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ABSTRACT 19 

Active nanocomposite films based on poly(lactic acid) (PLA), thymol and silver 20 

nanoparticles (Ag-NPs) were prepared and characterised. PLA films containing 6 and 8 21 

wt% thymol and 1 wt% Ag-NPs were processed by extrusion to obtain binary and 22 

ternary formulations. The addition of thymol and Ag-NPs modified the PLA thermal, 23 

optical and barrier properties; in particular water vapour permeability (WVP), 24 

maintaining oxygen transmission rate (OTR) values unchanged. Homogeneous surfaces 25 

in all films were obtained as proved by FESEM micrographs. The presence of the active 26 

additives enhanced the disintegration rate of PLA under composting conditions, which 27 

was completed in 14 days. Results suggest that these nanocomposite films could be 28 

considered promising degradable active packaging materials with low environmental 29 

impact. 30 

 31 

KEYWORDS: poly(lactic acid); thymol; silver nanoparticles; active packaging; 32 

disintegration; characterization. 33 

  34 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

3 

 

1. Introduction 35 

The preservation of the environment and the atmospheric and soil pollution caused by 36 

fossil fuel-derived plastics have focused on rising research interest towards the 37 

development of bio-based and biodegradable materials in high-impact sectors, such as 38 

food packaging [1]. These materials are under development by strictly following the 39 

guidelines for the efficient use of natural and renewable resources, keeping the 40 

properties of conventional thermoplastics to preserve food quality and consumer safety, 41 

while reducing waste disposal and CO2 footprint by offering new recycling and 42 

recovery options [2]. Among them, poly(lactic acid) (PLA) has received attention 43 

mostly due to its inherent renewable source, adequate optical and mechanical properties, 44 

and high biodegradation/biocompatibility capabilities to be easily degraded into water 45 

and CO2 [3]. In addition, PLA is classified as “Generally Recognized as Safe” (GRAS) 46 

for food packaging applications, fulfilling the requirements to be in direct contact with 47 

aqueous, acidic and fatty foods [4]. 48 

Innovations in food packaging have focused on the development of active 49 

nanocomposites, which are particularly useful in emerging technologies due to their 50 

improved structural integrity and barrier properties obtained by the addition of 51 

nanomaterials (either nanoclays or metal nanoparticles), and the increase in 52 

antimicrobial/antioxidant properties in most cases by the action of active additives 53 

and/or the own nanofiller. The use of nanofillers in innovative food packaging materials 54 

has also resulted in improving some of their key properties, such as strength and 55 

flexibility, barrier to gases, moisture stability and higher resistance to heat and cold [2, 56 

5-7]. Nanocomposites with metal nanoparticles are gaining importance in active 57 

packaging, since they could play a double role, as nanofillers (enhancing mechanical 58 

and barrier properties) and active agents with antimicrobial performance [8-11]. In this 59 
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context, silver nanoparticles (Ag-NPs) have been studied by their strong antimicrobial 60 

effect to a wide range of microorganisms in health, food packaging and textile industries 61 

besides of a number of environmental applications. Ag-NPs have been already used in 62 

some commercial products by their antimicrobial performance and they have been 63 

approved by the US Food and Drug Administration (FDA), US Environmental 64 

Protection Agency (EPA), Society of Industrial-Technology for Antimicrobial Articles 65 

(SIAA) of Japan, Korea’s Testing and Research Institute for Chemical Industry and 66 

Functional Textile & Clothing Testing Institute (FITI) in Korea [12]. Ag-NPs have been 67 

also used in polymer formulations by their stability at high temperatures and low 68 

volatility to improve the antimicrobial resistance of polymers used in specific 69 

applications, such as food packaging [13-16]. According to the Council Directive 70 

94/36/EC (1994), silver is accepted as food additive with the code E174 if used as 71 

“external coating of confectionary, decoration of chocolates, liqueurs”. Nevertheless, in 72 

food contact materials, Ag-NPs are not still allowed, but the presence of certain silver 73 

zeolites is already authorized in plastic food containers and rubber seals [17]. Therefore, 74 

toxicological issues should be taken into account in all new developed materials with 75 

