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ABSTRACT 

A set of engineered crystalline polymers containing thiazolo[5,4-d]thiazole and arene 

imides linked by ethynylene bridges have been modelled by means of Density 

Functional Theory (periodic boundary) calculations. A large set of relevant electronic 

properties related to the opto-electronic and semiconductor character of these systems, 

such as optical band gap, frontier molecular orbital energy levels, electron affinity, 

ionization potential, reorganization energy, and electronic coupling between 

neighboring polymer chains were obtained. We further discuss the effect of the 

ethynylene linkages, the presence of heteroatoms in thiazolo[5,4-d]thiazole rings, and 
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the number of fused rings in the repeating unit on the electronic properties, for 

disclosing useful structure-property relationship.  

 

INTRODUCTION  

New electronic materials are under development for their use in (now 

conventional) applications, for large-area electronics such as field-effect transistors and 

photovoltaic cells as well as newly emerged applications, namely integrated sensors, 

medical imaging arrays, printed radio frequency identification devices, and light-

emissive flexible displays, among others, all of them requiring both p- and n-type 

components.1-3 The performance of organic-based devices does not necessarily exceed 

the level of performance of inorganic semiconductor technologies, though organic 

materials allow the production of cost-effective, large-area and mechanically flexible 

electronic devices via solution-based high-throughput patterning techniques.2,3 The use 

of organic semiconductors in organic light-emitting diodes (OLEDs), organic solar cells 

(OSCs), organic thin-film transistors (OTFTs), which in turn can be used for medical 

and chemical sensing, and organic electrochromic devices as smart-windows and 

electrochromic mirrors currently attracts a great interest worldwide.1-4 The organic 

materials employed in electronic devices are generally divided into two groups: small 

molecules (or oligomers) and polymers, which shows different advantages or 

disadvantages in terms of processability and device performance. In general, higher 

mobilities have been reported for electronic devices fabricated with semiconductors of 

moderate size than for those fabricated with polymers. Nevertheless, scaling up these 
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results into a reliable and large-area manufacturing process has proven challenging. The 

typically low viscosity of small molecule formulations may limit the device processing. 

In addition, the anisotropy of the electronic mobility and mobility loss at the grain 

boundaries, could alter the optimal performance from device to device, which cannot be 

tolerated in certain electronic applications.1 

In this framework, we have chosen, poly(aryl-ethynylene)s (PAEs) polymers 

that exhibit promising semiconducting and optoelectronic properties, especially when 

containing electron-donating and electron-accepting heterocycles linked by ethynylene 

bridges (-C≡C-).5-8 Different research groups have investigated the use of PAEs and 

hyperbranched PAEs as molecular wires, OLEDs, OSCs, OTFTs and fluorescent 

chemical sensors.9-14 The interesting electronic properties exhibited by PAEs can be 

related to the axial symmetry of ethynylene groups, which allows to maintain the 

conjugation (note that between adjacent aryl groups at different relative orientations 

rotational barriers are as small as 1 kcal mol-1 in these cases)15-20 across the whole 

molecular backbone.  

In 2005, Yamamoto and co-workers reported the preparation of an 

electrochemically active PAE including 1,3,5-thiadiazole (Th) as electron-accepting 

heterocycle.5,6 During the last years, we have investigated the molecular structure and 

electronic properties of series of PAEs containing Th as electron-accepting group linked 

to phenylene and -C≡C- bridges by means of Density Functional Theory (DFT) 

calculations.19-23 Their interesting electronic properties make them suitable candidates 

for their use as organic semiconductors. Going one step further, thiazolo[5,4-d]thiazole 
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(TTh) is also an electron-deficient molecule, chemically related to Th, which has been 

used in the formulation of electrochemically active oligomers and polymers.24-28 

Nevertheless, to the best of our knowledge, no PAEs containing TTh units have been 

synthesized. Arene imides have also a strong electron-withdrawing character, which 

lowers the unoccupied frontier orbital and thus might facilitates the charge (electron) 

injection and concomitant stabilization of the injected charges (electrons). Moreover, 

the existing π-conjugation is advantageous for intramolecular charge transport2 and can 

induce long-distance electronic coupling.29-30 All these arene imides have already been 

employed successfully in the fabrication of semiconductor polymers.2,31 Therefore, a 

thorough and comprehensive theoretical study of the molecular structure and electronic 

properties of a set of PAEs containing TTh and arene imides such as phtalaimide, 

pyromellitic diimide (PMDI), naphthalene diimide (NDI) or perylene diimide (PDI), 

connected by -C≡C- bridges (see Chart 1), becomes the goal of the present work. These 

polymers can be clasified in two main groups: i.e. polymers with linkages to the core 

instead of the imide position (polymers II – IV, see chart 1) and polymers with C-N 

linkages in the backbone (polymers V and VI, see chart 1). The obtained results will be 

compared with the parent polymer I, without imine groups, and their electronic 

properties will also be compared with those reported for reference polymers VII and 

VIII, in which TTh is substituted by Th and thieno[3,2-b]thiophene (TT) rings.19-23,32,33  
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Chart 1. Chemical structures of the studied polymers (I-VI) and some related compounds (VII-IX) for 

further comparision.  

