 

strategy. In the first stage of the sequential strategy, the process configuration and the operating conditions are 50 

optimized assuming that all heating and cooling needs are supplied by utilities. In the second stage, with the 51 

information of the optimal stream conditions, heat integration is performed and the heat exchanger network 52 

(HEN) is designed (Ahmad et al., 1990; Linhoff & Hindmarsh, 1983; Linnhoff, 1993; Linnhoff & Ahmad, 53 

1990). 54 

In the simultaneous strategy, the heat integration and the flowsheet synthesis are performed simultaneously. 55 

Some works have demonstrated that the simultaneous optimization and heat integration can achieve important 56 

savings in the total cost of a process, compared to the sequential strategy (Duran & Grossmann, 1986; Lang et 57 

al., 1988). In problems with specific characteristics like some subsystems or in small or medium size problems 58 

(Caballero & Grossmann, 2006; Onishi et al., 2014b) it is possible to use a superstructure (Yee & Grossmann, 59 

1990; Yee et al., 1990) and simultaneously obtaining the optimal operating conditions and the heat exchanger 60 

network. However, in large problems the size of the model is so large that usually it cannot be solved with the 61 

state of the art NLP/MINLP solvers. However, in many cases, the energy costs dominate the investment costs or 62 

we expect that for a given minimum energy consumption target, the investment in the different alternatives do 63 

not have an important influence in the optimal operating conditions of the optimized flowsheet. In other words, 64 

we simultaneously optimize the operating conditions and the energy consumption but without considering the 65 

actual structure of the heat exchanger network. The information required to predict the minimum energy target 66 

for a given set of hot and cold streams can be obtained from the “Problem Table” (Linnhoff, 1993) or using the 67 

transshipment model (Papoulias & Grossmann, 1983). In both approaches, it is necessary to introduce the 68 

concept of «Temperature intervals». This is adequate for ‘a posteriori’ heat integration or if the optimization is 69 

performed using a derivative-free solver (Corbetta et al., 2016). However, the state of the art gradient based 70 

NLP/MINLP solvers require smooth functions. If the process stream temperatures are not constant some 71 

temperature intervals can disappear or other news can appear, which mathematically translates into 72 

discontinuities, and therefore into points of non-differentiability.  73 

To overcome the numerical difficulties related to the temperature intervals, Duran and Grossmann (1986) 74 

presented the «Pinch Location Method» (PLM). The next section presents an overview of PLM. Even though the 75 

PLM does not rely on the temperature interval concept, the final model includes the “maximum” operator that 76 

introduces non-differentiabilities. In the original work, Duran and Grossmann proposed to approximate the max 77 

operator with smooth functions. This approach avoids the non-differentiability problem, and reduces the problem 78 

into an NLP. However, the smooth approximation is non-convex and its numerical behavior depends on 79 

parameters in the approximation function. Later, Grossmann et al. (1998) presented a disjunctive model that 80 

overcomes all previous limitations at the cost of introducing integer variables. Alternatively, Navarro-Amorós et 81 

al. (2013) presented an MI(N)LP model that maintains the concept of temperature interval. They assumed a 82 

maximum number of temperature intervals and dynamically assign process temperatures to each interval. The 83 

numerical test presented by the authors showed that the numerical performance is similar to the disjunctive 84 

formulation of the PLM. However, the number of constraints and binary variables can be orders of magnitude 85 

larger. 86 

In the rest of the paper we first present and overview of the Pinch Location Method. Then we introduce a novel 87 

disjunctive reformulation that has better relaxation gap than the disjunctive model presented by Grossmann et al. 88 

(1998) and a similar number of variables and equations. A set of numerical test illustrates the performance of the 89 

novel approach in examples with different complexity. Finally, we finish with some conclusions. 90 

 91 

2. The pinch location method. Overview 92 

In the following paragraphs, we present an overview of the Pinch Location Method. It does not pretend to be a 93 

comprehensive description. Notwithstanding, the novel disjunctive formulation is based on it and we consider of 94 



interest to introduce the more relevant aspects. For further details, the interested reader is referred to the original 95 

work (Duran & Grossmann, 1986). 96 

The pinch analysis assumes that the heat flow of a process stream can be considered constant. If this is not the 97 

case in the entire range of temperatures then it is possible to approximate the process streams by different 98 

streams with constant heat flows (piecewise linear approximation). Under these conditions, the pinch point 99 

occurs always at the inlet temperature of a process stream. Duran and Grossmann (1986) observed that for a 100 

given Heat Recovery Approach Temperature (HRAT or Tmin), if we check all the candidate to pinch point 101 

temperatures, the correct one is the temperature with the largest heating and cooling utilities among all the 102 

candidates. Fig. 1 with data from Table 1 shows an illustrative example. 103 

 104 

Table 1. Stream data for example. 105 

Streams Tin (ºC) Tout (ºC) F (kW/ºC) 

H1 (hot) 170 70 3.0 

H2 (hot) 150 70 1.5 

C1 (cold) 80 140 4.0 

C2 (cold) 60 170 2.0 

ΔTmin = 20 ºC 

 106 

 107 

<Insert Fig. 1> 108 

Fig. 1. Utilities needed for different pinch stream candidates (—‒ Hot   - - - Cold). (a) Pinch candidate H1. 109 

(b) Pinch candidate H2. (c) Pinch candidate C1. (d) Pinch candidate C2. 110 

 111 

Mathematically, the previous result can be written as follows: 112 

      
   

   
 
  

      
   

   
 
  

(1) 

Where P is the index set of all the hot and cold process streams (pinch candidates). i = 1…nH, j = 1…nC; and 113 

  
 

,    
 
 are the heating and cooling utilities required from each pinch candidate. Using an energy balance, Eq. 114 

(1) can be written in terms only of heating (or cooling) utilities: 115 

        (2) 

