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Abstract

Interactive Pattern Recognition (IPR) is an emergent framework in which the

user is involved actively in the recognition process by giving feedback to the sys-

tem when an error is detected. Although this framework is expected to reduce

the number of errors to correct, it may increase the time required to complete

the task since the machine needs to recompute its proposal after each interac-

tion. Therefore, a fast computation is required to make the interactive system

profitable and user-friendly. This work presents an efficient approach to deal

with IPR tasks when data has a sequential nature. Our approach includes some

computation at the very beginning of the task but it then achieves a linear com-

plexity after user corrections. We also show how these tasks can be effectively

carried out if the solution space is defined with a Regular Language. This fact

has indeed proven to be the most relevant factor to improve the efficiency of the

approach. Several experiments are carried out in which our proposal is faced

against a classical search. Results show a reduction in time in all experiments

considered, solving efficiently some complex IPR tasks thanks to our proposals.
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1. Introduction

Current Pattern Recognition systems are far from being error-free [1, 2, 3, 4].

If a high or full accuracy is an important issue, an expert supervisor is required

to correct the mistakes. Traditionally, these corrections are performed offline:

the machine proposes its solution and the supervisor corrects the output off the5

system error by error. The Interactive Pattern Recognition (IPR) framework

involves actively the user in the recognition process so as to reduce the effort

needed in the previous scenario [5]. A common IPR task is developed as follows

(see Fig. 1):

1. An input is given to the system.10

2. The system proposes a solution.

3. If some error is found, the user gives feedback to the system.

4. Taking into account the new information, the system proposes a new so-

lution and returns to the previous step.

(1)

(2)

(3)

Figure 1: General scheme of an IPR task.

Note that the main goal of IPR is not to make the user learn how to perform15

such task, which would be more related to fields like Interactive Learning [6],

but to complete the work saving as much as possible the available resources.

Including a supervisor in the recognition process provides news ways to im-

prove the efficacy of the system [7]. For instance, corrections provide error-free

parts of the solution, which can be helpful to be more accurate in the remaining20

one, as well as new context-related labeled data.

2



However, the most important difference when dealing with an IPR task is

the performance evaluation. Since the user is considered the most valuable

resource, the performance of an IPR system must be related to the user effort

needed to complete the task. This is commonly measured as the number of user25

interactions, regardless the nature of them [8].

Theoretically, this framework reduces the number of corrections that would

have to be done in a non-interactive scenario. Nevertheless, empirical studies

with real users, such as those carried out under Transcriptorium [9] or Cas-

MaCat [10] projects, showed that the interactive approach may entail some30

drawbacks from users’ point of view. For instance, if the human-computer

interaction is not friendly enough or the user is not used to working in an in-

teractive way, the time and/or effort needed to complete the task could even be

worse than in the conventional, non-interactive post-editing scenario.

This work focuses on the case of pattern recognition tasks with a sequential35

nature –that is, outputs are sequences of symbols from a discrete alphabet–,

which can also be called Sequential Pattern Recognition, or Interactive Sequen-

tial Pattern Recognition (ISPR) if they are developed under the interactive

framework. Within this context it is often assumed that the user corrects the

first error found following a specific order (eg. left-to-right order). Note that40

this is not a strong constraint because human interpretation of sequences usually

follows this kind of order. We assume that the user acts like an oracle, that is,

she is able to detect any error and does know the actual sequence being pursued.

It is important to stress that this is not always the real scenario. Reader may

check the book of Toselli et al. [5] for a broader discussion on this topic.45

Table 1 shows an example of this scenario for the Optical Character Recog-

nition (OCR) task over the ESPOSALLES database [11] (the symbol # means

user accepts the proposed hypothesis). Note that the first hypothesis contains

4 errors but the interactive approach only needs 2 corrections.

Within this context, the main advantage of the left-to-right assumption is50

that after each feedback, the machine is given an error-free prefix because the

correction on a specific symbol implicitly validates the previous ones. Oncina
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Input

Output lena defuncts

Machine lena defmds

User u

Machine lena defunds

User c

Machine lena defuncts

User #

Table 1: Example of first error correction as human feedback in an OCR task (input from the

ESPOSALLES database [11]).

[12] developed the optimum strategy to minimize the number of user corrections

in this framework, and some works have been already carried out applying this

strategy [13].55

This algorithm needs to consider every single hypothesis that is feasible for

the task. Current technologies are typically based on structures that compress

the space of solutions to make them more manageable, but in which many

hypothesis are pruned. Under the interactive case, this provokes that the opti-

mum criterion can not properly followed. In our work we focus on tasks that60

can be modeled with structures that are able to contain the complete space of

hypothesis. Consequently, the decoding complexity increases.

From the practical point of view, it must be taken into account that the

user has to wait the system reply after giving feedback. This fact arises the

need of any IPR system to assure a fast response process. If each feedback65

provided by the user results in a large amount of time before the system gives

the next hypothesis, the process becomes very tedious and the classical, offline

scenario may be preferred despite of needing more corrections. Unfortunately,

seeking the most profitable hypothesis on our framework may take a high load

of computation.70
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For all above, this work proposes an efficient approach to deal with these

tasks. Once the problem is modeled within a weighted-graph-alike structure,

the weights of this structure are efficiently recomputed so that each step of

the ISPR scenario becomes linear with respect to the size of the uncorrected

segment. Although this approach may consume additional resources at the very75

beginning of the task, it is worth when taking into account the whole interactive

process. Experimentation shows that there are some heavy tasks that might

become unfriendly if they are not approached with our proposal, which allows

computing them more efficiently.

