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Abstract

Given an arbitrary set T in the Euclidean space whose elements are called sites,
and a particular site s; the Voronoi cell of s; denoted by VT (s) ; consists of all
points closer to s than to any other site. The Voronoi mapping of s; denoted by
 s; associates to each set T 3 s the Voronoi cell VT (s) of s w.r.t. T: These Voronoi
cells are solution sets of linear inequality systems, so they are closed convex sets:
In this paper we study the Voronoi inverse problem consisting in computing, for
a given closed convex set F 3 s; the family of sets T 3 s such that  s (T ) = F:
More in detail, the paper analyzes relationships between the elements of this family,
 �1s (F ) ; and the linear representations of F; provides explicit formulas for maximal
and minimal elements of  �1s (F ), and studies the closure operator that assigns, to
each closed set T containing s; the largest element of  �1s (F ) ; where F = VT (s).
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1 Introduction

Let T � Rn; with n � 1; be a set whose elements are called Voronoi sites.
The Voronoi cell of s 2 T; denoted by VT (s) ; consists of all points closer to
s than to any other site, i.e.,

VT (s) := fx 2 Rn : d (x; s) � d (x; t) ; t 2 Tg ;

where d denotes the Euclidean distance on Rn: In other terms, denoting by PT :
Rn � Rn the metric projection on T; i.e., PT (x) := ft 2 T : d (x; t) = d (x; T )g,
then VT (s) = P�1T (s) : TheVoronoi diagram of T isVor (T ) := fVT (t) ; t 2 Tg :
This family of closed convex sets is a tesselation of Rn if and only if T is closed
[6, Proposition 1], which is the general assumption of this paper. When T is
�nite, Vor (T ) is formed by full dimensional convex polyhedral sets.

Voronoi cells of �nite sets of sites in two, three, and n > 3 dimensions were in-
troduced by Descartes, Dirichlet, and Voronoi, in 1644, 1850, and 1908, respec-
tively. Voronoi cells of �nite sets are widely applied in computational geometry,
operations research, data compression, economics, marketing, etc. (see, e.g.,
[1] and [9]). In 1934 Delaunay [2, General Lemma] introduced Voronoi cells
of discrete sets of sites (i.e., sets without accumulation points) with applica-
tions in crystallography. Recently, Voigt and Weis, [12,13], obtained results on
Voronoi cells of discrete sets exploiting the fact that VT (s) is the solution set
of the linear system

�T (s) :=
n
(t� s)0 x � ktk2�ksk2

2
; t 2 Tn fsg

o
; (1)

where t0 and ktk denote the transpose of t and the Euclidean norm of t; respec-
tively. A similar approach was used in [6] in order to obtain, in a systematic
way, geometric information on VT (s) in terms of the data (T and s) for dif-
ferent types of in�nite sets of sites such as curves, closed convex sets, etc.
The latter work shows that Voronoi cells of discrete sets are useful in location
decision making while Voronoi cells of non-discrete sets can be used to assign
clients for services delivered along curves (such as rivers or highways) or for
services delivered at a �nite set of uncertain sites (robust approach). Let us
mention here that Voronoi cells of in�nite sets are of potential use for delim-
iting international waters among neighbor countries by assuming that each
point should be assigned to the closest country. Then each country should get
the union of the Voronoi cells corresponding to the points of the national shore
together with a proportional part of the Voronoi cells of the border points.
For instance, in the simple case of a compact convex island T shared by two
countries occupying non-overlapping territories A; B � T; the �rst country
would get S fVT (s) : s 2 bdT \ (AnB)g
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together with one half ofS fVT (s) : s 2 bdT \ A \Bg ;
where the boundary of T; bdT; represents the coastline of the island, A \ B
denotes the border between both countries, and AnB stands for the set of
points of A not in the border. Observe that, as shown in [6, Proposition 18],
given s 2 bdT; VT (s) is an angle equal to the sum of s with the normal cone
to T at s; so that the international waters assigned to both countries would
be limited by the bisector lines to the angles VT (s) ; s 2 bdT \ A \ B: In
conclusion, the assignment of international waters by the proximity criterion
only depends on a small number of Voronoi cells (just two in the typical case
that A and B are connected sets).

Since the Voronoi cell of a set T 3 s has the same Voronoi cell as its closure,
this paper is focused on closed sets of sites (as in [6], [12] and [13]). In order
to simplify the notation we introduce the families of sets

T (s) := fT � Rn : T is closed, s 2 Tg

and
V (s) := fV � Rn : V is closed and convex, s 2 V g :

The Voronoi mapping of s; denoted by  s : T (s)! V (s) ; associates to each
set T 2 T (s) its Voronoi cell VT (s). This mapping arises in a natural way in
the study of Voronoi cells. Indeed, several results in the recent paper [6] can
be interpreted in terms of the images by  s of elements of T (s), e.g.,  s (T ) is
a polyhedral convex set (a quasipolyhedral convex set, a closed convex cone,
a manifold) whenever T is a �nite set (a discrete set, a closed convex set, a
manifold, respectively). The Voronoi mapping  s has also been studied from a
topological perspective. Reem [10] analyzes the stability of Voronoi diagrams
with respect to perturbations of the sites, while in [7] the stability of a given
Voronoi cell  s(T ) = VT (s) under small perturbations of s in Rn is studied,
as well as either global perturbations of compact subsets P � Tnfsg, or
individual perturbations of the elements of P; or simultaneous perturbations
of s and P . The stability of the combinatorial structure of Voronoi diagrams
was studied by Vyalyi, Gordeyev and Tarasov [14].

In this paper we characterize  �1s (F ) (the so-called Voronoi inverse prob-
lem) for an important subclass of sets F 2 V (s) ; which includes the polyhe-
dral convex sets, providing formulas for the computation of the largest and
the smallest elements of  �1s (F ) (when the latter element does exist). Notice
that the largest element of  �1s ( s (T )) is the unique one for which any en-
largement causes the Voronoi cell to shrink; similarly, the smallest element
of  �1s ( s (T )) ; when it exists, is the unique set belonging to  

�1
s ( s (T ))

for which the elimination of any of its elements provokes a growth in the
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Voronoi cell. We also analyze some set-theoretic properties of  s and the ex-
istence of �xed sets for this mapping and for the mapping �s associating with
each T 2 T (s) the largest element of  �1s ( s (T )) : Moreover, we characterize
those sets T 2 T (s) that coincide with the largest or the smallest element
of  �1s ( s (T )) : Finally, we apply all these results to obtain properties about
Voronoi diagrams and extensions to arbitrary sets of sites.

This paper is organized as follows. Section 2 introduces the necessary notation
and preliminaries while the next two sections deal with Voronoi cells of closed
sets. Section 3 characterizes  �1s (F ) and discusses maximal and minimal ele-
ments of  �1s ( s (T )) ; Section 4 analyzes relationships between  

�1
s (F ) and

linear representations of F: Section 5 studies the closure operator that assigns,
to each closed set T containing s; the largest element in  �1s ( s (T )) : Finally,
extensions of the results provided in Section 3 to arbitrary sets of sites are
discussed in Section 6.

