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Abstract: Binap and phosphoramidites are privileged chiral 

ligands which have been tested in the coinage metal-catalyzed 

1,3-dipolar cycloadditions of metalloazomethine ylides and 

electrophilic alkenes. Silver(I), copper(II) and gold(I) salts have 

been evaluated in all these reactions. Maleimides, acrylates, 

fumarates, 1,2-bis(phenylsulfonyl)ethylene and enones reacted 

with imino esters giving the corresponding endo-prolinates such 

as HCV inhibitors in high diastereo- and enantioselectivity. In the 

case of nitroalkenes exo-4-nitroprolinates were obtained. 

Azlactones reacted with maleimides and acrylates to give 

pyrrolines only in the presence of binap-gold(I) complexes. The 

observed enantioselectivity and the mechanism of these 1,3-DC 

was studied by means of DFT calculations. 

1. Introduction 

Rolf Huisgen introduced and defined the 1,3-dipolar 

cycloaddition (1,3-DC) by first time in 1963.[1] The main features 

of this reaction are the high number of functional groups 

tolerated, the complete atom economy from the dipole and 

dipolarophile structures, the final product obtained (most of them 

heterocycles) which are very difficult to obtain using other routes, 

and up to four stereogenic centers can be generated. The high 

utility of these processes spreads in chemistry, synthesis of 

natural products, material science, medicinal chemistry, 

pharmacy, agriculture, etc. The main interest of the scientific 

community in 1,3-DC[ 2 ] started with the first publications 

concerning catalytic enantioselective processes. Azomethine 

ylides are one of the most frequently employed dipoles and they 

can be easily prepared following different routes, activation of 

imino esters being the most widely employed. Since the 

pioneering works[3] of Zhang[4] and Jørgensen[5] in 2002 many 

examples of enantioselective 1,3-DC[ 6 ] have been published 

using imino esters as precursors of stabilized azomethine ylides. 

Despite of the utility of chiral organocatalysts, they performed 

1,3-DC with some limitations since the structural point of view. 

However, chiral metal complexes not only overcome these 

difficulties but also they can be tuned in order to control the 

dipole geometry to improve the diastereoselectivity of the 

process.[6k] 

During the last decade we have been working in 1,3-DC of 

stabilized azomethine ylides and alkenes focusing on our effort 

in the metal-catalyzed enantioselective processes using chiral 

privileged ligands[7 ] as (R)- or (S)-binap 1, monophos 2, and 

phosphoramidite 3 (Figure 1). So in this personal account we will 

describe our experience in this enantioselective cycloaddition 

starting from enolizable substrates I and electron-deficient 

alkenes III promoted by coinage metals and the named chiral 

ligands on the basis of the dipolarophile employed (Scheme 1). 

Rigid chiral metallodipoles II control of the final absolute 

configuration of the up to four stereogenic centers of 

polysubstituted proline derivatives IV.  

 

  

Figure 1. Chiral privileged ligands used in this account. 

 

Scheme 1. General 1,3-DC reaction discussed in this work. 
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2. Enantioselective 1,3-DC of stabilized 
azomethine ylides and dipolarophiles 

There are many routes to prepare an azomethine ylide being the 

stabilized metallo-dipoles generated in situ from imino esters the 

most employed one in synthesis due to its mild and easy 

manipulation conditions. According to precedent publications, 

the most efficient HOMOazomethine ylide -LUMOdipolarophile interaction 

is produced when electron-poor alkenes are used, so a high 

regioselectivity is ensured. This orbital arrangement also 

benefits a stereoelectronic interaction of the metal with the 

dipolarophile affording endo-products as major diastereoisomers. 

Taking in account all these general features plus the high control 

of the geometry exhibited by W-shaped metallo-azomethine 

ylides II (Scheme 1) it is possible to justify the high 2,5-cis-

stereoselection observed. Chiral metal complexes have been 

successfully implemented as catalyst giving rise to 

enantiomerically enriched proline derivatives IV.[6] The most 

efficient processes involved silver(I) and copper(I) chiral 

metallodipoles allowing the generation of mainly endo-4,5-cis 

and exo-4,5-trans-cyloadducts,[ 8 ] respectively. Maleimides, 

acrylates, maleates, fumarates, α.β-unsaturated ketones, 

nitroalkenes, and vinyl sulfones, are the most typical 

dipolarophiles.  

2.1. 1,3-DC involving maleimides 

Maleimides 5 resulted to be one of the most reactive 

dipolarophiles in 1,3-DC dealing with azomethine ylides and are 

frequently selected for the long optimization process. Too many 

parameters can be modified the cycloaddition being sensitive to 

all of them. For example, our first successful 1,3-DC attempt 

was achieved employing N-methylmaleimide (NMM) 5a, glycine 

imino ester 4a in toluene at room temperature in the presence of 

5 mol% of an equimolar mixture of (Sa)-binap 1 and silver 

perchlorate (Scheme 2)[9] In this example, product endo-6aa was 

isolated in 90% yield, >98:2 endo:exo ratio and >99% ee.[10,11] 

When the enantiomer (Ra)-binap 1 and silver perchlorate was 

tested in the same reaction ent-endo-6aa was isolated in 

analogous yield and ee. This effect was observed in all of the 

examples described along this account.  

 

 

Scheme 2. Optimized reaction conditions using (Sa)-binap 2 and AgClO4. 

An important feature of this transformation was the easy 

separation of the catalytic species from the reaction mixture. In 

fact, when the process was judged complete, the separation of 

the catalytic complex (S)-binap 1·AgClO4 (insoluble in toluene) 

from the reaction mixture was achieved in 95-90% yield by 

simple filtration. A series of four cycles were run employing the 

same recovered catalyst [(S)-binap] 1·AgClO4 used without any 

further purification obtaining excellent results of endo-6aa. 

Several stable silver triflate complexes with (R)-binap as ligand 

have been isolated and characterized by X-ray diffraction 

analysis by Yamamoto’s group.[ 12 ]  So, we prepared and 

crystallized the 1:1 complex [(S)-binap] 1·AgClO4 and was 

further characterized by ESI-MS experiments and 31P NMR 

spectra (see below) being stable to light exposure and high 

temperatures.  

Despite perchlorates are classified as low order explosives and 

not excessively sensitive to rubbing, the thermogravimetric (TG) 

and differential thermal analysis (DTA) of the stable species (S)-

binap 1·AgClO4 revealed that the loss of water of the sample 

occurred from 50 to 180 ºC without any variation of the heat of 

the system. The melting point of this complex is located in the 

range of 209-211 ºC. The three most important exothermic 

decomposition processes occurred approximately at 300, 550 

and 860 ºC. 

The scope of this reaction was studied with methyl esters 4 and 

it was found that N-methyl and N-ethylmaleimides afforded good 

enantioselections (Table 1, entry 1). However, this catalytic 

system resulted to be very sensitive to bulky substituents. Thus, 

for example, working with α-branched α-amino acid derived 

imino esters 4 (R1 = alkyl, benzyl) or with 2-substituted aromatic 

groups in the imino moiety, lower enantioselections were 

obtained (Table 1, entries 2 and 3, respectively). Some of the 4-

substituted arylideneglycinates (Table 1, entry 4) afforded very 

good results when employing glycine derivative together with 

NMM. Very high enantiodiscrimination occurred with the 2-

naphthyl derivative (Table 1, entry 5) and the employment of the 

2-thienyl surrogate afforded good enantioselections (Table 1, 

entry 6). In general chemical yields were good in all cases as 

well as the endo:exo diastereoselection (>98:8 in most 

reactions). Nevertheless, N-phenylmaleimide (NPM) and glycine 

derived imino ester 4 furnished lower ee (62%) and lower 

diastereoselectivity (90:10 endo:exo ratio) of endo-6 (Table 1, 

entry 7). 

 
Table 1.  Scope of the (S)-binap 1·AgClO4 catalyzed 1,3-DC between 4 and 
maleimides 5. 

