
© 2015, IJARCSSE All Rights Reserved Page | 124

 Volume 5, Issue 4, 2015 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

Optimized Indexes for Data Structured Retrieval
 Yosvanys Aponte Báez

*
 Alexander Sánchez Díaz

Manuel Marco Such

Agrarian University of Havana Agrarian University of Havana University of Alicante

 San José de Las Lajas, Cuba San José de Las Lajas, Cuba Alicante, Spain

Abstract— The aim of this work is to show the novel index structure based suffix array and ternary search tree with

rank and select succinct data structure. Suffix arrays were originally developed to reduce memory consumption

compared to a suffix tree and ternary search tree combine the time efficiency of digital tries with the space efficiency

of binary search trees. Rank of a symbol at a given position equals the number of times the symbol appears in the

corresponding prefix of the sequence. Select is the inverse, retrieving the positions of the symbol occurrences. These

operations are widely used in information retrieval and management, being the base of several data structures and

algorithms for text collections, graphs, trees, etc. The resulting structure is faster than hashing for many typical

search problems, and supports a broader range of useful problems and operations. There for we implement a path

index based on those data structures that shown to be highly efficient when dealing with digital collection consist in

structured documents. We describe how the index architecture works and we compare the searching algorithms with

others, and finally experiments show the outperforms with earlier approaches.

Keywords—XML, indexing, suffix array, suffix tree, rank and select

I. INTRODUCTION

XML has become the new standard for Internet data representation and exchange in the last years, and also is widely

used in several applications like electronic encyclopedias, digital libraries, on-line manuals, linguistic databases,

scientific taxonomies, between others. As more and more files occurred in this format, we wanted to access the stored

data and search for the specific according to prior criteria. Languages like XPath [1] and XQuery [2] have been created

for searching elements, attributes or text values in those kind of documents. The challenge is to find these elements

rapidly and efficiently, especially when we are dealing with big and heterogeneous structured documents.

In some cases, we have some datasets with a great number of paths and nodes and making a lot of queries with content

and with direct and indirect containment could produce a time-consuming task if you didn't have an efficient data

structure. Indeed, indexing such large heterogeneous document collections therefore requires the implementation of

memory efficient data structures which store the structural indexes.

A lot of indexing techniques have been proposed for improving the performance of index and query processing. As is

explained in [3] they can be divided into different categories, but in general all of them suffer from some of the

following problems: the index size require a huge space, and in some cases they could be bigger than the original

document and also could have a big scalability problem. There is a high cost with respect of index time construction and

the query evaluation procedure. Finally some of them cannot support complex queries efficiently.

This paper describes how the structural index can be implemented as a suffix array [4] and complemented, for faster

response, with a ternary search tree [5] and rank and select succinct data structures, for that propose we implemented a

prototype named SATRS. On one hand, suffix arrays have proved to be extraordinarily effective in the indexing of plain

text, and they combine fast access ---particularly when locating sequences of words--- with moderate memory

requirements. On the other hand, ternary search trees combine the attributes of binary search trees and digital search tries,

and are also space efficient. And finally the data structures rank and select are widely used in information retrieval and

management, being the base of several data structures and algorithms for text collections, graphs, trees, etc. Where rank

of a symbol at a given position is equal to the number of times the symbol appears in the corresponding prefix of the

sequence and select is the inverse, retrieving the positions of the symbol occurrences.

The reminder of the paper is organized as follow. In section Related work we briefly present some research results in

the literature of XML indexing. Section Structural index describes our implementation of the structural index for XML

retrieval based on suffix arrays, ternary search trees and rank and select succinct data structures. Section Experimental

results shows the outperforms with earlier approaches and section Conclusions summarizes our conclusions and future

work.

II. RELATED WORK
A lot of indexing techniques have been proposed in the literature for improving the performance of query processing.

They can be divided into three main categories: structural summaries, structural join and sequence-based indexes.

