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Abstract

Low cost RGB-D sensors have been used extensively in the
field of Human Action Recognition. The availability of skele-
ton joints simplifies the process of feature extraction from
depth or RGB frames, and this feature fostered the development
of activity recognition algorithms using skeletons as input data.
This work evaluates the performance of a skeleton-based algo-
rithm for Human Action Recognition on a large-scale dataset.
The algorithm exploits the bag of key poses method, where
a sequence of skeleton features is represented as a set of key
poses. A temporal pyramid is adopted to model the tempo-
ral structure of the key poses, represented using histograms.
Finally, a multi-class SVM performs the classification task,
obtaining promising results on the large-scale NTU RGB+D
dataset.

1 Introduction

Many vision-based Human Action Recognition (HAR) algo-
rithms have been proposed in the last years, mainly because
they can have many different applications, from surveillance
to human-computer interaction, including also the support of
ageing in place in Active and Assisted Living (AAL) environ-
ments [1]. In AAL, HAR has been identified as one of the most
important components. In more detail, vision-based HAR tech-
niques, if compared to ambient or mobile activity recognition,
can provide very detailed information about the context [2],
and can be used to unobtrusively extract people’s movements.
The main drawback of vision-based solutions is related to pri-
vacy, which is a concern that can be partially overcome with
the adoption of RGB-D sensors. Unexpensive RGB-D sensors,
such as Microsoft Kinect, are less susceptible to variations in
light intensity than RGB cameras [3], and they allow to achieve
an higher level of privacy by using only the human silhouette
extracted from depth data, or only the skeleton to represent a
person [4].

RGB-D sensors can be used to detect dangerous events in
AAL, which are mainly falls. As proposed in literature, the
sensor can be placed in different setups, from the frontal view
[5] to the top view [3], often exploiting ad-hoc algorithms to
recognize people and detect a fall. RGB-D sensors can be used
also to monitor specific activities, an example can be the devel-
opment of drink and food intake monitoring systems [6], where
Kinect is placed on the ceiling and can track the intake move-
ments of a person.

On the other hand, a general HAR algorithm can recognize
a set of activities, and the adoption of an RGB-D sensor enables
the exploitment of different features to perform this task [7].
Since depth data enable an easier extraction of the human sil-
houette, some action recognition algorithms proposed the use
of 3D silhouettes. Li et al. [8] developed a method which rep-
resents postures considering a bag of points extracted from the
contours of 3D silhouette. The temporal relationship among
the postures is modeled using an action graph, where each
node represents a salient posture. Spatio-temporal depth sub-
volume descriptors have been proposed also in [9], where the
polynormals, a group of hypersurface normals containing ge-
ometry and local motion information, are extracted from depth
sequences. The combination of polynormals provides the Su-
per Normal Vector (SNV), which is the final representation of
the depth map. Spatio Temporal Interest Points (STIP) are of-
ten used to extract features from RGB images, but they have
been also applied to depth data. In [10], the use of depth STIPs
is combined with a descriptor containing the spatio-temporally
windowed pixels within a 3D cuboid centered at the interest
point. A codebook is built by clustering the identified cuboids
and an action can be represented as a sequence of elements
from the codebook. Oreifej and Liu [11] proposed the HON4D
descriptor, which is based on the orientations of normal sur-
faces in 4D. Being a holistic descriptor, it provides a represen-
tation for the entire sequence, not for the skeleton frame.

Skeleton joints are extracted from depth data, and can be
seen as a compact representation of the human body. The joints
estimation algorithm may be affected by noise, especially if the
sensor does not face the person but, in complex environments,
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Figure 1. Global scheme of the activity recognition algorithm. The extraction of the posture features vector is the first step (block
1), followed by the generation of the codebook and the extraction of key poses (block 2). A temporal pyramid is adopted to keep
the temporal structure of the action, and a set of histograms of key poses are obtained at each level of the pyramid (block 3).
Finally, the classification is performed using a multi-class SVM (block 4).