 



PERSONAL ACCOUNT          

4 

 

 

 

Entry Ar R1 R2 Yield (%)[a] ee (%) 

1 Ph H Me or 

Et 

90-91 >99 

2 Ph Me, Pri, 

Bn 

Me 80-83 64-74 

3 2-R-C6H4
[b] H Me 82-85 72-82 

4 4-R-C6H4
[b] H Me 83-88 74-98 

5 2-Naph H Me 89 99 

6 2-Thienyl H Me 87 90 

7 Ph H Ph 86 62[c] 

[a] Isolated yield after column chromatography or by recrystallization, with 

>98:2 endo:exo ratio. [b] R = Me or Cl. [c] 90:10 endo:exo ratio 

 

The diastereomeric endo-cycloadducts were originated via 

transition structures TS1 and TS2 using a basic reaction of 

maleimide and imino ester derived from formaldehyde. The main 

geometric features and the relative energies of these transition 

structures are reported in Figure 2. As expected both TS1 and 

TS2 were quite asynchronous but concerted, TS1 being ca. 2 

kcal/mol more stable than TS2.[11,13] It was also observed that 

the metallic centre is coordinated to the two phosphorus atoms 

of the catalysts and to the oxygen and nitrogen atoms of the 

azomethine ylide. These calculations support that NMM is the 

best dipolarophile due to the coordination of the nitrogen atom to 

the metal centre. On the other hand, the presence of a bulkier 

substituent in this nitrogen atom blocks the endo-approach 

reducing the enantioselectivity, such as occurred with NPM. In 

summary, our calculations were in full agreement with the 

experimental findings and provide a rationale for the excellent 

asymmetric induction and catalytic efficiency. Although 

perchlorate anion formed a covalent bond with silver it was not 

considered in this calculations. 

 

 

Figure 2. Fully optimized structure (B3LYP/LANL2DZ&6-31G* level) of TS1 

and TS2, leading to both endo-diastereoisomers. Bond distances and 

dihedrals are given in Ǻ and deg., respectively. Numbers in parentheses and 

in square brackets are the relative total and Gibbs free energies respectively, 

computed at the B3LYP/LANL2DZ&6-31G*+ZPVE level.. 

Although this perchlorate complex resulted to be very stable, 

another poorly coordinated anions were explored in order to 

ensure or even improve the results obtained from (S)-binap 1-

AgClO4 complex. After testing several oxygenated silver(I) salts, 

with a weak coordinating anion, such as AgOAc, AgOTf (Tf = 

trifluoromethanesulfonate) AgNO3, and AgBF4, in the model 

reaction described in Scheme 2, it was found that the 

combination  (S)-binap 1 and AgSbF6 afforded excellent 

enantioselection of cycloadduct endo-6aa (90% yield, >98:2 

endo:exo ratio, and >99% ee).[14,15]  

The presumed catalytic monomeric species in solution are 

identical to those the reported previously with the perchlorate 

anion. The 1:1 (S)-binap 1 and AgSbF6 complexes were 

characterized by ESI-MS experiments and 31P NMR. ESI-MS 

reveled  a M++1 signal at 730, and 732 corresponding to the 

monomeric (S)-binap 1-AgI complex. The 31P NMR (CDCl3) 

spectra of 1:1 (S)-Binap 1 and AgSbF6 (10% aqueous 

polyphosphoric acid as internal reference) afforded signals at 

15.31 ppm and 15.45 ppm (2d, J = 242 Hz) (15.26, and 15.35 

ppm for Binap-AgClO4 complex).[15]  

The scope of the reaction with maleimides was next evaluated 

(Table 2 and Scheme of Table 1) and compared with the results 

shown in Table 1. Entries 1, 5 and 6 of Table 2 afforded similar 
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results that the reactions performed with silver perchlorate.[16] 

However, the most relevant results were obtained when 

sterically hindered dipoles were employed. Thus, in the case of 

α-branched azomethine ylides and 2-substituted arenes in the 

imino moiety the reactions employing catalyst (S)-binap 

1·AgSbF6 gave excellent enantioselections (Table 2, entries 2 

and 3). Besides, 4-substituted arenes were more appropriate 

precursors for this catalytic system giving 94-99% ee of endo-6 

products. Such as ocurred in Table 1, all compounds 6 obtained 

via catalysis of (S)-binap 1·AgSbF6 were isolated as unique 

diastereoisomers (>98:2 dr) and good to excellent chemical 

yields. In this line, the reaction between NPM and glycine-

derived imino ester gave both higher enantio- and 

diastereoselection (>98:2) than the analogous reaction 

performed with [(S)-binap] 1·AgClO4. 
 

Table 2.  Scope of the (S)-binap 1·AgSbF6 catalyzed 1,3-DC between 4 and 
maleimides 5.[a] 

Entry Ar R1 R2 Yield (%)[b] ee (%) 

1 Ph H Me, Et 90 >99 

2 Ph Me, Pri, 

Bn 

Me 78-86 91-99 

3 2-R-C6H4
[c] H Me 85 70->99 

4 4-R-C6H4
[c] H Me 84-85 94-99 

5 2-Naph H Me 89 99 

6 2-Thienyl H Me 84 93 

7 Ph H Ph 86 82 

[a] Reaction conditions: (S)-binap 1·AgSbF6 (5 mol%), Et3N (5 mol%), toluene, 

rt, 16 h. [b] Isolated yield after column chromatography or by recrystallization 

with >98:2 endo:exo ratio. [c] R = Me or Cl. 

 

 

Using (S)-binap 1·AgSbF6 the multicomponent version could be 

performed. Benzaldehyde glycine methyl ester hydrochloride, 

benzaldehyde, NMM and triethylamine (1.05 equiv), were put 

together at room temperature to yield compound endo-6aa in 

88% yield, and >99% ee (Scheme 3).[17] However, the same 

reaction promoted by (S)-binap 1·AgClO4 failed. It can be 

concluded that AgSbF6 is better salt than AgClO4 due to the 

lower coordination of the counteranion with the silver cation. 

 

 

Scheme 3. (S)-binap 1·AgSbF6 catalyzed enantioselective multicomponent 

1,3-DC. 

Later, in other different studies using gold(I) trifluoroacetate we 

needed to assay the effect of the [(S)-binap] 1·AgTFA in the 

cycloaddition involving maleimides 5 and imino esters 4 (Table 3 

and Scheme of Table 1). [18,19] In this case we observed that the 

chiral complex could act as a bifunctional catalyst because no 

external base was required for achieving good conversions. In 

this case, the counterion acted as base. However, the 

enantioselections were not so predictable such as occurred in 

the two previous results (see Tables 2 and 3). Imino ester 4a (R1 

= H, Ar = Ph) and NMM and NEM afforded excellent ee of 

cycloadduct endo-6 as well as the 2-naphthyl surrogate with 

NMM (Table 3, entries 1, 2, and 5). This catalytic system was 

very sensitive to bulky substituents at the α-position of the 

iminoester 4a giving low enantioselection (65% ee, Table 3, 

entry 3). Not consistent results were detected when imino esters 

with 2-aryl or 4-arylsubstituents at the imino moiety were used. 

Substituent at the ortho-position furnished low enantioselections 

as well (Table 3, entry 3). Surprisingly, p-chloroarene gave a 

racemic product under the same conditions (Table 3, entry 4). In 

addition, NPM afforded racemic cycloadduct 6 (Table 3, entry 6). 

 
Table 3.  Scope of the (S)-binap 1·AgTFA catalyzed 1,3-DC between 4 and 
maleimides 5. [a] 

Entry Ar R1 R2 Yield (%)[b] ee (%) 

1[c] Ph H Me, Et 86 99 

2[d] Ph H Me, Et 80 99 

3[d,e] Ph Bn Me 95 65 

3[d] 2-R-C6H4
[f] H Me 89-92 50-60 

4[d] 4-R-C6H4
[f] H Me 88-91 99-rac 

5[d] 2-Naph H Me 88 99 

6[d] Ph H Ph 80 rac 

[a] Reaction conditions: (S)-binap 1·AgTFA (5 mol%), DIPEA (5 mol%) or 

without base, toluene, rt, 16 h. [b] Isolated yield after column chromatography 

or by recrystallization with >98:2 endo:exo ratio. [c] With DIPEA. [d] Without 

base. [e] The reaction time was 2 days. [f] R = Me or Cl. 

 

 

We envisaged that the use of a monodentate phosphorous such 

as a phosphoramidite would favor the formation of very hindered 

transition states. Thus, we reported the first enantioselective 1,3-

DC induced by a phosphoramidite and a silver salt.[20 ,21 ] 31P 

NMR experiments revealed a wide band centered at 126.9 ppm 

when a 1:1 mixture of (Sa,R,R)-3·AgClO4 was formed in solution, 

which corresponded to its polymeric character detected by X-ray 

diffraction analysis (Figure 3a).[20] The complex 3 formed 

crosslinked sheets, or polymeric assemblies, which are typical of 

Ag-complexes, independently of the mono- or bidentate 

character of the corresponding ligand. The responsible of this 

crosslink was a π-interaction between an aromatic ring of the 

phenyl ring of de amino moiety of the phosphoramidite and the 
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silver atom (Figure 3b). Here, the perchlorate anion was 

covalently bonded to the complex. 

a) 

b) 

Figure 3. a) Crosslinked sheets of 1:1 mixture of (Sa,R,R)-3·AgClO4 obtained 

after X-ray diffraction analysis; b) Reproduction of the main intermolecular π-

interaction silver atom-aromatic ring.  

