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Abstract 

Palladium-based catalysts for electrochemical reduction of oxygen have received increasing 

attention as potential replacement for platinum-based materials in the fuel cells. This Review 

summarises the research conducted with nanostructured palladium catalysts, including thin 

nanostructured films and Pd nanoparticles on various carbon and non-carbon supports. The 

mechanism of oxygen reduction on palladium is described and the effect of the particle size 

and shape on the electrocatalytic activity is emphasised. The role of the support material and 

additives on the oxygen reduction activity of Pd nanoparticles is also discussed. The 

electrocatalytic activity of Pd-based catalysts is evaluated in terms of specific activity and 

mass activity. The application of supported Pd nanoparticles as cathode catalysts for low-

temperature fuel cells is highlighted. Some insights into the remaining challenges and 

directions for further development of Pd-based oxygen reduction electrocatalysts are 

provided. 

 

Keywords: Oxygen reduction reaction, Pd nanoparticles, Pd nanocubes, Pd-based catalysts, 

Pd films, Pd single crystals, Composite catalysts, Electrocatalysis 

 

1. Introduction 

In the development of polymer electrolyte fuel cells palladium has gained much attention as a 

possible cathode catalyst in the recent years. Palladium is in the same group with platinum, 

which is the most active metal catalyst for oxygen reduction reaction (ORR) and they have 

similar chemical and physical properties. Palladium nanoparticles (PdNPs) can be prepared 

using several methods, in order to design advanced cathode catalysts for ORR in fuel cells. 

Various support materials have been employed for PdNPs to improve their utilisation. 

Nanostructured Pd electrodes have been used to further elucidate the tendencies of 

electrocatalytic behaviour towards the ORR. Alloying has a large influence on the ORR 
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activity of Pd-based catalysts, but these effects are outside the scope of this review and may 

be further read elsewhere [1]. 

This review focuses on the results of the electrocatalytic oxygen reduction reaction on Pd-

based catalyst materials. Particle size, substrate effects and crystallographic effects are 

discussed. PdNP-based composite materials will be also dealt with as electrocatalysts for 

ORR. 

 

2. ORR on bulk polycrystalline and single-crystal Pd electrodes 

The ORR and its kinetics on palladium electrodes in aqueous solutions has been thoroughly 

studied [2-5]. The early work by Tarasevich [4] and Vracar et al. [2, 3] on bulk Pd electrodes 

showed that E-log ik relationships have two distinct regions, at low current densities the Tafel 

slope value being close to –60 mV and at high current densities close to –120 mV. Kinetic 

expressions have been derived, which describe reasonably well these experimental tendencies 

[2, 3]. It was determined that the reaction order with respect to molecular oxygen is one in 

both current density regions in acid and alkaline solutions [4] and the rate-determining step 

for ORR is the slow transfer of the first electron to oxygen molecule [2]. Further studies have 

revealed that the Tafel slope of –60 mV corresponds to the surface that is covered by oxygen-

containing species and the change in the slope arises from the differences in the adsorbed 

oxygen coverage [3]. Adsorbed oxygen has been suggested to inhibit the ORR kinetics [4]. 

More recently it has been determined that on the polycrystalline Pd electrodes the ORR in 

alkaline and in acid media proceeds mainly via four-electron pathway producing water in the 

potential range where Pd is oxide free or oxidised to PdOH, while a two-electron pathway 

prevails in the potential region where PdO is on the surface [5]. 

The oxygen reduction reaction on palladium is structure sensitive. Hoshi and co-workers have 

studied the ORR on low and high index planes of palladium in perchloric acid (Figure 1) [6]. 

It was determined that the reduction current density at 0.90 V vs RHE is increasing in the 

following order on the low index planes: Pd(110) < Pd(111) < Pd(100), which is opposite to 

that of platinum in the same solution [6]. The kinetic current normalised to electroactive 

surface area (specific activity, SA) of Pd(100) was observed to be about three times higher 

than that of the most active single crystal facet of Pt. On all Pd single-crystal facets the ORR 

proceeds via 4-electron reduction pathway, analogously to that on Pt. The conclusion that 

Pd(100) is the most active single crystal facet of Pd for ORR was supported by studies on 

high index facets [6]. The current densities at 0.9 V vs RHE on n(100)-(111) series depended 

linearly on the terrace atom density, showing that the active site for the ORR on Pd electrodes 
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is the terrace [7], whereas on Pt it is the step. Thus it has been suggested that the reaction 

mechanism on Pd may differ from that on Pt electrodes. The activities of low-index crystal 

facets may be different in sulphuric acid and in alkaline solution as these anions have different 

adsorption energies, but unfortunately there has been no studies of Pd(hkl) neither in sulphuric 

acid nor in alkaline solution.  

 

3. ORR on nanostructured Pd films 

Nanostructured metal films can be prepared by various techniques, such as electrodeposition 

[8-13], vacuum evaporation [14-16] or magnetron sputtering [17]. The structure of the thin 

films can be easily tuned, which allows studying the effect of surface morphology on the 

electrocatalytic properties of metal catalysts. 