 

THEORETICAL CONSIDERATIONS ABOUT CHARGE INJECTION AND 

TRANSPORT 
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A high performance in optoelectronic devices is mainly related to efficient 

charge injection from electrodes and associated charge mobilities. In typical π-

conjugated organic crystal materials with small bandwidths (< 1eV) and at room 

temperature, the charge migration after injection is generally described by a hopping 

mechanism,34,35 where the molecular and lattice vibrations in addition to the coupling 

with the charge carriers (i.e. the molecular packing as well the conformation of a single 

molecule) controls the transport efficiency.36 

In the zero-limit, at high temperature and according to Marcus-Levich-Jortner 

(MLJ) model,37,38 the hopping mobility can be modeled as a self-exchange charge-

transfer (CT) reaction between neighboring molecules, and estimated through the 

Einstein-Smoluchoswki relation, 

����	 =	 ��	
�     (1)  

where e is the electron charge, D is the charge diffusion coefficient, kB is Boltzmann’s 

constant and T is the temperature, fixed here at 298 K. In the case of conjugated 

polymer crystals where the backbone chains are cofacially stacked, the hopping between 

neighboring chains is especially favored in the stacking direction. Thus, for a one 

dimensional charge transport, D = 1/2 l2kCT, where l is the distance between the 

molecules involved in the hopping process and kCT is the rate constant for charge 

transfer. kCT can be conveniently expressed as: 

�� =			 ���� ���� � �
����	
�∑ �����−��  ! " × $%&&'

!! × 	��� )*���+!ħ,%&&+-./"�
���	
� 012!34  (2) 
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where ∆G° is the Gibbs free energy of the charge-transfer process (equal to zero in the 

self-exchange process). In the MLJ formalism, a single effective mode with an energy 

ℏωeff, which represents all the intramolecular modes, is treated at the quantum-

mechanical level via the effective Huang-Rhys factor Seff = λi/ℏωeff (ℏωeff was set here 

equal to 0.2 eV, which is the typical energy of C-C stretching modes).39-41 On the 

contrary, the intermolecular modes are treated classically through the λs parameter. In 

organic crystals, the outer reorganization energy is in the order of few tenths of an 

electronvolt or lower, contrary to charge transfer in solution wherein the external part 

dominates.3,42-45 Different values for λs, ranging between 0.01 and 0.2 eV, have been 

proposed and employed in literature.46-49 As in previous works, λs was fixed at 0.1 eV in 

order to facilitate the comparison with previous rate constants reported for PAEs.23  

The inner reorganization energy, λi, for the self-exchange reaction consists of 

two terms corresponding to the geometry relaxation energies going from the neutral-

state geometry to the charged-state and vice versa (Nelsen four-point method):50,51 

λ1 = E0(G*) – E0(G0)     (3) 

λ2 = E*(G0) – E*(G*)     (4) 

λi = λ1 + λ2      (5) 

where E0(G0) and E*(G*) are the ground-state energies of the neutral and ionic states, 

respectively, E0(G*) is the energy of the neutral molecule at the optimized ionic 

geometry and E*(G0) is the energy of the charged molecule at the optimized neutral 

geometry.3,45,52,53 Since the inner reorganization energy controls the charge-phonon 
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coupling, if λ1 ≈ λ2, we can write λi ≈ 2λ1, and this condition can be satisfied when the 

molecular structure is not largely deformed during the ionization process.54 

The charge hopping transport is favored by a small polaron binding energy 

(Epol), defined as the relaxation energy of an ionized molecule. Taking this into account, 

both Epol and λi must be lowered, while the charge transfer integral, t12, must be 

maximized in order to improve the charge transport.36 The charge transfer integral, t12, 

describes the electronic coupling between two neighboring molecules,3,44 hence it 

critically depends on the relative spatial arrangement and is given by the matrix element 

t12 = <ψ1|Ĥ|ψ2>, where Ĥ is the electronic Hamiltonian of the system, which in the 

frame of DFT can be identified with the Kohn-Sham operator. The wave-functions of 

the initial, ψ1, and final, ψ2, charge-localized states are obtained in the hypothetical 

absence of any coupling between the molecular units.23,34,52 Within the framework of 

the Marcus-Hush two-state model, it is possible to apply the approximate method of the 

‘energy splitting in dimer (ESD)’ in the case of systems with identical and 

symmetrically equivalent molecules such as ideal polymers.3,34,52 Strictly speaking, this 

method requires the use of the geometry of the charged dimer at the transition state. In 

practice, this process is simplified considering the geometry of the neutral dimer built of 

two stacked chains with the same conformation as that in the crystal. Then, on the basis 

of Koopmans’ theorem, t12
– and t12

+ (electron and hole transport, respectively) can be 

obtained by the following equation: 

���* = �
�7(9:+� − 9:)� − (�� − ��)�   (6) 

���+ = �
�7(9< − 9<*�)� − (�� − ��)�   (7) 
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where EL+1, EL, EH and EH–1 are the energies of the LU (Low Unoccupied) MO 

(Molecular Orbital)+1, LUMO, HO (High Occupied) MO and HOMO–1 levels taken 

from the closed-shell configuration of the neutral state of the dimer; e1 and e2 are the 

site energies of each isolated molecule in the dimer.34,35,52 In the case of symmetrically 

arranged polymers, e1 = e2 as the infinite chains can be considered as equivalent 

molecules in the crystal and equation (6) and (7) can be written as.3,34,45,52 

    |���*| = >?@A*>?
�      (8) 

|���+| = >B*>BCA
�      (9) 

In that sense, once λ y t12 are calculated, absolute kCT and µ values in the stacking 

direction can be estimated. Both magnitudes are strongly dependent of the morphology 

of the material. Thus, Marcus hopping model has been successfully applied to 

reproduce the experimental hole mobilities reported for organic crystals with long-range 

structural order which are substantially deveid of the influences from thermal and 

energetic disorder.55 On the contrary, the best reproduction of the experimental 

mobilities in thin film materials has been obtained considering thermal and energetic 

disorder. The presence of grain boundaries between crystalline domains is a source of 

disorder in these materials and hinder the charge transport.55 In the present study, we 

have worked under the assumption of perfect crystalline polymer and, hence, the 

calculated mobility for each polymer corresponds to a maximum limit value. Relative 

hopping mobilities, µrel, were also calculated for comparative purposes since those can 

be more informative and reliable than the absolute values considering the assumed 

approximations in our model.53  
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To achieve a good charge injection, the frontier MOs and the work-function (Φ) 

of the electrode must have appropriate values. An ohmic contact is produced when the 

difference energy between the frontier MO and Φ is equal or lower than 0.3 eV. In the 

case of p-type semiconductors, the HOMO must be aligned with the Fermi levels of 

environmentally stable anodes, such as ITO56 to obtain an efficient hole injection. By 

contrast, in the case of n-type semiconductors, the LUMO should match the Fermi level 

of the electrodes, with low work function, such as Ca, Mg, Ba or Al.57 Although this is 

an approximation, i.e. interface dipole effects between the electrode and semiconductor 

have not been taken into account,46,58 the comparison of Φ with HOMO/LUMO energy 

levels of the semiconductor may help to determine whether charge injection is likely or, 

on the contrary, high contact resistance should be expected. Moreover, the values of the 