 

However, two separated bands were observed at 124.9 and 

132.0 ppm in the case of a 2:1 ligand:AgClO4 mixture as a 

consequence of the partial disaggregation. The complete 

disaggregation of the polymeric sheets of the 1:1 complex was 

achieved with the addition of 1 equiv. of the 1,3-dipole generate 

from 4aa and triethylamine. The result was the transformation of 

the original 31P NMR band into two perfectly defined doublets at 

125.1 (JP-Ag(109) = 76 Hz) and 133.61 ppm (JP-Ag(107) = 73 Hz), 

which corresponded to the phosphorous atom of the complex 7 

(Figure 4) according to ESI-MS experiments. 

 

 
Figure 4. Presumed structure of complex 7 in solution.  

 

The optimization sequence revealed that privileged ligand (Sa)-

monophos (2) and AgClO4 also promote the enantioselective 

1,3-DC between NMM and 4a (Ar = Ph, R = H). Chemical yield 

of endo-6aa was quantitative but only a 60% ee was achieved 

(Table 4, entry 1). In contrast, the analogous 1,3-DC catalyzed 

by chiral phosphoramidite (Sa,R,R)-3·AgClO4 afforded endo-6aa 

with excellent enantioselections at room temperature in shorter 

reaction times (6 h, Table 4, entry 2). The reaction carried out 

with NEM afforded 88% ee (Table 4, entry 3). In addition, this 

catalytic system did not resulted to be very sensitive to 

substituents at the α-position of the iminoester 4a. For example, 

the reaction involving alanine derivative and NMM afforded the 

corresponding compound 6, with 72% ee, after 48 h at -20 ºC. 

Even a 90% ee was determined when the phenylalanine 

surrogate was allowed to react under the same reaction 

conditions.[21] NPM did not afford the expected product but a 

complex reaction crude. 

 
Table 4.  Scope of the (Sa,R,R)-3·AgClO4 catalyzed 1,3-DC between 4 and 
maleimides 5.[a] 

Entry Ar R1 R2 Yield (%)[b] ee (%) 

1[c] Ph H Me 95 60 

2[d] Ph H Me 80 >99:1 

3 Ph H Et 78 88 

4[e,f] Ph Me Me 74 72 

5[f,g] Ph Bn Me 71 90 

[a] Reaction conditions: (Sa,R,R)-3·AgClO4 (5 mol%), Et3N (5 mol%) toluene, 

rt, 6 h. [b] Isolated yield after column chromatography or by recrystallization 

with >98:2 endo:exo ratio. [c] Reaction performed with (Sa)-2·AgClO4. [d] 

DABCO was used instead of triethylamine. [e] Reaction run at -20 ºC. [f] 48 h 

were needed. [g] Reaction run at 0 ºC. 

 

 

Looking for a catalyst showing a different coordination pattern 

with longer distances metal-dipole to run the reactions with very 

hindered substrates a gold(I) catalyst was designed (Figure 5). A 

key to the development of enantioselecive gold(I)-catalyzed 

transformations has been the identification of enantiomerically 

pure (gold)-chiral diphosphine complexes of the form [(AuX)2(P-

P)*] as catalysts for enantioselective transformations. In this 

sense, a clear and recent example of the isolation, identification, 

and characterization of two chiral Binap-gold(I) complexes (S)-

binap 1·(AuX)2  and [(S)-binap 1·AuX]2, bearing trifluoroacetate 

as counteranion, have been reported by Puddephatt et al.[22 ] 

These complexes were prepared by mixing (Me2S)AuCl and the 

corresponding amount of the chiral binap ligand. The resulting 

gold(I) chloride complexes were treated with different silver salts 

for 1 h in toluene and the suspension was filtered through a 

celite plug. The remaining solution was evaporated obtaining the 

corresponding complexes in 89-96% yields, respectively. These 

cationic complexes were immediately employed without any 

other purification in the catalytic enantioselective 1,3-DC. The 

reaction involving gold complexes derived from binap (1) was 

studied. When this cycloaddition was performed in the presence 

2.54 Å 
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of 10 mol% of DIPEA and 10 mol% of complexes (S)-binap 

1·(AuX)2  (X = Cl or TFA), product endo-6aa was obtained with 

high conversion but in racemic form. However, dimeric 

complexes type [(S)-binap 1·AuX]2 resulted to be the appropriate 

catalysts. Thus, in the case of the chiral complex (X = OAc) 

product endo-6aa was obtained with high conversion and 60% 

ee in the presence of DIPEA. Interestingly, in the absence of 

base a 70% ee for endo-6aa was obtained working with [(S)-

binap 1·AuOAc]2  complex as a bifunctional catalyst. Better 

results were achieved when using complex [(S)-binap 1·AuOBz]2 

in the presence of DIPEA or in the absence of added base 

affording cycloadduct endo-6aa in 74% and 94% ee, 

respectively. When the gold(I) trifluoroacetate complex [(S)-

binap 1·AuTFA]2 was used as catalyst, 74% ee of compound 

endo-6aa was obtained in the presence of DIPEA, whereas 

without base, 99% ee was obtained.  

 

 

Figure 5. (S)-binap 1·(AuX)2  and [(S)-binap 1·AuTFA]2 catalytic complexes. 

In general, if we compare Tables 2, 3 and 5, the results of the 

general scope were similar for the reactions run with (S)-binap 

1·AgSbF6 and with [(S)-binap 1·AuTFA]2 (entries 1, 2, 4 of 

Tables 2 and 5). The reactions performed with (S)-binap 

1·AgTFA were always improved by [(S)-binap 1·AuTFA]2 catalyst. 

Small differences were observed in the 1-naphthyl derivative 

[better ee was achieved with (S)-binap 1·AgSbF6 (entries 5 of 

Tables 2 and 5)] and in the imino esters bearing an aromatic 

group with a substituent in position 2 (entries 3 of Tables 2 and 

5). In these last examples dimeric gold complexes gave the 

highest enantioselections. In addition, the reaction of imino ester 

4a with NPM afforded the corresponding cycloadduct endo-6 in 

80% yield and 81% ee (Table 5, entry 6). This reaction with 

chiral silver catalysts did not give high enantioselectivities. 

  
Table 5.  Scope of the [(S)-binap 1·AuTFA]2 1,3-DC between 4 and 
maleimides 5. 

Entry Ar R1 R2 Yield (%)[b] ee (%) 

1 Ph H Me, Et 75-98 99 

2 Ph Bn Me 78 99 

3 2-R-C6H4
[c] H Me 85 88-99 

4 4-R-C6H4
[c] H Me 80-90 88-99 

5 2-Naph H Me 87 90 

6 Ph H Ph 80 81 

[a] Reaction conditions: [(S)-binap 1·AuTFA]2 (5 mol%), toluene, rt, 6 h. [b] 

Isolated yield after column chromatography or by recrystallization. [c] R = Me 

or Cl.   

 

It was observed a strong positive NLE (Figure 6) when the 

reaction of iminoester 4a was allowed to react with NMM 

employing different enantiomeric purity of the catalytic chiral 

complex [(S)-binap 1·AuTFA]2 . This behavior could be justified 

by a generation of a reservoir of unproductive non-chiral 

heterodimer complex,[ 23 ] increasing the concentration of the 

chiral catalytic active species in solution. This NLE observed in 

was theoretically calculated, detecting that there was only one 

energetically feasible geometry for the [(S)-Binap 1,(R)-binap 1-

Au2]-dipole reactive complex and this complex is much more 

stable than the possible homodimeric species.[13] To the best of 

our knowledge it was the first work in which NLE was analyzed 

using computational tools.[19] 

 

 

 
 

Figure 6. Experimental (blue line) and theoretical (green line) NLE observed in 

the chiral complex [(S)-binap 1·AuTFA]2  1,3-DC between the iminoester 4a 

and NMM. 