Where  is the total heat surplus. 116 
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 At this point is very important to note that all the temperatures are “shifted temperatures”: 117 

 
  

        
     

 
    

  
          

     

 

                      

 
  
        

     

 
    

  
          

     

 

                       

(4) 



   
  

   
     

 
                         

  
   

     

 
                          

  

where Tin, Tout, tin, tout are the actual stream process temperatures. Note that T
p
 is also referred to the shifted 118 

scale. 119 

From Eq. (1) and (2), the criterion for the pinch location reduces to: 120 

      
   

   
 
  

        

(5) 

It is still necessary to get an explicit equation to calculate the term   
 

 for each pinch candidate in terms of heat 121 

flows and temperatures. 122 

Duran and Grossmann (1986) noted that in order to calculate   
 

 it is necessary to take into account only the 123 

process streams above the pinch because there is not net heat transfer across the pinch. Therefore, considering an 124 

energy balance above the pinch we can write: 125 

  
 

    
 
    

 
 (6) 

where    
 

 and    
 

 are the total cold and heat content, respectively, above the pinch of the process. 126 

To calculate    
 

 (or    
 

) in terms of heat flows and temperatures, we only need to calculate the contribution of 127 

each hot (or cold) stream above the pinch.  128 

For example, for a hot stream i:  129 

- If the inlet and outlet temperatures are greater than the inlet temperature of the pinch candidate p 130 

   
     

        then the heat content above the pinch is      
     

    . 131 

- If the stream crosses the pinch    
        

     then the heat content above the pinch is      
   132 

   . 133 

- If the stream is below the pinch       
     

     then there is no heat content above the pinch. 134 

Duran and Grossmann (1986) showed that the following expression captures the three cases: 135 

   
 
            

               
         (7) 

Following a similar approach, the heat content above the pinch for a cold stream j can be calculated by the 136 

following expression: 137 

   
 
            

                
        (8) 

Note that lower case letters are used for cold streams and capital letters for hot streams. 138 

The final model for the simultaneous optimization and heat integration can then be written as follows: 139 

                    

              

       

               
                

       

      

             
               

        

     

            

         

     

   
     

        
      

   
      

    

(9) 



              

 140 

3. Pinch location method. Disjunctive formulation 141 

The formulation in Eq. (9) has the difficulty of the presence of ‘max’ operators that are non-differentiable. Duran 142 

and Grossmann (1986) proposed to use a smooth approximation (see also (Balakrishna & Biegler, 1992)). In that 143 

case, the model can be solved using state-of-the-art NLP solvers. The major problem with this approach is that 144 

the smooth approximations are highly non-convex and depend on at least one small parameter, which must be 145 

fixed by the user, and eventually can also introduce numerical conditioning problems.  146 

To solve all the previous drawbacks, Grossmann et al. (1998) proposed a disjunctive formulation. 147 

The basic idea is to explicitly take into account for each combination of process stream with pinch candidate the 148 

three possibilities: the stream is above the pinch, it crosses the pinch or it is below the pinch. The model also 149 

takes explicitly into account isothermal streams. The model was solved as an MI(N)LP model using a big-M 150 

reformulation. If the stream heat flows (Fi, fj) are constant, the resulting model (at least the part related with the 151 

heat integration) is linear and can be easily added to any flowsheet model. 152 

In this paper, instead of explicitly dealing with the positions of the different streams in relation to the pinch, we 153 

use a disjunction to deal directly with the ‘max’ operators in the model. Let us first consider the disjunctive 154 

model of the following expression and its reformulation to an MILP model using the hull reformulation: 155 

             (10) 

In Eq. (10) c is a vector of known coefficients and x is a vector of variables. An equivalent disjunctive 156 

formulation for the previous equation can be written as follows: 157 

 

 
     
     

     

   

  
     
   

     

  

               

(11) 

If the Boolean variable takes the value «True» the first term in the disjunction is enforced and  must be positive, 158 

otherwise  is equal to zero. 159 

The hull reformulation (Grossmann & Trespalacios, 2013) of the previous model –Eq. (11)- is as follows: 160 
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(12) 

The model in Eq. (12) introduces new variables and equations. However, this formulation can be simplified 161 

taking into account that:  162 

 Variable 2 is fixed to zero and, therefore, it can be removed. 163 

 The particular value of the x2 variables is not relevant to the problem (they are not used in the model). 164 

It is possible then to lump the term c
T
x2 in a single variable: 165 

                         (13) 

The minus sign is only to force the variable s to be non-negative. 166 



 It is possible to write the model given in Eq. (12) in terms of the original variables x and the new 167 

variable s, without defining new variables. To that end, we multiply the first equation in Eq. (12) by 168 

the coefficients c and remove variables x1 and x2: 169 

                                                                         (14) 

 The last equations in Eq. (12) that force the variables to be zero if the binaries are zero, can be written 170 

in terms of the original x and s variables. 171 

The final hull reformulation can then be written as follows: 172 

        

            

                    

          

(15) 

Note that good upper and lower bounds for the s and  variables can be easily obtained from the bounds of x 173 

variables and c values. 174 

It is interesting to note that the Eq. (15) can also be obtained from the “max” operator formulated as an 175 

optimization problem with complementarity constrains (Biegler, 2010), and re-writing the complementarity 176 

constraint as a disjunction (or in terms of binary variables). 177 

              
       

       
  

       

 
 

   
   

  
   

 

           

 
(16) 

The hull reformulation of the disjunctive model in Eq. (16) yields the equations in Eq. (15). 178 

Taking all the previous equations into account, the final model for the simultaneous optimization and heat 179 

integration can be written as follows: 180 



                    

              

       

         

     

   
     

        
      

   
      

    

            
         

   

      

          
        

    

     

            

     
      

            
                        