HOMO and LUMO orbitals must range between -4.8 – -5.5 eV and -3.6 – -4.5 eV, 

respectively, to improve the stability of the opto-electronic device.3 However, some 

studies establish the limiting value for LUMO energy in -4.0 eV, as the negative 

charges can react with atmospheric oxidants such as water or oxygen.59,60 

Ionization potential (IP) and electron affinity (EA) are also key parameters that 

determine the efficiency of the charge injection from the electrodes in addition to the 

susceptibility to be reduced or oxidised upon air exposure.53 Thus, the EA of a 

semiconductor must be ≥ 3.0 eV for an easy electron injection, but not much greater 

than 4.0 eV to avoid destabilization under ambient conditions.42 Low IPs facilitate hole 

injection, though too low values may produce unintentional doping. 
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COMPUTATIONAL DETAILS 

The Gaussian09 (Rev. D.01) package has been employed for all the calculations 

reported here.61 Different DFT hybrid functionals were employed, i.e. B3LYP,62,63 

PBE0,64 and M06-2X,65 along with the 6-31G* basis sets, for the computation of the 

electronic properties of the studied PAEs. The choice of different hybrid (B3LYP, 

PBE0 and M06-2X) functionals allowed us to study the influence of the variable 

fraction of the exact-like exchange in the functional, i.e. 20% for B3LYP, 25% for 

PBE0, and 52% for M06-2X, on some of the studied properties. 

The optical band gap was estimated through electronic transitions with high 

oscillator strength values (f ≥ 1.0) involving frontier MOs extended along the whole 

system, (generally HOMO → LUMO transition except for oligomers V and VI). The 

energy of the transition was obtained by the time dependent (TD)-DFT formalism,66 

using again the B3LYP, M06-2X and PBE0 hybrid functionals together with the 6-

31G* basis set, on oligomeric structures from 1 to 15 repeat units (n), excluding some 

oligomer chains because of the large demand of computational resources. Note that 

oligomers with different chain length (n = 3 − 15) were generated by replication of the 

minimal periodic motif, which was previously optimized at the same level of theory and 

in those cases the free valences were saturated with hydrogen atoms.21,23,32,67-69 We have 

observed that this procedure allows calculating electronic properties in long oligomeric 

chains with a great reduction of the computational cost, and without significantly 

affecting the optical band gap.21 The values of the optical band gap for the ideal 

polymer chains were estimated through the equation proposed by Meier et al.70 
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E(n) = E∞ + (E1 − E∞) exp[−a(n − 1)],     (10) 

where E1 and E∞ stand for the excitation energies for the monomer and the infinitely 

long polymer, respectively; n is the number of repeat units and a is an empirical 

parameter that describes how fast E(n) saturates to E∞.  

The HOMO/LUMO energy value (EHOMO/ELUMO), IP/EA and λi were calculated 

at the B3LYP/6-31G* level on previously optimized oligomers at the same theory level. 

The chain length of the modelled oligomers was increased up to saturation of the 

monitored properties (n ≤ 13). Closed-shell calculations for singlets and open-shell 

calculations for doublets (cationic and anionic species) have been carried out for the 

different oligomer chains. To perform those calculations, B3LYP was the method of 

choice, as it yields reasonable conjugated-polymer ground-state structures33,71-73 and, in 

general, seems appropriate for the prediction of electronic structures of polycyclic 

aromatic hydrocarbons.29,74 In addition, that method usually provides theoretical λi 

values in good quantitative agreement with the corresponding experimental gas-phase 

ultraviolet photoelectron spectroscopy estimates,75 togheter with satisfactory linear 

relationships between calculated EHOMO/ELUMO and experimental IPs/EAs in such a way 

that the calculated EHOMO/ELUMO can be used to semi-quantitatively estimate EAs/IPs76-

78 and orbital energies.79 Although Koopmans’ theorem is not strictly applicable to 

Kohn-Sham orbital energies,80 Janak’s theorem proved a connection between IP/EA and 

EHOMO/ELUMO (see ref [78] and references therein). The values of EHOMO/ELUMO, IP/EA 

and λi for the infinitely long polymer chains were estimated through a single 

exponential function similar to that proposed by Meier et al. for the band gap.70 

Page 12 of 53

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 
 
 

 

13 
 
 

 

The crystal structures were modelled at the HSE06/6-31G* level 81-83 by means 

of periodic calculations using a single repeating chain. The spatial arrangements of two 

stacked periodic chains, exhibiting minimum binding energy (Ebind), were used as 

starting point for the crystal structure modelling. With that goal in mind, Ebind 

landscapes were calculated for two periodic chains which were kept with face-to-face 

planes at a distance of 3.5 Å along z-direction, corresponding to a typical π-stacking 

distance (see Figure 1). While the position of one of the chains was kept fixed, the 

second chain was displaced along x- and y-axes in a grid of 1.0 Å in both directions. 