Ag-NPs in their composition. Lavorgna et al. synthesized active nanocomposites by 76 

loading chitosan with Ag-MMT nanoparticles. The successful intercalation and the 77 

interaction between chitosan and Ag-NPs led to the enhancement of the thermal 78 

stability of the developed active nanocomposites [18]. 79 

The combination of additives from natural sources with antimicrobial and/or antioxidant 80 

performance with nanofillers to improve polymer characteristics while having positive 81 

impact on food shelf-life extension and safety has been also introduced in this novel 82 

concept of active nanocomposites [19]. In particular, thymol has been extensively used 83 

as a natural active antimicrobial and antioxidant agent. Different strategies for the 84 
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incorporation of this type of active agents to packaging materials have been proposed, 85 

by the inherent volatility of these compounds, resulting in some drawbacks related to 86 

their thermal stability and full control of the release kinetics [20-21]. Recent studies 87 

have proposed the use of new methodologies to improve the permanence of active 88 

agents during polymer processing. One interesting approach consists of controlling the 89 

addition times of the nanocomposite components at the melting state. Other possibility 90 

to protect volatile essential oils during processing is based on reinforcement with 91 

nanofillers [20, 22-24] or encapsulation techniques [25-28]. Thymol is recognized by 92 

the Food and Drug Administration (FDA) as a GRAS substance for its use in direct 93 

contact with food [29]. It is used in active packaging by its high diffusion rate into most 94 

of the polymer matrices and its ability to be released, minimizing the bacterial growth 95 

and delaying the oxidation processes in food [21]. 96 

In a previous study, the influence of thymol and Ag-NPs on the degradation of PLA-97 

based nanocomposites under composting conditions in dog-bone tensile bars was 98 

reported. These formulations were used for the analysis of thermal, morphological, and 99 

mechanical properties of these PLA-based nanocomposites, which showed suitable 100 

properties to be used as biodegradable active food packaging systems, with clear 101 

improvement in the inherent biodegradable character of PLA after the addition of both 102 

additives [23]. 103 

Nano- and thin-film technologies based on novel systems associating metal particles 104 

and natural additives to polymer matrices open a broad range of new applications, such 105 

as bio-films with antimicrobial effect for the food industry. In this context, the present 106 

work aims to develop biodegradable thin nanocomposite films (around 40 µm thick) 107 

based on PLA with thymol and Ag-NPs as active additives to extend their applicability 108 
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to packaging systems [30]. For this purpose, the evaluation of their thermal, 109 

morphological, optical, barrier and disintegration properties is presented in this work. 110 

 111 

2. Materials and methods 112 

2.1. Materials 113 

Thymol (99.5 % purity) was supplied by Sigma-Aldrich (Madrid, Spain). Commercial 114 

silver nanoparticles (Ag-NPs), P203, with a size distribution range of 20-80 nm, were 115 

purchased from Cima Nano-Tech (Saint Paul, MN, USA). Ag-NPs were thermally 116 

treated at 700 ºC for 1 h as reported elsewhere [31]. A commercial poly(lactic acid) 117 

PLA-4060D (Tg = 58 ºC, 11-13 wt% D-isomer) was supplied in pellets by NatureWorks 118 

Co., (Minnetonka, MN, USA). 119 

 120 

2.2. Nanocomposite films preparation 121 

PLA-based nanocomposites were processed in a twin-screw microextruder (Dsm 122 

Explore 5&15 CC Micro Compounder, Heerlen, The Netherlands). PLA pellets were 123 

dried overnight at 45 ºC before extrusion to prevent polymer hydrolysis during 124 

processing. A 170-180-190 ºC temperature profile and a screw speed of 150 rpm were 125 

used in the extrusion process. Different binary and ternary PLA-based formulations 126 

were obtained (Table 1): three binary systems, containing 6 and 8 wt% of thymol 127 

(PLA/T6 and PLA/T8, respectively) or 1 wt% of Ag-NPs (PLA/Ag); and two ternary 128 

systems, containing 6 wt% of thymol and 1 wt% of Ag-NPs (PLA/Ag/T6), and 8 wt% 129 

of thymol and 1 wt% of Ag-NPs (PLA/Ag/T8). An additional sample without any 130 

additive was also prepared as control (PLA). 131 

For binary systems, a total mixing time of 6 min was used. Thymol was added in the 132 

last 3 minutes and the screw speed was then reduced to 100 rpm to limit losses by 133 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

7 

 

vaporization. For ternary systems (PLA/Ag/T6, PLA/Ag/T8), a masterbatch of PLA and 134 

Ag-NPs was first processed in the extruder during 3 min and it was then combined with 135 