The origin of the enantioselection was confirmed by DFT 

calculations, revealing very interesting geometric data of the 

transition states.[13,19] Gold atom was exclusively coordinated to 

nitrogen atom of the imino group. Surprisingly, the second unit of 

binap-Au is blocking the approach of the dipolarophile through 

the other face of the metallo-dipole. The reaction of the 

dipolarophile through the hindered (2Re,5Si) face of ylide [(Sa)-

binapAu]2 were of much higher energy than the obtained from 

suprafacial approach through (2Si,5Re) of ylide (Figure 7). 

Calculations also indicated that the reaction presents a 

concerted but slightly asynchronous transition structure in which 

the critical distance of the forming C2-CNMM bond is shorter than 

that associated with formation of the C5-C’NMM bond. Gold atom 
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was exclusively coordinated to the nitrogen atom of the imino 

ester meanwhile silver is coordinated by the iminic nitrogen and 

by the enolate oxygen atom. If we compared the distance metal-

nitrogen atomdipole in binap complexes, for silver a 2.32 Å could 

be measured whilst a 2.22 Å was determined for gold complex. 

This relatively close distances together with the higher 

coordination of the silver cation, supported the high versatility 

exhibited for [(S)-binap 1·AuTFA]2 in the 1,3-DC between imino 

esters 4 and maleimides 5 incorporating one of both of them a 

steric hindrance.  

 
 

 

Figure 7. Geometry of the most stable conformation of [(S)-binap 1·AuTFA]2 

catalytic complex-dipole. 

 

The enantioselective binap 1-silver catalyzed multicomponent 

1,3-dipolar cycloaddition using ethyl glyoxylate 8, phenylalanine 

ethyl ester 9 and maleimides 5 was successfully implemented 

after a comprehensive optimization work. The employment of 

the basic silver carbonate allowed the reaction in the absence of 

an extra base giving high yields and ee of compounds 10 

(Scheme 4). The study of the scope of this multicomponent 

reaction in toluene at -10 ºC revealed that N-alkyl maleimides 5 

(R = Me, Et, Bn) gave high yields of 10 with high 

enantioselectivities (90, 88, and 80% ee, respectively). However, 

the best results were achieved when NPM and N-(4-

bromophenyl)maleimide offering 90 and 92% ee, respectively.[24] 

Here, monophos ligand 2 and phosphoramidite ligand 3 were 

not appropriate for this transformation. Glycine, alanine, and 

phenylglycine gave good yields and enantioselectivities under 

this reaction conditions.  

 

 

Scheme 4. Scope of the multicomponent (S)-binap 1·Ag2CO3 catalyzed 1,3-

DC between 9, ethyl glyoxylate 8 and maleimides 5. 

The presence of a monomeric (ligand-metal) structure (Figure 8) 

justified the high enantioselectivity observed just with the 

phenylalanine derivative. A possible favorable π-stacking 

interaction between the phenyl ring of the amino ester and the 

phenyl group of a phosphorous atom was observed.[24] 

 

 

Figure 8. Geometry optimization of the most stable (S)-binap 1·Ag2CO3-dipole 

TS. 

Apart from imino esters (previously prepared or generated in 

situ) oxazol-5-(4H)-ones (azlactones) were suitable heterocycles 

to perform this 1,3-DC.[25] The preparation of azlactones is very 

simple and their reactivity is very diverse due to their functional 

groups. These substrates can be easily transformed in 

münchnones after deprotonation and imine-activation with a 

chiral Lewis acid. These mesoionic heterocycles are potential 

1,3-dipoles. Oxazolone derived from glycine 11 was allowed to 

react with maleimides at room temperature using a 5 mol% of 

the chiral catalytic complex [(S)-binap 1·AuTFA]2 and a 5 mol% 

of base (Table 6). After completion, a large excess of 

trimethylsilyldiazomethane was added to obtain the methyl ester 

of intermediate carboxylic acids 12 (30 min). Compounds 13 

were obtained diastereoselectively (>98:2, by 1H NMR 

spectroscopy) after purification and its absolute configuration 

was established according to the retention times of signals 

observed after HPLC analysis and by comparison with the 

previously reported data.[26,27] This reaction was not produced in 

the presence of any chiral ligands 1, 2, and 3 complexed with 

silver(I) salts. 

Following this reaction pattern a set of maleimides were 

attempted. N-Substituted methyl, ethyl and benzylmaleimides 

did not afford compounds 13 with so high enantioselections 

despite performing the reaction at -20 ºC (Table 6, entries 1-3). 

NPM and N-(4-acetoxyphenyl)maleimide were the best 

examples of this series affording almost enantiomerically pure 

bicyclic products 13 at room temperature (Table 6, entries 4 and 

5). In the case of N-(4-bromophenyl)maleimide a good 

enantioselection was observed when the reaction was run at -20 

ºC furnishing enantiomerically pure cycloadduct 13 in good 

chemical yield (Table 6, entry 6). The variation of the arene 

substituent of the azlactones promoted also excellent to good 

enantioselections in compounds 13 (Table 6, entries 7 and 8). 

Even working with a heteroaromatic substituent, such as 2-

thienyl, the result was very satisfactory (95% ee, Table 6, entry 

9). 
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Table 6.  Scope of the [(S)-binap 1·AuTFA]2 1,3-DC between 11 and 
maleimides 5. 

 

Entry Ar R Yield (%)[a] ee (%) 

1 Ph[b] Me 90 60 

2 Ph[b] Et 70 70 

3 Ph[b] Bn 83 71 

4 Ph Ph 90 99 

5 Ph 4-(AcO)C6H4 90 99 

6 Ph[b] 4-BrC6H4 84 99 

7 4-MeC6H4
 Ph 78 99 

8 4-ClC6H4
 Ph 83 98 

9 2-Thienyl Ph 80 95 

[a] Isolated yield after column chromatography or by recrystallization. [b] 

Reaction run at -20 ºC.   

 

 

As possible applications of the resulting pyrrolines 13, it was 

found that 5-epimer 14 (2,5-trans) was diastereoselectively 

generated through a 10% Pd/C catalyzed hydrogenation (4 atm) 

of 13ab during three days at room temperature (Scheme 5). This 

trans-arrangement in molecule 14 is not very easy to built 

because several steps were needed using other synthetic 

strategies.[28] This result is opposite to the 2,5-cis-arrangement 

generated by a typical W-shape dipole from imino esters 4. 

In addition, pyrrolines 13 also possess a 1,3-dipole precursor 

structure (azomethine ylide), so a second cycloaddition was 

attempted with a new equivalent of NMM. The reaction took 

place under a microwave assisted heating (1 h, 75 W) using 

triethylamine as base and toluene as solvent at 120 ºC. 

Polycyclic compound 15 was finally obtained in 50% yield as a 

single diastereoisomer (Scheme 5).  

 

 

Scheme 5. Applications of the enantiomerically enriched pyrroline 13ab.  

As a brief summary of this section, all of the processes 

evaluated were concerted but asynchronous. Complexes (S)-

binap 1·AgSbF6 and [(S)-binap 1·AuTFA]2 were more efficient, 

affording the best enantioselections in the reaction of imino 

esters 4 and maleimides. Oxazolone reacted with maleimides at 

room temperature using exclusively a 5 mol% of the chiral 

catalytic complex [(S)-binap 1·AuTFA]2 whilst silver chiral 

complexes with phosphoramidites completely failed. 

2.2. 1,3-DC involving acrylates 

Alkyl acrylates are very frequently used for the optimization and 

evaluation of the efficiency of many 1,3-DC using several 

dipoles. In our research concerning the scope of the reaction 

between acrylates and imino esters 4 we found it very 

interesting because it was the key to access the synthesis of a 

family of pyrrolidines active against viruses responsible of the 

hepatitis C (Figure 9).[29 ,30 ] The enantioselective synthesis of 

these interesting drugs developed by GSK[31] represented a big 

challenge. The retrosynthetic analysis (Scheme 6) clearly shows 

the main objective of this particular 1,3-DC involving acrylates. 

 

 

Figure 9. Antiviral agents developed by GSK for the treatment of hepatitis C. 
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Scheme 6. Retrosynthetic analysis for the construction of the antiviral 

skeletons 16-18. 

Following with the chronology of this report we initially search 

the enantioselective synthesis of first generation GSK antiviral 

agent 16. Thus, catalytic complex (S)-binap 1·AgClO4 was 

attempted in the reaction of 4a and tert-butyl acrylate 21a 

obtaining compound endo-20c (>98:2 endo/exo ratio) 

quantitatively but with very low enantioselection (36% ee) 

(Scheme 7).[11]  

 

 

Scheme 7. 1,3-DC of 4a and tert-butyl acrylate 21a catalyzed by (S)-binap 

1·AgClO4 complex. 