On the other hand, we assume that many of the SPR tasks have an un-80

derlying language model. The inclusion of a language model in the recognition

process has demonstrated its utility in several works and applications [14, 15].

Within this context, Regular Languages (RL) are common ways to represent

such models [16]. We will show in this paper that the proposed approach suits

especially well when the language model is represented by an underlying RL85

since it allows modeling the problem with a better and more compact represen-

tation.

The rest of the paper is as follows: Section 2 provides background and

problem statement of the ISPR framework stated here. Development of our

approach is described in Section 3, which includes additional explanation of90

the RL case. Section 4 shows the experimentation, in which our approach is

faced against the conventional search. Conclusions and future work are drawn

in Section 5.

2. The ISPR framework

Let Σ = {σ1, σ2, . . . , σ|Σ|} be a non-empty set of symbols called alphabet.95

We call sequence each element w = w1w2 · · ·wn, wi ∈ Σ. The (infinite) set of

sequences is denoted as Σ∗. Let us use a, b, . . . for symbols and s, t, . . . for

sequences. We denote the concatenation of s and a (s and t) as sa (st). Let si...j

denote the sub-sequence of s from ith symbol to jth symbol (both inclusive).
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We use λ to denote the empty sequence, which fulfills λa = a = aλ.100

The task of an SPR system is to guess the correct sequence ŝ ∈ Σ∗ codified

in each input received. Typically, the set of possible or allowed solutions (Ω) is

a subset of the whole space (Ω ⊆ Σ∗).

The optimum strategy to reduce the error rate –assuming a zero-one loss

function– is to propose the hypothesis ĥ for which the posterior probability105

given input x is maximum (MaxPost) [17]:

ĥ = arg max
h∈Ω

Pr(h|x) (1)

We assume that, if a user is involved actively in the recognition process,

the output is corrected sequentially until reaching the correct solution. Within

the ISPR framework considered in this work, these corrections will consist in

providing the correct symbol of the first error found following a left-to-right110

order. Hence, at each iteration the system receives an error-free prefix t –that

is, t is a prefix of the correct solution for the task– and proposes a new solution.

The MaxPost strategy has to be modified to handle this new information:

ĥ = arg max
h∈Ω

Pr(h|x, t) (2)

This strategy is known to minimize the error rate after each user interaction.

Nevertheless, the main goal here is not to reduce error rate at each iteration115

but to reduce human effort thorough the whole process. If this human effort is

measured as the number of user interactions needed to complete the task, the

optimum criterion to minimize user corrections (MinCorr) can be computed by

means of an incremental strategy. Let Pr(uΣ∗) (=
∑
s∈Σ∗ Pr(us)) denote the

probability of the prefix u. Then, the best hypothesis ĥ = ĥ1 · · · ĥn following120

MinCorr strategy is given by:

ĥi = arg max
hi∈Σ

Pr(ĥ1...i−1hiΣ
∗|x, t) (3)

There is no need of knowing the size of the output in advance, but the

strategy stops when a particular symbol (eg. $) is reached. This strategy was
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developed by Oncina [12]. MinCorr constructs the output incrementally by

choosing at each step i just one label, which is concatenated to the accumulated125

sequence ĥ1...i−1. The label chosen is that which leads to the most probable

prefix. Reader is referred to the original work for further analysis and demon-

stration of optimality. Note that MaxPost strategy (Eq. 2) is actually different

to this optimum search, despite being commonly used as an approximation [18].

2.1. Modeling an ISPR task130

This section describes a structure to model an ISPR task. We also present

the computation of the optimum strategy within this structure. The model

presented in this section will be used along the following sections.

Let us use an example to guide the explanation. Let us consider an SPR

task such that the vocabulary is Σ = {a, b} and the set of allowed solutions is135

defined as Ω = {s : s ∈ Σ∗ and s does not contain two consecutive b}. At some

instance, an input x is received. For the sake of simplicity in the explanation,

we assume that input is perfectly segmented into three pieces x1, x2 and x3.

Then, Table 2 shows a possible mapping of this input onto probabilities.

Σ Pr(·|x1) Pr(·|x2) Pr(·|x3)

a 0.4 0.3 0.6

b 0.6 0.7 0.4

Table 2: Probability distribution over some input x = (x1, x2, x3).

For any given input, we assume that the solution space is restricted to a dis-140

crete set of sequences ({aaa,aab,aba,baa,bab} in our running example). There-

fore, the task can be modeled with a weighted directed acyclic graph. In this

context, these graphs are usually referred to as Word Graphs [5] or Word Lat-

tices [19]. It is common to find this kind of structures in most SPR tasks such as

Machine Translation [20], Automatic Speech Recognition [21] or Handwritten145

Text Recognition [22], since the solution space can be represented in a compact

way.
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Given their widespread use, each author may customize these structures

to fit the problem at hand. For example, the weights considered within these

graphs are usually unconstrained. In this work, however, we assume that the150

weights represent probabilities and, therefore, the values must fall in the range

[0, 1].