     
     

           
                             

     
     

           
                          

     
      

            
                     

     
            

            
    

     
           

         
   

     
             

             
     

     
            

          
    

     
            

            
    

     
           

         
   

     
             

             
     

     
            

          
    

        

        
        

         
        

                         

        
        

         
        

                             

   
      

                        

   
      

                       

(17) 

In the previous model, the set Hot makes reference to the hot streams, the set Cold to the cold streams. The 181 

variables st, sT are equivalent to the ‘s’ variable in Eq. (15) and ϕt, ϕT are equivalent to the  variable in Eq. 182 

(15). The lower bound of a variable is indicated by a line under that variable, and an upper bound by a line over 183 

the variable. Variables yc and yh are binary variables related to each one of the max operators in the model. 184 

Some final remarks: Based on the bounds of st, sT and ϕt, ϕT variables, it is possible to fix a priori some 185 

variables. For example if: 186 

   
          then        

       and      
      

The novel disjunctive reformulation has fewer Boolean (binary) variables that the disjunctive version presented 187 

by Grossmann et al. (1998). The disjunctive formulation proposed by Grossmann et al. (1998) introduces 3 188 

Boolean variables for each combination of hot or cold streams and pinch candidate (the stream is above, crosses 189 



or is under the pinch candidate). In contrast, in the present model only two binary variables are needed for each 190 

process stream pinch candidate. The total number of binary variables is then: 191 

                                                            
  

                                                  
  

(18) 

However, the total number of variables is larger, because we must add the ‘s’ variables. But, the total number of 192 

constraints is also lower in the new formulation. 193 

Notwithstanding, the most relevant aspect is that the numerical test shows that the new formulation has always 194 

smaller relaxation gaps than the original Grossmann et al. (1998) model. 195 

 196 

3.1. Extension to isothermal streams and multiple utilities 197 

The inclusion in the model of isothermal streams can be done with at least two different approaches. The first 198 

one consists of using a fictitious 1 ºC of variation and calculating the equivalent heat flow assuming that 199 

‘dummy’ temperature variation. In the second one, we maintain the isothermal condition of the stream. Then the 200 

heat added or removed to or from the system can be calculated as: 201 

               (19) 

where  is the specific heat associated with the change of phase, and m is the mass flow rate of the stream. An 202 

isothermal stream cannot cross the pinch, therefore to calculate the heat content above the pinch (QA) of the 203 

isothermal stream, we can use the following disjunction: 204 
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where Y
iso

 is a Boolean variable that takes the value of True if the temperature of the isothermal stream is greater 205 

than the pinch candidate temperature. The hull reformulation of the previous disjunction is as follows: 206 

              

                      
(21) 

The final model considering isothermal streams can be written as follows: 207 

                    

              

       

         

     

   
     

          

      

    
      

   
      

         

      

 

            
         

   

      

         
   

      

          
        

             
   

           

            

     
          

       
                        

     
          

       
                          

     
      

            
                        

     
     

           
                             

(22) 



     
     

           
                          

     
      

            
                     

     
            

            
    

     
           

         
   

     
             

             
     

     
            

          
    

     
            

            
    

     
           

         
   

     
             

             
     

     
            

          
    

        

        
        

         
        

                         

        
        

         
        

                             

   
      

                        

   
      

                       

Note that in Eq. (22) the sets Hot and Cold make reference to the non-isothermal process streams, and the sets 208 

Hiso and Ciso refer to the hot and cold isothermal streams. 209 

The introduction of multiple utilities is straightforward. In this case, the inlet and outlet temperatures are known 210 

and the variable is the heat flow (f or F) in non-isothermal streams and the mass flowrate in the case of 211 

isothermal streams. 212 

 213 

4. Case studies: Heat integration examples 214 

In this paper, a series of examples are presented to illustrate the performance of the method. Examples include: 215 

fixed and variable stream temperatures (MILP); variable stream temperatures with a penalty function that 216 

simulates the behavior of a system; simultaneous process optimization and heat integration using a hybrid 217 

simulation-optimization approach, where the flowsheet is solved by a commercial process simulator, and the 218 

heat integration model is in equation form; and variable stream temperatures with addition of multiple utilities. 219 

Calculations of fixed and variable stream temperature problems were carried out in GAMS (Rosenthal, 2012). 220 

Calculations of the simultaneous process optimization and heat integration problem were performed in 221 

TOMLAB-MATLAB (Holmström, 1999) and the simulations were performed on Aspen HYSYS v.8.4. 222 

(Hyprotech, 1995 - 2011). The computations were performed in a computer with a 3.60 GHz Intel
®
 Core

TM
 i7 223 

Processor and 8 GB of RAM under Windows 7.  224 

All the problems were solved for a minimum heat recovery approach temperature (ΔTmin) of 10ºC. 225 

 226 

4.1. Case study 1: Process with fixed stream conditions (MILP) 227 



The first example solved (test problem 1) consists of a problem in which heat flow rates, and inlet and outlet 228 

temperatures are known and constant. The objective consists of determining the minimum utility costs. This 229 

problem has to be solved as a mixed integer linear problem (MILP) because it includes continuous and binary 230 

variables and all the model equations are linear. Data corresponding to test problem 1 are shown in Table 2. 231 

Table 2. Data for test problem 1 (fixed temperatures). 232 

Test problem 1: 6 hot and 6 cold streams 

Hot stream FCp (kW/ºC) Inlet T (ºC) Outlet T (ºC) Cold stream FCp (kW/ºC) Inlet T (ºC) Outlet T (ºC) 

   H1 1.00 280 100     C1 0.50 30  200  
   H2 3.00 200 80     C2 1.50 60  90  
   H3 1.00 220 150     C3 2.00 70  170  
   H4 2.00 210 90     C4 3.00 110  230  
   H5 1.00 250 180     C5 1.50 90  140  
   H6 2.00 270 120     C6 4.00 120  250  

Price of steam: $80 kg/kW. 