HSE06 has been purposefully chosen for the crystal structure modelling, thanks to the 

use of a screened Coulomb potential by splitting the corresponding two-particle 

operator into a short-range (SR) and a long-range (LR) terms, which is highly 

recommended for calculations of band gaps and lattice constants in solids.81-83 Although 

HSE06 was originally developed for inorganic semiconductors, the combination of a 

screened hybrid functional with empirical dispersion correction terms has also been 

proven adequate for modelling π-conjugated polymers.22 

Once the crystal structure was obtained, t12 values between neighboring chains 

were calculated at the B3LYP/6-31G* level for each studied polymer. These t12 values 

were obtained from the band structure of two stacked, isolated chains at the Γ point as 

half the energy splitting of the HO and LU Crystal Orbital (CO) levels.34,53 Similar to 

the Ebind landscapes, t12 values were also scanned as a function of the x- and y-axes 

displacement of a polymer chain keeping fixed z = 3.5 Å (a typical π-stacking distance) 

an identical chain. The 6-31G* basis set was chosen because it provides a reasonable 
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trade-off in periodic boundary calculations between accuracy and computational cost. 

Nevertheless, several investigations have previously reported that the use of other basis 

sets such as 6-31G*, 6-31+G*, and 6-311G** does not produce significant differences 

in the calculated t12 value.4,35 

 

RESULTS AND DISCUSSION 

Polymer crystal structure. As stated before, the crystal structures of the polymers were 

modelled using as starting point the spatial arrangements of two stacked periodic chains 

where their binding energy displays the lowest value. Figure 1 shows the energy 

landscapes obtained for dimers formed by the polymer chains I – VI, as a function of 

the relative x,y-displacement of one chain with respect to the other. The lowest-energy 

(x,y) coordinates calculated for all the studied polymers are collected in Table 1. The 

optimized unit cell parameters are also shown in Table 1. All the calculated polymer 

chains remained highly planar, showing values ≤ 0.1º for the dihedral angle, |τ|, which 

describes the torsion between a TTh ring and the next aromatic ring in the chain. On the 

other hand, that contrasts with the dihedral angles between neighboring aryl groups of 

up to 18.5º observed for the reference polymer VII.22 A plane that contains 

approximately all the TTh rings of a same chain can be defined and 1 (see Table 1 and 

Figure 2) corresponds to the distance between that plane and its parallel neighboring 

plane (stacking distance). A distance between planes of 3.5 Å was calculated for all the 

polymer crystal structures except for the polymers I (3.8 Å) and IV (3.3 Å). Therefore, 

it seems that the presence of imide groups in the set of the polymers studied leads to 
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shorter stacking distances. For the polymers containing imide groups (II – VI), no clear 

correlation between the number of fused aromatic rings of the repeating unit and the 

stacking distance was observed. 
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Figure 1. Binding energy landscapes calculated for dimers formed by the polymer chains I – VI as a 

function of the relative (x,y)-displacement of one chain, in a plane, with respect to the next, in a parallel 

plane. The z-displacement was fixed z = 3.5 Å. (a) Corresponds to polymer I; (b) to II; (c) to III; (d) to 

IV; (e) to V and (f) to VI.  

 

 

 

 

 

Table 1. Relative x,y-displacements corresponding to the minimum Ebind values calculated at the 

B3LYP/6-31G* level for dimers formed by two polymer chains. Optimized unit cell parameters 

calculated at HSE06/6-31G* level along with the dihedral angle, |τ|, between a TTh ring and the 

next aromatic ring in the polymer chain and the stacking disntace, l, between two parallel planes 

containing neighboring polymer chains.   

 Dimers  Crystal polymer structure 

Polymer x,y-displ. (Å) 
 Cell lengths (Å) Cell angles (º) 

l (Å) |τ| (º) 
 a b c α β γ 

I 6, 2  15.27 11.85 5.02 50.48 49.36 29.71 3.8 0.00 
II 11, 3  30.60 13.56 5.17 69.70 45.97 46.75 3.5 0.00 
III 11, 4  15.31 13.56 5.15 66.47 45.50 44.18 3.5 0.00 
IV 9, 7  15.27 16.39 5.10 58.00 45.48 68.67 3.3 0.00 
V 6, 4  19.34 12.86 8.65 83.08 29.81 57.84 3.5 0.10 
VI 12, 4  23.63 12.46 14.10 56.48 22.27 38.20 3.5 0.00 
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Figure 2. Different type of arrangements of polymer I, on the left, and polymer V, on the right. l 

corresponds to the stacking disntace.  

 

Optoelectronic properties. The optical band gap is a key property related to the 

performance of polymer solar cells. In general, the photocurrent in these devices is 

limited by the overlap between the absorption spectrum of the polymer and the solar 

spectrum, which reaches the maximum photon flux around 1.6 – 1.8 eV.84 Table 2 

shows the optical band gap values estimated for the infinite polymer chains through the 

equation (10) except for the V and VI, for which the corresponding values calculated 

for the oligomers n = 5 are shown (more detailed information on the oscillator strength, 

main components of the transitions and values obtained in the different fits are collected 

in the Supporting information, Tables 1S – 6S). As previously mentioned, different TD-

l 
l 
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DFT levels were employed for the calculations and those with the highest percentage of 

exact-like exchange yielded the highest optical band gap values.32,33,68,69 The shapes of 

the frontier MOs of monomers I, IV, V and VI and their oligomers with n = 5 are 

shown in Figure 3. In general, HOMO and LUMO are π and π* MOs delocalized over 

the whole molecule or polymer chain. Similar observations have been previously 

reported for other PAEs.23,32,69 However, in the case of the polymers involving C-N 

linkages in the backbone (V and VI), HOMO, LUMO and a large number of frontier 

MOs are localized over certain TTh and arene imide units. In fact, the optical band gap 

could not be determined for long oligomers V and VI due to the large demand on 

computational resources needed to calculate the first electronic transition with high f 

and involving frontier MOs extended along the whole oligomer chain.  

 

Table 2. Calculated optical band gaps for the studied oligomers and values estimated for the 

corresponding infinite polymer chains.  