some HAR algorithms based on skeleton data may achieve bet-
ter results than depth-based ones. Considering the joint coordi-
nates, different feature extraction methods have been proposed
[7]. Vemulapalli et al. [12] proposed to represent rotations and
translations of rigid body transformations as points in a Special
Euclidean group SE(3). A skeleton can be seen as a point in
the Lie group SE(3) × SE(3) × · · · × SE(3), and a human
action, constituted by a sequence of skeletons, is considered as
a curve in this Lie group. Evangelidis et al. [13] proposed a
descriptor called skeletal quads, which encodes the relations of
joint quadruples. Then, the action is represented as a Fisher
vector which is the input to a multi-class Support Vector Ma-
chine (SVM). Considering the HOJ3D representation [14], the
3D space is partitioned into bins and each skeleton joint is as-
sociated to each bin using a Gaussian weight function. After a
reprojection of HOJ3D histograms using Linear Discriminant
Analysis (LDA), the clustering operation allows to obtain a
fixed number of postures. A discrete Hidden Markov Model
(HMM) models the temporal evolution of the postures. Hu
et al. [15] proposed the jointly learning of features extracted
by different sources of information: RGB, depth and skeleton
data. Regarding skeleton joints, they compute relative positions
between pairs of joints and extract human pose and its dynam-
ics considering the temporal Fourier pyramid and its gradient
version.

The proposed HAR algorithm considers skeleton joints and
extracts pose-related features, handling also actions performed
by multiple people. The most informative postures, i.e. key-
poses, are learned through unsupervised clustering generating
a bag of key poses model [16]. An action is modeled as his-

tograms of key poses, with the adoption of a temporal pyra-
mid to keep the distribution of the key-poses within the ac-
tion. A multi-class SVM is the considered classification algo-
rithm. The proposed method has been evaluated on the large-
scale NTU RGB+D dataset [17], reaching results comparable
to other approaches exploiting skeleton-based features.

The paper is organized as follows: Section 2 describes the
details about the algorithm for activity recognition. The exper-
imental results are presented and discussed in Section 3, while
Section 4 provides conclusions.

2 HAR algorithm based on histograms of key
poses

The 3D coordinates of the skeleton joints are the input data
of the proposed action recognition algorithm and the features
representing a specific posture are initially computed, using a
modified approach with respect to the one proposed in [18].
The features belonging to the training sequences are then clus-
terized and a key pose, represented by a cluster center, is as-
sociated to each feature vector. An action is represented as a
sequence of key poses, and the histograms of key poses are
generated for each level of the temporal pyramid. The obtained
histograms represent the feature vector considered for classifi-
cation by a multi-class SVM. The entire process may be rep-
resented by 4 main steps, which are sketched in Figure 1 and
detailed as follows:

1. Posture features extraction: in this step the 3D coordi-
nates of the joints are considered and the features repre-
senting each posture are computed;



2. Bag of key poses: the codebook is generated by applying
a clustering algorithm to the training data, and a key pose
is associated to each posture in the sequence;

3. Histograms of key poses and temporal pyramid: given
the number of levels of the temporal pyramid, a sequence
of key poses is represented as a set of histograms ob-
tained for each level;

4. Classification: the histograms of key poses are classi-
fied using a multi-class SVM with the “one-versus-all”
method.

The algorithm can handle the presence of more skeletons in
the scene, and the extraction of features representing the pos-
ture consists in the evaluation of the normalized position dif-
ferences among each joint and the center-of-mass of the main
skeleton. Considering that the i-th joint of a skeleton is repre-
sented by a three-dimensional vector Ji, a vector pn stores all
the coordinates for the n-th frame of an activity constituted by
N frames. A frame contains B bodies, each of which is repre-
sented by P joints. Differently from [18], where the coordinate
space was centered in the joint of torso, a center-of-mass Jcm

is computed considering the average 3D position of the main
skeleton, constituted by P joints:

Jcm = 1
P

P −1∑
i=0

Ji (1)

The normalization factor s, previously represented by the dis-
tance between neck and torso joints [18], is now computed con-
sidering the average distance among all the joints of the main
body and its center-of-mass, as follows:

s = 1
P

P −1∑
i=0
‖Ji − Jcm‖2 (2)