Vacuum-evaporated thin Pd films consisting of Pd nanoislands have been used as model 

electrodes to study the particle size effects, as the island size increases with the film thickness. 

Pd films with nominal thickness of 0.25–10 nm were evaporated onto Au and glassy carbon 

(GC) substrate and the ORR kinetics has been studied in acidic and alkaline solutions (Figure 

2) [14, 15]. In perchloric acid and in potassium hydroxide solutions the ORR specific activity 

did not depend on the Pd film thickness or size of Pd nanoislands, but in sulphuric acid it 

increased with increasing the film thickness. This was attributed to the strong adsorption of 

(bi)sulphate anions which block the active sites for oxygen adsorption [14, 15].  

The morphology of oxide-derived Pd films on Ti substrate has shown to be similar to that of 

bulk Pd [18]. The ORR proceeds at least partially via two-electron pathway on this material in 

alkaline solution and is a first order reaction in respect to O2. 

On Pd islands electrodeposited onto highly oriented pyrolytic graphite (HOPG) at different 

conditions the ORR in perchloric acid solution significantly depended on the structure of the 

material [8]. The changes in the activity were attributed to different crystallographic structure 

and particle size. The main increase in activity was suggested to arise from the edges of the 

islands, where the substrate influences the electronic structure of Pd particles and weakens the 

O-O bond. Comparing the ORR on PdNPs deposited onto nitrogen-doped and undoped 

HOPG supports it has been revealed that doping of HOPG does not affect the SA on PdNPs 

[9, 16]. Reduced stability of Pd on N-doped HOPG was observed, which was attributed to 

interactions between nitrogen-containing groups and Pd [9].  

For electrodeposited Pd on glassy carbon in sulphuric acid solution as well in potassium 

hydroxide, the specific activities of ORR and Tafel slope values were comparable to those of 

bulk Pd, but the value of n was lower than 4, indicating peroxide formation [10]. On Pd 
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electrodeposited onto gold substrate, the ORR behaviour was similar to that on Pd/GC in 

sulphuric acid, but enhanced specific activities were obtained in alkaline solution, which were 

suggested to be due to substrate effect [11]. PdNPs electrochemically deposited onto oxygen-

terminated boron-doped diamond electrodes have shown good electrocatalytic activity 

towards the ORR in alkaline solution, in which the ORR proceeds via 4-electron reduction 

pathway [12]. Thin films that are electrodeposited from protonic ionic liquid onto glassy 

carbon had higher electroactive surface area and electrocatalytic activity than those deposited 

from aprotic liquid or from aqueous solution under similar conditions [13]. Kang et al. 

demonstrated that dendritic Pd structures prepared by electrodeposition have higher 

electrocatalytic activity than that of commercial Pt/C [19]. 

 

4. ORR on carbon-supported Pd catalysts 

For practical applications as catalysts, PdNPs are supported onto various materials. Carbon 

black is the most common support material, thanks to its high surface area, good conductivity 

and affordable price. However, new materials with superior performance, such as carbon 

nanotubes (CNTs), graphene etc., have emerged during the last decades. The structure of the 

support material can influence the performance of the catalysts in various ways. For instance, 

it determines the degree of agglomeration of nanoparticles, may change intrinsic activity of 

supported metal via electronic effects and controls the efficiency of the mass transport in the 

fuel cell. In addition, the stability of a catalyst is greatly influenced by the corrosion resistance 

of carbon support. 

 

4.1. ORR on Pd/C  catalysts 

Palladium nanoparticles can be supported on different carbon blacks and the activity of these 

catalysts depends on the preparation method. For instance, it has been shown that the activity 

of Pd/C can be improved by pre-treatment of carbon support [20]. Variations of the properties 

of the support material yielded Pd nanoparticles of different size, degree of agglomeration and 

electrocatalytic activity. The changes in the ORR activity were attributed to interactions 

between carbon support and Pd particles, but also to different distribution of particles on 

support. The four-electron pathway of ORR was reported on all Pd/C catalysts studied, 

independently of the carbon support [20]. However, Pd/C catalysts which were prepared by 

using different carbon blacks showed similar ORR activity, but the stability of the catalysts 

varied noticeably [21].  
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Alvarez et al. prepared Pd/C catalysts using different reducing agents and demonstrated that 

the ORR on these catalysts has similar reaction mechanism, but the specific activity varies 

greatly due to different morphologies (Figure 3) [22]. The decrease of mass activity of Pd/C 

in sulphuric acid as a result of the heat-treatment of the catalyst was attributed to increasing 

the size of PdNPs [22]. The distribution of Pd nanoparticles on carbon support can be 

improved by modifying the traditional sodium borohydride reduction method by introducing 

ammonia [23]. 

Using carbonyl chemical route in the preparation of carbon-supported PdNPs with various 

metal loading resulted in catalysts with diverse morphologies and variable electrocatalytic 

activity [24]. These materials showed similar Tafel slope (–60 mV) at low current densities in 

perchloric acid solution, but the slope varied in alkaline solution.  