Polymer n 
Band gap  (eV) 

TD-B3LYP/6-31G* TD-M06-2X/6-31G*TD-PBE0/6-31G* 

I n→∞a 2.062 ± 0.034 2.907 ± 0.006 2.232 ± 0.014 

II n→∞a 1.994 ± 0.012 2.822 ± 0.010 2.154 ± 0.012 

III n→∞a 1.855 ± 0.012 2.668 ± 0.010 2.011 ± 0.012 

IV n→∞a 1.431 ± 0.012 1.990 ± 0.012 1.573 ± 0.012 

V 5 2.696 3.541 2.905 

VI 5 2.314 2.766 2.407 
a Values for infinite polymer chains were estimated from a fit to the equation (10).70 

 

 

 

 

 

 

 
n = 1 n = 5 
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Figure 3. Isocontour plots (0.02 a.u.) of frontier molecular orbital calculated for I, IV, V and VI 

polymers with n = 1 and 5 at the B3LYP/6-31G* level.  

 

Taken as a representative example, Figure 4 illustrates the optical band gap 

dependence with the chain length along the corresponding fitting to equation (10) for 

the polymers I – IV (see also Figure 1S and 2S of the Supporting Information). As can 
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be easily seen, oligomers with n = 15 are long enough to ensure the saturation of the 

band gap value and a suitable fitting to equation (10) (r2 > 0.998, in all cases) (more 

detailed information about the values obtained in the different fits can be found in Table 

7S of the Supporting information). In all cases, the band gap tends to decrease with 

increasing the chain length, reaching a saturation value at n ≥ 11. The number of fused 

aromatic rings has a clear effect on the reduction of the band gap in oligomers I – IV. In 

the field of photoactive materials, only the calculated band gaps for the oligomers IV 

with n ≥ 3 (at the TD-B3LYP and TD-PBE0 levels) and the corresponding estimated 

values for the infinite chains satisfy the needed condition of overlap with the maximum 

absorption of the solar spectrum. As a consequence, these oligomers could be promising 

candidates for the fabrication of solar cells. The band gaps calculated for long oligomers 

III (n ≥ 9) (at the TD-B3LYP level) also lie near the threshold of 1.8 eV,84 with similar 

values to the pryomellitic diimide (PDMI) analogues reported by Guo and Watson.85 

Regarding polymers V and VI, the band gap values are similar to their PDI or NDI 

single monomers.86 Observing these values, they could indicate that the imide rings 

ultimately control the band gap values.  
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Figure 4. Optical band gap values calculated for oligomers I – IV with different chain lengths at the TD-

B3LYP/6-31G* level and fits to the equation proposed by Meier et al.70; (□) correspond to oligomers I; 

(○) to II; (∆) to III; and (∇) to IV.  

Previously, we reported an optical band gap of 2.371 ± 0.029 and 2.07 eV 

(calculated at the TD-B3LYP/6-31G* level) for the infinite polymer chains VII and 

VIII, respectively. The value estimated for the infinite chain I is ~ 0.3 eV lower than 

that reported for VII and similar to the corresponding value of VIII. Here, we observe 

again that the number of fused aromatic rings lowers the band gap. As far as we know, 

the studied polymers have not been synthesized yet, but the synthesis of some related 

compounds to I such as the monomer and oligomer IX has recently been reported.87,88 

For the monomer IX, a HOMO → LUMO transition energy ~ 0.6 eV higher than the 

corresponding energy obtained for the monomer I was calculated (at the same level of 

theory).87 Therefore, the introduction of ethynylene moieties, along with the increase of 
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the number of fused rings in the repeating unit, seems to be a suited strategy to reduce 

the optical band gap of these PAEs. 

Charge transport properties. The calculated λi values for both electron and hole 

injection decrease with lengthening of the polymer chains (see Figure 5, Table 3 and 

Table 8S – 9S of the Supporting Information). For small conjugated oligomers, the 

charge carrier - phonon assembly (so-called polaron) can delocalize over the whole 

molecule and, hence, λi strongly depends on the size of the oligomer. Figure 6 shows 

the delocalization of the α-SOMOs (Single Occupied Molecular Orbitals) of the ion 

oligomers I and IV. Nevertheless, α-SOMOs of the ion oligomers containing C-N 

linkages in the backbone (V and VI) are not as delocalized as the rest of the α-SOMO 

orbitals. When the length of the oligomers steadily increases, λi shows an asymptotic 

behaviour with respect to the oligomer size.68,71,89 The perturbation of the geometry 

caused by the presence of a charge becomes almost negligible for long chains and the 

low value of λi can be associated to largely extended and weakly bound polarons.45 Note 

that extreme polaron delocalization associated to a very low reorganization energy has 

been recently measured for π-conjugated porphyrin oligomers.90 

a) b) 
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Figure 5. Calculated (a) λi
+ and (b) λi

– for oligomers of different chain length at the B3LYP/6-31G* level 

and fitted to the equation proposed by Meier et al.70 
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Figure 6. Isocontour plots (0.02 a.u.) of α-SOMOs, for cations and anions, calculated for different 

anionic oligomers at the B3LYP/6-31G* level. 

 

As described before, a single exponential equation analogous to equation (10) 

was employed to fit the λi values as a function of n and to obtain an estimate at the 

polymer limit (see Figure 5). These estimated λi values for the infinite polymer chains 

are within the 0.020 – 0.037 eV and 0.024 – 0.054 eV ranges for electron and hole 

transport, respectively. The data are collected in Table 3 (r2 ≥ 0.993 in all fits, see Table 

10S – 11S in the Supplementary Information) and show, in general, how internal 

reorganization energies estimated for electron transfer (λi
–) in the infinite polymer 

chains are close to those calculated for hole transfer (λi
+). Nevertheless, λi

– values of 

about half of λi
+ were obtained for the polymers with C-N linkages in the backbone. The 