Definition 1. A Word Graph (wg) is defined as a 6-tuple (V,A,Σ, p, v0, F )

such that:

- V = {v0, . . . , v|V |} is the set of vertices.155

- Σ is the alphabet.

- A ⊆ V × Σ × V is the set of edges. A restrictive condition holds over A,

for which cycles are not allowed (neither loops nor cycles involving several

edges).

- P : A → [0, 1] is the probability function over the edges. P((v, a, v′)) = 0160

can be interpreted as “no transition from v to v′ labeled with a”.

- v0 represents the initial vertex.

- F ⊆ V is the set of accepting vertices. Without loss of generality, we

assume that there are no out-transitions from accepting vertices.

A path is a sequence π = v0a1vi1a2 . . . anvin , where σ(π) = a1 · · · an, ai ∈ Σ.

The probability of a path is defined as follows:

P(π) =

n∏
i=0

P((vi0 , ai+1, vi1)) (4)

Let Π(s) = {π : σ(π) = s} denote the set of paths that output a symbol

sequence s ∈ Σ∗. The probability of a symbol sequence is therefore computed by

summing over the probabilities of all the paths of this set:

P(s) =
∑

π∈Π(s)

P(π) (5)
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For instance, Fig. 2 shows a graphical representation of a wg that could165

have been built from our example input x. This is indeed a very simple ex-

ample, which has been chosen in order to clarify the subsequent developments.

Note, however, that if no assumption is considered about the vocabulary, the

search space can become exponentially large because it is necessary to keep the

history of each path in order to know whether the sequence must be accepted.170

Nevertheless, we will see below that the complexity of the wg can be reduced

hugely if the vocabulary is defined by a Regular Language. This knowledge

allows building a more compact wg by merging those vertices that represent

equivalent histories and pruning those edges that lead to strings rejected by the

language.175

We say that π = v0a1vi1a2 . . . anvin is an accepted path if, and only if,

vi0 = v0 and vin ∈ F . We will use ΠA to denote the set of accepted paths. Due

to this task constraints, the probability of a path is computed as a function of

the language model. For the sake of clarity, we will nullify a path depending

whether or not it belongs to ΠA. We use P̌ to denote this function, which is180

defined as:

P̌(π) =


∏n
i=0 P((vi0 , ai+1, vi1)), if π ∈ ΠA

0, otherwise

(6)

The case in which a path does not belong to the set of accepted sequences

can be modeled by giving it a null a priori probability. Quite often, however,

a priori probabilities are based on smoothed language models which assign a

non-null probability to any sequence [23]. Either ways, what it is important to185

keep in mind is that the wg is not defining a proper probability distribution

over the set of sequences. We shall revisit this issue later.

The problem after building such structure is how to choose a hypothesis to

propose as solution to input x. For instance, MaxPost criterion would give the

sequence bab because it is the one with the highest score. On the other hand,190

MinCorr would give aab (Table 3 shows the trace of this computation for the
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v7

v8

v9

v10

v11

v12

v13

v14

v3

v4

v5

v6

v1

v2

v0start

a:0.4

b:0.6

a:0.4

b:0.6

a:0.4

b:0.6

a:0.4

b:0.6

a:0.4

b:0.6

a:0.4

b:0.6

a:0.4

b:0.6

Figure 2: Graphical representation of the wg with respect to distribution of Table 2 and the

set of allowed sequences.

first proposal).

Let us suppose that our input is represented by the wg showed above but the

actual output sequence is aaa. Table 4 shows a complete trace of the interaction

between machine and user (which is devoted to giving the next error-free prefix),195

following both MinCorr and MaxPost criteria, to complete task assuming such

output sequence.

In this case, MinCorr just needs one correction, whereas MaxPost needs

three. However, what it is interesting to know is the expected number of cor-

rections required for each sequence (the number of corrections weighted by its200

probability), and taking into account the entire task, knowing what criterion has
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i h1...i−1 P̌(h1...i−1aΣ∗) P̌(h1...i−1bΣ
∗)

1 λ 0.256 0.24

2 a 0.16 0.096

3 aa 0.064 0.096

4 aab 0 0

Table 3: Trace of the execution of the MinCorr criterion for the first proposal (no error-free

prefix is known).

the minimum expected number of corrections. Table 5 depicts both the number

of corrections and its expectancy obtained by each criterion assuming each of

the allowed sequences. Statistics about the error rate are also included. Note

that the probability of the sequence is given by the wg after normalizing them205

all to sum up to 1. As commented above, MinCorr is the optimum criterion

when pursuing a minimum number of user corrections although MaxCorr is still

the best option to reduce the error rate.

If we assume that our task is always modeled within a wg like that de-

scribed here, computing MinCorr is equal to compute, from a current vertex210

at depth i, which of its out-transitions is able to reach more probability, i.e.

arg maxa∈Σ P̌(h1...i−1aΣ∗).