Price of cooling water: $20 kg/kW. 
 233 

To validate the model (see Eq.(17)), our results are compared with the results obtained by the pinch location 234 

method, in its disjunctive version, proposed by Grossmann et al. (1998) and the results obtained according to the 235 

method proposed by Navarro-Amorós et al. (2013). 236 

The solution of this example is shown in Table 3.  237 

Table 3. Computational statistics and solution of test problem 1 (fixed temperatures). 238 

Results test problem 1 

 Present work GYK model Navarro-Amorós et al. 

No equations 890.00 1622.00 6059.00 

No variables 886.00 614.00 1169.00 

No binary variables 288.00 432.00 900.00 

    

CPU time (s)a 0.20 0.27 0.35 

Heating requirements (kW/kg) 80.00 80.00 80.00 

Cooling requirements (kW/kg) 15.00 15.00 15.00 

    

Optimal solution ($) 6700.00 6700.00 6700.00 

Solution of relaxed problem 6700.00 5200.00 0.00 

aIntel Core i7-4790 3.60GHz, using CPLEX 12.4.6 for MILP. 

 239 

The results show that the number of continuous and binary variables and total equations is lower in the proposed 240 

model versus the other methods, even though the total number of variables is larger than in the original 241 

disjunctive PLM. The optimal solution ($6700) is exactly the same in all cases. Regarding the solution of the 242 

relaxed problem, the proposed model obtains the best possible solution. 243 

 244 

4.2. Case study 2: Process with variable stream conditions (MILP) 245 

In the following examples, inlet and outlet temperatures for hot and cold streams are variables. For these 246 

examples, we have assumed that temperature variation does not affect the rest of the process. To validate our 247 

model (see Eq.(17)), these test problems are also compared with results obtained by the pinch location method 248 

(Grossmann et al., 1998) and the method proposed by Navarro-Amorós et al. (2013). 249 

As in the preceding case, the objective function consists of minimizing the utility cost, remaining the heat flow 250 

rates as constant values. 251 

Data for different test problems are shown in Table 4.  252 



Table 4. Data for test problem 2-5 (variable temperatures). 253 

Hot stream FCp (kW/ºC) Inlet T (ºC) Outlet T (ºC) Cold stream FCp (kW/ºC) Inlet T (ºC) Outlet T (ºC) 

Test problem 2: 3 hot and 3 cold streams 

H1   0.15 180 - 260   30 -   50 C1   0.20   15 - 135 170 - 190 

H2   0.50 120 - 220   75 -   95 C2   0.30 110 - 190 225 - 235 

H3   0.10 110 - 155   90 - 100 C3   0.15   70 - 130 140 - 150 

        

Test problem 3: 4 hot and 4 cold streams 

H1   0.15 230 - 260   30 -   50 C1   0.20   10 -   40 170 - 190 

H2   0.50 135 - 155 110 - 150 C2   0.30   90 - 110 180 - 225 

H3   0.25   80 - 100   20 -   30 C3   0.15 125 - 160 225 - 235 

H4   0.30 110 - 120   80 - 100 C4   0.40 130 - 150 250 - 280 

        

Test problem 4: 16 hot and 12 cold streams 

H1 30.00 210 - 255   65 -   90 C1 40.00   25 -   60 160 - 195 

H2 45.00 170 - 210   30 -   45 C2 60.00 125 - 160 250 - 295 

H3   0.10   95 - 120   35 -   60 C3   0.10 160 - 190 245 - 300 

H4   0.10 105 - 135   30 -   60 C4   0.10 155 - 200 240 - 280 

H5   0.10 100 - 120   20 -   50 C5   0.10 160 - 195 250 - 290 

H6   0.10 100 - 125   40 -   50 C6   0.10 145 - 175 255 - 295 

H7   0.10 105 - 130   45 -   60 C7   0.10 160 - 205 235 - 280 

H8   0.10   90 - 115   40 -   75 C8   0.10 160 - 190 245 - 300 

H9   0.10   95 - 120   35 -   60 C9   0.10 155 - 200 240 - 280 

H10   0.10 105 - 135   30 -   60 C10   0.10 160 - 195 250 - 290 

H11   0.10 100 - 120    20 -   50 C11   0.10 145 - 175 255 - 295 

H12   0.10 100 - 125   40 -   50 C12   0.10 160 - 205 235 - 280 

H13   0.10 105 - 130   45 -   60     

H14   0.10   85 - 115   30 -   75     

H15   0.10 105 - 135   40 -   55     

H16   0.10 100 - 125   35 -   65     

        