Page 24 of 53

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://pubs.acs.org/action/showImage?doi=10.1021/acs.jpcc.6b07240&iName=master.img-112.jpg&w=387&h=70
http://pubs.acs.org/action/showImage?doi=10.1021/acs.jpcc.6b07240&iName=master.img-112.jpg&w=387&h=70
http://pubs.acs.org/action/showImage?doi=10.1021/acs.jpcc.6b07240&iName=master.img-112.jpg&w=387&h=70
http://pubs.acs.org/action/showImage?doi=10.1021/acs.jpcc.6b07240&iName=master.img-116.jpg&w=393&h=34
http://pubs.acs.org/action/showImage?doi=10.1021/acs.jpcc.6b07240&iName=master.img-116.jpg&w=393&h=34


 
 
 

 

25 
 
 

 

lowest λi
–

 values were estimated for the polymers with more fused rings in arene imide 

units, i.e. polymers IV (0.020 ± 0.004 eV) and VI (0.023 ± 0.004 eV). λi
– values have 

previously been reported for oligomers analogous to I (at the same level of theory) but 

containing Th and TT rings instead of TTh.23,32,33 λi
– values estimated for the infinite 

polymer chain VII (0.032 ± 0.006 eV) and calculated for its short oligomers are similar 

to those obtained for the polymer I (0.032 ± 0.002 eV) and the corresponding 

oligomers.23 On the other hand, a significant increase in λi
– of ~ 0.02 eV is observed for 

the infinite polymer chain VIII, which does not contain nitrogen atoms in the chemical 

formula.33 Therefore, the change of Th by TTh does not seem to have an important 

influence on λi
– but the presence of nitrogen atoms allows reaching lower electron 

reorganization energies for these conjugated polymers. In general, for all the studied 

systems, low reorganization energies were calculated for short oligomer lengths and 

even for monomers. For example, the λi
–

 values calculated for the monomers IV – VI 

(0.127 – 0.169 eV) and for the oligomers I – III with n = 3 (0.136 – 0.143 eV) are 

comparable or lower than those calculated at the B3LYP/6-31G** level for compounds 

proposed as n-type organic semiconductors such as pentacene (0.132 eV),78 a 

perylenediimide derivative (0.272 eV),91 rubrene derivatives (0.098 − 0.127 eV),92 some 

coronene-diimide derivatives (0.226 – 0.241 eV),29 the infinite naphtalene-

carboxydiimide polymer chain (λi
– ≈ 0.2 eV)93 and some fluorinated perylene diimides 

(λi
– = 0.27 – 0.35 eV).94 In the case of hole transport, the lowest λi

+ was also estimated 

for the polymer IV (0.024 ± 0.002 eV) while the highest values were obtained for the 

polymers with C-N linkages in the backbone such as V and VI (0.043 ± 0.010 and 0.054 
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± 0.016 eV, respectively). λi
+ values calculated for the monomer IV (0.188 eV) and for 

the rest of oligomers with n = 3 (0.120 − 0.149 eV) are comparable to those reported for 

some tetratiofulvenes (TTF) (0.071 − 0.234 eV, calculated at the B3LYP/6-31G** 

level) (see reference [95] and references therein), oligoacenes and oligothiopenes (0.077 

− 0.182 eV, calculated at the B3LYP/6-31G** level)96 which have been demonstrated to 

behave as high mobility p-type semiconductors in OFETs. Summarising, the lowest 

reorganization energies for both electron and hole transfer were calculated for the 

oligomers of compound IV. The reorganization energies estimated for the infitine 

polymer chains IV are at least 25% lower than those obtained for the homologous 

polymer III which contains two less fused rings in the repeat unit. Hence, it seems that 

the presence of nitrogen atoms in TTh and Th rings, together with higher number of 

fused rings in the arene imide unit, reduces the perturbation of the geometry caused by 

the presence of a negative charge. Consequently, low λi
– values were also obtained for 

oligomers of compound VI. On the contrary, for hole transfer, the linkage to the core 

instead of the imide position seems to lower λi
+.  

 

Table 3. Predicted Electron Affinity (AEA and AEV), Ionization Potential (AIP and VIP), 

Reorganization Energy (λi
+ and λi

–) for an infinite and ideal polymer chains. Calculations were 

carried out at the B3LYP/6-31G* level.a 

 Holes Electrons 
Polymer AIP (eV) VIP (eV) λi

+ (eV) AEA (eV) VEA (eV) λi
– (eV) 

I 5.772±0.040 5.789±0.042 0.033±0.004 2.821±0.060 2.804±0.062 0.032±0.002 
II 6.061±0.044 6.084±0.046 0.033±0.006 3.199±0.046 3.177±0.050 0.037±0.004 
III 6.234±0.046 6.251±0.048 0.032±0.004 3.516±0.044 3.501±0.046 0.027±0.006 
IV 5.971±0.036 5.983±0.036 0.024±0.002 3.777±0.044 3.767±0.044 0.020±0.004 
V 6.137±0.032 6.167±0.036 0.043±0.010 3.743±0.034 3.720±0.054 0.026±0.008 
VI 5.871±0.042 5.924±0.032 0.054±0.016 3.691±0.018 3.666±0.034 0.023±0.004 
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a Corresponding to the infinite polymers chains; the error corresponds to ±2σ, where σ is the standard deviation with 

respect to the first order exponential fitting.70 

 

The electronic coupling strongly depends on the relative arrangement of the molecules 

in the crystal, with the main electron-hopping pathway found along the π-stacking 

direction, whereas the electronic coupling between coplanar chains can be generally 

considered negligible.4,22,33 For two perfectly stacked molecules, it is known that small 

molecular displacements may also lead to significant changes in the t12 value.45 Figure 7 

shows indeed strong oscillations in the value of t12 for displacements of polymer chains 

I and V along the x- and y-axes in dimers consisting of two π-stacked infinite chains. 