This disappointed result was overcome by the employment of 

(Sa,R,R)-3·AgClO4 complex. In this case, under the optimized 

reaction conditions, the synthesis of endo-cycloadducts 20 was 

achieved using DABCO or triethylamine as base in a range of 

temperatures between 0 and -20 ºC. Isolated chemical yields of 

pure stereoisomers endo-20 were high but the enantioselections 

were excellent (Table 7).[10,11] The reaction with tert-butyl 

acrylate 21a afforded better ee than the analogous reaction run 

in the presence of methyl acrylate 21b. Monophos 2·AgClO4 

complex was allowed to catalyze the same reaction obtaining in 

95% yield the corresponding cycloadduct endo-20 with a low 

52% ee. For example, isopropyl ester of compound 4 is more 

appropriate for reactions of 21a with phenyl or with 4-substituted 

aryl imino esters (Table 7, entries 2 and 4). In both cases, the 

best base was DABCO. Methyl ester of 4 (Ar = Ph) afforded 

lower ee (88%, Table 7, entry 1). However it was selected for 

reactions of 4 (Ar = 4-RC6H4) and 21a (Table 7, entry 4). For 2-

naphthyl-substituted imino ester 4, the combination of methyl 

ester and triethylamine gave the highest ee (92%, Table 7, entry 

5). The reactions with α-substituted imino esters 4 derived from 

alanine, phenylalanine and leucine afforded endo-cycloadducts 

20 with high enantioselections and good chemical yields (Table 

7, entries 6-9). The example recorded in the last entry of Table 7, 

using the 2-thienyl group bonded to the leucine dipole precursor 

encourage us to prepare the corresponding HCV inhibitor 16. 

The higher performance of 3 than 1 in the reaction of acrylates 

could be due to a better electrostatic secondary interaction 

between the metal center and the carbonyl group of the 

dipolarophile in a less congested transition state.  

 
 
Table 7.  Scope of the (Sa,R,R)-3·AgClO4 catalyzed 1,3-DC between 4 and 
tert-butyl acrylate 21a. 

 

Entry Ar R1  R2 Yield (%)[a] ee (%) 

1 Ph[b] Me  H 80 88 

2 Ph[c] Pri  H 83 >99 

3 2-RC6H4
[b,d] Me H 80-83 >99 

4 4-RC6H4
[b,d] Pri H 76-80 90-94 

5 2-Naph[c] Me H 84 92 

6 Ph[c] Me Me 78 94 

7 2-Thienyl[c] Me Me 78 92 

8 Ph[c] Me Bn 77 98 

9 2-Thienyl[c] Me Bui 70 82 

[a] Isolated yield after column chromatography or by recrystallization. [b] 

Reaction run with DABCO. [c] Reaction run with triethylamine. [d] R = Me, Cl. 

 

For the synthesis of the HCV inhibitor 16 the reaction affording 

heterocycle 20a took place in 70% yield and 82% ee. The 

intermediate prolinamide 22 was synthesized in 88% yield 

(estimated by 1H NMR) from enantiomerically enriched 20a by a 

simple amidation reaction with 4-(trifluoromethyl)benzoyl 

chloride in refluxing dichloromethane during 19 h. The crude 

product was submitted, in a second step, to a hydrolysis of the 

tert-butyl ester with trifluoroacetic acid followed by the methyl 

ester hydrolysis using a 1M aqueous solution of KOH in 

methanol for 16 h. The first enantioselective synthesis of 

dicarboxylic acid 16 was finally accomplished in 81% yield from 

compound 22 (50% overall yield from iminoester 4) in 83% ee 

(Scheme 9).[11]  
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Scheme 9. Enantioselective synthesis of the first generation GSK HCV 

inhibitor 16. 

The origin of this high enantioselection was studied through DFT 

calculations. It was observed that the dihedral angle formed by 

the two naphthyl groups is of ca. 57-58 deg. In the case of the 

most stable stepwise transition state (Figure 10), this lead to the 

blockage of the Re-Si face of the dipole. Since there is a 

stronger steric congestion between one naphthyl group and the 

tert-butyl group of the dipolarophile. These results were in good 

agreement with the experimental ones because they supported 

a preferential generation of the endo-(2S,4S,5R)-20. Note the 

interaction of the silver atom with the dipole and also a weaker 

one with the carbonyl group of the dipolarophile was 

estimated.[11,13] For comparison, the other diastereomeric endo-

TS was less favorable in around 1.3 kcal·mol-1. However, higher 

energy values (9.7-10.0 kcal·mol-1) were registered for the exo-

TS. According to these DFT calculations these 1,3-DC occurred 

through a stepwise mechanism being the first Michael type 

addition step the responsible of the enantiocontrol of the process. 

 

Figure 10. Chief geometric features of the most stable transition structure 

associated with the first step in the reaction between t-butyl acrylate 21a and 

complex by (Sa)-monophos 2 and imine 4aa. These fully optimized structures 

were computed at the B3LYP/LanL2DZ&6-31G* level. The energies were 

computed at the B3LYP/ LanL2DZ &6-31G*+ZPVE level of theory. 

According to all these results, the synthesis of second 

generation GSK antivirals 17 and 18 only would be possible 

using (Sa,R,R)-3·AgClO4 as catalyst. Once iminoester 4c was 

prepared the 1,3-DC was essayed finding the best 

enantioselection for cycloadduct 20b in the presence of DIPEA 

as base after 2 d at room temperature (Table 8, entry 1). Other 

silver salts were not appropriate for this purpose employing 

chiral phosphoramidite 3 (Table 8, entries 2 and 3). 

At this point a very important feature regarding all these 

enantiocontrolled 1,3-DC was confirmed. They are extremely 

sensitive to structural modifications and reaction conditions. So, 

we performed a comprehensive screening employing silver(I) 

and gold(I) salts[15,19] ligands 1, 3 and 23 being the most 

appropriate (Table 8).  

Despite low enantioselections registered in the reaction 

performed between conventional imino esters 4 and acrylates 

using binap-derived catalytic silver(I) or gold(I) complexes, the 

1,3-DC of the heterocyclic imino ester 4c and tert-butyl acrylate 

was very efficient with ligand 23 together with AgSbF6 rather 

than with AgTFA (Table 8, entries 4 and 5). Surprisingly, (S)-

binap 1 combined with AgClO4 or AgTFA afforded very important 

enantioselections of cycloadduct 20b in good chemical yields 

(Table 4, entries 6-8). These results could not be improved by 

lowering the temperature, but with dimeric chiral gold(I) catalyst 

[(Sa)-binap 1·AuTFA]2 the process was very efficient at 0 ºC 

(92% yield and 99% ee) rather that at room temperature (Table 

8, entries 9 and 10). 

 

 
Table 8.  Optimization of the synthesis of intermediate 20b. 

 

Ent. AgI or AuI Ligand Base Yield (%)[a] ee (%) 

1 AgClO4 3 DIPEA 86 30 

2 AgTFA 3 Et3N 72 50 

3 AgSbF6 3 Et3N 82 40 

4 AgTFA 23 DIPEA 82 64 

5 AgSbF6 23 Et3N 82 99 

6 AgClO4 1 Et3N 78 88 

7 AgTFA 1 Et3N 75 88 

8 AgSbF6 1 Et3N 79 72 

9 [(S)-binap 1·AuTFA]2 Et3N 90 78 
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10 [(S)-binap 1·AuTFA]2 Et3N[b] 92 99 

[a] Isolated yield after column chromatography or by recrystallization. [b] 

Reaction performed at 0 ºC for 3 d. 

 

    

This final result was analyzed using DFT calculations obtaining 

that there was only one energetically accessible conformation 

due to the high substitution of the leucine-derived ylide (Figure 

11).[13,27] In this reactive gold complex there is an effective 

blockage of the (2Re,5Si) prochiral face of the ylide. Therefore, 

the predicted stereochemical outcome corresponds to the 

exclusive formation (2S,4S,5R)-20b cycloadduct, the same as 

obtained experimentally. The planarity of the whole dipole would 

also increase the reaction rate of the process, even at 0 ºC. The 

reaction proceeded to a concerted but highly asynchronous 

cycloaddition in which the endo-approach of the dipolarophile is 

favored due to a stabilizing interaction of the carboxylic group 

and the metallic centre. Again the iminic nitrogen is directly 

coordinate to the gold(I) atom and with the nitrogen atom of the 

thiazole ring rather than with the sulfur atom. 