The position difference di is represented by the displacement
between the i-th joint and the center-of-mass, considering the
scaling factor. All the B bodies have to be considered in the
computation of position differences, according to (3):

di = Ji − Jcm

s
, i = 0, 1, . . . , BP − 1 (3)

Using the position displacement and the normalization factor,
the features are invariant to the position of the skeletons within
the coverage area of the sensor, and also to the build of the
subjects. The posture feature vector fn, associated to the n-th
skeleton frame, is finally constituted by all the BP differences:

fn = [d0, d1, d2, . . . , dBP −1] (4)

If the sequence contains only one skeleton, part of the feature
vector will contain zeros, but this part is kept anyway, to ensure
the same dimensionality of the vector.

The second step concerns the generation of the codebook,
which consists in the extraction of the the most informative fea-
ture vectors, which are the key poses. This process starts with

the application of k-means clustering algorithm to the feature
vectors, considering separately the vectors belonging to differ-
ent actions of the dataset. With M classes, that are the M
different actions of the dataset, the vector [K1, K2, . . . , KM ]
specifies the number of key poses for each class. Following
this approach, all the training instances of the first class are
clustered in K1 key poses, represented by the cluster centers
[C1, C2, . . . , CK1 ]. The codebook is obtained by merging all
the key poses obtained for each class. A key pose is associ-
ated to each posture feature vector that constitutes an action, by
considering the closest one in terms of euclidean distance. An
action, originally represented by a sequence of features vectors
F = [f1, f2, . . . , fn1 ], is encoded by a sequence of key poses
S = [k1, k2, . . . , kn1 ]. In the testing phase, the codebook is ex-
ploited to associate unseen feature vectors to learned key poses.

The step number 3 considers the creation of the histograms
of key poses for each level of a temporal pyramid. A sequence
of key poses S = [k1, k2, . . . , kn1 ] is split into 2l−1 segments,
if l is the actual level of the pyramid. A histogram is built for
each segment of the pyramid considering the number of occur-
rences of each key pose within the segment, normalized by the
sequence length. The temporal pyramid can effectively repre-
sent the distribution of the key poses within the sequence. Each
segment is split in two parts, moving from the top to the bot-
tom of the pyramid, allowing to have different descriptions of
the same sequence, from the most general to the most detailed
one. Furthermore, the computation of the histograms at the l-th
level of the pyramid can be efficiently obtained considering the
sum of the corresponding segments at the level l + 1. The final
representation of the sequence is constituted by the histograms
at each level of the pyramid. The vector H in Figure 1, denotes
the concatenation of the 7 histograms obtained considering a
temporal pyramid with 3 levels.

The classification step aims to associate each set of his-
tograms H, which represents an action, to the corresponding
class label, and it is based on a SVM. There are two main strate-
gies to obtain a multi-class classifier from binary SVMs: “one-
versus-all” and “one-versus-one”. Considering an M -classes
classification task, the “one-versus-all” method exploits M bi-
nary SVMs, each of which trained to distinguish between one
class and the rest. The winner class is the one with highest
probability. The “one-versus-one” method, on the other hand,
considers a number of M(M − 1)/2 binary classifiers to ac-
count for all the possible pairs of classes. Each classifier is
trained to separate two classes and the final outcome is ob-
tained with a voting strategy: the output class is the one that
gets more votes. This work exploits the “one-versus-all” strat-
egy implemented in LIBLINEAR [19] library.

3 Experimental results

The algorithm performance is evaluated on the NTU RGB+D
dataset [17], which is at the authors’ best knowledge, the
largest dataset for 3D action recognition currently available. It
has been captured to overcome the limitations of the existing
datasets, providing more data that are required to develop algo-
rithms closer to real conditions. The dataset is constituted by
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Figure 2. Sequences of frames constituting similar actions: (a)
drink water, (b) eat meal/snack and (c) brushing teeth.