Test problem 5: 20 hot and 20 cold streams 

H1   6.00 360 - 440 108 - 132 C1 14.00 144 - 176 360 - 440 

H2   2.00 306 - 374 108 - 132 C2   3.00   90 - 110 225 - 275 

H3   0.50 342 - 418 135 - 165 C3   0.40   45 -   55 270 - 330 

H4   8.00 270 - 330   90 - 110 C4   2.50 180 - 220 342 - 418 

H5   3.00 378 - 462 144 - 176 C5   2.00 135 - 165 405 - 495 

H6   4.00 351 - 429   99 - 121 C6   6.00   90 - 110 162 - 198 

H7   0.20 324 - 396 180 - 220 C7   1.50 180 - 220 315 - 385 

H8   0.60 252 - 275 117 - 143 C8   0.20 108 - 132 297 - 363 

H9   1.50 225 - 275   72 -   88 C9   5.50   99 - 121 198 - 242 

H10   4.00 297 - 363 153 - 187 C10   3.00 171 - 209 324 - 396 

H11 12.00 387 - 473 270 - 330 C11   8.00 234 - 286 378 - 462 

H12   8.00 180 - 220   90 - 110 C12 12.00   72 -   88 162 - 198 

H13   5.00 135 - 165   63 -   77 C13   0.30 117 - 143 351 - 429 

H14   0.06 297 - 363 162 - 198 C14   4.50 162 - 198 234 - 286 

H15   0.30 333 - 407 103 - 127 C15   1.00 139 - 170 328 - 401 

H16   6.00 319 - 391   94 - 115 C16   0.10   85 - 104 432 - 528 

H17   0.90 279 - 341 117 - 143 C17   7.00 157 - 192 346 - 423 

H18   3.00 234 - 286   81 -   99 C18   2.00 117 - 143 261 - 319 

H19   1.00 270 - 330 103 - 127 C19   0.50 189 - 231 387 - 473 

H20   0.30 238 - 291 171 - 209 C20   1.70 207 - 253 333 - 407 

Price of steam: $80 kg/kW. 

Price of cooling water: $20 kg/kW. 

 254 

In Table 5 and Table 6 we can see the results obtained and some relevant parameters of the test problems.  255 



Table 5. Results of test problem 2-5 (variable temperatures). 256 

Hot stream FCp (kW/ºC) Inlet T (ºC) Outlet T (ºC) Cold stream FCp (kW/ºC) Inlet T (ºC) Outlet T (ºC) 

Test problem 2: 3 hot and 3 cold streams 

H1   0.15 260.00   50.00 C1   0.20   15.00 190.00 

H2   0.50 210.00   95.00 C2   0.30 110.00 225.00 

H3   0.10 110.00 100.00 C3   0.15   70.00 150.00 

        

Test problem 3: 4 hot and 4 cold streams 

H1   0.15 260.00   50.00 C1   0.20   10.00 170.00 

H2   0.50 155.00 120.50 C2   0.30   90.00 180.00 

H3   0.25   80.00   30.00 C3   0.15 160.00 225.00 

H4   0.30 110.00 100.00 C4   0.40 150.00 250.00 

        

Test problem 4: 16 hot and 12 cold streams 

H1 30.00 255.00   90.00 C1 40.00   25.00 160.00 

H2 45.00 210.00   45.00 C2 60.00 136.32 250.00 

H3   0.10   95.00   60.00 C3   0.10 190.00 245.00 

H4   0.10 105.00   60.00 C4   0.10 200.00 240.00 

H5   0.10 100.00   50.00 C5   0.10 195.00 250.00 

H6   0.10 100.00   50.00 C6   0.10 175.00 255.00 

H7   0.10 105.00   60.00 C7   0.10 205.00 235.00 

H8   0.10   90.00   75.00 C8   0.10 190.00 245.00 

H9   0.10   95.00   60.00 C9   0.10 200.00 240.00 

H10   0.10 105.00   60.00 C10   0.10 195.00 250.00 

H11   0.10 100.00    50.00 C11   0.10 175.00 255.00 

H12   0.10 100.00   50.00 C12   0.10 205.00 235.00 

H13   0.10 105.00   60.00     

H14   0.10   85.00   75.00     

H15   0.10 105.00   55.00     

H16   0.10 100.00   65.00     

 

Test problem 5: 20 hot and 20 cold streams 

H1   6.00 423.00 127.00 C1 14.00 149.00 365.00 

H2   2.00 337.00 127.00 C2   3.00   95.00 270.00 

H3   0.50 337.00 149.00 C3   0.40   50.00 335.00 

H4   8.00 325.00 105.00 C4   2.50 225.00 423.00 

H5   3.00 437.00 149.00 C5   2.00 140.00 437.00 

H6   4.00 365.00 116.00 C6   6.00   95.00 182.00 

H7   0.20 365.00 175.00 C7   1.50 225.00 365.00 

H8   0.60 286.00 138.00 C8   0.20 113.00 365.00 

H9   1.50 270.00   83.00 C9   5.50 104.00 247.00 

H10   4.00 337.00 182.00 C10   3.00 214.00 401.00 

H11 12.00 423.00 270.00 C11   8.00 286.00 383.00 

H12   8.00 182.00 105.00 C12 12.00   77.00 203.00 

H13   5.00 130.00   72.00 C13   0.30 122.00 423.00 

H14   0.06 337.00 162.00 C14   4.50 167.00 291.00 

H15   0.30 401.00 122.00 C15   1.00 144.00 406.00 

H16   6.00 365.00 110.00 C16   0.10   90.00 437.00 

H17   0.90 336.00 138.00 C17   7.00 162.00 365.00 

H18   3.00 236.00   94.00 C18   2.00 122.00 286.00 

H19   1.00 325.00 122.00 C19   0.50 236.00 401.00 

H20   0.30 286.00 167.00 C20   1.70 236.00 338.00 

 257 



Table 6. Computational statistics and solution of test problem 2-5 (variable temperatures). 258 

 No 

equations 

No 

variables 

No 

binary 

variables 

 

CPU 

time (s)a 

Heating 

requirements 

(kW/kg) 

Cooling 

requirements 

(kW/kg) 

 Optimal 

solution 

($) 

Solution 

of relaxed 

problem 

Test problem 2 

Present 

work 
230 237 42  0.03 0.0 8.5  170.0 0.00 

GYK 

model 
416 171 108  0.45 0.0 8.5  170.0 0.00 

Navarro- 

Amorós 
3047 1247 216  0.75 0.0 8.5  170.0 0.00 

           

Test problem 3 

Present 

work 
402 411 26  0.02 49.5 5.0  4060.0 3282.73 

GYK 

model 
730 291 192  0.11 49.5 5.0  4060.0 620.00 

Navarro- 

Amorós 
5375 2125 307  0.22 49.5 5.0  4060.0 3124.02 

           

Test problem 4 

Present 

work 
4762 4791 364  0.14 1694.0 1852.2  172564.0 84768.34 

GYK 

model 
8710 3251 2352  0.42 1694.0 1852.2  172564.0 0.00 

Navarro- 

Amorós 
44719 5857 4763  1000.05 1694.0 1852.2  172564.0 0.00 

           

Test problem 5 

Present 

work 
9682 9723 704  0.36 0.0 116.3  2326.0 0.00 

GYK 

model 
17722 6563 4800  37.74 0.0 116.3  2326.0 0.00 

Navarro- 

Amorós 
109799 11725 9683  1161.33 0.0 116.3  2326.0 0.00 

aIntel Core i7-4790 3.60GHz, using CPLEX 12.4.6 for MILP. 