 

 

Figure 10. Lower energy transition state structure corresponding of the 1,3-

DC of Au(I) ylide complex and dipole generated from 20b computed at 

ONIOM(B3LYP/LanL2DZ:UFF) level of theory. 

With the best enantiomerically enriched cycloadduct 20b, the 

synthesis of the second generation antiviral agent 17b could be 

accomplished in two conventional steps such as it was indicated 

in Scheme 10. The final product 17b was finally isolated in 68% 

overall yield (from pyrrolidine 20b) and with 99% ee, or in 63% 

overall yield from iminoester 4c (Scheme 18).  

 

 

Scheme 10. Total enantioselective synthesis of the second generation GSK 

antiviral agent 17b. 

When tert-butyl acrylate was allowed to react with azlactones 11 

but the unique productive transformation was when the alanine-

derived 4-methyloxazole-5-one 11b was employed as dipole 

precursor at 0 ºC using [(S)-binap 1·AuTFA]2 as catalyst. 

Compound 24 was isolated in high yield (80%) and relatively 

good enantioselection (72% ee, Scheme 11). 

 

 

Scheme 11. Enantioselective synthesis of pyrroline 24. 

If we compare this result with previous ones derived from lineal 

imino esters (see scheme of Table 7) this last diastereoselective 

cycloaddition exhibited an opposite regioselection, which is 

equivalent to the exo-approach of the dipolarophile when an 

endo-transition state was the most favourable in the gold(I)-

catalyzed 1,3-DC with α-imino esters and alkenes. To gain more 

insight into the unexpected regioselectivity of the 1,3-DC 

depicted in Scheme 19, results obtained using Natural 

Resonance Theory (NRT) analysis were crucial. The most stable 

Lewis structures of the ylides obtained shown that the negative 

charge in the Lewis structure of the corresponding ylide is 

mainly placed on C5 atom.[13,27]  

As conclusion, acrylates reacted with azlactones 11 and imino 

esters 4 through a concerted but asynchronous process. For 

imino esters the presence of phosphoramidite 3·AgClO4 ensured 

the widest scope. This reaction resulted to be the key step for 

the access to a family of HCV inhibitors developed by GSK. For 

this purpose, the better catalyst for the synthesis of the first 

generation GSK HCV inhibitor 16 was formed by the named 

phosphoramidite 3·AgClO4 whilst both  phosphoramidite 

23·AgSbF6 or [(S)-binap 1·AuTFA]2 were appropriate for the 

preparation of the second generation GSK HCV inhibitor 17b. 

2.3. 1,3-DC involving vinyl sulfones 

One of the featuring properties of vinylic sulfones is their ability 

to act as Michael type acceptors. They have been used in 

enantioselective 1,3-DC employing mostly chiral copper(I) 

complexes.[6] In our research regarding vinyl sulfones the scope 

of enantioselective 1,3-DC was reduced to the employment of 

trans-1,2-bis(phenylsulfonyl)ethylene (BPSE) 25. This 

electrophilic alkene is a synthetic equivalent of acetylene and 

has been employed in the synthesis of the corresponding exo-

cycloadducts in the presence of chiral copper(I) complex.[32] This 

electron-poor alkene was tested in the presence of chiral 

phosphoramidites 2 or 3 and the corresponding silver(I) or 

gold(I) salt. Simply, no reaction was observed when chiral 

phosphoramidites were used independently of the metal 

introduced for the generation of the catalytic complex.  

However, (S)-binap 1·AgX complexes allowed the 

enantioselective reaction with different results in terms of 

enantiodiscriminations. Despite toluene was used as the 
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selected solvent, the reactions run in THF were also compared 

because it was observed a very clean reaction mixture, and 

crude products endo-26 did not require additional purification. In 

general, the reaction performed with (S)-binap 1·AgClO4 never 

improved the results generated by intermediacy of (S)-binap-

AgSbF6 (Table 9). As representative examples, phenyl- and 2-

naphthyl substituents bonded to the imino group afforded high 

enantioselections of the product 26 (Table 9, entries 1-4). Methyl 

substituent at the para-position of the imino ester also gave 

good enantioselections (Table 9, entries 5 and 6). The 3-pyridyl 

group was the most appropriate heterocycle (Table 9, entries 7 

and 8). Sterically hindered α-alkyl substituted imino esters 

furnished lower endo:exo ratio and lower enantioselections.[14,15] 

 
 
Table 9.  Synthesis of compounds endo-26 using AgSbF6  or AgClO4  and (S)-

binap 1 as catalyst. 

 

 

Ent. Ar Solvent Yield (%)[a][b] endo:exo ee (%)[b] 

1 Ph PhMe 81 (80) >98:2 90 (88) 

2 Ph THF 82  >98:2 90  

3 2-Naphthyl PhMe 91 (88) >98:2 92 (80) 

4 2-Naphthyl THF 90  >98:2 80  

5 4-MeC6H4 PhMe 91 (78) >98:2 88 (28) 

6 4-MeC6H4 THF 78 >98:2 82 

7 3-Pyridyl PhMe 83 (82) >98:2 93 (78) 

8 3-Pyridyl THF 92 >98:2 90 

[a] Isolated yield after column chromatography or by recrystallization. [b] In 

brackets the result obtained with (S)-binap 1-AgClO4 complex. 

 

 

Binap-gold(I) trifluoroacetate complex dimer [(S)-binap 

1·AuTFA]2 was next tested in the enantioselective cycloaddition 

of azomethine ylides and BPSE 25 and compared with the same 

reactions catalyzed by (S)-binap 1·AgTFA complex (Table 10). 

The reaction, performed with both catalysts (5 mol % of metal) 

operated with higher enantioselections in the absence of base. 

In all cases, silver catalysis did not improve the effectiveness of 

gold(I) catalysis. For aromatic and heteroaromatic imino 

moieties no added base was needed for achieving high ee 

(Table 10, entries 1, 3 and 4), but in the case of 2-naphthyl 

derivative DIPEA (10 mol%) was needed. In its absence a 

racemic mixture was obtained in both examples (Table 10, entry 

2).[19]  

 

 
Table 10.  Synthesis of compounds endo-26 using [(S)-binap 1·AuTFA]2 as 
catalyst.[a] 

Ent. Ar Yield (%)[b][c] endo:exo  ee (%)[c] 

1 Ph 81 (81) >98:2 99 (96) 

2 2-Naphthyl[d] 91 (90)  >98:2 88 (64)  

3 4-MeC6H4 67 (75) >98:2 99 (96) 

4 3-Pyridyl 73 (69) >98:2 96 (96) 

[a] Reaction conditions: [(S)-binap 1·AuTFA]2 (5 mol%), Et3N (5 mol%) 

toluene, rt, 48 h. [b] Isolated yield after column chromatography or by 

recrystallization. [c] In brackets results obtained with (S)-binap 1-AgTFA 

complex. [d] DIPEA (10 mol%) was used. 

 

This gold(I) catalysis afforded higher ee of cycloadducts endo-26 

than the reaction catalyzed by (S)-binap 1·AgSbF6. In fact, the 

dimeric species [(S)-binap 1·AuTFA]2 can act as bifunctional 

catalysts employing its trifluoroacetate anion as internal base. 

However, (S)-binap 1·AgSbF6 was able to promote the 

multicomponent 1,3-DC between glycine methyl ester 

hydrochloride, 3-pyridinecarbaldehyde and 25 giving compound 

endo-26d in 86% yield and 98% ee (Scheme 12), whilst no 

reaction occurred in the presence of [(S)-binap 1·AuTFA]2.  

 

 

Scheme 12. (S)-Binap 1·AgSbF6 catalyzed enantioselective multicomponent 

1,3-DC. 

A direct application of using BPSE was envisaged. The 

synthesis of 5-substituted prolines gave access to biologically 

active compounds, such as nonpeptide cholecystokinin 

antagonist (+)-RP 66803 27.[33] The 5-phenylprolinate fragment 

was prepared according to the route described in Scheme 13. 

Isomers 28 and 29 were obtained after desulfonylation with 

sodium amalgam (10%) and the crude mixture, without 

purification, was submitted to hydrogenation with Pt/C (10%). 

The enantiomeric excesses of both prolinates remained 

unaltered with respect to the starting disulfonylated heterocycle 

ones. The overall yield of 30 was 47%, and could be justified by 

the formation of significant amounts of pyrrole derivative after 

the desulfonylation step.[19]  
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Scheme 13. Synthesis of enantiomerically enriched trans-2,5-disubstituted 

proline 30. 