The structural summary approach reduces the portion of the XML to be scanned during query processing. For

example Dataguide [6], the most referenced method of its type, summarized all label paths in the XML document and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Alicante

https://core.ac.uk/display/78636123?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ijarcsse.com/

Báez et al., International Journal of Advanced Research in Computer Science and Software Engineering 5(4),

April- 2015, pp. 124-129

© 2015, IJARCSSE All Rights Reserved Page | 125

provide key benefits afforded by a schema, such as guidance to the user for query formulation and guidance to the query

processor for query optimization. The problem with DataGuide is when is used with highly heterogeneous tree

collections that contains considerable structural redundancy and does not support multiple and branching path

expressions. Another approach is IndexFabric [7] that eliminates the step of intersection between the path index and the

keyword index, the author uses only one index to content and structure, one of the weakness of this approach is that the

resulting index is too large to be held in main memory, due to the author proposed a paging strategy for partitioning the

IndexFabric on disk in order to restrict the number of page faults during the index look-ups.

Another work is T-Index [8] that captures the knowledge about the structure of data and the type of queries in the

query mix, described as path templates. Depending on the path template, a T-Index may capture more or less of the

document structure than the DataGuide. They discuss two particular variants of the T-Index. The first one 1-Index covers

all tag paths starting from the document root, and the second one 2-Index locates all pairs of ancestor an descendant

elements that are linked by a specific sequence of tags. One limitation is that 2-Index can have quadratic size in the worst

case.

The PCIM [9] (Path Clustering Indexing Method) clusters paths with the same root-to-leaf nodes and reduces the

space cost of the index using two hash tables, the Structural Index and the Content Index, with tag names as hashing keys

for efficient searching. The PCIM reduces the index space with a high compression ratio and efficiently process complex

queries. But has the following disadvantages: a long time index construction and the adoption of a regional numbering

scheme. The NCIM [10] (Node Clustering Indexing Method) is another indexing scheme, which differs from the PCIM

by clustering the nodes with the same tag names and storing them in hash tables. Showing a good compression ratio and

supporting complex queries efficiently. A limitation is that they assume that the indexes can fit into main memory and it

is an issue when dealing with large XML documents. Both the PCIM and NCIM encode nodes by means of regional

numbering scheme. However, the PCIM uses strings to represent labels and the NCIM uses integers where possible. As is

discussed in [11], in most cases, the NCIM outperforms the PCIM, because the PCIM stores text content in the other

tables, whereas the NCIM stores them in the leaf node index under the corresponding tag name, which results in reduced

search time for processing queries with the selection predicates.

Most of the structural join indices are based on the decomposition-matching-merging processes. For example Zhang

et al. [12] and Al-Khalifa et al. [13] have proposed the MPMGJN and Stack-Tree algorithms respectively to match binary

structural relationships. However, these approaches still produce large intermediate results. To solve this problem, Bruno

et al. [14] proposed PathStack and TwigStack: holistic path and twig join algorithms, which use a chain of linked stacks

to represent the intermediate results in a compact manner, and subsequently join them to obtain the final results. This

algorithm is only optimal for A-D relationships. Thus in [15] have extended TwigStack and proposed TwigStackList,

which can support both P-C and A-D relationships efficiently.

And finally the sequence-based indexes convert XML documents and queries into structure sequences. They put the

values and the structures of XML data together into an integrated index structure. For answer a query, they make a string

sequence that matches the sequence of the data with the query. These methods reduce the need of joins to evaluate twig

query. For example VIST [16] (Virtual Suffix Tree) labels nodes in pre-order traversal, and is based on B+ tree. VIST

has the disadvantage of weakening the query operations due to the large number of nodes being checked and the use of a

top-down sequence. Consequently the size of the index becomes very large when dealing with large XML documents

since the top elements are added into the sequence. The PRIX [17] (Pruffer sequence for indexing XML) does a good job

in decreasing the query processing time and solve the scalability problem of VIST. At last on challenge of the sequence-

based methods is how to avoid false alarm and false dismissal. On the other hand Ferragina [18] also proposed xbw

transform of a labelled tree based on Burrow-Wheeler transform [19] for strings to compress, index and process XML

data. The xbw transform uses path-sorting and grouping to linearize the labelled tree into two coordinated arrays, one

capturing the structure and the other the labels. Positive in this method: very good for queries and compression. Negative,

the label construction is rather computational expensive and does not support dynamic XML.