 259 

As it is shown in Table 6, for test problem 2, the optimal solution is $170 for all cases, and the relaxation gap for 260 

all methods is bad because the solution to the relaxed problem is equal to zero. 261 

The optimal solution to test problem 3 is $4060 and the relaxation gap of the proposed model is much better than 262 

the relaxation gap obtained by the other methods (19 % in the novel model, 84 % in the Grossmann Disjunctive 263 

model and 23 % in the model by Navarro-Amorós et al. (2013)). 264 

The same behavior occurs on test problem 4. The optimal solution to test problem 4 is $172564 and the 265 

relaxation gap is better than the gap obtained by the others models. It is the only model with relaxation different 266 

from zero. 267 

Regarding the test problem 5, the optimal solution and the relaxation gap is the same for all cases. However, it is 268 

interesting to remark the CPU time difference between the models. Indubitably, our model is much faster than 269 

the other methods, allowing to solve problems with a high number of hot and cold streams. 270 

 271 

4.3. Case study 3: Process with variable stream conditions with penalty function (MINLP) 272 

In previous examples, we assumed that the operating conditions do not affect the heat integration and, therefore, 273 

basically the optimal solution select the temperatures that allow the maximum heat integration. In order to 274 

simulate the behavior of an actual system, we propose an example in which the temperatures for the optimal 275 

operating conditions without heat integration are known and any deviation of those values carries out a penalty 276 

in the total cost.  277 



In this case study (test problem 6), the objective function consists of two parts; the first one concerns the cost of 278 

utilities, and the second term penalizes the deviation of temperature from a given set value: 279 

                             
      

   
 
    

       
     

    

 (23) 

where w is the penalization factor and TM are the optimal temperatures of the non-heat integrated process (we 280 

have assumed that the optimal temperatures are the mean values between the upper and lower bounds). 281 

Data used in this case are shown in Table 7. 282 

 Table 7. Data for test problem 6 (non-linear, variable temperatures). 283 

Test problem 6 (non-linear): 3 hot and 3 cold streams 

Hot stream FCp (kW/ºC) Inlet T (ºC) Outlet T (ºC) Cold stream FCp (kW/ºC) Inlet T (ºC) Outlet T (ºC) 

H1 0.15 180 - 260   30 -   50 C1 0.20   15 -   25 170 - 190 

H2 0.50 120 - 140   75 -   95 C2 0.30 110 - 140 225 - 235 

H3 0.10 110 - 155   90 - 100 C3 0.15   70 - 100 140 - 150 

Price of steam: $80 kg/kW. 

Price of cooling water: $20 kg/kW. 

 284 

In this case, the model is a non-convex MINLP problem. The optimal solution achieved with our model 285 

($2900.5) is better than the solution obtained by the other models (the same initial point was used in all the 286 

cases). Furthermore, the relaxation gap is considerably reduced compared to the other models. For this case, the 287 

results and the other relevant parameters are shown in Table 8 and Table 9, respectively. 288 

Table 8. Results of test problem 6 (non-lineal, variable temperatures). 289 

Test problem 6 (non-linear): 3 hot and 3 cold streams 

Hot stream FCp (kW/ºC) Inlet T (ºC) Outlet T (ºC) Cold stream FCp (kW/ºC) Inlet T (ºC) Outlet T (ºC) 

H1 0.15 260.00   50.00 C1 0.20   15.00 190.00 

H2 0.50 210.00   95.00 C2 0.30 110.00 225.00 

H3 0.10 110.00 100.00 C3 0.15   70.00 150.00 

 290 

Table 9. Computational statistics and solution of test problem 5 (non-linear, variable temperatures). 291 

Test problem 6 

 Present work GYK model Navarro-Amorós et al. 

No equations 230.00 416.00 3047.00 

No variables 237.00 171.00 1247.00 

No binary variables 17.00 108.00 216.00 

    

CPU time (s)a 0.02 0.68 3.33 

Heating requirements (kW/kg) 29.25 28.90 29.25 

Cooling requirements (kW/kg) 10.80 12.76 11.11 

    

Optimal solution ($) 2900.50 2918.63 2903.63 

Solution of relaxed problem 2002.62 767.00 1904.73 

aIntel Core i7-4790 3.60GHz, using DICOPT for MINLP. 