2 Notation and preliminaries

Throughout the paper we use the following notation. The zero vector, the open
unit ball and the unit sphere in Rn are denoted by 0; B and Sn�1; respectively.
Given X � Rn; we denote by a�X; convX; coneX = R+ convX; intX; clX;
bdX; and rintX the a¢ ne hull of X; the convex hull of X; the convex conical
hull of X; the interior of X; the closure of X; the boundary of X , and the
relative interior ofX; respectively. The negative polar of a convex coneX � Rn
is X� := fy 2 Rn : y0x � 0 8x 2 Xg ; and the orthogonal subspace to a linear
subspace X is X? := fy 2 Rn : y0x = 0 8x 2 Xg : The support function of X
is ��X : Rn ! R[f+1g, de�ned by ��X (x) := supy2X y

0x: It is known that
��X is a lower semicontinuous (lsc in brief) positively homogeneous convex
function; moreover, ��X is �nite-valued (and so continuous on Rn) whenever
X is bounded. We will also use the metric projection onto a subset X � Rn;
PX (y).

We now recall some useful concepts and results about consistent linear systems
(observe that s is the trivial feasible solution of the system �T (s) in (1)).
Let � := fa0kx � bk; k 2 Kg be a linear consistent system with solution set
F � Rn; F 6= ; (we also say that � is a linear representation of F ). The conic
representation of F;

C (F ) :=
n
(a; b) 2 Rn+1 : a0x � b; x 2 F

o
;

coincides, by Farkas�Lemma ([5, Theorem 1.2]), with the closed convex cone

cl cone f(ak; bk) ; k 2 K; (0; 1)g :
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In particular, the conic representation of the solution set,  s (T ) = VT (s) ; of
the system �T (s) in (1) is the closed convex cone generated by the vertical
vector upwards, (0; 1) ; and the parabolic lift of T at s, de�ned as the image
of T by the mapping t 7!

�
t� s; ktk

2�ksk2
2

�
; i.e.,

C ( s (T )) = cl cone

( 
t� s;

ktk2 � ksk2

2

!
; t 2 T ; (0; 1)

)
:

Parabolic lifts were introduced in computational geometry as an alternative
to the widely used stereographic map in [3]. In particular, parabolic lifts at 0
have already been used in relation to Voronoi Diagrams (e.g., in [3] and the
section of [1] entitled "Back to geometry") and geometric separators [11].

An element bx 2 Rn satisfying a0kbx < bk for all k 2 K is called Slater point of
�: Notice that s is a Slater point of the system �T (s) because one always has

kx� sk < kx� tk () (t� s)0 x < ktk2�ksk2
2

;

so, given t 2 Tn fsg and considering x = s, it follows that (t� s)0 s < ktk2�ksk2
2

.

A given inequality is redundant in a consistent system � := fa0kx � bk; k 2 Kg
whenever its elimination preserves the solution set; in particular, any inequal-
ity a0kx � bk such that ak = 0 is redundant in �. A consistent linear system
� is said to be minimal when it does not contain redundant inequalities, in
which case the index set K is countable [5, Theorem 6.4]. The solution sets of
minimal systems are called generalized polyhedral sets (G-polyhedral in brief).
If F is a full dimensional G-polyhedral set and we denote by G (F ) the set of
vectors (a; b) 2 C (F ) such that a0x = b de�nes a facet (i.e., an n� 1 dimen-
sional face) of F and k(a; b)k = 1; then �G := fa0x � b; (a; b) 2 G (F )g is a
linear representation of F; and any minimal representation of F is a subsys-
tem of �G up to re-scaling [5, Theorem 6.6]. Notice that, as a consequence, the
closed unit ball in Rn is not G-polyhedral for n � 2. In�nite minimal systems
may have Slater points which are not interior points of their solution sets.

Let F be a polyhedral convex set. Then F is G-polyhedral (as one can get
an equivalent minimal system by sequential elimination of redundant inequal-
ities from any �nite representation of F ), and G (F ) is �nite. If, additionally,
dimF = n; then a �nite linear representation � of F is minimal if and only if
each inequality of � de�nes a di¤erent facet of F [5, Theorem 6.5]. Indeed, �G
is the unique minimal representation of F up to re-scaling [5, Theorem 6.7].
Observe that �G can be formed by selecting one point at the relative interior
of each of the facets of F and a corresponding hyperplane supporting F at
each of these points, followed by the normalization of the vector of coe¢ cients.

To �nish this section, we present some new properties of  s, which complement
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those already appeared in the literature. In particular we provide a su¢ cient
condition for the Voronoi cell of a set T of sites to coincide with that of bdT .

Proposition 1 The mapping  s transforms unions into intersections and has
no �xed element.

PROOF. Given an arbitrary family Ti 2 T (s) ; i 2 I; we have

 s
�[

i2I Ti
�
=
n
x 2 Rn : (t� s)0 x � ktk2�ksk2

2
; t 2

[
i2I Ti

o
=
\

i2I

n
x 2 Rn : (t� s)0 x � ktk2�ksk2

2
; t 2 Ti

o
=
\

i2I  s (Ti) ;

so that  s transforms unions into intersections.
Since T \  s (T ) = fsg ; if T 2 T (s) is a �xed point of  s; i.e., T =  s (T ) ;
then the preceding equality means that T = fsg : Hence fsg =  s (fsg) ; but
 s (fsg) = Rn 6= fsg : This is a contradiction. �

Proposition 2 Let s 2 Rn and T 2 T (s) : Then s is an isolated point of T
if and only if s 2 int s (T ) ; and in this case  s (T ) =  s (bdT ) :

PROOF. If s is an isolated point of T; then d (s; T n fsg) > 0 and s +
1
2
d (s; T n fsg)B �  s (T ) ; which shows that s 2 int s (T ) : Conversely, if
s 2 int s (T ) ; then, from int s (T ) \ (T n fsg) �  s (T ) \ (T n fsg) = ; it
follows that s is an isolated point of T: (This equivalence appears in [6])

Assume now that s is an isolated point of T: We will show that  s (T ) =
 s (bdT ) ; the set  s (bdT ) is well de�ned because s 2 bdT . Since bdT �
T; we have  s (T ) �  s (bdT ) : To prove the opposite inclusion, let x 2
 s (bdT ) : We will �rst prove that x =2 T n fsg : Assume, to the contrary,
that x 2 T n fsg ; and consider the metric projection P[s;x]\(Tnfsg) (s) of s onto
the closed set [s; x] \ (T n fsg) (a singleton set). Clearly, P[s;x]\(Tnfsg) (s) 2
bd (T n fsg) = bdT n fsg ; since d

�
x; P[s;x]\(Tnfsg) (s)

�
< d (x; s) ; we get a

contradiction with x 2  s (bdT ) : Thus, either x = s or x =2 T: In the �rst
case, we have x = s 2  s (T ) : In the second case, for every t 2 T we have
P[x;t]\T (x) 2 bdT; and therefore from x 2  s (bdT ) it follows that d (x; s) �
d
�
x; P[x;t]\T (x)

�
� d (x; t) ; which shows that x 2  s (T ) : �

When s is not an isolated point of T; the equality  s (T ) =  s (bdT ) may or
may not hold, as the following examples show.
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Example 3 For T := R� R+ and s := (0; 0) ; one has  s (T ) = f0g � R�
and  s (bdT ) = f0g � R.