Palladium nanoparticles supported on carbon paper have shown high electrocatalytic activity 

in sulphuric acid solution, which has been attributed to the favourable structure of the catalyst 

consisting of small Pd particles that are connected through grain boundaries [25]. In further 

work it was revealed that the performance of this catalyst in membrane electrode assembly 

(MEA) at high current densities was better than that of Pt black, which was suggested to be 

due to the differences in metal distribution [26]. Unfortunately the severe reduction of the 

catalyst loading in the cathode led to the decrease in the fuel cell performance. The activity of 

PdNPs on carbon paper was further improved by employing potentiostatic electrodeposition 

instead of electroless deposition, resulting in particles with cubic, triangular and plate-like 

structures that may contribute for better utilisation of the catalyst [27]. 

Testing of carbon-supported palladium oxide-based catalysts has shown that PdO itself is 

rather inactive towards the ORR in perchloric acid, but the activity increases when the oxides 

are reduced [28]. In addition, on oxide covered Pd electrode the peroxide yield is higher than 

on oxide-free surface as a result of active site blocking by the oxides. The same conclusion 

was reached also in alkaline solution [29]. It has been suggested that the preparation of Pd 

catalyst by hydrated palladium oxide route leads to a lower generation of peroxide during the 

ORR process [30]. Interactions between Pd and palladium oxide might be the reason of this 

observation, as oxide may inhibit the peroxide pathway or it may alternatively catalyse the 

decomposition of the formed H2O2 [30].  

Lower hydrogen peroxide yields on Pd/C as compared to Pt/C have been observed at working 

fuel cell potentials in alkaline solution [31]. This variation has been explained by different 

activation energies for O-O bond breaking. At the same time an advantage of Pd/C was shown 

to have lower sensitivity to ethanol compared to Pt catalyst.  
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4.2. ORR on Pd/CNT catalysts 

Carbon nanotubes as electrocatalyst support have many advantageous properties, such as 

large surface area, good conductivity, high stability and suitable porous structure. PdNPs 

deposited onto carbon nanotubes and nanofibers have been employed as active catalysts for 

ORR [32-38]. The ORR has been suggested to follow two-step two-electron transfer pathway 

on PdNP/CNTs [34] and also on PdNPs supported on polymer-modified CNTs [39]. PdNPs 

supported on carbon nanofibers have displayed higher electrocatalytic activity than those on 

amorphous carbon support [40]. However, it has been found that palladium electrodeposited 

onto carbon nanotubes is less stable than that on Vulcan XC-72 carbon, but on both substrates 

the ORR activity decreases due to a gradual agglomeration of Pd particles [41].  

Palladium nanoparticles supported on multi-walled carbon nanotubes have shown a relatively 

large degree of agglomeration [42]. Despite agglomeration the ORR proceeded via 4-electron 

pathway and the SA surpassed that of bulk Pd two times in 0.5 M H2SO4 and three times in 

0.1 M KOH. In order to improve the nanoparticle distribution, Wang et al. suggested to 

modify CNTs with heteropolyacids and poly(diallyldimethylammonium chloride) (PDDA) 

[43]. They were able to obtain homogeneous distribution of PdNPs on functionalised 

nanotubes that resulted in higher ORR activity of the catalyst as compared to strongly 

agglomerated PdNPs on clean acid-treated CNTs. Similarly, modification of CNTs with 

phosphotungstic acid and PDDA has been shown to enhance the distribution of PdNPs; in 

addition, the synergistic effect of phosphotungstic acid was suggested to improve the ORR 

activity [44]. 

Jukk et al. studied ORR on multi-walled carbon nanotubes decorated with sputter-deposited 

Pd nanolayers with nominal Pd thicknesses of 5, 10 and 15 nm [45]. The specific activity in 

sulphuric acid solution was reported to be lower than that of bulk Pd for all electrodes, but in 

alkaline solution the SA of Pd/MWCNT catalysts with thicker Pd layers surpassed that of 

bulk Pd. It was suggested that favourable crystallographic structure is the cause for increased 

activity in alkaline media and the adsorption of (bi)sulphate decreases the activity in sulphuric 

acid. As a continuation the heat-treatment effect on Pd/MWCNT composites in alkaline 

solution was studied, which revealed that increasing annealing temperature from 300 to 500 

°C improved the specific activity towards the ORR [46]. It was suggested that annealing 

increases the fraction of Pd(100) surface sites that have been determined to have the highest 

ORR activity in perchloric acid solution [6]. Carbon nanotubes on carbon paper has proven to 

be a beneficial support for sputter-deposited Pd used as a cathode in an anion exchange 
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membrane fuel cell, enabling high performance at ultra-low loading, thanks to high Pd 

utilisation [47]. 

SiO2-covered Pd/CNTs have been shown to be initially rather inactive in comparison to 

Pd/CNT, but the activity improved during potential cycling and remained only slightly lower 

than that of clean Pd/CNT, while the activity of Pd/CNTs decreased during electrochemical 

testing [48, 49]. It was proposed that silica layers work as diffusion barrier for oxygen, 

protons and water molecules and also for peroxide, which is reduced to water when it forms. 