III. STRUCTURAL INDEX

The structured text stored in XML files can be represented as a tree that can have element nodes, attribute nodes and

textual nodes. For example in Figure 1 the tree shown has five element nodes (one labelled with a, two labelled with b,

two labelled with c and one labelled with @d) and finally five textual nodes containing the words w1, w2, w3, w4 and

w5.

Fig. 1 Schematic tree representation of an XML document

Báez et al., International Journal of Advanced Research in Computer Science and Software Engineering 5(4),

April- 2015, pp. 124-129

© 2015, IJARCSSE All Rights Reserved Page | 126

Our structural index ---which is schematically depicted in Figure 3--- virtually indexes all the paths (see Figure 2) in

the collection by using several compact data structures: the source array A, the suffix array S, the dictionary of tags D,

the dictionary of range D’, the keyword list array, the BitsC binary array, the PosC array, the Bits Inv binary array and in

the bottom the ternary search tree T.

Fig. 2 Path index (with size N=4) for the example tree of Figure 1

The source array A=(A1,A2,...,AM) stores the N paths in the collection in lexicographical order and uses a distinguished

symbol (the slash character, which is not a valid XML tag) to separate the different paths. No separator is needed

between consecutive tags in the same path. Every path can thus be univocally recovered with a single integer identifier:

its position n in the lexicographic sequence /u1/u2/.../uN stored in A.

For the sake of clarity, every path stored in A is shown in the picture as a sequence of tags but, in practice, paths are

mapped to integer sequences by creating a dictionary D of tags which is consistent with the lexicographical order. This

dictionary D is enhanced with the path separator (the slash character) which is assigned the lowest integer, thus

signifying that it is the first symbol in the lexicographical order.

Fig. 3 Data structures integrating the index for the example tree of Fig. 1

The suffix array S is the array of integers (S1,S2,...,SM) giving the starting positions of the M suffixes of A in

lexicographical order. Note that, owing to the lexicographical ordering of paths in A, there are no crossing connections

between the first N elements in S and the corresponding suffixes in A.

The Keyword list (K1,K2,...,Ki), ---where i is the total number of unique word in the tree--- is constructed with the

textual content of the tree, in our case with the leaf nodes in Figure 1 in lexicographical order. And the dictionary

(D’1,D’2,...,D’j) ---where j matches with total number of words in the tree--- is constructed with the range positions of

each word in the keyword list, and each range is the initial and final position counting each word in the tree.

Simultaneously is constructed the Bits Inv binary array (b1,b2,...,bj), where the size j matches with D’ length . The "1"

indicates the start of each word and "0" following it, the other apparitions of the same word in the tree.

And finally we implemented an auxiliary ternary search tree T which stores the (pre-computed) results of the binary

search of the suffix array. In a ternary search tree, each internal node simply stores a label while the content is stored in

the leaves. In order to locate the content associated with a sequence of tags, the current tag is compared with the node

Báez et al., International Journal of Advanced Research in Computer Science and Software Engineering 5(4),

April- 2015, pp. 124-129

© 2015, IJARCSSE All Rights Reserved Page | 127

label. If the tag precedes (in lexicographical order) the label, the search is transferred to the left child and if it follows the

node label the search is transferred to the right child. If the tag and the node label are identical, the matched tag is

removed from the sequence and the search is transferred to the central child. In the case of the tag being the end of string

marker (here, the hash symbol “/”), the central child contains the result associated with the input sequence.

A balanced ternary search tree is obtained by means of recursive construction: the subpath referenced by the middle

position m=M/2 in S is added to the tree (and the corresponding result); the procedure is then repeated for the preceding

positions in S, and the procedure is finally applied to the paths referenced by S{m+1},S{m+2},....

The construction process is detailed in Figure 4 which shows the order in which the subpaths σk have been added to

the tree, the position in A where σk starts, the input for the ternary search tree (the prefix of σk terminated with the end of

string marker) and the required output (the maximal range of k-values such that all σk starts with the same prefix).