6 or 8 wt% of thymol for 3 additional minutes. After mixing, PLA and PLA 136 

nanocomposite films were obtained in a hot-press with a head force of 1500 N and a 137 

maximum temperature of 195 ºC (Table 1); Films thickness was determined to be 138 

around 40 µm with a 293 MDC-Lite Digimatic Micrometer (Mitutoyo, Japan) at five 139 

random positions. 140 

 141 

2.3. Characterization of nanocomposite films 142 

PLA-based nanocomposite films were characterized in terms of their thermal, 143 

morphological, optical (colour, light transmission), and barrier (oxygen transmission 144 

rate, water vapour permeability) properties. 145 

 146 

2.3.1. Thermal properties 147 

Thermogravimetric analysis (TGA) was carried out by using a TGA Seiko Exstar 6300 148 

(USA) instrument. Samples (7 mg) were heated from 25 to 700 ºC at 10 ºC min-1 149 

heating rate under nitrogen atmosphere (flow rate 50 mL min-1). Analyses were 150 

performed in triplicate. 151 

Differential scanning calorimetry (DSC) measurements were conducted, in triplicate, by 152 

using a DSC Mettler Toledo 822/e (Schwerzenbach, Switzerland) under nitrogen 153 

atmosphere (50 mL min-1). Samples (3 mg) were introduced in aluminium pans (40 µL) 154 

and were submitted to the following thermal program: -25 to 200 ºC at 10 ºC min-1, with 155 

two heating and one cooling scans. Glass transition temperature (Tg) was determined in 156 

the second heating scan. 157 

 158 
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2.3.2. Field emission scanning electron microscopy (FESEM) 159 

The surface profiles of neat PLA and PLA active nanocomposite films were evaluated 160 

by FESEM (Supra 25-Zeiss, Jena, Germany) to study their homogeneity and the 161 

influence of thymol and Ag-NPs on the polymer morphology. Samples were coated 162 

with a gold layer prior to analysis in order to increase their electrical conductivity by 163 

using a B7341 Agar automatic sputter coater (Agar Scientific Ltd, Stansted, United 164 

Kingdom). 165 

 166 

2.3.3. Optical properties 167 

The light transmission of PLA-based films was determined, in triplicate, by using a 168 

Perkin Elmer Lambda 35 UV–Vis spectrophotometer (Waltham, MA, USA). Tests were 169 

carried out at 500 nm in transmittance (%) mode to evaluate the transparency of all 170 

films in the visible region. Each film was cut in 2.5 x 2.5 cm2 strips. 171 

Modifications on the films colour caused by additives were determined with a Konica 172 

CM-3600d COLORFLEX-DIFF2 colorimeter (Reston, VA, USA) using the CIELab 173 

colour parameters. Changes in L*  (lightness), a* (red-green coordinate) and b* (yellow-174 

blue coordinate) were determined from the results obtained with the colorimeter. The 175 

instrument was calibrated with a white standard tile. Measurements were taken at five 176 

different random locations over the film surface and average values were calculated. 177 

Total colour differences (∆E*) were calculated by using Eq. (1), comparing with a neat 178 

PLA film (standard): 179 

∆E*= [(∆L*)2+(∆a*)2+(∆b*)2]1⁄2                                                                                     (1) 180 

where ∆L*=  L* standard – L* sample, ∆a* = a* standard – a* sample and ∆b*= b* standard – b* sample. 181 

 182 

2.3.4. Barrier properties 183 
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Oxygen transmission rate (OTR) is defined as the total amount of oxygen passing 184 

through a plastic film per time unit. An oxygen permeation analyser (8500 model 185 

Systech, Metrotec S.A, Spain) was used for OTR tests with pure oxygen (99.9 %). Film 186 

samples were cut into 14-cm diameter circles and they were clamped in the diffusion 187 

chamber at 25 ºC before testing. Tests were performed in triplicate and average values 188 

were expressed as oxygen transmission rate per film thickness (OTR*e). 189 

Water vapour permeability (WVP) was determined gravimetrically by following the 190 

ASTM E 96M-05 Standard test method. Films were cut in circles of 95 mm diameter 191 

and mounted on stainless steel permeation cells containing anhydrous calcium chloride, 192 

sealed with paraffin. These cells were placed in a climatic chamber (Dycometal, 193 

Barcelona, Spain) at 23 ºC and 50% relative humidity (RH). The amount of water 194 

vapour transferred through the film and absorbed by the desiccant was determined from 195 

the weight gain of the cell after 24 h. A minimum of seven determinations were taken to 196 

plot the weight variation with time resulting in a linear characteristic graph. Water 197 

vapour transmission (WVT) was calculated with Eq. (2). 198 

WVT = (G/t)/A        (g·h-1·m-2)                                                                                       (2) 199 

where A is the film area exposed (0.005 m2) and G/t is the slope obtained from plotting 200 

the weight gained in the permeation cell (G, grams) versus time (t, hours). 201 

The water vapour permeability (WVP) of films was determined, in triplicate, by using 202 