Example 4 For T := Rn+ and s := 0; one has  s (T ) = Rn� =  s (bdT ) :

The next corollary is a straightforward consequence of Proposition 2 and the
fact that  �1s (F ) 6= ; for all F 2 V (s) [6, Theorem 2].

Corollary 5 Let s 2 Rn and F 2 V (s) : Then the following statements are
equivalent:

(i) s 2 intF:

(ii) s is an isolated point of T; for every T 2  �1s (F ) :

(iii) There exists T 2  �1s (F ) such that s is an isolated point of T:

3 The Voronoi inverse problem

Given F 2 V (s) ; the family of sets  �1s (F ) is always non-empty [6]; we will
consider this family to be partially ordered by inclusion. Observe that  �1s (F )
contains the closure of the union of every collection of its elements; thus, there
always exists a largest element in  �1s (F ), which is

T+ (F; s) := cl

0@ [
T2 �1s (F )

T

1A :
A set T 2  �1s (F ) isminimal whenever  �1s (F ) contains no proper subset of T
and it is the smallest element in  �1s (F ) when it is contained in any element
of  �1s (F ) ; in particular, we denote by T� (F; s) such a smallest element
when it exists . According to (1), if T1; T2 2  �1s (F ) and T1 � T � T2; then
clT 2  �1s (F ) : If the smallest set T� (F; s) exists; then  �1s (F ) is a complete
lattice:

 �1s (F ) =
n
T 2 T (s) : T� (F; s) � T � T+ (F; s)

o
: (2)

The next example shows that  �1s (F ) may have no minimal element (in par-
ticular, no smallest element) even when F is polyhedral.

Example 6 Let F := R� R+ and s := (0; 0) = 0: Let T 2  �1s (F ) ;

and consider any t := (t1; t2) 2 T: Since F �
n
x 2 R2 : t0x � ktk2

2

o
and

(��; 0) ; (0; �) 2 F for all � > 0; one has t1 = 0 and t2 � 0; so that
T � f0g � R�: If 0 is isolated in T; then Tn f0g is closed. Hence VT (0) =
R�

h
maxt2Tnf0g t2

2
;+1

h
6= F: So, T is an in�nite set having 0 as an accumula-
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tion point, and for any closed set T 0 � T with this property it holds  s (T
0) =

F; i.e., T cannot be minimal.

From (1) it follows that VT (s) = s+ VT�s (0) ; i.e.,

 s (T ) = s+  0 (T � s) ; (3)

where T � s := ft� s : t 2 Tg ; this allows us to reduce many proofs to the
case s = 0:

3.1 The set T+ (F; s)

Theorem 7 Let s 2 Rn and F 2 V (s) : Then

T+ (F; s) =
n
t 2 Rn : ��F�s (t� s) � kt�sk2

2

o
= Rn n S

x2Fnfsg
(x+ kx� skB) :

(4)

If F 6= Rn then T+ (F; s) is an unbounded set and, furthermore, the boundary
of T+ (F; s) is bounded whenever F is bounded.

PROOF. By (3), it is su¢ cient to prove this result for s = 0:

We have to prove that, if 0 2 F � Rn; the largest set T � Rn such that
VT (0) = F is

eT := (
t 2 Rn : ��F (t) �

ktk2

2

)
= Rnn S

x2Fnf0g
(x+ kxkB) : (5)

First, observe that eT is closed (as the function t 7! ��F (t) �
ktk2
2
is lsc), and

0 2 eT : Moreover, according to [4, Proposition 7], epi ��F = C (F ), so

t 2 eT ,  
t;
ktk2

2

!
2 C (F ) : (6)

So, on the one hand, eT 2  �10 (F ) : On the other hand, if T 2  �10 (F ) ; then

cl cone

( 
t;
ktk2

2

!
; t 2 T ; (0; 1)

)
= C (F ) ; (7)

so that  
t;
ktk2

2

!
2 C (F ) 8t 2 T;
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which implies that T � eT : Thus, eT is the largest element of  �10 (F ) ; i.e.,
T+ (F;0) = eT : The second equation of (5) is established by the following
chain of equivalences:

t =2 eT , 9x 2 F : x0t > ktk2
2

, 9x 2 F : ktk2 � 2x0t < 0

, 9x 2 F : kt� xk2 < kxk2

, t 2 S
x2Fnf0g

(x+ kxkB) :

We now prove that T+ (F;0) is unbounded when F 6= Rn. Since C (F ) 6=
R+ (0; 1) (as F 6= Rn), we can take (a; b) 2 C (F ) ; with a 6= 0: Thus, 

�a;
k�ak2

2

!
= � (a; b) +

 
k�ak2

2
� �b

!
(0; 1) 2 C (F ) 8� � 2 jbj

kak2
;

so that
n
�a : � � 2jbj

kak2
o
� T+ (F;0) ; by (6), and T+ (F;0) is unbounded.

Finally, if F � � clB; then

bdT+ (F;0) � cl
 S
x2Fnf0g

(x+ kxkB)
!
� F + � clB �2� clB:

�

Consider again Example 6, where F := R� R+ and s := (0; 0) = 0: By
Theorem 7, we get

T+ (F;0) = R2n S
x2Fnf0g

(x+ kxkB) = f0g � R�:

Example 8 Theorem 7 applied to F := clB and s := 0 gives

T+ (clB;0) = Rnn S
x2clBnf0g

(x+ kxkB) = (Rnn2B) [ f0g : (8)

The next corollary provides simple formulas for computing T+ (F; s) when F
is a Motzkin decomposable set (that is, the sum of a compact convex set with
a closed convex cone [4]); in particular, when it is a polyhedral convex set, or
a closed convex cone with apex s; or a linear manifold.