Porphyrins have also been used to modify nanotubes and the resulting composite catalyst with 

PdNPs has shown good activity for the ORR [50].  

 

4.3. ORR on Pd/graphene catalysts 

Graphene has gained much attention in recent years and, due to its unique electronic 

properties  and large surface area [51], it has also been utilised as a support material for metal-

based catalysts [52-59]. Graphene sheets as support material facilitate the dispersion of PdNPs 

and the resulting materials show enhanced ionic diffusion and charge transfer [54, 55]. Kakaei 

and Gharibi demonstrated that depositing Pd onto graphene/carbon paper yields better 

dispersion, lower charge transfer resistance and higher electroactive surface area than on pure 

carbon paper [56].  

The benefit of reduced graphene oxide (rGO) support has also been suggested to be originated 

from the interactions between Pd and graphene that cause strain in Pd structure due to electron 

exchange [60]. PdNPs on graphene quantum dots exhibit good ORR activity, which is 

attributed to optimal concentration of defects in the support that provide sufficient electron 

withdrawal from the Pd particles [61]. Likewise, Pd nanocubes supported on graphene 

nanosheets with high number of physical defects showed higher activity and stability as 

compared to similar nanocubes deposited on graphene nanosheets with higher number of 

oxygen containing functional groups [62].  

Using rGO as a support material has improved the ORR activity of Pd catalyst over 

conventional carbon black support in sulphuric acid solution; interestingly, no improvement 

was observed on Pt catalyst [63]. Pd nanoparticles deposited onto graphene sheets have 

shown higher ORR activity in alkaline media at high metal loadings than similar Pt catalyst 

(Figure 4) [52]. Graphene supported PdNPs had higher electrocatalytic activity than Pd alloys 

in alkaline solution, but in sulphuric acid alloys with Co and Fe were more active than 

Pd/rGO [53].  
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Additional improvement of the performance of graphene-supported Pd catalysts can be 

achieved by modifying the graphene surface. For instance, Kim et al. have proposed that 

using linker molecules between graphene and PdNPs enables better dispersion of graphene 

sheets and facilitates distribution of Pd and Pt nanoparticles, whereas longer hydrocarbon 

chains in the linker were found to be more beneficial for ORR than shorter ones [57]. Using 

poly(3,4-ethylenedioxythiophene) functionalised graphene as support material has yielded Pd 

catalyst displaying higher specific and mass activity than Pt/C and Pd/rGO, which was 

explained by synergetic effect [58]. 

 

4.4. ORR on PdNPs supported on N-doped carbon materials 

Nitrogen-doped carbon materials have found wide application in the design of metal 

nanoparticle based catalysts. Nitrogen doping remarkably changes the properties of the carbon 

substrate, thereby affecting the electrocatalytic performance of metal nanoparticles [64]. For 

example, in sulphuric acid both Pd and Pt catalysts have shown enhanced ORR activity on N-

doped carbon as compared to undoped carbons [65]. PdNPs supported on nitrogen-doped 

graphene (NG) nanosheets have shown twice as high specific activity than bulk Pd, which has 

been attributed to small particle size, uniform dispersion of PdNPs and strong adhesion 

between carbon and metal [66]. Strong binding between PdNPs and NG is suggested to 

prevent the agglomeration of nanoparticles and thus improve the stability [67]. However, no 

benefit of nitrogen doping on HOPG has been observed [16]. This is surprising result, since 

for most heteroatom-doped carbon supported Pd catalysts an enhanced electrocatalytic 

activity was observed. Apparently this is related to special features of N-doped HOPG used in 

that particular work. 

Ye et al. prepared and tested PdNPs on nitrogen-doped ordered mesoporous graphitic carbon 

nanospheres in alkaline medium (Figure 5) [68]. Pd was strongly bound to this material and 

high amount of quaternary-N is believed to be beneficial for the ORR kinetics. Simultaneous 

N-doping, carbon graphitisation and Pd
2+

 reduction is suggested to promote strong coupling 

of palladium and nitrogen, thereby improving the ORR activity and stability of the catalyst 

[68].  

Carbon supports of different morphology and surface composition can be synthesised by 

pyrolysing microporous organic polymers, which retain porosity and high surface area [69, 

70]. Pd nanoparticles prepared on this support exhibit high electrocatalytic activity for ORR, 

which was attributed to nitrogen heteroatom-induced altering of the electronic structure and 

high stability. Graphitic carbon nitride (g-C3N4) prepared by rapid combustion method has 
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shown to be suitable substrate for PdNPs [71]. This composite material had high  

electrocatalytic activity and stability in alkaline solution, which was attributed to synergistic 

charge-transfer effect between Pd and g-C3N4, suitable porosity of the catalyst and uniform 

distribution of PdNPs. High stability of similar catalysts in perchloric acid solution has also 

been demonstrated, which is suggested to be the result of changing the electronic structure of 

Pd due to synergistic effect [72]. 