In a trivial case, in which every single sequence belongs to the solution space

(Σ∗ = Ω), the probability of the edges would be exactly what it is needed. In

this case, the probability reached following any vertex is 1, and the decision lies215

in the probability of the edges themselves. Thus the strategy becomes of linear

complexity. Nevertheless, when some sequences are nullified (or its probability

is weighted), it is unknown how much probability is achieved following an edge

unless adding up the probabilities of all accepted paths that pass through that

vertex. The underlying difference with respect to the trivial case is that P̌ is not220

defining a proper probability because the sum over all the accepted sequences

is not 1.

Under this circumstance, classical brute-force MinCorr computation requires
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y = aaa

MinCorr MaxPost

Machine (h) aab Machine (h) bab

User prefix (p) aaa User prefix (p) a

Machine (h) aaa Machine (h) aba

User prefix (p) # User prefix (p) aa

Machine (h) aab

User prefix (p) aaa

Machine (h) aaa

User prefix (p) #

Table 4: Trace of the human-computer interaction to complete the task if the actual sequence

is aaa, considering both MinCorr and MaxPost criteria. # represents that user accepts the

sequence.

an asymptotically exponential time with respect to the input. In the interactive

framework proposed by Alabau et al. [24], computing the most probable prefix is225

reduced to a forward-backward computation over the graph. However, propos-

ing a complete hypothesis needs to perform this computation several times.

Worse still, after each user interaction this computation has to be repeated.

Eventually, the whole process may become very inefficient.

Our proposal to solve this situation is to make the appropriate changes in230

the probabilities of the edges so that P̌ becomes a canonical distribution. It

is easy to see that the probability over paths after removing those that do not

fulfill the constraints must be obtained by uniformly distributing the probability

loss among all the accepted ones. In other words, the probability of an accepted

path has to be multiplied by the inverse of the probability of all accepted paths.235
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Corrections Error

MinCorr MaxPost MinCorr MaxPost

y p(y) No. Expect. No. Expect. No. Expect. No. Expect.

aaa 0.13 1 0.13 3 0.39 1 0.13 1 0.13

aab 0.19 0 0 2 0.38 0 0 1 0.19

aba 0.19 1 0.19 1 0.19 1 0.19 1 0.19

baa 0.20 2 0.40 1 0.20 1 0.20 1 0.20

bab 0.29 1 0.29 0 0 1 0.29 0 0∑
y 1 1.01 1.16 0.81 0.71

Table 5: Number of corrections (No.) and its expectancy (Expect.) for each of the allowed

sequences of our running example considering both MinCorr and MaxPost criteria. Statistics

about the error rate are also included.

That is,

PN(π) =
P̌(π)∑

π′∈ΠA
P̌(π′)

,∀π ∈ ΠA (7)

Thus normalized probability distribution PN over accepted paths would be

obtained. Note that this is not relevant when dealing with a conventional SPR

task: since all sequences are weighted by the same value, MaxPost criterion is

not affected at all. This is why previous works focused on the non-interactive240

case might have not pay attention to the fact of not defining canonical proba-

bility distributions.

Finally, it is also important to stress that obtaining these new probabilities

by a brute-force strategy entails exponential computation with respect to the

depth of the wg. We propose in this work an approach to deal efficiently with245

this interactive scenario. Our idea is to build an alternative structure in which

probabilities are normalized properly and efficiently. Although this may entail

some additional cost at the very beginning of the task, we will show that using
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this new structure constitutes a significant save during the whole ISPR process.

3. An efficient strategy for ISPR250

In next lines we present an efficient approach to model an ISPR task so

that the computation of the optimum criterion (MinCorr) becomes trivial. We

propose to build a new wg, from now on referred as normalized wg, in which

the probability distribution is readjusted as commented in Eq. 7.

This new structure can be built such that its topology is equal to the original255

wg that describes P̌, and the probabilities of the edges are obtained by making

appropriate changes in the probabilities of the original edges. This process can

be efficiently performed with the strategy described below.

Let (v, a, w) ∈ A be an edge of the wg that goes from vertex v to vertex w

with label a, and let p((v, a, w)) be the probability assigned to that edge. We260

will denote as S(v) the achievable probability of a vertex, that is, the sum of

the probabilities of all the paths that start at vertex v. A recursive definition

of this function becomes:

S(v) =

1, if v ∈ F∑
(v,a,w)∈A P((v, a, w)) · S(w), otherwise

(8)

Note that, as (by definition) final vertices do not contain ongoing edges, the

probability that can be reached from a final vertex is 1, i.e., no probability loss.265

In the rest of vertices, this probability is the sum of the probabilities achieved

by following each possible path.

Now, the probability of each edge has to be recomputed. We fix the new

probability of an edge, denoted as PN, as its original one weighted by the achiev-

able probability of its destiny vertex. To satisfy probability constraints, the sum270

of the probabilities of the edges of a vertex must be 1 so all of them are divided

by a normalization factor:

PN((v, a, w)) =
P((v, a, w)) S(w)∑

(v,a,w′)∈A P((v, a, w′)) S(w′)
=

P((v, a, w)) S(w)

S(v)
(9)
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This simple procedure is redistributing the probability loss caused by those

sequences that are not accepted due to the problem constraints. What it is

made is distribute this loss among all the accepted paths by assigning them275

a probability equal to its original one divided by the total probability. As

mentioned above, when there is no loss, the total probability is 1 and this

process would not change the probability of the edges.

