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ABSTRACT  

Thin film organic lasers (TFOLs) represent a new generation of inexpensive, mechanically flexible devices with 
demonstrated applicability in numerous applications in the fields of spectroscopy, optical communications and sensing 
requiring an organic, efficient, stable, wavelength-tunable and solution-processable laser material. A distributed feedback 
(DFB) laser is a particularly attractive TFOL because it shows single mode emission, low pump energy, easy integration 
with other devices, mechanical flexibility and potentially low production cost. Here, amplified spontaneous emission 
(ASE) and DFB laser applications of novel high performing perylene dyes and p-phenylenevinylene (PV) oligomers, 
both dispersed in thermoplastic polymers, used as passive matrixes, are reported. Second-order DFB lasers based on 
these materials show single mode emission, wavelength tunability across the visible spectrum, operational lifetimes of 
>105 pump pulses, larger than previously reported PV oligomers or polymers, and thresholds close to pumping 
requirements with light-emitting diodes. 

Keywords: organics, lasers, thin film, laser dyes, oligo(p-phenylenevinylene)s, perylenes, nanoimprint lithography, 
distributed feedback. 

1. INTRODUCTION  
Optically-pumped organic lasers have received great attention for various decades, being the capability of tuning the 
emission wavelength within the visible range their most interesting property with respect to other types of lasers. 
Actually, optically-pumped liquid dye lasers, with the active material consisting of a liquid solution containing a laser 
dye, are commercially available and often used in Spectroscopy, Photochemistry, Photophysics, nondestructive testing 
and Medicine. Due to important limitations of these devices, i.e. large size, need of high power pumping sources, 
difficulties in handling due to the need of recirculating the liquid solution to prevent dye photodegradation, etc., 
researchers have pursued for years the development of compact and easy-to-handle organic solid-state lasers (OSLs).1,2 
Specially important towards achieving compactness, mechanical flexibility and easy integration with other devices, are 
thin film OSLs (TFOLs), among which, those that can prepared by means of solution-based methods, such as spin-
coating, printing, etc., are preferred for their prospect of reducing device cost.2  
 
The distributed feedback (DFB) laser,1,2 consisting of a waveguide film which includes a relief grating, has been a 
particularly successful TFOL in various applications in the fields of spectroscopy,3,4 optical communications2 and 
sensing.5,6 It  presents several advantages: it provides single mode emission, which is important for certain applications; 
it requires low pump energy for operation, thus enabling pumping with compact and cheap sources such as laser diodes 
or even light emitting diodes (LEDs); the resonator can be easily integrated into other devices; it can be mechanically 
flexible; has a potentially low production cost; and can be easily integrated with field-effect-transistor geometry, 
promising for the development of electrically-pumped TFOLs. Grating fabrication is generally accomplished by 
techniques such as electron beam lithography (EBL), holographic lithography (HL), nanograting transfer or nanoimprint 
lithography (NIL),2 the latter showing the highest potential for fabrication scalable to mass production. In Figure 1 
different possible device configurations with resonators fabricated by different methods are shown. 

One of the major challenges remaining for the realization of a commercial compact and inexpensive TFOL is the active 
organic material, which should be simultaneously: i) efficient for lasing at a low threshold in order to operate under 
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PDI-O) used previously in the context of organic lasers (see chemical structures in Figure 2). Results for a novel family 
of carbon-bridged oligo-p-phenylenevinylenes (COPVn, with n = 1-6, chemical structures in Figure 3) are also 
presented. 

 
             

Figure 2. Chemical structures of various perylenedimide (PDI) dyes: (a) bay substituted b-PDI-1; (b) bay unsubstituted       
u-PDI-C6; and (c) bay unsubstituted u-PDI-O. 

 

 
                                             

 Figure 3. Chemical structure of carbon-bridged oligo(p-phenylenevinylene)s, COPVn, with n = 1 to 6. 

 

2. EXPERIMENTAL SECTION  
The synthetic procedures to prepare b-PDI-119 and COPVs20 have been previously reported. The rest of the compounds 
are commercially available and used as received. Thin films of PS doped with a laser dye were prepared by spin-coating 
over substrates. The percentage of PS in the solvent (toluene) was adjusted to control the film thickness to between 300 
and 1100 nm, depending on the material. Commercially available fused silica (FS) substrates were used for absorption, 
PL and ASE measurements. DFB lasers with geometries (a) and (c), according to Figure 1, were fabricated by depositing 
the active film on a substrate of a different nature as required, with a surface relief grating previously recorded using HL 
or thermal-NIL. Grating dimensions were 2.5 cm × 2.5 cm and 2 mm × 2 mm for HL and thermal-NIL gratings, 
respectively. Resonators for geometry (c) devices, based on either dichromated gelatine (DCG) or dichromated 
poly(vinyl alcohol) (DCPVA) photoresist layers deposited over FS, were fabricated as previously described.21,22 
Resonators for geometry (a) devices were prepared by thermal-NIL and subsequent etching on either FS or SiO2 layers 
grown by thermal oxidation of silicon wafers,23 or by HL and etching on glass.24  
 