Recently, Compton and co-workers have proposed an elegant approach for evaluating the 

ORR kinetics on N-doped carbon nanotube-supported Pd catalysts [73]. It was suggested on 

the basis of the results obtained on single nanoparticle catalysts and theoretical modelling that 

the ORR on Pd involves the initial formation of O2
•– 

in sulphuric acid solution. 

 

5. The effect of additives on the ORR on PdNPs  

Different additives can increase or decrease the electrocatalytic activity of palladium 

nanoparticles towards the ORR. Amorphous palladium particles containing phosphorus have 

been synthesised by using sodium hypophosphite as a reducing agent [74]. Specific and mass 

activities for these particles were reported to be over 4.5 and 2.6 times higher, respectively, 

than those for Pd and Pt catalysts. X-ray diffraction patterns indicate that this catalyst can be 

regarded as an alloy in which the crystal structure is significantly changed as compared to 

pure Pd. On the contrary, dissolved carbon in Pd lattice decreased the ORR activity of PdNPs 

as compared to bulk Pd and pure PdNPs [75]. 

The positive effect of organic polymers on the ORR activity of Pd nanoparticles has also been 

observed [76-80]. Pd on polypyrrole (PPy) mixed with carbon powder have higher ORR 

activity as compared to Pd/C [76]. The ratio of PPy-to-Pd plays a decisive role in the 

electrocatalytic performance of PdNPs on polypyrrole [77]. The optimal Pd content was 10-

12%, at which the ORR proceeded mainly via 4-electron pathway, and with increasing Pd 

content the peroxide production also increased. Pd icosahedra functionalised with 

polyallylamine have displayed 4.5 times higher specific activity than that of commercial Pt 

black [78]. PdNPs functionalised with oleylamine show not only enhanced electrocatalytic 

activity towards the ORR, but are also tolerant to formic acid due to steric blocking [79]. 

Similarly PdNPs supported on polydiallyldimethylammonium chloride-functionalised carbon 

black have shown higher ORR activity and stability than commercial Pd/C [80]. The 

enhanced ORR activity has been suggested to be due to nitrogen groups in these ligands that 

interact with Pd nanoparticles by changing their electronic structure [78]. Nafion is used as a 

binder for the ORR measurements and in fuel cell as proton exchange membrane, but it has 
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been demonstrated that it increases the peroxide production on PdNPs [81]. Pd nanoclusters 

with a mass of approximately 5 kDa have been used to show that thiolate on Pd particles 

causes negative shift of ORR onset potential [82]. While protected nanoparticles have better 

stability in air, the cleaned Pd nanoclusters have higher mass activity surpassing that of Pt/C. 

The compounds used in the synthesis of Pd nanoparticles can also decrease the ORR activity 

and thus the removal of these supplements is very important [83, 84]. Frequently heat-

treatment or thorough washing and centrifugation are used for cleaning, but chemical 

approach can also be employed. A comparison between using tert-butylamine (TBA) and 

heat-treatment showed that the chemical route is more efficient in removing Br
–
 and 

polyvinylpyrrolidone (PVP) [83]. However, TBA is not effective for all capping agents and 

stabilizer compositions, for example for removal of citric acid and PVP [84]. More efficient 

removal of the capping agents and stabilizers can be achieved by treatment with NaBH4, 

which can remove ~90% of the impurities and the rest 10% is shown not to have an effect on 

the electrocatalytic behaviour towards the ORR [84].  

 

6. ORR on Pd catalysts supported on oxides and carbides  

Pd nanoparticles have been also supported on various non-carbon materials, such as oxides 

[85-96] and carbides [97, 98]. The main advantage of these materials is their high stability, 

but the application of these catalyst supports is hindered by their low electrical conductivity 

[99]. This can be overcome by addition of carbon nanomaterials.  

Oxygen reduction on Pd nanoparticles supported on zeolite 13X follows 4e
–
 pathway in 

alkaline solution and the electrocatalytic activity of this material can be further increased by 

adding carbon powder, which increases the electrical conductivity and porosity of the 

electrocatalyst [85]. 

Pd on titanium suboxides have shown to catalyse a two-electron pathway of ORR, while the 

stability of this support material was observed to be superior to carbon black-based catalysts 

[86]. PdNPs on carbon support modified with different ratios of TiO2 (anatase) have proven to 

be better catalysts for ORR than pure Pd/C in perchloric acid [87]. TiO2 may change the 

interactions between Pd and water and possibly oxygen [88] or change the coverage of the 

oxidised species on the surface [87] and as a result the activity of the composite catalyst 

increases as compared to Pd/C [87, 88]. 

In alkaline solution MnO2 has shown to improve the activity of PdNPs and the mass activity 

of Pd@MnO2/C has been found to surpass that of Pd/C about 2.5 times [89]. Mn2O3-

supported Pd possesses ORR activity comparable to that of commercial Pt/C catalyst, which 
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is suggested to be due to mesoporous structure and the synergetic effects between supporting 

Mn2O3 and Pd [90]. The synergetic effect of Mn has been used to explain the enhanced ORR 

activity of PdO/C catalysts synthesised using Mn3O4/C and PdCl2 as precursors [91]. 