It is trivial to check that those path that do not belong to ΠA have a null

probability in PN. Therefore, Eq. 4 and 6 are equal with respect to PN. Now we280

have to show that the way PN is calculated implies a well-defined distribution.

That is, PN(s) ≥ 0 ∀s (evident) and
∑
s PN(s) = 1.

Lemma 1. The sum over the probabilities of all accepted paths in the normalized

wg is 1: ∑
π∈ΠA

PN(π) = 1 (10)

Proof. Let π = vπ0
a1vπ1

a2 . . . anvπn
denote an accepted path over the wg.

Then,

∑
π∈ΠA

PN(π) =
∑
π∈ΠA

n−1∏
i=0

PN((vπi
, ai+1, vπi+1

))

=
∑
π∈ΠA

P̌(π)
1

S(vπ0
)

=
∑
π∈ΠA

P̌(π)
1

S(v0)

= S(v0)
1

S(v0)
= 1

(11)

285

We also have to show that PN models what it is pursued (Eq. 7).

Lemma 2. The new probability distribution PN of the wg holds that

PN(π) =
P̌(π)∑

π′∈ΠA
P̌(π′)

,∀π ∈ ΠA (12)
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Proof. Let π = vπ0a1vπ1a2 . . . anvπn be an accepted path of the wg. The prob-

ability of π is originally computed as

P̌(π) =

n−1∏
i=0

p((vπi
, ai+1, vπi+1

)) (13)

The probability of the same path in PN is

PN(π) =

n−1∏
i=0

PN((vπi , ai+1, vπi+1))

=

n−1∏
i=0

P((vπi
, ai+1, vπi+1

))
S(vπi+1

)

S(vπi
)

= P̌(π)

(
n−1∏
i=0

S(vπi+1)

S(vπi
)

)

= P̌(π)
S(vπn

)

S(vπ0)

= P̌(π)
1

S(vπ0
)

= P̌(π)
1∑

π′∈ΠA
p̂(π′)

(14)

Because of the wg definition, every accepted path starts in the same vertex

(v0) so the value of S(vπ0
) is the same for all of them. Therefore, it equals the

sum of the probabilities of all accepted paths due to Eq. 8.

The previous normalization process can be performed efficiently over the290

wg itself by following a Dynamic Programming scheme, as explained in [25].

Figure 3 shows the result of this process for the wg given in Fig. 2. One can

check that probabilities of the edges match the normalized values showed in the

trace of MinCorr criterion (see Table 3).

With this new probability distribution over the paths, the optimum hypoth-295

esis can be built by just choosing at each vertex the edge with the highest

probability. Although this approach is greedy, after the normalization process

the complexity is reduced to a linear computation as we have to go across the

depth of the wg only once.
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Figure 3: Example of wg after normalization. Values inside the vertices represent S function.

3.1. Special case: ISPR with RL300

Next lines describe how the efficient approach presented in the previous

section suits especially well when we assume that any accepted sequence belongs

to a certain regular language R –that is, Ω ≡ L(R)–. If this RL is known, we

can take advantage of any of its equivalent models such as regular expressions or

finite-state automata to improve the performance of the system. Our approach305

makes use of a Deterministic Finite-State Automaton representation of such

languages.

Definition 2. A Deterministic Finite-State Automaton (Dfa) can be defined

as a 5-tuple (Q,Σ,δ, q0, F ) where

- Q is the set of states310
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- Σ is the alphabet

- δ : Q× Σ→ Q is the transition function

- q0 is the initial state

- F ⊆ Q is the set of accepting states

A sequence s belongs to the language defined by the Dfa if, and only if,315

δ∗(q0, s) ∈ F .

The task can again be modeled on a wg like that defined in the previ-

ous section. However, taking advantage of the Dfa, the construction of the

structure can be reduced to Algorithm 1. This operation is usually referred as

composition [26].320

The algorithm is devoted to building a graph with vertices V = {v0, . . . , v|V |}.

It generates as many vertices as possible combinations of states of the automa-

ton (|Q|) and positions in the input sequence (n+ 1). Let vi,j denote the vertex

that represents the joint of the ith state of the automaton and the jth position

of the sequence. Each arc is denoted as a 3-tuple (s, σ, d) with s ∈ V being the325

source vertex, σ ∈ Σ being the emission symbol and d ∈ V being the destiny

vertex. The probability of such arc is defined as P((s, σ, d)) ∈ [0, 1]. Basically,

the algorithm joins each pair of vertices (vi,j ,vk,j+1) with an emission symbol

σ if, and only if, δ(i, σ) = k. The associated probability is given by the value

Pr(σm|xj). Finally, a vertex belongs to F if, and only if, it represents the joint330

of a final state of the original wg and an accepting state of the Dfa.

The complexity of this procedure is O(|Q|n). To better illustrate its behav-

ior, let us show a simple example: given the Dfa of Fig. 4 and the probability

distribution showed in Table 6, a wg like that of Fig. 5 is obtained (dashed

elements can be removed after pruning unreachable and rejected states). The335

vertex qi,j represents the state qi of the automaton in the position j of the input

sequence.