These characteristic profiles are related to the nodal pattern of the HOMO-1/HOMO and 

LUMO/LUMO+1 orbitals of the polymer chains being the hole or electron coupling 

maximised for the maximum overlap position in most of the cases.45 Table 4 collects the 

t12 values calculated for dimers of stacked chains, taken from the previously modelled 

crystal structure in the Γ point of the band structure. Electronic couplings for hole 

transfer (t12
+) are at least 1.8-fold higher than those corresponding to electron transfer 

(t12
–) except for polymer VI. The highest values of both t12

– and t12
+ were calculated for 

the polymer with the smallest predicted cofacial distance between the two neighboring 

chains (polymer IV, l = 3.3 Å), followed by the values obtained for polymers I and II. 

On the other hand, low electronic couplings were in general obtained for the polymers 

containing C-N linkages (V and VI). Comparable t12
– values were calculated for the 

linear polymer chain I and for the zig-zag polymer chain VII,23 which contain TTh and 

Th units, respectively. Nevertheless, low electronic couplings have been reported for the 
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polymer containing TT rings (VII)33 which suggests that the presence of nitrogen atoms 

in the electron-accepting unit may improve the semiconducting properties of this kind 

of polymers. In general, t12
– values calculated for polymers I, II and particularly IV lie 

in the range of those reported for the different pathways within the pentacene crystal 

(0.043 − 0.084 eV, calculated at B3LYP/6-31G** level from a crystal structure)97 and 

for analogous systems, such as oligothiophenes made up of 6 repeat units (0.132 eV, 

calculated at the B3LYP/6-31G** level) and short oligomers formed by thiophene rings 

and perfluoro-phenyl units (0.01 – 0.07 eV, calculated at the B3LYP/6-31G** level).98 

In the case of hole transport, t12
+ values calculated for polymers I – V, especially for II 

and IV, are comparable to the values reported for oligomers such as oligothiophene 

with n = 6 (0.135 eV, calculated at the B3LYP/6-31G** level), short oligomers formed 

by thiophene rings and fluoroarenes-thiophenes (0.031 − 0.057 eV, calculated at the 

B3LYP/6-31G** level),98 and compounds such as thiophene-pyrrole based oligo-

azomethines.99 It is worth mentioning the strong differences calculated for the electron 

couplings of the polymers III and IV which present related structures. In this case, the 

higher number of fused rings can be associated to the increase of the coupling between 

neighboriong rings.  

 

Polymer I 

a) b) 
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Polymer V 

c) 

  

d) 

 

Figure 7. Evolution of calculated t12 values as a function of the degree of translation of one chain along 

the x-and y-axes in a system consisting of two π-stacked polymer chains (I and V) with an intermolecular 

distance fixed at 3.5 Å.  

 

The values estimated for the charge transfer constants along the π-stacking 

direction and charge mobilities at 298 K are also collected in Table 4. In general, a more 

pronounced p-type rather than n-type character is expected for the studied PAEs since 

kCT
+ / kCT

– ratios are within 3 – 15 for polymers I – IV. That ratio is only lower than 1 

for polymer VI. Both charge transfer rate constants estimated for polymer I are higher 
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than the rate constant reported for polymers containing Th and TT units (VII and 

VIII).23,33 Hence, the use of TTh instead of Th and TT could improve the 

semiconducting properties of these PAEs. The highest rate constants for both electron 

and hole transport and, therefore, the most efficient charge transport were predicted for 

polymer IV. The lowest kCT values were in general obtained for the polymers with C-N 

linkages in the backbone (V and VI).  

The relative values of the mobility, µrel
+ and µrel

–, with respect to the parent 

polymer I, and the comparison with the values reported for the reference polymers VII 

and VIII, might provide valuable information to analyze the effect of the different 

aromatic units on the semiconducting properties of the studied PAEs. Thus, µrel
− > 1 

were only obtained for polymer IV, while in the case of hole hopping, µrel
+ > 1 was 

calculated for both polymer II and IV. Again it must be highlighted the case of polymer 

IV, that shows the highest absolute mobilities for electrons and also for hole transport. 

Polymer I also shows high absolute mobilities, and along with IV, relatively balanced 

µ+ and µ− ratios of 0.3 – 0.4. These ratios are similar to those calculated for other 

ambipolar semiconductors used in opto-electronic devices, where the electron mobility 

is typically about three times lower than the hole mobility.100  
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Table 4. Electronic couplings (t12
+ and t12

− in eV), charge transfer rate constants (kCT
+ and kCT

− in s–

1), absolute and relative hopping mobilities (µ+ and µ− in V-1 cm2 s-1 along with µrel
+ and µrel

−) and µ– 

/ µ+ ratio calculated for the series of studied PAEs. Calculations were carried out at the B3LYP/6-

31G* level. 

Polymer t12
–
 kCT

– ×10–13
 µ–

 µrel.
–
 t12

+
 kCT

+ ×10–13
 µ+

 µrel.
+
 µ– / µ+

 

I 0.037 9.42 2.65 1.00 0.066 29.2 8.21 1.00 0.32 

II 0.023 3.22 0.77 0.29 0.085 48.5 11.55 1.41 0.07 

III 0.015 1.77 0.42 0.16 0.039 10.5 2.49 0.30 0.17 

IV 0.053 27.5 5.82 2.20 0.095 77.5 16.42 2.00 0.35 

V 0.003 0.07 0.02 0.01 0.046 11.0 2.63 0.32 0.01 

VI 0.015 1.99 0.47 0.18 0.011 0.52 0.12 0.02 3.85 

VII a 0.034 6.88 2.25 1.18 — — — — — 

VIII b 0.01 0.46 0.24 0.09 0.01 0.57 0.30 0.04 0.40 
 a from reference [23]. b from reference [33] 

 

Charge injection properties. ELUCO and EHOCO (Energies of the LUCO and HOCO) 

calculated for oligomers of different chain lengths, as well as the corresponding energy 

values estimated for the infinite polymer chains, are shown Figure 8 (r2 ≥ 0.998 was 

obtained in all fits, see Tables 12S – 14S in Supplementary Information). For charge 

injection, a good ohmic contact is generally expected when |Φ – ELUCO/HOCO| < 0.3 eV 

and, therefore, low/high ELUCO/EHOCO values should facilitate the electron injection into 

n-type/p-type semiconductors.34 For electron injection, oligomers IV, V and VI with n ≥ 