Corollary 9 If s 2 C+D; where C � Rn is a compact convex set and D � Rn
is a closed convex cone, then

T+ (C +D; s) =

(
t 2 s+D� : (u� s)0 (t� s) � kt� sk2

2
; u 2 C

)
:

9
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In particular:
(i) If s 2 F := conv fu1; ::; upg+ cone fv1; ::; vqg ; with u1; ::; up; v1; ::; vq 2 Rn;
then T+ (F; s) is the intersection of the reverse-convex setT
i=1;:::;p

n
t 2 Rn : �kt� sk2 + 2 (ui � s)0 (t� s) � 0

o
with the translated �nitely

generated convex cone s+ [cone fv1; ::; vqg]� :
(ii) If D � Rn is a closed convex cone and s 2 Rn, then T+ (s+D; s) = s+D�:
(iii) If F � Rn is a linear manifold and s 2 F; then T+ (F; s) = s+(F � s)? :

PROOF. Let F := C+D; where C is a compact convex set and D is a closed
convex cone. Since F � s = (C � s) +D; one has

��F�s (t) =

8><>:maxu2C�s u
0t; t 2 D�;

+1; otherwise.
(9)

The conclusion follows from Theorem 7.
Statements (i) and (ii) are immediate consequences, with C := conv fu1; ::; upg
and D := cone fv1; ::; vqg ; and C := fsg ; respectively.
Statement (iii) follows from (ii), with D := F � s; since D� = (F � s)? : �

3.2 The set T� (F; s)

With the aim of providing a su¢ cient condition for the existence of a smallest
element of  �1s (F ) ; with each s 2 Rn and F 2 V (s) we associate the following
set:

L (F; s) :=
n
t 2 bdT+ (F; s) : PT+(F;s)nfsg (x) = ftg for some x 2 bdF

o
:

Proposition 10 Let s 2 Rn and F 2 V (s) : Then

L (F; s) �
\

T2 �1s (F )
T:

PROOF. Let t0 2 L (F; s) and T 2  �1s (F ) ; and suppose that t0 =2 T: Take
x0 2 bdF such that PT+(F;s)nfsg (x0) = ft0g : Since T nfsg � T+ (F; s)nfs; t0g ;
by PT+(F;s)nfsg (x0) = ft0g we have d (x0; T n fsg) > d (x0; t0) � d (x0; s) :
Consider the strictly positive number � := (d (x0; T n fsg)� d (x0; s)) =2 and
take any x 2 x0 + �B: Then, the inequalities

d (x; s) � d (x; x0) + d (x0; s) < �+ d (x0; s)

10



and

d (x; T n fsg) � d (x0; T n fsg)� d (x; x0) > d (x0; T n fsg)� �

imply

d (x; T n fsg)� d (x; s) > d (x0; T n fsg)� d (x0; s)� 2� = 0;

hence x 2  s (T ) :We thus have x0+ �B �  s (T ) = F; which is a contradic-
tion with x0 2 bdF: Therefore t0 2 T; and the proof is complete. �

Corollary 11 Let s 2 Rn and F 2 V (s) : If fsg [ clL (F; s) 2  �1s (F ) ; then
T� (F; s) exists and coincides with fsg [ clL (F; s) :

We shall now present another su¢ cient condition for the existence of a smallest
element of  �1s (F ) ; by combining the following proposition with the next
lemma.

Proposition 12 Let s 2 Rn; T 2 T (s) ; and t0 2 T be such that the set
Gt0 :=  s (T )\ t0 (T ) is a facet of  s (T ) : Then, for every T 0 2  

�1
s ( s (T )) ;

one has t0 2 T 0:

PROOF. Let T 0 2  �1s ( s (T )) : Since s 2 T 0; we will assume that t0 6= s;
which implies that s =2 Gt0 : Let u 2 U := a� Gt0�a� Gt0 ; and take x 2 rintGt0 :
Take " > 0 such that x + "u 2 Gt0 : Since d (x+ "u; s) = d (x+ "u; t0) ; using
the equality d (x; s) = d (x; t0) we deduce that (t0 � s)0 u = 0: Therefore,
t0 � s is orthogonal to U: Observe that, by Gt0 �  s (T ) =  s (T

0) ; we have
d (x; s) � d (x; t) for every t 2 T 0:
Now, for k 2 f1; 2; :::g ; set yk :=

�
1 + 1

k

�
x� 1

k
s: One has yk =2  s (T ) ; because

x belongs to the intersection of Gt0 ; a face of  s (T ) ; with the segment having
s 2  s (T ) n Gt0 and yk as their endpoints. Therefore we have d (yk; tk) <
d (yk; s) for some tk 2 T 0: The sequence ftkg is bounded, because

d (tk; x) � d (tk; yk)+d (yk; x) < d (yk; s)+d (yk; x) =
�
1 +

2

k

�
d (x; s) � 3d (x; s) :

(10)
Hence we can assume, w.l.o.g., that ftkg converges to some t 2 T 0: The rest
of the proof will be devoted to show that t = t0:
>From (10) and yk ! x one gets d (x; t) � d (x; s) ; which implies that
d (x; s) = d (x; t) : Take " > 0 such that x + "u 2 Gt0 : Since d (x+ "u; s) �
d (x+ "u; t) ; using the equality d (x; s) = d (x; t) we deduce that (t� s)

0
u � 0:

This inequality must actually hold with the equal sign, because U is a linear
subspace. Therefore, t � s is also orthogonal to U: Hence, as the dimension
of U is n � 1; the point t belongs to the straight line determined by s and
t0: Since this line intersects the sphere centered at x with radius d (x; s) at

11



exactly two points, namely s and t0; we have either t = s or t = t0:
For k 2 f1; 2; :::g ; de�ne Sk := f(1� �) yk + �x : x 2 rintGt0 ; � > 1g : Let
x 2 rintGt0 and � > 1: From the inequalities d (x; s) � d (x; tk) and d (yk; tk) <
d (yk; s) (which are consequences of the choice of tk), we deduce that

d ((1� �) yk + �x; tk) > d ((1� �) yk + �x; s) ;

and hence tk 6= (1� �) yk + �x: This proves that tk =2 Sk: On the other hand,
S1 � Sk; because for x 2 rintGt0 and � > 1; setting � := 1 + k (�� 1) andex := �

1+k(��1)x +
(��1)(k�1)
1+k(��1) x; one has � > 1; ex 2 rintGt0 and (1� �) y1 +

�x = (1� �) yk + �ex: Therefore tk =2 S1: Notice that y1 =2 a� Gt0 ; because
otherwise, as x 2 a� Gt0 ; we would have s 2  s (T )\ a� Gt0 = Gt0 ; which is a
contradiction. Therefore, using that the dimension of a� Gt0 is n�1; we can see
that the convex set S1 (actually, each Sk) is open, because it is homeomorphic
to an open set of the form D� ]1;+1[ ; where D is an open set in Rn�1: This
implies that t =2 S1; because tk =2 S1 and tk ! t: Since s = �y1 + 2x 2 S1; we
conclude that t 6= s; and hence t0 = t 2 T 0: �

The next lemma allows us to obtain, from a given linear representation of F 2
V (s) ; a set T 2  �1s (F ) ; by means of symmetries relative to the hyperplanes
associated with the linear equalities in the linear representation.