As mentioned at the beginning of this section, our approach suits perfectly

in this case. Note that this wg contains the minimum number of vertices needed

18



Data: (Q,Σ, δ, q0, FD) : Dfa, Pr(·|x), n : N

Result: (V,A, p, v0, FP ) : wg

V = {1, . . . , |Q|} × {1, . . . , n};

v0 = V0,0;

A = ∅;

for i ∈ Q do

for j = 1 : n+ 1 do

for σ ∈ Σ do

A = A ∪ (vi,j , σ, vδ(i,σ),j+1);

P((vi,j , σ, vδ(i,σ),j+1)) = Pr(σ|xj);

end

end

end

FP = {vi,j : j = n+ 1, qi ∈ FD}
Algorithm 1: Building a wg modeling the problem from the Dfa.

q0start q1

a

b

b

Figure 4: Example of Dfa defining the RL a∗bb∗

Σ Pr(·|x1) Pr(·|x2) Pr(·|x3) Pr(·|x4)

a 0.4 0.7 0.2 0.3

b 0.6 0.3 0.8 0.7

Table 6: Example of probability distribution over some input x = (x1, x2, x3, x4).
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v0,0start v0,1 v0,2 v0,3 v0,4

v1,0 v1,1 v1,2 v1,3 v1,4

a:0.4

b:0.6

b:0.6

a:0.7

b:0.3

b:0.3

a:0.2

b:0.8

b:0.8

a:0.3

b:0.7

b:0.7

Figure 5: Example of wg from Dfa of Fig. 4 and probability over the input of Table 6.

v0,0start v0,1 v0,2 v0,3

v1,1 v1,2 v1,3 v1,4

a:0.72

b:0.28

a:0.74

b:0.26

b:1

a:0.2

b:0.8

b:1

b:1

b:1

Figure 6: wg of Fig. 5 after normalization.

to model the problem as long as the Dfa is the minimum one to represent the340

language.

Once the problem is modeled on the wg, it can be normalized efficiently

as described in the previous section. For instance, Fig. 6 shows the result of

applying this normalization over the wg of Fig. 5.

It must be kept in mind that this approach can also be applied when the out-345

put is defined by a Deterministic Push-Down Automata (Dpda), which defines a

subset of the Context-Free Languages (Deterministic Context-Free Languages).

The difference is that the possible vertices in this wg would be defined by both

the number of states of the Dpda and the size of the input as well as the possible

configurations of the stack, since each combination of Dpda state and content350

of the stack has to be considered as a single state.
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4. Experimentation

The experimentation section is aimed mainly at showing the complexity

reduction achieved by using our approach. This complexity will be measured as

the time needed by the machine to give the first hypothesis 1. This indicator355

gives a maximum time for single proposals since the first hypothesis is expected

to be which more computation requires. When using our proposal, this time

will include the normalization process.

Thorough all the experiments, the input is a sequence of features and the

task consists in guessing the correct output sequence. If the sequence proposed360

by the machine is incorrect, the shortest correct prefix of the solution is given

to the system before recomputing the next hypothesis. This way we simulate a

user correcting the first error found, as assumed in our scenario. Note that user

interactions are simulated in order to perform a comprehensive experimentation,

as done in previous works [18].365

We will compare our approach against that based on a dynamic programming

Forward-Backward (DP-FB) computation [24]. In that case, the probability of

a prefix sa is given by

P(saΣ∗) =
∑

(v,w)∈V 2

φs(v) P((v, a, w)) β(w) (15)

where φs(v) represents the probability of parsing from the initial vertex to vertex

v (forward computation) taking into account only those paths that match s. On

the other hand, β(v) denotes the probability that can be achieved from vertex v

to the final vertices (backward computation). On the contrary, the brute-force

strategy has been avoided in this comparison since it is clearly too inefficient.370

4.1. Experimentation with synthetic data

In the first experiment, synthetic data will be used. For this case, we assume

that our solution space is given as a list of sequences and not in the form of

1The machine used in all the experiments was an Intel Core i5-2400 CPU at 3.10GHz with

4 GB of RAM
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Figure 7: Time elapsed (milliseconds) for computing the first hypothesis with our normaliza-

tion (Normalized) of the wg and with the dynamic programming Forward-Backward (DP-FB)

scheme. Values presented are obtained averaging 1000 executions.

regular language. Although each finite set of sequences can be modeled as a

regular language (by their union), it is not interesting for our experimentation375

to see it in that way.

Let us use an alphabet that consist of just two symbols and let Ω consist of

a random subset of the set of possible sequences (2n). In this experiment, we es-

tablished that at least 75% of the complete set is included. For the experiments,

we first generate randomly the probability distribution of each symbol in each380

place of the sequence. Then, the sequence that must be guessed is randomly

chosen accordingly to that distribution.