However, it has also been proposed that higher activity of Pd-Mn3O4 catalysts as compared to 

that of Pd/C is not the result of the interactions between Pd and transition metal oxide, but due 

to the facilitated oxygen transport to palladium [92]. Another option is to use mixed valence 

oxide in combination with graphene nanosheets as a support material for PdNPs; from these, 

MnCo2O4/graphene support has shown better results than CoCo2O4/graphene and 

NiCo2O4/graphene and comparable activity to a Pt/C catalyst [93]. 

Increased ORR activity of Pd has been observed also on WO3/C support, but SnO2/C did not 

show improvement over pure Pd/C [94]. The metal oxides were suggested to decrease the 

oxygen adsorption strength and thus increase the activity for ORR. The superior ORR activity 

of Pd-WO3/C has also been attributed to small particle size, good  dispersion of PdNPs on 

support material, interactions between Pd and WO3 and also to the possible formation of 

hydrogen tungsten bronze (HxWO3) [95]. The activity of Pd/SnO2-C has been increased by 

heat treatment [96]. 

PdNPs on reduced polyoxometalates (rPOM) exhibit better ORR activity and stability in 

alkaline solution than commercial Pd/C and Pt/C as a result of electron delocalisation between 

Pd and rPOM [100]. While Pd/C had a positive shift in Pd 3d binding energy during the 

stability tests, for the Pd/rPOM catalyst it remained unchanged, suggesting lower aggregation 

due to better interaction between Pd and rPOM. 

Likewise, enhanced ORR activity of Pd by metallic carbides has been observed. Composites 

of Pd, graphitic carbon and carbides (Fe2MoC [97], MoC [97] and Co3W3C [98]) have shown 

higher activity as compared to Pd/C and Pt/C catalysts, which was attributed to electron 

donation from carbides to metallic Pd, whereas stronger interactions between the carbides and 

Pd contribute to the higher stability [97, 98].  

Thus, the support material may have a major contribution to the electrocatalytic behaviour of 

the catalyst and the increase of the ORR activity is most likely due to the interactions between 

Pd and oxide, which affect the electronic structure. 

 

7. Effect of Pd particle size on the ORR activity 

Determining the effect of Pd particle size on the activity of the oxygen reduction reaction is 

an important task in order to prepare electrocatalytically active and economically beneficial 
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Pd-based catalysts. Jiang et al. studied particle size effect on carbon-supported Pd catalysts in 

alkaline solution (Figure 6) [101]. Increasing the particle size from 3 to 16.7 nm resulted in a 

threefold increase of the specific activity. The lower SA of smaller particles was suggested to 

be due to the adsorbed OH
–
 ions that block the active sites. The mass activity showed the 

maximum value at 5 nm, which can therefore be regarded as the optimal value of particle size 

for fuel cell applications [101]. 

The values of mass activity and specific activity of oxygen reduction on Pd/C have been 

reported to rise up to average Pd particle of 11 nm in perchloric acid solution [102]. In 

contrast, Zhou et al. observed increasing mass activity with decreasing the particle size, 

whereas specific activity was found to have the largest value between 5 and 6 nm [103]. The 

particle size effect was attributed to a concurrence of several factors like distribution of low 

index planes on the surface, the number of low coordination sites and the electronic structure 

of Pd. More recently, Ju et al. studied the Pd particle size effect in H2SO4 solution on Pd 

electrodeposited onto highly oriented pyrolytic graphite (HOPG) [104]. Increase of the 

activity of the electrodes with Pd particle size was observed and particles larger than 10 nm 

behaved similarly to bulk Pd [104]. Lower activity of smaller particles was primarily 

attributed to the higher ratio of low-coordinated surface atoms. 

Recently Antolini has thoroughly reviewed the particle size effect and described its 

background for fuel cell catalysts [105]. It was summarised that the main causes for particle 

size effect are structural sensitivity i.e. dependence of the surface geometry, electronic state of 

the catalyst, the potential of zero total charge and metal-support interactions. 

 

8. Effect of Pd particle shape on the ORR activity 

As different single-crystal facets present different electrocatalytic activities [6], the ORR has 

been studied on shape-controlled Pd nanoparticles. As already noted the most active single 

crystal facet of Pd is (100) [6] and thus, the most active Pd particles should be cubic in shape 

[106]. The ORR studies on carbon-supported Pd nanocubes in perchloric acid have shown 

that these were 10 times more active in HClO4 than spherical and octahedral particles, which 

was attributed to higher onset potential of OHad formation [107, 108]. In H2SO4 solution, the 

SA on Pd nanocubes was 17 times higher than that of the octahedra, possibly due to the 

stronger adsorption of (bi)sulphate anions on Pd(111) surface sites [108]. The unsupported Pd 

nanocubes showed three times higher SA than those of spherical PdNPs and bulk Pd in 

sulphuric acid [109] and in alkaline solution the SA of cubic PdNPs was 4 times higher than 

that of spherical PdNPs (Figure 7) [110]. As noted by Hoshi and co-workers, the reaction 
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mechanism on Pd may differ from that on Pt [6] and the Tafel slope value at high current 

densities has been reported to be higher than -120 mV [110]. The SA of carbon-supported Pd 

nanocubes with the side length of 7, 10 and 30 nm was at least two times higher than that of 

commercial Pd/C and spherical Pd/C and increased with the nanocube size [111, 112]. The 

mass activities increased with decreasing the size of the nanocubes, whereas the mass activity 

of 7 nm nanocubes was comparable to that of commercial Pd/C catalysts. These observations 

are in agreement with the results reported by Jiang et al. [101]. Pd nanocubes with sizes of 27, 