Lemma 13 Let s 2 Rn; and let � := fc0kx � dk; k 2 Kg be a representation
of F 2 V (s) such that s is Slater point of �: If ck 6= 0 for all k, the point
tk is the symmetric point of s with respect to Hk := fx 2 Rn : c0kx = dkg ; and
T := fsg [ ftk : k 2 Kg ; then VT (s) = F; that is, clT 2  �1s (F ) :

PROOF. Let � and T be as in the statement. We de�ne

�k := 2 kckk�2 (dk � c0ks) :

We have �k > 0; because s is a Slater point of �; and

tk := �kck + s; k 2 K:

Straightforward calculations show that, for any k 2 K;

ktkk2�ksk2
2

= �kdk;

so that
(tk � s)0 x � ktkk2�ksk2

2
, c0kx � dk:

Thus, F is the Voronoi cell of T; and so that of clT; i.e., clT 2  �1s (F ) : �

12



In Example 6, since � := f�x2 � 0g is the unique minimal representation of
F up to re-scaling, and the set T de�ned in Lemma 13 reduces to f(0; 0)g for
s := (0; 0) ; we have clT = f(0; 0)g =2  �10 (F ) ; so that the Slater condition is
necessary in Lemma 13. Concerning Example 8, from Corollary 11 it follows
that there exists a smallest element T� (clB;0) = f(0; 0)g[2S1 of  �10 (clB) ;
even though clB is not G-polyhedral. This example shows that from a smallest
element of  �1s (F ) it is not always possible to get a minimal representation
of F: It also shows the importance of the closedness assumption on the sets of
sites T .

Theorem 14 Let s 2 Rn; and let � := fc0kx � dk; k 2 Kg be a minimal
representation of F 2 V (s) ; such that s is Slater point of �: If dimF = n;
then there exists a smallest element T� (F; s) in  �1s (F ), namely, T� (F; s) is
the closure of the set T de�ned in Lemma 13:

T� (F; s) = cl
h
fsg [

n
2 kckk�2 (dk � c0ks) ck + s : k 2 K

oi
:

PROOF. Assume that �; F and s are as in the statement: Then, by [5,
Theorem 5.1 (III)], the set fx 2 F : c0kx = dkg is a facet of F for all k 2 K: Let
T be as in Lemma 13 and T 0 2 T (s). By Lemma 13, we have clT 2  �1s (F ) :
Since T � T 0 by Proposition 12, we obtain clT � T 0: Therefore clT is the
smallest element of  �1s (F ) : �

Example 15 Consider the G-polyhedral set F := conv f(k; k2; 0) : k 2 Zg and
s := (0; 1; 0) : We obtain two minimal representations �1 and �2 of F; by
taking, for each k 6= 0; the two half-spaces whose boundaries contain the pair
of adjacent extreme points (k; k2; 0) and one of the two points

�
0; 1;� 1

2k

�
; in

the case of �1; and one of the points
�
0; 1;� 1

2k+1

�
; in the case of �2: In other

words, we take

�1 :=

8><>: (2k + 1) x1 � x2 + 2k (k
2 + k + 1) x3 � k (k + 1) ; k 2 Z

(2k + 1) x1 � x2 � 2k (k2 + k + 1) x3 � k (k + 1) ; k 2 Z

9>=>;
and

�2 :=

8><>: (2k + 1) x1 � x2 + (2k + 1) (k
2 + k + 1) x3 � k (k + 1) ; k 2 Z

(2k + 1) x1 � x2 � (2k + 1) (k2 + k + 1) x3 � k (k + 1) ; k 2 Z

9>=>; :
Observe that s is Slater point for �1 and �2: Denote by T1 and T2 the sets
obtained from �1 and �2; respectively, in the same way as T is obtained from �
in Lemma 13. One can easily check that these sets are closed; hence, by Lemma
13, one has T1; T2 2  �1s (F ) : Since T1 \ T2 = fsg =2  �1s (F ) ; there cannot be
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a smallest element in  �1s (F ). Thus, the assumption on the dimension of F
in Theorem 14 is not super�uous.

Corollary 16 Let s 2 Rn; and let F 2 V (s) be polyhedral. Then, there exists
a smallest element of  �1s (F ) if and only if s 2 intF:

PROOF. Assume that s 2 intF: Since dimF = n; there exists a mini-
mal representation � := fc0kx � dk; k 2 Kg of F; with K �nite, such that
fx 2 F : c0kx = dkg is a facet of F for all k 2 K: Then s is Slater point of �;
and Theorem 14 applies.
Now we assume that s 2 bdF and there exists a smallest element T� (F; s)
of  �1s (F ) : Let � := fc0kx � dk; k 2 Kg be a minimal representation of F:
Then K is �nite, and the set I := fk 2 K : c0ks = dkg of active indices at s
is non-empty. Let J := KnI be the set of inactive indices at s: Consider the
following linear representations of F :

�1 :=
�
c0kx � dk +

1

m
; k 2 I;m 2 N; c0kx � dk; k 2 J

�
:

As s is a Slater point of �1; we can apply Lemma 13 to obtain a set

T1 := fsg [
n
2 kckk�2

�
dk +

1
m
� c0ks

�
ck + s;m 2 N; k 2 I

o
[
n
2 kckk�2 (dk � c0ks) ck + s; k 2 J

o
;

which is closed (because dk � c0ks = 0 for all k 2 I) and satis�es T1 2  �1s (F )

(by Lemma 13). Given any k 2 I andm 2 N; the element 2 kckk�2
�
dk +

1
m
� c0ks

�
ck+

s can be eliminated from T1 without modifying the Voronoi cell, so it cannot
belong to T� (F; s) : Therefore

T� (F; s) � T2 := fsg [
n
2 kckk�2 (dk � c0ks) ck + s : k 2 J

o
;

which implies that F &  s (T2) �  s (T
� (F; s)) : This is a contradiction. �

Theorems 7 and 14, or their respective Corollaries 9 and 16 in particular cases,
are useful tools to solve the Voronoi inverse problem, as the next two examples
illustrate.

Example 17 Let F := [�1; 1]2 and s := (0; 0) : >From Corollaries 9 (i) and
16, applied to the system f�x1 � 1;�x2 � 1g (a minimal representation of F ),
we conclude that T 2  �1s (F ) if and only if T is closed, f(0; 0) ; (2; 0) ; (0; 2) ; (�2; 0) ; (0;�2)g �
T and d (t; (�1;�1)) �

p
2 for all t 2 T:
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Example 18 Let xk :=
�
1
k
; 1
k2

�
for k 2 N;

F := cl conv fxk : k 2 Ng+ cone f(�1; 0) ; (2; 3)g :

and s := (0; 0) 2 bdF . By considering the line lk joining xk and xk+1; we �nd
that

� := f(2k + 1) x1 � k (k + 1) x2 � 1; k 2 Ng
is a minimal representation of F: Since s is a Slater point of �; Theorem 14
implies the existence of the smallest element T� (F; s) of  �1s (F ) ; given by

T� (F; s) = fsg [ ftk : k 2 Ng ;

where each tk is the symmetric point of s with respect to the line lk:
On the other hand, by Corollary 9 (i) applied to F; we obtain

T+ (F; s) =

(
t 2 cone f(0;�1) ; (3;�2)g : 1

k
t1 +

1

k2
t2 � ktk2

2
; k 2 N

)
:

In this way we have solved the Voronoi inverse problem: T 2  �1s (F ) if and
only if T is closed and T� (F; s) � T � T+ (F; s).