60 activities performed by 40 actors, aged between 10 and 35,
and actions have been captured in 80 different views, result-
ing in a total number of 56880 sequences. Microsoft Kinect
v2 has been used to collect the dataset, all the streams available
from the sensor are captured and provided: depth and IR frames
(512×424), RGB images (1920×1080) and 25 joints for each
skeleton. The 60 activities can be grouped in 40 daily actions, 9
health-related actions and 11 interactions, where two skeletons
are involved. In total, 17 different setups have been considered,
each of which featuring different height of the cameras and dif-
ferent distances from the cameras to the subjects, within the in-
terval [2, 4.5] meters. Each action has been captured by three
Kinect sensors at the same time, located at the same height with
the horizontal angles −45◦, 0◦, +45◦. Each subject performed
the action two times, once facing the left camera and once fac-
ing the right camera. Figure 2 show some frames belonging to
the first 3 actions of the dataset: drink water, eat meal/snack
and brushing teeth, performed by the same actor and captured
by the frontal camera. The postures involved in those actions
are very similar, this confirms that the dataset is quite challeng-
ing.

Shahroudy et al. [17] defined two evaluation methods, to
enable a fair comparison of different activity recognition algo-
rithms:

• cross-subject evaluation: the sequences performed by 20
actors are used as training and the others as testing data.
The subjects that have to be used as training are: 1, 2, 4,
5, 8, 9, 13, 14, 15, 16, 17, 18, 19, 25, 27, 28, 31, 34, 35,
38. Considering that the authors recommend to discard
302 sequences featuring missing or wrong skeletons, the
training and testing sets are respectively constituted by
40091 and 16487 samples (instead of 40320 and 16560).

(a) (b) (c) (d)

Figure 3. Original and rotated skeletons related to the same
body during the capture of action 3 (brushing teeth). (a) and
(b) show respectively the original and the rotated skeleton taken
from camera 1, which has the 45◦ view. (c) and (d) show the
same body obtained from camera 3, with the frontal view.

cross-subject cross-view

K L = 2 L = 3 L = 4 L = 2 L = 3 L = 4
4 41.8 45.2 43.8 44.3 49.1 50.1
8 44.5 48.1 45.0 49.3 53.0 52.5
16 46.4 48.7 45.1 52.3 56.3 54.9
32 48.1 48.9 46.8 55.1 57.2 56.2
64 47.7 48.3 − 55.3 57.7 −

Table 1. Recognition accuracy (%) obtained by the proposed
method, with different number of clusters (K) and different
levels of the temporal pyramid (L).

• cross-view evaluation: the sequences captured by differ-
ent cameras are split between training and testing. The
sequences from cameras 2 and 3 are used for training
while data from camera 1 provide the testing set. After
removing the 302 noisy sequences, the training set has
37646 samples (instead of 37920) and the testing set has
18932 samples (instead of 18960).

Before applying the activity recognition algorithm, the se-
quences have to be processed to apply rotation of the skeletons,
to filter noisy data and to find the main actor. In order to com-
pensate the effect of the different view points, the skeletons are
rotated as suggested in [17], aligning the X axis to the vec-
tor connecting the shoulders and the Y axis to the vector from
spine base to spine joints. Figure 3 shows the original and ro-
tated skeletons related to the same body captured from two dif-
ferent view points during the brushing teeth action. The left
part is related to camera 1, which observes the 45◦ view, while
the right part is obtained from camera 3, which observes the
front view. The pre-processing phase constituted by filtering of
noisy data and identification of the main actor is implemented
with a different strategy if the sequence belongs to training set
or to testing set. In fact, during training phase, the activity is
known, and it is possible to discern between action or interac-
tion. If the activity is an action, only one skeleton has to be
in the sequence. If there are more than one skeleton, the noisy
ones have to be detected and removed. If all the skeletons of