Following the approach of Coldham’s group, inspired in a 1,3-

DC using disulfones,[ 34 ] new starting -suitably protected- 

aromatic precursors 26e and 26f were prepared (Figure 12). 

These molecules are direct precursors of natural (R)-(+)-crispine 

A 31 and (R)-(+)-harmicine 32, which are natural products used 

as antitumoral agent and anti-leishmaniasis drug, 

respectively.[35,36]  

 

Figure 12. Retrosynthetic analysis of natural compounds 31 and 32. 

 

The reaction of the imine 4m (obtained from the corresponding 

aldehyde[ 37 ] and methyl glycinate) and disulfone 25 was 

accomplished at room temperature in toluene as solvent and a 

10 mol% of catalyst loading (formed by chiral binap and silver 

trifluoroacetate). The best result (71% yield and 50% ee) was 

achieved adding DABCO (10 mol%) to the reaction mixture 

(Scheme 14).[15]  

 

 

Scheme 14. Enantioselective synthesis of 26e. 

Unfortunately, following the best reaction conditions described in 

Scheme 24 and other different modifications, compound 26f was 

obtained from the corresponding imine in 60% chemical yield 

and a very poor enantioselectivity (up to 12% ee).[15] 

With all these results BPSE 25 and imino esters 4 afforded very 

good enantioselections using (S)-binap 1 with AgSbF6 rather 

than with  AgClO4, and several examples were improved by the 

employment of dimeric [(S)-binap 1·AuTFA]2 complex. 

  

2.4. 1,3-DC involving fumarates 

Fumarates 33 are considered very useful dipolarophiles and 

they are frequently employed in cycloaddition reactions. During 

our studies of enantioselective 1,3-DC we tried to perform it 

using silver(I) and gold(I) complexes derived from chiral ligand 

(S)-binap 1. The reaction was successful in terms of chemical 

yields, employing several silver(I) salts and even the dimeric 

[(S)-binap 1·AuTFA]2 complex but none of these processes 

afforded endo-34 with more than 30% ee.  

However, (Sa,R,R)-3·AgClO4 complex was much more effective 

for this particular transformation obtaining compound endo-34 

(>98:2 endo/exo ratio) in good chemical yields (79-81%) and 

high er (91:9). The reaction conditions were variable, thus 

diisopropyl fumarate required triethylamine as base, at -20 ºC for 

17 h, and diisobutyl fumarate reacted in the presence of DABCO 

at 0 ºC for 17 h as well (Scheme 15).[20,21] 

 

 
 

Scheme 15. Enantioselective synthesis of endo-34. 

In this section the summary is very clear because (Sa,R,R)-

3·AgClO4 complex is the unique to yield high ee (82%) in spite of 

trying different conditions and catalysts.   

 

2.5. 1,3-DC involving α,β-unsaturated ketones 

Conjugated aldehydes did not react at all using the reaction 

conditions of the metal-catalyzed 1,3-DC described along the 

previous sections of this report. However, the not so 

polymerizable α,β-unsaturated ketones could be trapped with 

high enantioselectivies. The first attempt was carried out 

between 4 and chalcone  35, evaluating the effectiveness of (S)-

binap 1·AgTFA and [(S)-binap 1·AuTFA]2 complexes. Their 

reactivities were compared to each other employing a 10 mol% 

of base at room temperature (Table 11). In all cases, the 
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diastereoselection was very high and the best 

enantioselectivities in 36 were induced by [(S)-binap 1·AuTFA]2 

(Table 11).[19] 

 
Table 11.  Synthesis of compounds endo-36 using [(S)-binap 1·AuTFA]2 or 

(S)-binap 1·AgTFA complexes as catalysts. 

 

Ent. Ar Yield (%)[a][b] endo:exo  ee (%)[b] 

1 Ph 95 (80) >98:2 80 (20) 

2 2-Naphthyl 90 (81)  >98:2 60 (50)  

3 4-MeC6H4 80 (80) >98:2 80 (74) 

[a] Isolated yield after column chromatography or by recrystallization. [b] In 

brackets the result obtained with (S)-binap 1·AgTFA complex. 

 

Excellent results were obtained when chiral phosphoramidite 

(Sa,R,R)-3 and AgClO4. Chalcone 33 reacted with imino esters 4 

smoothly giving at -20 ºC product endo-36 (Table 12).[21] These 

results improved the enantioselections described for the reaction 

run with [(S)-binap 1·AuTFA]2 or (S)-binap 1·AgTFA complexes 

as catalysts (compare Tables 11 and 12).  

 
 
Table 12.  Synthesis of compounds endo-36 using (Sa,R,R)-3·AgClO4 

complex as catalysts.[a] 

 

Ent. Ar Yield (%)[b] endo:exo  ee (%) 

1 Ph 80 >98:2 >99 

2 2-MeC6H4 70  >98:2 98  

3 4-MeC6H4 75 >98:2 94 

[a] Reaction conditions: (Sa,R,R)-3 and AgClO4 (5 mol%), Et3N (10 mol%) 

toluene, -20 ºC, 24 h. [b] Isolated yield after column chromatography or by 

recrystallization. 

Cyclohex-2-enone 37 was another good candidate to test 

furnishing endo-38 (72% yield, and 94% ee) under the same 

reaction conditions promoted by chiral (Sa,R,R)-3·AgClO4 

complex (Scheme 16).[19] This transformation could not be 

performed in the presence of binap 1 complexes. 

  

Scheme 16. Enantioselective synthesis of endo-38 using (Sa,R,R)-3·AgClO4 

complex. 

Reaction conditions promoted by the chiral phosphoramidite 

(Sa,R,R)-3·AgClO4 complex must be taken in consideration 

whether a highly enantioselective transformation involving imino 

esters 4 and conjufated ketones is desired. 

 

2.6. 1,3-DC involving nitroalkenes 

Substituted 4-nitroprolinates obtained from the corresponding 

1,3-dipolar cycloadditions (1,3-DC) between glycine ester 

aldimines and nitroalkenes,[38] are important  inhibitors of α4β1-

integrin-mediated hepatic melanoma metastasis.[ 39 ] The most 

simple nitroprolines have been recently used as chiral 

organocatalysts in aldol reactions.[ 40 ] Silver(I) complexes 

(perchlorate and hexafluoroantimoniate) derived from chiral 

binap 1 or chiral phosphoramidites 2 or 3 afforded very complex 

reaction mixtures. 

However, the reaction between iminoester 4a and β-nitrostyrene 

39a afforded a very clean crude reaction product when dimeric 

[(S)-binap-AuTFA]2 was used as catalyst. The 

diastereoselectivity was not as high as in previous 

cycloadditions, generating a 20:80 endo:exo mixture of crude 

40aa despite running the reaction at _20 ºC (Scheme 17).[19]  

 

 

Scheme 17. Enantioselective synthesis of exo-40a using [(S)-binap-AuTFA]2 

complex. 

However, phosphoramidites were the ligands of choice for this 

1,3-DC.[41] The scope of the reaction took place with different 

nitroalkenes 39, employing various arylideneimino esters 4 

under the control of: a) the catalyst formed by phosphoramidite 

(Sa,R,R)-3 and Cu(OTf)2
[ 42 ] or by the catalyst originated by 

(Sa,R,R)-3 and AgOTf[43] or the combination of phosphoramidite 

(Sa,R,R)-3 with AgOBz.[43] The whole study was carried out 

methyl α-imino esters as metallo-azomethine ylide precursors 

because the presence of other different esters did not improve 

the results (Scheme 18). 

The study of the influence of the aryl substituent of the 

nitroalkene 39 for the 1,3-DC with methyl benzylidene glycinate 

revealed that, in general, higher chemical yields, exo-

diastereoselectivties and enantioselections in products exo-40 

were observed when the reactions occurred in the presence of 
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(Sa,R,R)-1·AgOBz rather than with the silver(I) or copper(II) 

triflates (61-92% yield, and up to >99% ee). 

When alanine, leucine, and phenylalanine derived imino esters 4 

were used as azomethine ylide precursors, an increment of the 

endo-diastereoisomers 40 was observed. Surprisingly this 

diastereoisomer was always obtained as a racemic mixture. The 

corresponding quaternized pyrrolidines exo-40 were 

satisfactorily isolated (>99:1 er) by employing (Sa,R,R)-

3·Cu(OTf)2 catalysis. 