5 could satisfy this condition with commonly used electrodes such as Ca (Φ = -2.9 eV), 

Mg (Φ = -3.7 eV), and Al (Φ = -4.3 eV).42,57 The lowest ELUCO values were estimated 

for polymer IV, while polymers III, V and VI showed analogous values. An ELUCO 

value close to that reported for polymer VII (-3.148 ± 0.015 eV)23 was estimated for 

polymer I. Nevertheless, a significantly higher ELUCO value has been reported for the 

reference polymer without nitrogen atoms in its chemical formula (VIII) (-2.56 eV).33 
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Regarding hole injection, different metal oxides such as WO3 (Φ = -6.8 eV), MoO3 (Φ 

= -6.8 eV), NiO (Φ = -6.3), CuO (Φ = -5.9 eV), MoO2 (Φ = -5.9 eV) and MoO3/Al (Φ 

= -5.49 eV)101 must produce nearly ohmic hole-injection contact with the majority of 

the studied PAEs.102,103 Moreover, polymers with a narrow band gap between HOCO 

and LUCO energies are usually more suitable to be employed as ambipolar 

semiconductors with the same type of electrodes. In general, the calculated band gap for 

the set of studied PAEs is not narrow enough to clearly assert both ohmic electron- and 

hole-injection contact with the same electrode. Only for the polymers with narrowest 

band gap, i.e. polymers IV and VI, nearly ohmic metal/polymer contact for both holes 

and electrons could be expected (see Figure 8). 

 

 

Figure 8. HOCO and LUCO energies estimated for the studied polymers. 
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The easines of charge injection can be complementarily analyzed through the 

values of EA and IP. Table 3 also shows the vertical and adiabatic EAs and IPs (VEA, 

AEA, VIP, and AIP) calculated for the infinite polymer chains (values calculated for the 

different oligomers are collected in Tables 8S and 9S, while the values from the 

different fits are showing in Tables 10S and 11S in the Supplementary Information). 

Thus, the AEAs estimated for the infinite polymer chains II – VI are within the range of 

3.0 − 4.0 eV proposed by Newman et al.42 for n-type organic semiconductors, hence the 

most favorable electron injection can be expected for polymer I. Likewise, IP must be 

low enough to allow an easy hole injection into the HOCO the semiconductor. In this 

sense, the lowest AIPs, along with the highest EHOMO values, were obtained for polymer 

I, followed by polymers IV and VI. The lowest differences between AEA and AIP 

values, and consequently the narrowest band gaps, were estimated for polymers IV and 

VI, i.e. the only cases where ambipolar charge injection could be expected. 

 

CONCLUSION 

In the present work, the molecular structure and electronic properties of isolated 

chains, in addition to their polymer crystal structure of a set of PAEs containing TTh 

and arene diimide units linked by -C≡C- bridges have been systematically studied by 

means of DFT calculations. We can extract the following conclusions: i) all the polymer 

chains were found highly planar with structural stacking distance of 3.5 Å in all cases, 

except for polymers I (3.8 Å) and IV (3.3 Å); ii) the optical band gap decreases with the 

chain length and with the number of fused aromatic rings (for oligomers I – IV), 
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exhibiting calculated band gaps for the oligomers IV with n ≥ 3 (at the TD-B3LYP and 

TD-PBE0 levels) which satisfy one of the key requeriments for fabrication of solar cell 

devices made on organic semiconductors. 

Regarding charge injection and transport, we can infer that: iii) the lowest λi
–
 

values were estimated for the polymers with a larger number of fused rings in arene 

diimide unit, i.e. polymers IV (0.020 ± 0.004 eV) and VI (0.023 ± 0.004 eV), also 

observing how the presence of nitrogen atoms in TTh unit is a key factor to decrease λi
– 

values compared to reference oligomers VII and VIII. Moreover, λi
–
 values calculated 

for monomers IV – VI and for oligomers I – III with n = 3 are comparable or lower 

than those calculated for some compounds proposed as n-type organic semiconductors; 

iv) in the case of hole transport, the lowest λi
+ was also estimated for polymer IV (0.024 

± 0.002 eV), obtaining the lower λi
+ values for oligomers with linkages to the core rather 

than those with linkages to the imide position. Those λi
+ values are comparable to those 

reported for some compounds with a demonstrated high mobility p-type semiconductors 

in electronic devices; v) The electronic coupling was calculated for dimers of stacked 

chains, taken from the previously modelled crystal structure. t12
+ values are at least 1.8-

fold higher than the corresponding t12
– values except for polymer VI. The highest t12

– 

and t12
+ values were calculated for the polymer with the smallest stacking distance (IV) 

while low electronic couplings were in general obtained for those containing C-N 

linkages in the polymer backbone. We have also observed that the presence of nitrogen 

atoms in the electron-accepting unit seems to increase the t12
– value in this kind of 

polymers as comparable t12
– values were calculated and reported for polymers I and 
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VIII and similar to polymer VII. Both highest t12
– and t12

+ values were calculated for 

polymer IV. In general, a more pronounced p-type rather than n-type character is 

expected for the studied PAEs since kCT
+ / kCT

– ratios are within 3 – 15 for polymers I – 

IV, being the highest absolute µ+ and µ – values obtained for polymer IV, which shows 

a relatively balanced µ− / µ+ ratio of 0.35 and could exhibit hopefully ambipolar 

behaviour. 

Finally, for charge injection, the lowest ELUCO and highest AEA were estimated 

for polymer IV, obtaining the highest EHOCO and lowest AIP for polymer I (with similar 

values estimated for polymer IV), while the lowest differences between AEA and AIP 

values, and consequently the narrowest band gaps, were estimated for polymers IV and 

VI. 
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