Eq. (3). 203 

WVP (kg·m·Pa-1·s-1·m-2) = WVT x e / (S(R1-R2))                                                         (3) 204 

where e is the film thickness, S is the saturation vapour pressure at 23 ºC, and (R1-R2) is 205 

the difference in relative humidity between the exterior and interior of the permeation 206 

cell (0.5). 207 

 208 
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2.4. Disintegrability under composting conditions 209 

Disintegration tests under composting conditions were performed by following the ISO 210 

20200 standard method. A commercial compost with fixed amounts of sawdust, rabbit 211 

food, starch, sugar, oil and urea was used. Aerobic conditions were guaranteed by 212 

mixing the compost softly and by the periodical addition of water according to the 213 

standard requirements. Testing samples (20 x 20 mm2 films), in triplicate, were 214 

weighted and buried at 5 cm depth in perforated boxes containing the prepared mix and 215 

were incubated at 58 ºC. 216 

Several disintegration times were selected to recover samples from burial: 0, 1, 2, 4, 7 217 

and 14 days. Samples were washed immediately after collection with distilled water to 218 

remove traces of compost extracted from the container and were further dried at 37 °C 219 

for 24 h before gravimetrical analysis. The disintegrability value for each material at 220 

different times was obtained by normalizing the sample weight with the value obtained 221 

at the initial time. Photographs of recovered samples were also taken for visual 222 

evaluation. 223 

 224 

2.5. Statistical analysis 225 

Statistical analysis of results was performed with SPSS commercial software (Version 226 

15.0, Chicago, IL). A one-way analysis of variance (ANOVA) was carried out. 227 

Differences between means were assessed on the basis of confidence intervals using the 228 

Tukey test at a p < 0.05 significance level. 229 

 230 

3. Results and discussion 231 

3.1. Thermal properties 232 
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The effect of the addition of thymol and Ag-NPs on the thermal properties of PLA-233 

based films was investigated by DSC and the main results are summarized in Table 2, 234 

while the thermograms obtained for the second heating scan are shown in Fig. 1a. The 235 

glass transition temperature (Tg) of PLA and all nanocomposites was clearly observed, 236 

due to the amorphous character of the PLA used in this study, while no crystallization 237 

or melting phenomena were detected (Fig. 1a). 238 

The addition of Ag-NPs to PLA (PLA/Ag) did not reveal significant differences with 239 

respect to neat PLA in terms of Tg (p > 0.05), in agreement with previous studies [16, 240 

23]. However, thymol-based binary and ternary systems showed a significant decrease 241 

(p < 0.05) in Tg values with differences higher than 10 °C (Table 2). This reduction in 242 

Tg by the addition of thymol was related with the higher mobility of the polymer 243 

macromolecules caused by the increase in the free volume of the matrix, promoting the 244 

torsion oscillation of the carbon backbone due to a plasticizing effect of thymol. It is 245 

well known that the addition of low molecular weight compounds decreases the PLA 246 

rigidity and brittleness by reducing its glass transition temperature and increasing the 247 

mobility of macromolecules [32-33]. A similar Tg shift to lower temperatures by the 248 

incorporation of thymol to different polymer matrices producing a plasticization effect 249 

was also reported in a previous work [20]. A significant decrease in Tg caused by the 250 

incorporation of thymol to PLA-based films was also reported by other authors [22, 34]. 251 

A similar behaviour was reported for α-tocopherol, resveratrol, buthylated 252 

hydroxytoluene (BHT) and tert-butylhydroquinone added to PLA [33, 35-36]. In all 253 

cases, an effective plasticizing effect was observed and it was related to the addition of 254 

these compounds, with the consequent decrease in Tg. 255 

The thermal stability of neat PLA and PLA active nanocomposite films was studied 256 

with TGA under nitrogen atmosphere. Fig. 1b and Fig. 1c show the weight loss (TG) 257 
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and derivative curves (DTG) of the obtained PLA-based films. A main degradation peak 258 

around 332-363 ºC associated to PLA thermal degradation was observed in all 259 

materials. A first degradation step starting at around 120 ºC was also detected, and it 260 

could be related to the thymol degradation. This fact confirms the permanence of a 261 

detectable amount of thymol in the nanocomposites after processing at high 262 

temperatures, as already reported in a previous work [23]. Moreover, the remaining 263 

amount of the active additive in the polymer matrix after processing was estimated from 264 

the obtained TG curves. For binary systems, PLA/T8 and PLA/T6, 5.63 ± 0.02 wt% and 265 