With respect to the reaction of different methyl arylideneimino 

glycinates 4 with nitrostyrene 39a, the more sterically hindered 

o-tolyl imino group also favoured the generation of the endo-

isomer 40 but in less proportion in the case of AgOBz. For 

different aryl-substituted imino esters better results for 

compounds 40 were observed when (Sa,R,R)-3·AgOTf was the 

selected catalyst, rather than the processes mediated by the 

silver benzoate (70-81% yield, >99:1 ee). 

 

 

Scheme 18. Enantioselective synthesis of exo-40 using silver(I) or copper(II) 

and chiral phosphoramidite 3 complex. 

In Figure 13 we can observe a summary of the most important 

features of each catalytic complexes during their evaluation in 

1,3-DC between stabilized azomethine ylides obtained from  4 

and nitroalkenes 39. 

 

 
Figure 13. Recommended salts for the enantioselective synthesis of 
cycloadducts exo-40 in the presence of chiral phosphoramidite ligand 3. 

 

In general, for silver(I) or copper(II) catalysis the computed 

transition structures correspond to a stepwise mechanism,[44] in 

which the first step consists in a Michael addition of the enolate 

moiety in the N-metallated azomethine ylide to -nitrostyrene 

forming a zwiterionic intermediate that undergoes an 

intramolecular Mannich-like reaction to yield the final 

cycloadduct. Our results showed the predicted preference of the 

exo-approaches over the endo-ones due to the presence of OTf 

on the silver coordination sphere. It is noticeable that in all of the 

endo-approaches, their corresponding energies were higher. 

DFT calculations[13] on the (Sa,R,R)-3·Cu(OTf)2 catalyzed 

reaction to obtain 40a, showed that the coordination sphere of 

Cu(II) atom is saturated by a OTf moiety. The most stable 

transition structures located are depicted in Figure 14. (S,S)-

exo-TS1 was found to be about 1.5 kcal mol-1 more stable than 

its enantiomeric counterpart. These calculations support a 

computed erexo of about 92%, in good agreement with the 

experimental results. It is noticeable that the anion is blocking 

one of the enantiotopic faces of the dipole.[42] 

 
 

Figure 14. Main geometric features and relative energies (in kcal mol-1) of the 

computed transition structures associated with the first step of the reaction 

between 4a and (Sa,R,R)-3·CuOTf-II with nitrostyrene 39a computed at 

M06/LANL2DZ//ONIOM (B3LYP/LANL2DZ:UFF) + ΔZPCE level of theory. 

Bond-lengths are given in Å. The chiral ligand and OTf moiety are highligted in 

green and blue, respectively. 

 

In the example run with AgOTf the effective blockage of one 

prochiral face by the (Sa,R,R)-3·AgOTf catalytic system is 

pointed out by the energetic difference of 3.8 kcal mol-1 between 

(S,S)-TS1-exo and (R,R)-TS1-exo in favor to the former one. 

This energetic difference means a theoretical eeexo of about 99%, 

in good agreement with the experimental results. Here, the 

presence of the anion is not so crucial than in the example of the 

catalysis in presence of copper(II) metal. Here, the aromatic 

moieties of the ligand were blocking one of the two accessible 

fases (Figure 15). 

 
 

 
 

Figure 15. Main geometrical features and relative energies (in kcal mol-1) of 

transition structures associated with the first step of the 1,3-DC reaction of 

imine 4a and -nitrostyrene 39a catalyzed by (Sa,R,R)-3·AgOTf. Distances are 
in Å. 

The influence of the benzoate anion vs. triflate anion can be 

explained by the assumption that benzoate (bulkier group than 

triflate) is oriented along the arylidene moiety of the dipole. Thus, 

a small π-stacking interaction is observed when 4a (R = H, Ar = 

Ph) is computed so, we think that a variation of this aromatic 

group implies that triflate anion is much less sensitive than the 

benzoate one.[45] 
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The existence of a stepwise mechanism moved us to search for 

the selective isolation of Michael-type addition compound 41aa. 

It was possible by performing the reaction at lower temperatures 

followed by an acidic-basic treatment. The syn-

diastereoselection was observed when silver benzoate was 

employed whilst the reaction in the presence of silver triflate 

failed. At -80 ºC equimolar amounts of compounds 40aa and 

syn-41aa were generated. Cyclic product 40aa was obtained in 

91:9 exo:endo ratio and 98% ee in 40% yield and the desired 

Michael-type adduct syn-42aa was isolated in 40% yield as 

unique diastereoisomer and with a 98:2 er (Scheme 19).[43] 

 

 

Scheme 19. Enantioselective isolation of syn-42aa using chiral 

phosphoramidite 3·AgOBz complex. 

 

We envisaged that products 43 (a series of nitropiperidines  

which are potent farnesyl-transferase inhibitors with promising 

antitumoral activity)[ 46 ] can be accessed through the 

enantiomerically enriched proline derivatives 40 by a ring-

expansion of their cyclic β-amino alcohol derivatives following 

the methodology developed by Cossy’s group.[47] Thus, crude 

nitroalcohol 44aa was obtained as optically pure compoud, in 

almost quantitative yield, after reduction with 

NaBH4/NaBH(AcO)3.[ 48 ] Finally, product 45aa could be 

synthesized in 77% overall yield by forming the tertiary amine 

with benzyl bromide and mesylation of the primary alcohol, 

taking place the corresponding ring expansion with complete 

retention of the configuration (Scheme 20).[43] 

 

 

Scheme 20. Synthetic approach to the potential farnesyltransferase inhibitor 
45aa from enantiomerically enriched exo-nitroprolinate 40aa. 

Further studies of many other applications of the nitroprolinates, 

different enantioselective 1,3-DC and the development of 

efficient chiral complexes are currently underway. 

3. Conclusions 

The appropriate chiral metal Lewis acid using binap and 

phosphoramidites as privileged ligands in 1,3-DC involving 

azomethine ylides was studied. According to the structure of this 

work, and starting from the reaction of maleimides 5 and imino 

eters 4, (S)-binap 1 is the most appropriate ligand together with 

AgClO4, or with AgSbF6 and even when [(S)-binap-AuTFA]2. In 

general the last two catalysts are much more useful for sterically 

hindered components giving endo-prolinates. By contrast the 

1,3-DC involving azlactones and maleimides is exclusively 

promoted by [(S)-binap 1-AuTFA]2. The employment of 

phosphoramidite (Sa,R,R)-3 together with AgClO4, was 

recommended for cycloadditions regarding acrylates. These 

reaction conditions were used to prepare the first generation 

GSK inhibitor of HCV. In addition, [(S)-binap-AuTFA]2 complex 

was the catalyst of choice for the synthesis of the second 

generation GSK inhibitor of HCV. BPSE 25 and imino esters 4 

afforded the best endo-enantioselections using (S)-binap 1 with 

AgSbF6 rather than with  AgClO4, and several examples were 

improved by the employment of dimeric [(S)-binap 1·AuTFA]2. 

Both fumarates and enones could be successfully employed in 

the 1,3-DC with imino esters 4 in the presence of chiral 

phosphoramidite (Sa,R,R)-3 complex. Nitroalkenes deserved 

special attention because they could be efficiently transformed in 

enantiomerically enriched exo-nitroprolinates. Chiral 

phosphoramidite (Sa,R,R)-3 was the best chiral ligand 

modulating its activity employing several metal salts such as: a) 

AgOBz, appropriate for different substituents bonded at the β-

position of the nitrostyrene; b) AgOTf, suitable when the aryl 

substituent (5 position) was modified; c) Cu(OTf)2, adequate 

when α-substituted imino esters were involved in the 

cycloaddition. The final and noticeable aspect of this tunable 

methodology was the valuable applications found in the 

synthesis of important biologically active compounds. Thus, the 

already mentioned enantioselective synnthesis of GSK antiviral 

agents against HCV were described for the first time. In addition, 

the preparation of a potentially active farnesyl transferase 

inhibitor as well as several alkaloid skeletons were reported. 

Experimental results matched with the corresponding 

computational data obtained. The processes were in general 

concerted with variable asynchrony, except the examples 

performed with acrylates and nitroalkenes, which operated via a 

stepwise mechanism. As main conclusion, chiral ligand (Sa,R,R)-

3 offered, in general the wider scope. Silver(I) cation was the 

most appropriate to carry on the control of the geometry of the 

dipole favoring secondary interactions with the dipolarophiles 

except for the nitroalkenes. The anion played also a very 

important role and should be optimized for each dipolarophile. 
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