Finally while processing each path (during the construction of the suffix array and the ternary search tree) with their

range positions as shown in Figure 2, in addition we build a BitsC binary array (b1,b2,...,bk), where "1" indicates the start

of each path and the "0" following it, the remaining occurrences and a PosC array(c1,c2,...,ck), having reference to the first

occurrence of that range in the dictionary D’ (solid arrows in Figure 3). For both arrays k is the total number of path in

the tree.

Fig. 4 Insertion steps performed during the construction of the ternary search tree

For example for structure query, the query //a/b is first translated into α(q)=(a,b) and the search in the ternary search

tree T returns the range [7,9[, then is computed the path number and the paths 2 and 3 are obtained (as is shown in Fig. 2

/a/b and /a/b/c). For each path the operation Select is executed in the BitsC binary array, and we got the range [2,3] in

BitsC. With this range in the PosC array that point to D’ we got the final ranges [2,3][7,8][4,6] for the original tree.

IV. EXPERIMENTAL RESULTS AND COMPARISONS

We have implemented our prototype named SATRS based on the data structures and algorithms presented in the

previous section. All code was written in Java, and all experiments were done in Pentium Core 2 Duo Processor, 3,0 GHz

and 4 GB of RAM. In our experiments we used three XML datasets XMARK, DBLP and SWISSPROT which cover a

lot of XML data formats and structures. In short DBLP has many repetitive structures comparing with the others datasets

and XMARK has the largest maximum depth among these three datasets. The statistical data of datasets are shown in

Table 1.

First of all the XML documents were parsed to extract all paths with its ranges (initial and final position) of the text

contained within it. Then, a second parsing is performed to extract the common paths and create a path index (see Figure

2). At the same time were extracted all text content with its ranges (initial and final position) within the XML document.

TABLE I CHARACTERISTICS OF DATASETS

Dataset Size(bytes) Tree depth

Max/Avg

Leaves Tags/Att(Dist)

DBLP 133,856,133 7/3,4 7,067,935 3,735,407 (40)

SWISSPROT 114,820,211 6/3,9 8,143,919 5,166,891 (99)

XMARK 119,504,522 13/6,2 3,714,508 2,048,194 (83)

Two kind of experiments were made, for the first one were evaluated six different structural queries. Each type of

query may consist on a single type parent-child (P-C) relationship, a single type ancestor-descendant (A-D) relationship

or mixed types of both relationships. (See Table II) and for the final results (see Figure 5). A single backslash (/) is used

to represent a parent-child edge or PC edge and a double backslash (//) is used to represent an ancestor-descendant edge

or AD edge. In most cases the queries with A-D relationships are slower than the P-C queries.

Báez et al., International Journal of Advanced Research in Computer Science and Software Engineering 5(4),

April- 2015, pp. 124-129

© 2015, IJARCSSE All Rights Reserved Page | 128

TABLE II STRUCTURAL QUERIES

DBLP

Q1 //inproceedings/booktitle

Q2 /dblp/mastersthesis/author

SWISSPROT

Q3 /root/Entry/Ref/MedLine

Q4 //Entry/Ref//Cite

XMARK

Q5 //item/mailbox//from

Q6 /site/regions/africa/item/location

The best results as seen in Figure 5 are shown for our proposal (SATRS), in all cases the response time does not

exceed 25 milliseconds. First of all because the structures used (ternary search tree and suffix array) has generally very

fast access and are very space-efficient. Finally the use of succinct data structures such as Rank and Select Dictionaries,

improve the performance of the index, since operations on binary arrays are very efficient.

Fig. 5 Query time comparison

For the second experimental evaluation it's good to emphasize that we filter out the plain texts from each indexing

method in order to measure the compression rate more accurately. In Figure 6 is shown the compression ratio used by the

equation 1. XQEngine shows the worst compression ratio among the four methods and our proposal achieves the best

performance, it can compresses between 95 and 99 percent for all datasets.