The next straightforward consequence of Theorem 14 extends to G-polyhedral
sets a well-known property of polyhedral convex sets about uniqueness of
minimal linear representations.

Corollary 19 Each full dimensional G-polyhedral set has a unique minimal
linear representation up to re-scaling.

Corollary 20 Let s 2 Rn and let T 2 T (s) be a �nite set. Then, T� ( s (T ) ; s) =
T if and only if  s (T ) \  t (T ) is a facet of  s (T ) for all t 2 Tn fsg :

PROOF. We just have to prove the "only if" part. The �niteness of T implies
that  s (T ) is a polyhedral convex set, and so a G-polyhedral set, while the
existence of T� ( s (T ) ; s) entails that s 2 int s (T ) by Corollary 16. �

The next corollary provides su¢ cient conditions for the existence of the small-
est set of sites.

Corollary 21 Let s 2 Rn, F 2 V (s) and let

T := cl [fsg [ ft 2 Rn : fx 2 F : d (x; s) = d (x; t)g is a facet of Fg] :

(i) If the set T belongs to  �1s (F ) ; then T� (F; s) = T:
(ii) If F is a G-polyhedral set and s 2 intF; then T� (F; s) = T:
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PROOF. (i) is a direct consequence of Proposition 12.
(ii) We now assume that F is a G-polyhedral set and s 2 intF . Let � :=
fc0kx � dk; k 2 Kg be a minimal representation of F: Since s is a Slater point
of � and dimF = n; the existence of T� (F; s) is assured by Theorem 14 and
one has

T� (F; s) = cl
h
fsg [

n
2 kckk�2 (dk � c0ks) ck + s : k 2 K

oi
:

Now, for any k 2 K and t = 2 kckk�2 (dk � c0ks) ck + s; simple computations
yield 0B@ t� s

ktk2�ksk2
2

1CA = 2 kckk�2 (dk � c0ks)

0B@ ck
dk

1CA ;
and

kx� sk = kx� tk () (t� s)0 x = ktk2�ksk2
2

:

Hence
fx 2 F : d (x; s) = d (x; t)g = fx 2 F : c0kx = dkg : (11)

Since F is full dimensional and � is a minimal representation of it, [5, The-
orem 5.1 (III)] yields that each inequality of � determines a facet of F; i.e.,
fx 2 F : c0kx = dkg is a facet of F for all k 2 K: The conclusion follows from
(11). �

Both assumptions in Corollary 21 (ii) are necessary. On the one hand, taking
s := (0; 0) 2 R2 and F := clB; one has s 2 intF and, by Corollary 11, the
equality T� (F; s) = fsg [ 2S1 holds, while the exposed faces of F are not
facets; so that the assumption that F is a G-polyhedral set is not super�uous.
On the other hand, Example 15 shows a G-polyhedral set F with s 2 bdF
where T� (F; s) = T does not exist.

3.3 The Voronoi inverse problem for diagrams

Given a family of closed convex sets fFi; i 2 Ig ; the Voronoi inverse problem
for diagrams consists in �nding a (selection) mapping � : I ! Rn such that
Fi is the Voronoi cell of � (i) w.r.t. � (I) ; i.e.,  �(i) (� (I)) = Fi; for all i 2 I:
This problem has a well-known geometric solution when n = 2 and I is �nite
(see, e.g., [8] and references therein). According to the previous results, if Fi
is G-polyhedral and � (i) 2 intFi; i 2 I; and[

i2I
T� (Fi; s) � � (I) �

\
i2I
T+ (Fi; s) ;
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then � solves the Voronoi inverse problem for diagrams. The formulation is
simpler in the particular case that I = f1; :::; pg because then, the selection
problem consists in �nding (t1; :::; tp) 2 (Rn)p such that  ti (ft1; :::; tpg) = Fi;
i = 1; :::; p; and its solutions can be characterized as follows: (t1; :::; tp) 2 (Rn)p
solves this inverse problem if and only if ti 2 intFi; i = 1; :::; p; and

p[
i=1

T� (Fi; s) � ft1; :::; tpg �
p\
i=1

T+ (Fi; s) :

4 The set  �1s (F ) and linear representations of F

In this section, inspired by the proof of Theorem 7, we discuss some observa-
tions concerning the relationship of the set  �1s (F ) with the linear represen-
tations of F:

Let �s : Rnn fsg ! (Rnn f0g)� R be the mapping

�s (t) :=

 
t� s;

ktk2 � ksk2

2

!
:

For every T 2 T (s) one has

 s (T ) = fx 2 Rn : a0x � b; (a; b) 2 �s (Tn fsg)g : (12)

So, given F 2 V (s) ; each T 2  �1s (F ) induces a linear representation of F;
whose index set is �s (Tn fsg) :

Consider now the "inverse" mapping �s : (Rnn f0g)� R! Rn de�ned as

�s (a; b) :=
2 (b� a0s)

kak2
a+ s:

Then, �s � �s is the identity, while

(�s � �s) (a; b) =
2 (b� a0s)

kak2
(a; b) ;

so that �s � �s is not the identity. The reason is that �s is non-exhaustive; in
fact,

�s (Rnn fsg) = gph
 
k�+ sk2 � ksk2

2

!
n f(0; 0)g :

One can easily prove the following result:
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Proposition 22 Let s 2 Rn: The mapping �s : Rnn fsg ! gph
�
k�+sk2�ksk2

2

�
n f(0; 0)g

is a bijection; its inverse is the restriction of �s to gph
�
k�+sk2�ksk2

2

�
n f(0; 0)g :

The meaning of limiting ourselves to the set gph
�
k�+sk2�ksk2

2

�
n f(0; 0)g is

as follows. For (a; b) 2 (Rnn f0g) � R; with a0s < b, de�ning
�ea; eb� :=

(�s � �s) (a; b) we get that the inequalities a0x � b and ea0x � eb are equivalent.
The inequality ea0x � eb can be interpreted as a normalized version of a0x � b;

as it is the only equivalent inequality such that
�ea; eb� 2 gph �k�+sk2�ksk2

2

�
:

For every set D � (Rnn f0g)�R such that a0s < b for all (a; b) 2 D; we have

fx 2 Rn : a0x � b; (a; b) 2 Dg = V�s(D)[fsg (s) : (13)

Thus, if F 2 V (s) ; for each linear representation of F where s is a Slater
point, the data set D of coe¢ cient vectors of this representation induces a set
T := cl �s (D) [ fsg 2  �1s (F ) :