48 and 63 nm showed different specific activities in alkaline solution, with 48 nm Pd 

nanocubes having the highest SA, which was suggested to be due to the significant 

suppression of the OH
–
 adsorption on smaller Pd cubes [113]. Similarly, 48 nm Pd nanocubes 

were the most active in sulphuric acid, which was explained by different adsorption strengths 

of (bi)sulphate ions [114]. It was also found that Pd nanocubes have smaller sensitivity for 

methanol addition than spherical PdNPs [114]. Results reported by Arjona et al. give further 

support that the electrocatalytic activity of Pd nanocubes for ORR in alkaline solution is 

higher than that of commercial Pd/C catalysts [115]. The SA values of truncated Pd 

nanocubes were higher than those of traditional Pd nanoparticles and did not depend on 

hydroxide concentration [116]. Even though the differences in OH
–
 adsorption were in 

evidence on the CVs registered in O2-free 0.1 M and 1 M NaOH, the Tafel slope value and 

thus the reaction mechanism was the same in both solutions. The mass activities of Pd 

nanocubes supported on graphene nanosheets surpassed that of commercial Pt/C and Pd/C 

more than 2.6 times [62]. 

In contrast, Shao et al. did not observe any structure dependence for ORR on small PdNPs 

(5−6 nm) of different shape in alkaline solution [108]. They proposed that both inner-sphere 

and outer-sphere electron transfer mechanisms are possible in alkaline media and the latter 

dominates in the potential region of Pd oxide formation. Also the adsorption energies of O2 

and oxygen-containing intermediates on catalyst surface may affect the ORR [108, 117]. 

Triangular Pd nanorods having mainly (111) facets and partially (100) facets on the surface 

were prepared by electrodeposition and it was found that the latter contributes the most to the 

reported electrocatalytic activity towards the ORR [118]. Pd nanocubes supported on 

multiwalled carbon nanotubes have been employed as a cathode catalyst in hybrid biofuel cell 

as the nanocubes showed good stability and activity in wide pH range [119]. 

Pd nanorods with predominant (110) surface facet showed superior ORR activity in perchloric 

acid solution as compared to Pd nanoparticles and comparable activity to bulk Pt [120]. 

According to the results of the density functional theory (DFT) calculations, this can be 
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explained by decreasing the adsorption energy of O adatoms on Pd single crystals, which 

follows the sequence of Pd(100) > Pd(111) > Pd(110) [120]. It was suggested that lower 

adsorption energy results in a higher ORR activity, but this contradicts the ORR activity series 

reported by Kondo et al. [6]. 

Bromide treatment has been employed to increase the amount of (111) facets on Pd 

nanoparticles [121]. The Br-treated particles showed increase in ORR activity in perchloric 

acid solution and enhanced stability. Pd nanoflowers prepared via electrodeposition in the 

presence of polyethylene glycol had predominant Pd(111) surface facets and displayed 

enhanced ORR activity in H2SO4 solution as compared to Pd/C, which was attributed to 

improved electrochemical surface area [122].  

Sacrificial templates can also be used to prepare Pd catalysts with predefined shape. 

Poly(ethylene oxide) fiber mats have been used as template for magnetron sputtering of Pd 

catalyst onto the HOPG surface, resulting in three-dimensional Pd shells [17]. Thanks to their 

higher electroactive surface area, these structures had higher electrocatalytic activity than Pd 

films prepared without the template. Copper adlayers have been used as sacrificial template in 

which initial metal is replaced by another (Pt, Pd, Ag) via galvanic replacement reaction 

[123]. Pd nanoshells [124] and nanotubes [125] prepared using his methodology show 

comparable ORR activity to commercial Pd and Pt catalysts, which was attributed to the 

enhanced surface area and high porosity of these materials.  

The stability of Pd based catalysts is a major issue. Several reports show enhanced activity of 

Pd nanocubes enclosed with Pd(100) facets for alkaline ORR [110, 113, 115]. However, 

Zadick et al. have shown that Pd nanocubes lose their shape when cycled in alkaline solution 

in the potential range from 0 to 0.9 V vs RHE, where both HUPD and Pd surface oxidation 

takes place [126]. When potential window is limited to only surface oxidation (from 0.4 to 0.9 

V vs RHE) or HUPD region (from 0 to 0.3 V vs RHE), no significant change in the shape of Pd 

nanocubes is observed [126]. Thus the degradation of Pd nanocubes is suggested to arise from 

electro-oxidation of hydrogen, but also the effect of mechanical stress from absorption of 

hydrogen and surface oxidation cannot be excluded. In contrast to Pd nanocubes, Pd 

nanoparticles deposited on nanocarbon support materials have shown a remarkable 

electrochemical stability in alkaline conditions [127]. 