the sequence are noisy, the frame is removed, while if none
of them is noisy, the first one is kept. If the activity is an in-
teraction, only two skeletons have to be in the sequence. If a
sequence contains more than two skeletons, the filtering tech-
nique is implemented to find the noisy one. If none of them
is a noisy skeleton, the first two skeletons are kept. The filter-
ing technique suggested in [17] has been implemented, which
consists in the removal of the skeletons whose joints show a
spread over X axis higher than 0.8 of the one over Y axis. The
standard deviation has been chosen to measure the spread. A
sequence featuring two skeletons has to be processed to find
the main one, which is characterized by the highest amount of
body motion. This task is accomplished considering the sum
of the displacements of each joint from one frame to the next
one. During testing phase it is not possible to establish a priori
the number of skeletons of a sequence. The only analysis im-
plemented is the filtering technique to remove noisy skeletons
and the assumption that the maximum number of skeletons is
2. So, even if there are 3 skeletons in the sequence and they are
not noisy, the first two skeletons are kept, and the main one is
the skeleton featuring the highest amount of body motion.

Tests have been executed considering C = 1 for the SVM,
different levels of the temporal pyramid (L = [2, 3, 4]), and the
same number of clusters for each action of the dataset, setting
K = K1 = K2 = · · · = KM . Values within the interval
[4, 8, 16, 32, 64] have been investigated, and the obtained re-
sults for cross-subject and cross-view evaluations are shown
in Table 1. Cross-subject evaluation is more challenging than
the cross-view one, and the best results are represented by a
large number of clusters. Considering the cross-subject test,
the proposed algorithm obtained the best accuracy of 48.9%
with K = 32, which means a total number of key poses of
1920 for the 60 activities of the dataset. However, the accuracy
is quite close to the best one also with a lower number of clus-
ters: considering K = 8 the obtained performance is 48.1%.
An higher accuracy has been obtained considering cross-view
evaluation, where the best performance is given by the use of
64 key poses per class. In this configuration, the gap between
a lower number of key poses and the maximum performance is
higher: using K = 4 the accuracy is 49.1%, with a difference
of 8.6%. The best results for cross-subject and cross-view eval-
uation schemes were both obtained with 3 levels for the tempo-
ral pyramid. The adoption of a simpler temporal pyramid with
only 2 levels may lead to comparable results with a large num-
ber of clusters (K = 32 or K = 64), especially for the cross-
subject test, while a larger gap is present comparing different
levels with a small number of clusters (K = 4 or K = 8).
The choice of 4 levels for the temporal pyramid increases the
complexity of the algorithm but does not give better results in
terms of accuracy, with the exception of the cross-view evalu-
ation with K = 4, where the results for L = 4 are 1% better
than those for L = 3.

Table 2 shows the performance obtained by the proposed
method, in comparison with previously published works eval-
uated on the cross-subject and cross-view tests. To the best
of our knowledge, there are no other works using the NTU
RGB+D dataset, and Table 2 has been obtained considering

Method cross-subject cross-view

Depth-based

Oreifej and Liu [11] 30.56 7.26
Yang and Tian [9] 31.82 13.61
Ohn-Bar and Trivedi [20] 32.24 22.27
Skeleton-based

Evangelidis et al. [13] 38.62 41.36
This method 48.9 57.7
Vemulapalli et al. [12] 50.08 52.76
Hu et al. [15] 60.23 65.22
Deep neural networks

Du et al. [21] 59.07 63.97
Shahroudy et al. [17] 62.93 70.27

Table 2. Comparison of different methods evaluated on NTU
RGB+D dataset in terms of recognition accuracy (%). Results
are ordered considering the accuracy of the cross-subject test.

the tests run by Shahroudy et al. [17]. The proposed method
does not reach results comparable to techniques based on deep
neural networks but can be considered as an alternative method
among the skeleton-based solutions.

4 Conclusion

In this work, a HAR algorithm based on skeleton joints has
been evaluated on a new large-scale dataset, the NTU RGB+D
one. The algorithm is based on bag of key poses model and ex-
ploits features which are invariant to build and position of the
subjects. The temporal structure of the action is represented
considering histograms of key poses at different levels of a
temporal pyramid, and a multi-class SVM is adopted for clas-
sification. The proposed method achieves mid state-of-the-art
results.

Future works will concern the evaluation of a combined
cross-view-and-subject evaluation, which could verify the suc-
cess of normalization process regarding the actor and the view-
point at the same time.
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