According to the previous remarks, there exists a bijective mapping from T (s)
into the set of systems of "normalized" linear inequalities (i.e., those inequal-
ities a0x � b such that a 6= 0 and (a; b) 2 gph

�
k�+sk2�ksk2

2

�
); by virtue of (12),

for T 2 T (s) the set �s (Tn fsg) de�nes such a system representing  s (T ) :
Notice that s is a Slater point of those systems, since b � a0s = kak2 =2 > 0:
Conversely, the closed convex set represented by the "normalized" linear sys-
tem de�ned by the set D � (Rnn f0g)�R is precisely  s (cl �s (D) [ fsg) : In
summary, one has:

Theorem 23 Let s 2 Rn, F 2 V (s) ; and let R (F ) be the set of all D �
gph

�
k�+sk2�ksk2

2

�
n f(0; 0)g such that fx 2 Rn : a0x � b; (a; b) 2 Dg = F: Then,

the mappings  �1s (F )! R (F ) andR (F )!  �1s (F ) given by T 7! �s (Tn fsg)
and D 7! cl �s (D)[fsg, respectively, are well-de�ned, bijective, and mutually
inverse.

5 A closure operator associated to the Voronoi mapping

We analyze a closure operator related to T+ ( s (T ) ; s). The main result,
Theorem 26, will enable us to show, in the next section, that if we allow for
arbitrary (not necessarily closed) sets of sites, then for every F 2 V (s) the
collection of sets  �1s (F ) does not contain a smallest element T� (F; s).

We consider the mapping �s : T (s)! T (s) de�ned by

�s (T ) := T+ ( s (T ) ; s) :
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By Theorem 7, one has

�s (T )=

(
t 2 Rn : �� s(T )�s (t� s) � kt� sk2

2

)

=

(
t 2 Rn :

 
t� s;

kt� sk2

2

!
2 C ( s (T )� s)

)
:

Clearly, �s is a closure operator, that is, it satis�es the following properties:

1) For every T 2 T (s) ; one has T � �s (T ) :

2) �s is monotone with respect to inclusion, that is, if T; T
0 2 T (s) and T � T 0;

then �s (T ) � �s (T
0) :

3) �s is idempotent, that is, �
2
s = �s:

To characterize the sets that are �xed with respect to the closure operator �s
(in other words, those sets T 2 T (s) for which any enlargement provokes a
shrinking of the cell), we need a lemma.

Lemma 24 Let T � Rn be co-radiant, i.e., S
�>1

�T � T: If t 2 T and b � ktk2
2
;

then

(t; b) 2 R+
( 

t;
ktk2

2

!
; t 2 T ; (0; 1)

)
:

PROOF. The conclusion obviously holds if t = 0: Suppose now that t 6= 0:
Since T is co-radiant, 2b

ktk2 t 2 T: Hence

(t; b) =
ktk2

2b

0BBBBB@
2b

ktk2
t;

 2b

ktk2 t

2

2

1CCCCCA 2 R+
( 

t;
ktk2

2

!
: t 2 T

)
:

�

We associate with each T 2 T (s) the function qT : Rn ! R[f+1g de�ned
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by

qT (x) :=

8>>>>>>>><>>>>>>>>:

inf

(
mX
i=1

�i ktik2 : ti 2 T; �i � 0; i = 1; :::;m;
mX
i=1

�i (1; ti) = (1; x)

)
; x 2 conv T;

+1; otherwise.

This function qT is nothing else than the largest convex extension of k�k2 jT :

A straightforward computation for the epigraph epi qT of qT in terms of the
graph gph k�k2 jT of k�k2 jT yields

epi qT =conv epi k�k2 jT= conv
�
gph k�k2 jT +R+ (0; 1)

�
(14)

=conv gph k�k2 jT +R+ (0; 1)
= conv

n�
t; ktk2

�
: t 2 T

o
+ R+ (0; 1) :

If T is convex, qT (x) = kxk2 when x 2 T; and qT (x) = +1 otherwise.

Example 25 Let n = 1, T = R+ and s := 0: Then, �s (T ) = T and

qT (x) =

8><>:x
2; x � 0;

+1; x < 0:

It is easy to prove that every T 2 T (s) satis�es the equality

�s (T ) = s+ �0 (T � s) ; (15)

so the study of �s reduces to that of �0:

Theorem 26 Let s 2 Rn and T 2 T (s) : Then �s (T ) = T if and only if T�s
is co-radiant and satis�es

qT�s (t� s)

kt� sk2
(t� s) 2 T � s for all t 2 (conv T ) n fsg :

PROOF. Using (15), it is enough to consider the case of s = 0: So we will
prove that a set T 2 T (0) satis�es �0 (T ) = T if and only if it is co-radiant
and satis�es

qT (t)

ktk2
t 2 T for all t 2 (conv T ) n f0g : (16)
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Assume �rst that �0 (T ) = T: Let t 2 T and � > 1: Then, since �0 (T ) = T;

we have
�
t; ktk

2

2

�
2 C ( 0 (T )) ; hence, every x 2  0 (T ) satis�es (�t)

0 x �
�ktk

2

2
� k�tk2

2
; that is,

�
�t; k�tk

2

2

�
2 C ( 0 (T )) : Therefore �t 2 �0 (T ) = T;

which shows that T is co-radiant. Let now t 2 (conv T ) n f0g and ti 2 T

and �i � 0 (i = 1; :::;m) be such that
mX
i=1

�i = 1 and t =
mX
i=1

�iti: Since

�0 (T ) = T; we have
�
ti;

ktik2
2

�
2 C ( 0 (T )) for every i; hence, for every

x 2  0 (T ), we have t
0x =

mX
i=1

�it
0
ix �

mX
i=1

�i
ktik2
2
: Therefore t0x � 1

2
qT (t)

or, equivalently, qT (t)ktk2 t
0x �

 qT (t)ktk2
t

2
2

; that is,

0B@ qT (t)

ktk2 t;

 qT (t)ktk2
t

2
2

1CA 2 C ( 0 (T )) :

Hence qT (t)

ktk2 t 2 �0 (T ) = T:

Conversely, assume that T is co-radiant and satis�es (17). We will �rst prove
that

cl cone

( 
t;
ktk2

2

!
; t 2 T ; (0; 1)

)
= R+

( 
t;
ktk2

2

!
; t 2 T ; (0; 1)

)
(17)

by showing that the set R+
n�
t; ktk

2

2

�
; t 2 T ; (0; 1)

o
is convex and closed. To

prove convexity, we will �rst show that every convex combination of elements
of
n�
t; ktk

2

2

�
: t 2 T

o
belongs to R+

n�
t; ktk

2

2

�
; t 2 T ; (0; 1)

o
: Let ti 2 T and

�i � 0 (i = 1; :::;m) be such that
mX
i=1

�i = 1; and de�ne t :=
qT

 
mX
i=1

�iti

!


mX
i=1

�iti


2

mX
i=1

�iti:

By (17), we have t 2 T: From the equality

 
t;
ktk2

2

!
=

qT

 
mX
i=1

�iti

!