More detailed aspects of the uses of shape-controlled metal nanoparticles in electrochemistry 

can be read elsewhere [128].  

 

9. Concluding remarks 
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Different palladium-based catalysts have proven to exhibit superior electrocatalytic activity 

towards the oxygen reduction reaction compared to commercial Pt/C catalysts. It is clear that 

interactions between the support material and metal nanoparticles can influence the resulting 

catalysts’ activity by modifying the electronic structure, but also by improving the 

electroactive surface area. Various additives in the catalyst composition may also affect the 

ORR kinetics by changing the electronic structure of metal nanoparticles or inhibit the 

reaction by blocking their surface. Strong adsorption of (bi)sulphate anions reduces the ORR 

activity in sulphuric acid solution. Based on the several researches, the optimum size of Pd 

nanoparticles has been found to be around 5 nm. The ORR on Pd is a structure sensitive 

reaction and Pd(100) facet has been found to possess the highest ORR activity among single 

crystal facets and subsequently Pd nanoparticles that are cubic in shape have been found to 

have superior ORR activity. In order to increase the electrocatalytic activity for ORR, PdNPs 

could be bound to nitrogen-containing groups either using organic ligands or modified 

support. The main obstacle to use Pd-based catalysts in the fuel cells is their low stability, 

especially in acidic solution. The main goal for further research on Pd-based ORR catalysts 

should be further improving their activity and durability in the fuel cell conditions, possibly 

by designing new composite catalysts and nanostructured electrocatalysts. Further decrease of 

Pd loading is highly desirable in order to reduce the cost of Pd-containing MEAs. 
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Figure captions 

Figure 1. Voltammograms of the oxygen reduction reaction using a rotating disk electrode in 

0.1 M HClO4 saturated with O2. Rotation rate: 2000 rpm. Scanning rate: 0.010 V s
-1

. The low 

index planes of Pd. The result of Pt(110) is also shown for comparison. The inset shows the 

hard sphere models of the low index planes. Reprinted with permission from [6]. Copyright 

2009 American Chemical Society. 

Figure 2. RDE voltammetry curves for O2 reduction on Pd thin-films evaporated onto Au (a, 

b) and glassy carbon (c) and bulk Pd electrodes in (a) O2-saturated 0.1 M HClO4, (b) 0.05 M 

H2SO4 and (c) in 0.1 M KOH. Electrode rotation rate: 1900 rpm; scan rate 10 mV s
−1

. 

Reprinted with permission from [14, 15]. Copyright 2009 Elsevier. 

Figure 3. Linear sweep voltammograms of O2 reduction on Pd/C catalysts prepared using 

various reducing agents: ethylene glycol (Pd/C-EG), formaldehyde (Pd/C-CH2O) and NaBH4 

(Pd/C-NaBH4) and Pd/C(Etek), Pt/C(Etek).  in O2 saturated 0.5 M H2SO4 solution. Scan rate 

1 mV s
−1

, metal loading 86 µg cm
−2

. LSVs are compared with those of the commercial Pd/C 

and Pt/C from Etek. Reprinted with permission from [22]. Copyright 2009 Springer. 

Figure 4. Comparison of the polarisation curves of ORR on graphene nanosheets supported 

Pd and Pt catalysts in O2-saturated 0.1 M NaOH solution. Sweep rate: 10 mV s
− 1

; rotating 

speed: 1600 rpm. Reprinted with permission from [52]. Copyright 2009 Elsevier. 

Figure 5. TEM images of PdNPs on N-doped ordered mesoporous graphitic carbon 

nanospheres (Pd/N-MCN). (a) Inset, HRTEM image of Pd/N-MCN. (b) LSVs of mesoporous 

graphitic carbon nanospheres (MCN), N-doped MCN (N-MCN), PdNPs on MCN (Pd/MCN), 

Pd/N-MCN and Pt/C in O2-saturated 0.1 M KOH with a sweep rate of 5 mV/s at a rotation 

rate of 1600 rpm. Reprinted with permission from [68]. Copyright 2009 Elsevier. 

Figure 6. Mass (a) and active surface area (b) normalised Tafel plots of the kinetically 

controlled ORR currents on the Pd/C catalysts. Particle size: Pd/C-AR – 3.1 nm; Pd/C-300 – 

4.7 nm; Pd/C-400 – 4.7 nm; Pd/C-500 – 8.6 nm; Pd/C-600 – 16.7 nm. Reprinted with 

permission from [101]. Copyright 2009 The Electrochemical Society. 

Figure 7. (a) TEM images of cubic PdNPs. A comparison of RDE voltammetry curves on 

PdNP modified GC electrodes and bulk Pd in O2-saturated (b) 0.05 M H2SO4 and (c) 0.1 M 

KOH. Electrode rotation speed: 1900 rpm, scan rate: 10 mV s
−1

. Reprinted with permission 

from [110]. Copyright 2009 
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