Figure 7 shows the average response time for computing the first hypothesis

with our normalization of the wg and with the DP-FB computation with respect

to the size of the input. Although curves reflect the exponential growth of the385

wg, results report a noticeable difference of time between these approaches as

the size of the task is increased. The curves of the normalization approach show

a noticeable lower slope, reflecting the reduction of time complexity pursued.
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q0start

q1

q2

q3

a

b

a

b

a

b a

b

Figure 8: A toy Dfa for the synthetic experimentation

4.2. Experimentation with synthetic data: RL case

Let us establish a setup like that of the previous experiment. Nevertheless,390

let us now suppose that an underlying RL is defining our solution space. Any

form of this knowledge can be put into a Dfa. For instance, let us use the

(rather small) synthetic automaton of Fig. 8.

This Dfa can be used to define the solution space Ω as the sequences of

such size that belongs to the language. However, we can model both the input395

and the Dfa in the same wg following the procedures explained in Section 3.1.

These two ways of approaching the task (with or without RL) will be confronted

experimentally. In addition, both of them with and without normalizing the

resulting wg will be analyzed as well.

Average time results of the four combinations considered after running 1000400

repetitions with different probability distributions over the strings are shown in

Fig. 9. Note that both x-axis and y-axis are represented in a logarithmic scale.

As introduced before, taking into account the RL is the most relevant factor

for an efficient computation. Results show that large sequences can only be

handled by building the wg in combination with the RL. Note, however, that405

even in that case the normalization procedure is able to improve the efficiency

with respect to the dynamic programming approach, yet to a much lesser order

of magnitude.
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Figure 9: Time elapsed (milliseconds) for computing the first hypothesis with our normaliza-

tion (Normalized) of the wg and with the dynamic programming Forward-Backward (DP-FB)

scheme considering or not the construction with a Regular Language (RL). Values presented

are obtained averaging 1000 executions.

4.3. Online Optical Music Recognition case

The last experiment is carried out on a real task of Optical Music Recognition410

(OMR). The task of OMR is quite similar to the Optical Character Recognition

with music symbols instead of alphanumeric characters [27, 28]. From the point

of view of our experimentation, this task is highly interesting because musical

sequences can be of an arbitrary length, as the number of bars is not limited.

In addition, given a time signature, the set of allowed musical symbols within415

a bar can be defined by a Dfa. We will restrict ourselves to the use of a Dfa

modeling a Common Time time signature (4
4 or S) so that the size of the wg

depends only on the size of the input sequence. Specifically, this Dfa consists

of 220 states and 861 transitions.

As in the OCR field, the task can be applied to either data extracted from im-420

ages (offline modality) or pen-based collected strokes (online modality). We will

take advantage of the Handwritten Online Musical Symbols (HOMUS) database
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Figure 10: An example of rendered input consisting of the sequence (G Clef, 4 4 Time, Half

Note, Quarter Note, Barline, Whole Note, Barline).

[29] to set an online OMR task. The HOMUS consists of 15200 samples from dif-

ferent writers, each one providing 152 symbols spread over 32 common musical

symbol classes.425

In addition to the computational time, we will confront experimentally the

comparison between interactive and classical (non-interactive) scenario in terms

of user corrections. We intend to emphasize the human effort reduction that

can be achieved by using the interactive framework and how this reduction

may require the approach proposed in this paper. The interactive scenario will430

be addressed with the MinCorr criterion. In the non-interactive scenario, the

problem will be tackled using the MaxPost criterion since it is the optimum

way to reduce the error rate. Nevertheless, both scenarios will be evaluated by

counting the number of corrections needed in each of them. Note that in the

non-interactive case, the number of corrections needed is just the number of435

errors in the first hypothesis proposed, which would be the case in a classical

post-editing scenario.

At each execution, a random sequence is extracted by a random walk over

the Dfa. Each symbol of the sequence is substituted by test samples from the

HOMUS and the rest of the samples are used as training set. Figure 10 shows440

an example of image, rendered from the input stroke sequence, whose actual

output sequence is (G Clef, 4 4 Time, Half Note, Quarter Note, Barline, Whole

Note, Barline).
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4.3.1. Segmentation-driven scenario

We first consider an scenario in which it is known how to group strokes to445

form single musical symbols. Thus, the task can be solved by assigning one

label to each group of strokes, as long as the language model is fulfilled.

To map each series of strokes onto symbol probabilities, the Nearest Neighbor

rule will be used as non-parametric estimator [30]. The dissimilarity used is

Dynamic Time Warping (DTW), given its good results for classifying these450

samples [29]. To map an input x into probabilities of being each of the possible

symbols of the task (Σ), we resort to the following equation:

p(w|x) =
1

minx′∈Tw
d(x, x′)n + ε

1∑
w∈Σ

1
minx′∈Tw

d(x,x′)n+ε

, ∀w ∈ Σ (16)

where Tw is the training set for symbol w and ε is a non-zero value provided

to avoid infinity values. Value n is a parameter that defines the peakness of the

probability. In our case, it was fixed to 10 based on a preliminary experimenta-455

tion. The second term is just a normalization factor to make probabilities sum

up to 1.

Figure 11 reports the recognition results of these experiments. It can be

seen the profit of using an interactive scenario against the classical one in which

the task is completed offline. These results clearly support the use of the IPR460

scenario whenever it is possible.