mX
i=1

�iti


2

0BBBB@
mX
i=1

�iti;

qT

 
mX
i=1

�iti

!
2

1CCCCA

it follows that

0BBBB@
mX
i=1

�iti;

qT

 
mX
i=1

�iti

!
2

1CCCCA 2 R+
( 

t;
ktk2

2

!
; t 2 T

)
:
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Hence, given that qT

 
mX
i=1

�iti

!
�

mX
i=1

�iqT (ti) =
mX
i=1

�i ktik2 ; using Lemma 24

we can easily see that

mX
i=1

�i

 
ti;
ktik2

2

!
2 R+

( 
t;
ktk2

2

!
; t 2 T ; (0; 1)

)
:

We have thus proved that every convex combination of elements of
n�
t; ktk

2

2

�
: t 2 T

o
belongs toR+

n�
t; ktk

2

2

�
; t 2 T ; (0; 1)

o
: Furthermore, using this fact and, again,

Lemma 24, it is easy to see that every convex combination of elements ofn�
t; ktk

2

2

�
; t 2 T ; (0; 1)

o
belongs to R+

n�
t; ktk

2

2

�
; t 2 T ; (0; 1)

o
: We thus con-

clude that the set R+
n�
t; ktk

2

2

�
; t 2 T ; (0; 1)

o
is convex. To prove its closed-

ness, since

R+
( 

t;
ktk2

2

!
; t 2 T ; (0; 1)

)
= R+

( 
t;
ktk2

2

!
: t 2 T

)
[ R+ f(0; 1)g ;

we only need to prove that R+
n�
t; ktk

2

2

�
: t 2 T

o
is closed. Let us consider

sequences �k � 0 and tk 2 T such that
�
�ktk; �k

ktkk2
2

�
converges to some

point (a; b) : Then the sequence tk =
�kktkk2

k�ktkk2
�ktk converges to 2b

kak2a; so this

point belongs to T and, since (a; b) = kak2
2b

0B@ 2b
kak2a;

 2b

kak2
a

2
2

1CA ; we conclude
that (a; b) 2 R+

n�
t; ktk

2

2

�
: t 2 T

o
: We have thus proved (17). We now need

to check the inclusion �0 (T ) � T; since we already know that the opposite
one holds. Let t 2 �0 (T ) : Then, by (7) and (17), we have 

t;
ktk2

2

!
2 C ( 0 (T )) = R+

( 
t0;
kt0k2

2

!
; t0 2 T ; (0; 1)

)
:

Hence
�
t; ktk

2

2

�
= �

�
t0; kt

0k2
2

�
for some � � 0 and t0 2 T: We thus have

� kt0k2 = ktk2 = k�t0k2 = �2 kt0k2 ; and we conclude that either t0 = 0; in
which case t = 0 2 T; or � = 1; in which case t = t0 2 T: �

Notice that (17) necessarily holds whenever T is convex, as then qT (t� s) =
kt� sk2 for all t 2 T (this is the case in Example 6 if we set T := f0g � R,
so that, as T is also co-radiant, one has �0 (T ) = T ). Observe also that taking
the closure in (17) is not super�uous (see Example 25).

Example 27 Let T := (Rn nB) [ f0g : Then T belongs to T (0) and is co-
radiant. One can easily check that qT = max

n
k�k ; k�k2

o
; so condition (16)
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reduces to  
max

(
1

ktk ; 1
)!

t 2 T 8t 2 Rnn f0g :

Since this condition clearly holds, one has

T = �0 (T ) = T+ ( 0 (T ) ;0) = T+
�
1

2
clB;0

�
:

The next result shows that �s transforms closed convex sets into convex cones.

Corollary 28 Let s 2 Rn and T 2 V (s) : Then �s (T ) = s + clR+ (T � s) :
In particular, if T 2 V (0) is a cone, then �0 (T ) = T:

PROOF. It is enough to show that, if s := 0; then �s (T ) = clR+T: Recall
that by [6, Proposition 18], the set  0 (T ) is the normal cone to T at 0; which
is equal to (R+T )� ; so, an application of Corollary 9 (ii) gives

�0 (T ) = T+ ( 0 (T ) ;0) = T+ ((R+T )� ;0) = (R+T )�� = clR+T:

�

6 Extension to non-closed sets of sites

In this �nal section we brie�y discuss the extensions of the previous results to
cells of arbitrary (possibly non-closed) sets of sites.

Denote by U (s) := fT � Rn : s 2 Tg the class of subsets of Rn containing
s; and let  s : U (s) ! V (s) be such that  s (T ) = VT (s) (i.e.,  s is the
extension to non-closed sets of the mapping denoted in the same way that was
introduced in Section 1).

Almost all the results of Sections 3 and 4 remain valid for arbitrary (not
necessarily closed) sets of sites, e.g., Theorem 7, Corollary 9 and Theorem 26.
The main di¤erence of dealing with arbitrary, instead of closed, sets of sites is
that  �1s (F ) never contains a smallest element in this new setting. We next
show a counterpart of Theorem 14.

Proposition 29 Let  s : U (s)! V (s) be de�ned by  s (T ) = VT (s), and let
F 2 V (s) be di¤erent from Rn: Then the following statements hold:
(i) It does not exist a smallest element in  �1s (F ) :
(ii) Let � := fc0kx � dk; k 2 Kg be a minimal representation of F; with dimF =
n; such that s is Slater point of �: Then, the set de�ned in Lemma 13 is a
minimal element of  �1s (F ) :
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Proof: (i) Let s and F be as in the assumption, and assume that T1 is the
smallest element of  �1s (F ) : Since T+ (F; s) � s is co-radiant (Theorem 26),
T2 � s :=

[
�>1

� (T1 � s) � T+ (F; s) � s and so T1 � clT2 � T+ (F; s) ; which

entails clT2 2  �1s (F ) by (2). Hence T2 2  �1s (F ) too, so T1 � T2. Since
F 6= Rn; we have T1 6= fsg : Let t 2 T1 n fsg : As T1 � T2; in view of the
de�nition of T2, there exists �1 2 (0; 1) such that s + �1 (t� s) 2 T1: The
same argument, with t replaced by s + �1 (t� s) 2 T1; shows the existence
of �2 2 (0; �1) such that s + �2 (t� s) 2 T1: By repeating this procedure,
we obtain a strictly decreasing sequence of positive numbers �k such that
s + �k (t� s) 2 T1: Clearly, the set obtained from T1 by replacing the terms
of the sequence fs+ �k (t� s)g by those of any of its subsequences belongs
to  �1s (F ) ; which contradicts the minimality of T1:

(ii) The argument is similar to that of Theorem 14 without taking the closure
of the set de�ned in Lemma 13. �

In conclusion, when  s is de�ned for not necessarily closed sets of sites,  
�1
s (F )

cannot be expressed by means of formula (2) except in the trivial case when
F := Rn.
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