 292 

Optimization has been performed with different weights of the penalization factor w (see Eq. (23)). The optimal 293 

results are shown in Fig. 2. 294 

 295 

<Insert Fig. 2> 296 

Fig. 2. Optimal solutions to test problem 6 for different penalization factors. 297 

 298 



The results show that when the penalty factor is lower than two, the optimal solution is mainly affected by the 299 

utility costs. However, when the penalty factor increases, the term that penalizes the deviation of temperature 300 

from the central values between the upper and lower bounds is the most important factor, making the optimal 301 

solution constant (around $3300). 302 

 303 

4.4. Case study 4: Hybrid simulation-optimization process (MINLP) 304 

Another case study performed was a hybrid simulation-optimization problem, in which the heat integration in the 305 

form of explicit equations is combined with the simulation of a chemical process. The process was simulated in 306 

Aspen HYSYS v.8.4. (Hyprotech, 1995 - 2011). As MINLP solver, we use an in-house implementation 307 

(Caballero et al., 2014) of a basic Branch and Bound algorithm interfaced with TOMLAB-MATLAB 308 

(Holmström, 1999). 309 

The following case study corresponds to the design of a natural gas plant (Seider et al., 1999). Consider that we 310 

want to obtain a gaseous product with at least 4500 kmol/h of nC4 and lighter species, with a combined mole 311 

percentage of at least 99.5 % and at 2026 kPa. The liquid product is required to be at least 1034 kPa, with at least 312 

30 kmol/h of nC5 and nC6 and a combined mole percentage of at least 65 %. Data for the problem are shown in 313 

Table 10.  314 

Table 10. Feed data to natural gas flowsheet. 315 

Feed stream 

Molar flow 5000.0 kmol/h 

Composition (molar flows)   

C1 4138.0 kmol/h 

C2 435.5 kmol/h 

C3 205.5 kmol/h 

nC4 70.5 kmol/h 

nC5 28.5 kmol/h 

nC6 16.5 kmol/h 

N2 105.5 kmol/h 

Temperature 20.0 ºC 

Pressure 1013.0 kPa 

Thermodynamics (fluid package) Peng-Robinson 

 316 

The flowsheet for the process is shown in Fig. 3. The feed is compressed to 2280 kPa, and is cooled before 317 

entering the flash unit, at 2103 kPa. The flash products are heated. The liquid product enters in the second flash 318 

vessel, at 2068 kPa. Its liquid product is fed to the distillation column, where most of the propane is removed by 319 

overhead. The column has 12 theoretical trays, and the feed enters to the fourth tray from the top. The column 320 

recovers 99 % of C3 in the distillate and 99 % of nC5 in the bottoms. 321 

 322 

<Insert Fig. 3> 323 

Fig. 3. Process flow diagram for natural gas synthesis. 324 

 325 

We assume that the cost of the process are not considerably affected (the TAC of the system is around $3.039 326 

million/year, without the heat and cooling requirements). As a result, it is not taken into account, but changes in 327 

temperatures modified the operating conditions and the purity constraints must be met. Therefore, the objective 328 

of this problem consists of minimizing the heat supplied by the hot and the cold utilities. The streams affected by 329 

the heat integration were all inlet and outlet streams of the heat exchangers, and the streams of the condenser (the 330 

reboiler was not taken into account because, by the temperature differences, it cannot be heat integrated). The 331 

temperature bounds for all streams, the main constraints, and the optimal solution are shown in Table 11. 332 



Table 11. Data and optimal solution to natural gas flowsheet. 333 

 Streams Temperature range (ºC) Solution temperature (ºC) 

H1 In HE1 

Out HE1 

88.82 –  88.82 

-30.00 – -20.00 

88.82 

-20.00 

H2 In HE2 

Out HE2 

-30.00 – -20.00 

0.00 –  60.00 

-20.00 

60.00 

H3 In HE3 

Out HE3 

-30.00 – -20.00 

0.00 –  60.00 

-20.00 

60.00 

    

Restrictions Range Optimal value  

Molar flow light product (kmol/h) ≥ 4500 4950.3521  

Molar frac. (nC4 + lighter) in light 

product 
≥ 0.995 0.9977  

Molar flow heavy product (kmol/h) ≥ 30 49.6479  

Molar frac. (nC5 + nC6) in heavy 

product 
≥ 0.65 0.6755  

    

Solution parameters    

Number of equations 111   

Number of variables 78   

Number of binary variables 32   

    

Optimal solution    

Heating requirements (kW) 0.000   

Cooling requirements (kW) 2,465.904   

Optimal solution ($) 12,329.520   

Total Annualized Cost ($/year) 3,051,293.981   

 334 

Table 11 shows that the optimal solution satisfies all the constraints. Furthermore, the heat integration of the 335 

system eliminates the need for hot utility (except the hot utility needed in the reboiler, which does not affect the 336 

heat exchanger network); only cold utilities are needed to satisfy the requirements of the process. The heat 337 

exchanger network is shown in Fig. 4. 338 

 339 

<Insert Fig. 4> 340 

Fig. 4. Heat exchanger network for natural gas process. 341 

 342 

This case study shows that the proposed model can be implemented to optimize hybrid simulation-optimization 343 

problems, in which the process simulation is combined with the heat integration in the form of explicit 344 

equations. 345 

 346 

4.5. Case study 5: Extension of the method to multiple utilities (MILP) 347 

As a final point, the method has been extended to the case of multiple utilities. In the next examples, all inlet and 348 

outlet streams are variables. 349 

The first example (test problem 7) corresponds to a problem with four hot streams and six cold streams. We have 350 

considered the possibility of adding a new hot utility              . The objective function consists of 351 

minimizing the utility costs (                  ). 352 

The second example (test problem 8) corresponds to a problem with two hot streams and one cold stream. We 353 

have consider the possibility of adding two new hot utilities,              and             . The 354 

objective function consists of minimizing the utility costs (                         ). 355 

Data used in this case study are shown in Table 12. 356 



 Table 12. Data for case study 5 (non-linear, variable temperatures). 357 

Hot stream FCp (kW/ºC) Inlet T (ºC) Outlet T (ºC) Cold stream FCp (kW/ºC) Inlet T (ºC) Outlet T (ºC) 

Test problem 7: 4 hot and 6 cold streams 

H1   0.100 315 - 327   20 -   30 C1 0.200   85 - 110 290 - 330 

H2   0.250 210 - 220 140 - 160 C2 0.070   25 -   55 160 - 185 

H3   0.020 200 - 220   50 -   60 C3 0.175   70 -   95 120 - 140 

H4   0.340 155 - 160   40 -   45 C4 0.060   55 -   70 150 - 185 

    C5 0.200 135 - 150 270 - 320 

    C6 0.300     8 -   30   42 -   75 

        

Test problem 8: 2 hot and 1 cold stream 

H1 10.000   95 - 115   15 -   35 C1 7.500   15 -   35 175 - 195 

H2   5.000 175 - 195   25 -   45     

Price of HP steam: $160 kg/kW. 