Concurrently, DP-FB and normalized approaches to compute the MinCorr

criterion have been compared in terms of time response. In this case, only those

which include the RL are used since the previous experiment showed that they

are the most efficient ones. These computational time results are plotted in465

Fig. 12. One can see that the size of the wg affects noticeably to the complex-

ity of the task. The bigger the graph, the higher the time of response. It is

important to stress that the task become unpractical for the greatest automa-

ton, even with sequences relatively small, when no normalization is performed.

In turn, the strategy that normalizes the wg obtain a faster time of response in470

all cases considered.
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Figure 11: Segmentation-driven scenario: average number of user corrections needed to com-

plete the recognition task comparing interactive and non-interactive post-editing scenarios.

Values presented are obtained averaging 1000 executions.

These results reflect that a profitable way of facing this interactive task is

by using the strategy developed in this paper, which allows a more efficient

computation.

It should be emphasized that this task would be very inefficient even for short475

musical sequences without the RL-based approach proposed since the solution

space would be of order 32n (being n the size of the sequence).

4.4. Segmentation-free scenario

Another point of view of the same task, much closer to a real system, is

that in which the input is not segmented into symbols but a sequence of strokes480

is received. Note that strokes are easily isolated because they are bounded by

pen-up and pen-down actions of the e-pen.

In this case, the vertices of our wg would represent strokes (the ith vertex

indicates the state after computing from the first input stroke to the ith one).

The point here is that the same musical symbol can be represented by several485
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Figure 12: Segmentation-driven scenario: time elapsed (milliseconds) for computing the first

hypothesis with our normalization (Normalized) of the wg and with the dynamic program-

ming Forward-Backward (DP-FB) scheme. Values presented are obtained averaging 1000

executions.

strokes sequences which can even vary in number. For instance, a Quarter Note

( ˇ “) can be a black note head followed by a stem (Fig. 13a), or just the quarter

note primitive if the symbol was written with a single stroke (Fig. 13b).

(a) Two strokes (b) One stroke

Figure 13: Quarter Note written with different sets of strokes.

This fact causes our wg to be no longer deterministic, as different edges

with the same musical symbol can go from one vertex to many others as long490

as the underlying stroke sequence is different. Our strategy is changed so that

computing a prefix is now done by taking into account all the paths that match

such prefix. Furthermore, this scenario entails higher wgs since the number of
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Figure 14: Segmentation-free scenario: average number of user corrections needed to complete

the recognition task comparing interactive and non-interactive post-editing scenarios. Values

presented are obtained averaging 1000 executions.

strokes is always higher than the number of musical symbols.

We make use of previous works already done on this task to learn the set of495

stroke primitives and the sequence of stroke primitives that define each musical

symbol [31, 32]. In that case, the probabilities of the edges are computed from

the probability of each input stroke to be each of the considered stroke primi-

tives. As in the previous case, it is done following a Nearest Neighbor probability

estimation with DTW, with the peakness of the probability (parameter n) fixed500

to 15.

We repeat the comparison between the number of corrections that would be

necessary in both an interactive scenario and in a conventional, non-interactive

post-editing one. Results are illustrated in Fig. 14. We again see that using an

interactive approach involves a noticeable decrease in the number of corrections505

to be made, thereby reducing the expected human effort thorough the task.

Moreover, Fig. 15 shows the time that takes the computation of the first hy-

pothesis comparing DP-FB against the proposed approach. It can be seen that
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Figure 15: Segmentation-free scenario: time elapsed (milliseconds) for computing the first

hypothesis with our normalization (Normalized) of the wg and with the dynamic program-

ming Forward-Backward (DP-FB) scheme. Values presented are obtained averaging 1000

executions.

the proposed approach is still a more efficient strategy, although less pronounced

in this case.510

5. Conclusions

We have presented in this work an efficient approach to deal with IPR tasks.

We focused on IPR tasks with sequential nature (the solution is a sequence of

symbols). Over this framework the main problem is that the optimum criterion,

which is expected to reduce the user corrections needed, may require a high515

computation. Since these tasks need an user to work with the machine, the

process must be fast enough to not become user-unfriendly.

We considered modeling these problems with a wg and perform a normaliza-

tion procedure. In addition, if the task is defined by a known Regular Language,

we proposed a construction that takes into account this information to build a520

more compact wg.
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Several experiments with synthetic and real data have been performed. Re-

sults have reported improvements in terms of time, making more manageable

some heavy tasks. With respect to recognition accuracy, results of the interac-

tive framework have shown a noticeable reduction of human effort (corrections)525

needed. In our experiments, some of these improvements are more profitable if

our strategy is used since they are slower otherwise. Therefore, our strategy has

proved to be very valuable for the ISPR framework. Results have reported that

taking into account a RL results in the largest reduction of complexity (both

in time and space), since the solution space can be modeled in a more com-530

pact structure. This fact has shown a higher relevance than the normalization

procedure itself.

As future work it is intended to find a similar approach to deal with tasks

defined by Context-Free Languages (CFL). This class of languages is known to

define several interesting tasks. Note that the scenario set in this work consists535

of guessing an output of a discrete length. Thus, although knowing that each

output has to belong to a CFL, for each instance of the task our solution space

is indeed defined by a RL since each finite language belongs to such class of

languages. Therefore, the problem could be modeled in some way on a wg as

done in this work.540
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