 (1)

Fig. 6 Comparison of query processing time Compression ratio of different methods

Báez et al., International Journal of Advanced Research in Computer Science and Software Engineering 5(4),

April- 2015, pp. 124-129

© 2015, IJARCSSE All Rights Reserved Page | 129

V. CONCLUSIONS

One limitation of the SATRS is that we assume the index can fit in main memory. Although the SATRS has a great

compression ratio, but it may not be suitable when the index size of the XML document exceeds the size of main

memory, however it shows the best results for all experimental tests. Among all methods, NCIM outperforms the PCIM

query time, because the PCIM stores text content in tables, whereas the NCIM stores them in the leaf node index under

the corresponding tag name. For all experiments XQEngine shows the worst performance in terms of query response

time and in index compression ratio. For future work, the authors would like to compare with others approaches like [14]

[11] and finally we recommend the use of indexes that store the information on a secondary memory like in [20] and the

use of parallel and distributed systems like [21] to solve our scalability problem.

REFERENCES

[1] Consortium, W.W.W., XML path language (XPath) 2.0. 2010.

[2] Boag, S., et al., XQuery 1.0: An XML query language. 2002.

[3] Zemmar, I., A. Benouareth, and L. Souici-Meslati, A survey of Indexing techniques in Natives XML Databases.

2011.

[4] Manber, U. and G. Myers, Suffix arrays: a new method for on-line string searches. siam Journal on Computing,

1993. 22(5): p. 935-948.

[5] Bentley, J.L. and R. Sedgewick. Fast algorithms for sorting and searching strings. in Proceedings of the eighth

annual ACM-SIAM symposium on Discrete algorithms. 1997. Society for Industrial and Applied Mathematics.

[6] Goldman, R. and J. Widom, Dataguides: Enabling query formulation and optimization in semistructured

databases. 1997.

[7] Cooper, B. and M. Shadmon, The index fabric: Technical overview. RightOrder Inc, 2001.

[8] Milo, T. and D. Suciu, Index structures for path expressions, in Database Theory—ICDT’99. 1999, Springer. p.

277-295.

[9] Hsu, W., et al. An efficient XML indexing method based on path clustering. in Proceedings of the 20th IASTED

International Conference on Modelling and Simulation. 2009.

[10] Liao, I.-E., W.-C. Hsu, and Y.-L. Chen, An efficient indexing and compressing scheme for XML query

processing, in Networked Digital Technologies. 2010, Springer. p. 70-84.

[11] Hsu, W.-C. and I.-E. Liao, Cis-x: A compacted indexing scheme for efficient query evaluation of xml documents.

Information Sciences, 2013. 241: p. 195-211.

[12] Zhang, C., et al. On supporting containment queries in relational database management systems. in ACM

SIGMOD Record. 2001. ACM.

[13] Al-Khalifa, S., et al. Structural joins: A primitive for efficient XML query pattern matching. in Data Engineering,

2002. Proceedings. 18th International Conference on. 2002. IEEE.

[14] Bruno, N., N. Koudas, and D. Srivastava. Holistic twig joins: optimal XML pattern matching. in Proceedings of

the 2002 ACM SIGMOD international conference on Management of data. 2002. ACM.

[15] Lu, J., T. Chen, and T.W. Ling. Efficient processing of XML twig patterns with parent child edges: a look-ahead

approach. in Proceedings of the thirteenth ACM international conference on Information and knowledge

management. 2004. ACM.

[16] Wang, H., et al. ViST: a dynamic index method for querying XML data by tree structures. in Proceedings of the

2003 ACM SIGMOD international conference on Management of data. 2003. ACM.

[17] Rao, P. and B. Moon. PRIX: Indexing and querying XML using prufer sequences. in Data Engineering, 2004.

Proceedings. 20th International Conference on. 2004. IEEE.

[18] Ferragina, P., et al. Structuring labeled trees for optimal succinctness, and beyond. in Foundations of Computer

Science, 2005. FOCS 2005. 46th Annual IEEE Symposium on. 2005. IEEE.

[19] Burrows, M. and D.J. Wheeler, A block-sorting lossless data compression algorithm. 1994.

[20] Işıkman, Ö.Ö., et al., TempoXML: Nested bitemporal relationship modeling and conversion tool for fuzzy XML.

Information Sciences, 2012. 193: p. 247-274.

[21] Dede, E., et al. Scalable and distributed processing of scientific XML data. in Proceedings of the 2011

IEEE/ACM 12th International Conference on Grid Computing. 2011. IEEE Computer Society.