ASE and DFB characterizations were performed under optical excitation with a pulsed Nd:YAG (YAG: yttrium 
aluminum garnet) laser (10 ns pulse width, 10 Hz repetition rate). For ASE, the pump beam (a stripe of dimensions 3.5 
mm × 0.5 mm) was incident perpendicularly over the sample surface, and the emitted light was collected from the film 
edge with a fiber spectrometer (resolution 1.3 nm). For DFB characterization, the pump beam over the sample (elliptical 
with a minor axis of 1.1 mm) was incident at ~20° with respect to the normal to the film plane. The emitted light was 
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collected by means of a 0.13 nm resolution fiber spectrometer, in a direction perpendicular to the sample surface. The 
pump size value was chosen as to be sufficiently large to ensure that the obtained laser threshold parameter expressed in 
power or energy density units is a useful parameter for the sake of comparison.25 For both ASE and DFB studies, λpump 
was 355 nm for COPV1 and COPV2, 532 nm for COPV5, COPV6 and for all PDIs, and 436 nm (provided by a Raman 
cell pumped with the 532 nm line of the Nd:YAG laser) for COPV3 and COPV4.  

3. RESULTS AND DISCUSSION  
3.1. Bay-substituted perylene. 

b-PDI-1 is a bay-substituted PDI presenting two sterically hindering diphenylphenoxy groups at the 1,7 position and 
ethylpropyl substituents in the imide positions, see Figure 2(a). Its PL spectrum, when dispersed in PS, has a shape 
similar to that obtained in liquid solution, up to b-PDI-1 contents of around 37×10-5 mol of PDI per gram of PS 
(equivalent to 27 wt%) and its intensity increases almost linearly, indicating that no significant PL quenching occurs.19 
This property is a significant feature in comparison to other PDIs, whose PL starts quenching at concentrations of 3-5 
wt%, effect generally attributed to the formation of aggregated species. b-PDI-1 PL quantum yield (PLQY) in liquid 
solution is close to 1, which is signature of an undistorted core, in contrast to most bay substituted PDIs reported in the 
literature whose PLQY are significantly lower due to the core distortion induced by the bay substituents.18 
 
ASE spectra for PS films with different b-PDI-1 contents are shown in Figure 4(a). The ASE spectrum red-shifts upon 
the concentration increase. An important consequence of the capability of introducing large amounts of PDI in the films 
without sever PL quenching and therefore showing ASE, is that the ASE wavelength can be tuned over a relatively wide 
range (around 20 nm, from λASE = 610 to λASE = 630 nm). This is a clear advantage over u-PDIs (see data for u-PDI-O in 
Figure 4(a)) for which ASE emission appears at around λASE = 579 nm and it can only be slightly shifted by a few nm. 
This is because the PDI concentration cannot be increased further than 3 wt%, otherwise the film PL would quench and 
the ASE performance would degrade.  

 
 

 

 

 

 

 

 

 

 

  

                 (a)             (b) 

Figure 4. (a) ASE spectra for PS films containing either u-PDI-O or b-PDI-1 at various doping ratios, illustrating the ASE 
spectrum red-shift upon dye concentration increase. (b) DFB spectra of devices based on PS doped with either u-PDI-C6 
(0.5 wt%) or with b-PDI-1 (5 wt%). Lasers based on u-PDI-C6 labeled 1-5 have SiO2 resonators and geometry (a), 
according to Figure 1, with parameters Λ = 368 nm, d = 65 nm and h values of 300, 330, 430 and 780 nm, respectively; 
Lasers based on u-PDI-C6 labeled 6-7 have photoresist resonators and geometry (c), with different device parameters (see 
text for details).  

 
With regards to the b-PDI-1 ASE threshold, it is observed that it decreases with increasing b-PDI-1 concentration to a 
minimum of 7 kW/cm2, at PDI contents between 6×10-5 and 13×10-5 mol of b-PDI-1 per gram of PS (equivalent to 
around 8 wt%).19 The PLQY for these films is around 60%. This ASE threshold is comparable to those of u-PDI-C6 and 
u-PDI-O, which have shown values of 8-1015,17 and 3 kW/cm2,16 respectively. The photostability of b-PDI-1 in air is high 
when the doping rate is small. For example, the photostability half-life, τ1/2-ASE, defined as the time (or the number of 
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pump pulses) at which the ASE intensity decays to half of its initial value, under a pump intensity two times above 
threshold, is τ1/2-ASE = 5×104 pump pulses, for the film doped with 0.5 wt%. This value is much superior to that of 
previously investigated b-PDIs, whose ASE lasted just for a few minutes18 and only slightly inferior to that obtained with 
films containing u-PDI-O and u-PDI-C6 at similar doping rates, excited under similar conditions (τ1/2-ASE ~ 1×105 pump 
pulses).15,16 It was found that the b-PDI-1 photostability decreases with increasing concentration (at 8 wt%, τ1/2-ASE = 
1.5×104 pump pulses). This establishes a trade-off between photostability and threshold which should be taken into 
account when choosing the optimal concentration for a given application.  
 