Price of MP steam: $110 kg/kW. 
Price of LP steam: $50 kg/kW. 

Price of cooling water: $10 kg/kW. 

 358 

Results have been compared with the same process, but taking into account only single utilities, where the 359 

objective function consist of minimizing the utility costs (         ). 360 

For test problem 7, the optimal solution achieved is $2533.0, while the optimal solution obtained taking into 361 

account only single utilities is $3168.0. Regarding the solution obtained for test problem 8, the optimal solution 362 

achieved adding two utilities is $16875.0, while the optimal solution obtained taking into account only one hot 363 

utility is $24750.0.     364 

The results obtained and other relevant parameters of case study 5 are shown in Table 13 and Table 14, 365 

respectively.  366 

Table 13. Computational statistics and solution of test problem 7 (variable temperatures). 367 

 
Test problem 7 

(single utilities) 

Test problem 7 

(multiple utilities) 

No equations 622.00 749.00 

No variables 633.00 547.00 

No binary variables 29.00 29.00 

   

CPU time (s)a 0.11 0.86 

Heating requirements (kW/kg)   

HP steam 19.80 7.10 

MP steam -00 12.70 

Cooling requirements (kW/kg) 0.00 0.0 

   

   

Optimal solution ($) 3168.00 2533.00 

Solution of relaxed problem 2912.00 2357.00 

aIntel Core i7-4790 3.60GHz, using CPLEX 12.4.6 for MILP. 

 368 



Table 14. Computational statistics and solution of test problem 8 (variable temperatures). 369 

 
Test problem 8 

(single utilities) 

Test problem 8 

(multiple utilities) 

No equations 62.00 160.00 

No variables 66.00 120.00 

No binary variables 6.00 6.00 

   

CPU time (s)a 0.08 0.52 

Heating requirements (kW/kg)   

HP steam 125.00 12.50 

MP steam -00 75.00 

LP steam -00 37.50 

Cooling requirements (kW/kg) 475.00 475.00 

   

   

Optimal solution ($) 24750.00 16875.00 

Solution of relaxed problem 7750.00 16375.00 

aIntel Core i7-4790 3.60GHz, using CPLEX 12.4.6 for MILP. 

 370 

In addition, as it is shown in Table 13 and Table 14, the relaxation gap is reasonable. 371 

 372 

5. Conclusions 373 

We have proposed a new MILP model based on disjunctive programming for the simultaneous optimization and 374 

energy integration of systems with variable input and output process stream temperatures. This model allows us 375 

to obtain a robust alternative to the disjunctive model for the simultaneous flowsheet optimization and heat 376 

integration proposed by Grossmann et al. (1998). 377 

The results show that our model is very competitive from the point of view of CPU time, includes fewer binary 378 

variables and equations, although the number of total variables is slightly larger than the original disjunctive 379 

formulation. Furthermore, the proposed model improves the relaxation gap, compared to two different methods. 380 

Different test problems have shown that the model is robust and reliable. One of the main characteristics of the 381 

novel model is that it can be ‘added’ to any model with almost no modifications of the existing model and, 382 

therefore, its implementation is straightforward. If the heat flows in the original model are not affected by the 383 

temperature then the new equations are all linear, with some integer variables, and therefore we do not expect a 384 

significant increase in the complexity of the original model. 385 
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 391 

Nomenclature 392 

CC Cost of the cold utility 

CH Cost of the heat utility 

Fi Heat capacity flowrate of hot stream i 

fj Heat capacity flowrate of cold stream j 

i Hot stream 

j Cold stream 

m Mass flow rate of a stream 

nc Number of cold streams 



nh Number of hot streams 

P Index set of all the hot and cold process streams (pinch candidates) 

QC Heat removed by the cold utility 

QH Heat provided by the hot utility 

  
 

 Cooling utilities required form each pinch candidate 

  
 

 Heating utilities required form each pinch candidate 

   
 

 Total cool content above the pinch 

   
 

 Total heat content above the pinch 

T
p
 Pinch point temperature 

  
   Inlet temperature for the hot stream i 

  
    Outlet temperature for the hot stream i 

  
   Inlet temperature for the cold stream j 

  
    Outlet temperature for the cold stream j 

Tini Actual inlet temperature for the hot stream i 

tinj Actual inlet temperature for the cold stream j 

Touti Actual outlet temperature for the hot stream i 

toutj Actual inlet temperature for the cold stream j 

TM Optimal temperatures of the non-heat integrated process 

w Penalization factor 

Y
iso

 Boolean variable that takes the “True” value if the temperature of the isothermal stream is greater than 

the pinch candidate temperature  

yc Binary variable related to the max operator that represents the cold streams 

yh Binary variable related to the max operator that represents the hot streams  

ΔTmin Minimum heat recovery approach temperature 

 Specific heat associated with the charge of phase 

 Total heat surplus 

 393 
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Figure captions 

 

Fig. 1. Utilities needed for different pinch stream candidates (—‒ Hot   - - - Cold). (a) Pinch candidate 

H1. (b) Pinch candidate H2. (c) Pinch candidate C1. (d) Pinch candidate C2. 

 

Fig. 2. Optimal solutions to test problem 6 for different penalization factors. 

 

Fig. 3. Process flow diagram for natural gas synthesis. 

 

Fig. 4. Heat exchanger network for natural gas process. 
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