A DFB laser based on a b-PDI-1-doped PS films and a resonator fabricated by HL on DCG with a geometry such as the 
one in Figure 1(c), was prepared. The DFB spectrum is shown in Figure 4(b), which includes also the spectra of lasers 
based on u-PDI-C6 DFBs fabricated by the same method and with similar geometry, and also some others prepared over 
fused silica with thermal-NIL and subsequent etching, with geometry (a) according to Figure 1. Wavelength tunability 
on the later devices (labelled as 1-5) was obtained by changing film thickness.23 The ones based on photoresist 
resonators (devices 6-7) had different device parameters: Λ = 378 nm, d = 80 nm, h = 1100 nm, DCG as resonator 
material, and operation in the first order transverse electric mode TE1 (for device 6);21 and Λ = 370 nm, d = 80 nm, h = 
600 nm, dichromated polyvinyl alcohol (DCPVA), as resonator material, and operation in the fundamental transverse 
electric mode TE0 (for device 7).22 DFBs fabricated by NIL have shown lower thresholds. For example, for device 5, 
whose emission is close to λASE, at which the gain is maximum, it is around 12 kW/cm2. This is in contrast to the 55 
kW/cm2 value found for the device based on b-PDI-1, which also emits close to its corresponding ASE wavelength, 
despite its ASE threshold is similar to that of u-PDI-C6.  
 

3.2. Carbon-bridged oligo-p-phenylenevinylenes. 

Very recently, a novel family of PV oligomers with carbon bridges linking their rings (COPVn, with n = 1–6, Figure 3), 
has shown an exceptional performance simultaneously on the various important parameters for laser applications.26 The 
COPVn molecules dispersed in PS films show ASE from 385 nm to 585 nm (see Figure 5(a)), thus covering the whole 
visible spectrum. COPVn-based DFB lasers with geometries (a) and (c), according to Figure 1, have been fabricated with 
all these compounds, using geometries (a) and (c) according to Figure 1 (illustrative spectra are shown in Figure 5b). 

 

 

 

 

 

 

 

 

 

 
    (a)                     (b) 

Figure 5. (a) ASE spectra for PS films containing 2 wt% of COPVn (n = 1-6). The label number in each spectrum refers to 
n; (b) DFB spectra of devices based on COPVn-doped PS. Lasers based on COPV5-6 have SiO2 resonators and geometry 
(a), according to Figure 1, with parameters Λ = 368 nm, d = 95 nm and h = 630 nm (devices 5) and Λ = 380 nm, d = 75 nm 
and h = 490 nm (devices 6); Lasers based on COPV2-4 have photoresist resonators and geometry (c), with parameters: Λ = 
296 nm, d = 40 nm and h = 380 nm (device 2);  Λ = 320 nm, d = 80 nm and h = 650 nm (device 3); and Λ = 350 nm, d = 60 
nm and h = 640 nm (device 4); COPV1-based DFB laser has a glass resonator and geometry (a), according to Figure 1, and 
parameters Λ = 270 nm, d = 70 nm and h = 610 nm. 
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Remarkably, devices based on COPV3-6 have shown very low thresholds to a minimum of 0.7 kW/cm2 in some cases, 
being this value close to the requirements to pump with LEDs. Another prominent feature is the exceptional device 
operational lifetime (>105 pump pulses, for n = 3–6), as a consequence of the outstanding photostability of these 
compounds. Also noticeable is their high thermal stability (decomposition temperatures are above 400 °C), so it is 
expected that they will allow thermal-NIL imprinting of the DFB resonators directly onto the active film (geometry (b), 
according to Figure 1), as demonstrated for PDI-doped PS.17 

 

4. CONCLUSIONS  
ASE and DFB laser applications of high performing materials based on novel laser dyes of two different classes, 
perylenediimides and oligo-p-phenylenevinylenes (OPVs), both dispersed in films of PS, used as passive matrix, have 
been reported. Films containing a new bay-substituted PDI compound (b-PDI-1) show efficient ASE emission at 
wavelengths between 610 and 630 nm, widening the use of PDIs in laser applications, up to now restricted to bay-
unsubstituted PDIs, all with ASE at around 579 nm. Results on a new class of compounds, carbon-bridged OPVs, 
denoted as COPVn (with n = 1 to 6) have been described. Films of COPVn-doped PS undergo ASE from 385 nm to 583 
nm, depending on the oligomer length, with remarkably low threshold and high photostability. Second-order DFB lasers 
with standard gratings (single period), have shown single mode emission, wavelength tunability across the visible 
spectrum, long operational lifetimes of >105 pump pulses, outstandingly larger than previously reported 
phenylenevinylene oligomers or polymers, and thresholds close to pumping requirements with light-emitting diodes, i.e. 
only 0.7 kW/cm2, which is as far as we know the lowest values reported to date for dye-doped materials. It is also 
remarkable that the two types of systems discussed show high thermal stability, thus allowing the use of thermal 
nanoimprint lithography to engrave the DFB resonators directly onto the active films. This constitutes an important 
aspect for the prospect of preparing mechanically flexible inexpensive devices. 
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