4.2 ± 0.2 wt%, respectively, were obtained; and for ternary systems, PLA/Ag/T8 and 266 

PLA/Ag/T6, the concentrations of remaining thymol after processing were 6.0 ± 0.2 267 

wt% and 4.2 ± 0.2 wt%, respectively. These results revealed significant differences (p < 268 

0.05) between binary and ternary systems with 8 wt% of thymol. The main TGA 269 

parameters, i.e the initial degradation temperature (Tini) determined at 5 % weight loss 270 

and the maximum degradation temperature (Tmax) for the main peak (associated to the 271 

PLA thermal degradation), are shown in Table 2. The separate addition of thymol and 272 

Ag-NPs into PLA matrices did not affect significantly the thermal behaviour of the 273 

polymer matrix in terms of Tmax and Tini (p > 0.05). However, a significant reduction (p 274 

< 0.05) was observed for PLA-based active nanocomposites with thymol and Ag-NPs, 275 

suggesting some loss in the PLA thermal stability. This phenomenon could be related 276 

with some degradation of these materials during processing caused by the presence of 277 

metal nanoparticles, which enhanced the thermal conductivity of the nanocomposites, 278 

speeding up the degradation process of the polymeric matrix [37]. 279 

Table 2 280 

Figure 1 281 

 282 
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3.2. Morphological analysis 283 

The surface morphology and microstructure of PLA and active nanocomposite films 284 

were studied by FESEM in order to evaluate the influence of the incorporation of 285 

thymol and Ag-NPs into the polymer matrix. Fig. 2 shows the FESEM surface 286 

micrographs obtained for neat PLA and PLA nanocomposites after processing. 287 

Homogeneous and smooth surface morphologies were observed for all materials, with 288 

no apparent effect of the addition of thymol and Ag-NPs into the PLA matrix. Similar 289 

morphologies were observed by other authors for PLA and other polymer matrices 290 

blended with Ag-NPs or thymol [16, 38-40]. Rhim et al. reported also smooth surfaces 291 

with evenly dispersed silver nanoparticles on the PLA film surface [40]. These results 292 

demonstrate a positive combination between PLA, thymol and Ag-NPs to obtain 293 

homogeneous surfaces after film processing. 294 

Figure 2 295 

 296 

3.3. Optical properties 297 

All PLA-based films were visually homogeneous and transparent regardless of their 298 

composition (Fig. 3). The colour distribution observed in all films suggests that 299 

additives were uniformly distributed through the polymer matrix during processing. 300 

However, nanocomposite films containing Ag-NPs showed some darkening in the 301 

initially clear surface as well as some decrease in transparency, which is an important 302 

physical property in food packaging films where clarity is desirable [41]. In fact, it has 303 

been reported that the incorporation of some additives to PLA can lead to substantial 304 

modifications and transparency losses, representing an important drawback for 305 

consumer acceptance [42]. Rhim et al. suggested that surface plasmon phenomena 306 
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caused by silver nanoparticles and phenolic compounds, such as thymol, may modify 307 

PLA colour during processing and storage leading to some darkening of films [40]. 308 

Figure 3 309 

 310 

Results obtained for colour and transmittance at 500 nm of all films are shown in Table 311 

3. The modifications in surface colour in the PLA binary and ternary films was 312 

significant (p < 0.05) depending on the additive. While some decrease (p < 0.05) in film 313 

lightness (L-value) was observed in PLA films containing Ag-NPs, it slightly increased 314 

in those with thymol (p < 0.05) when compared to values obtained for the neat PLA 315 

film. In addition, a* and b* parameters were modified by the presence of both additives 316 

(Table 3). In particular, Ag-NPs-containing binary and ternary systems resulted in 317 

significant shifts (p < 0.05) in a* and b* towards positive values, indicating an 318 

increasing trend in redness and yellowness, respectively, of the active nanocomposite 319 

films. Consequently, the total colour difference, ∆E*, of those films with Ag-NPs 320 

increased significantly (p < 0.05) compared to neat PLA. This behaviour can be 321 

explained by the development of brown colour in nanocomposite films caused by the 322 

plasmonic effect of Ag-NPs [43]. Regarding binary systems containing thymol, the 323 

obtained results indicated that these films were not much different in colour compared 324 

to neat PLA. 325 

PLA is a transparent polymer with a transmittance close to 95% in the visible region 326 

(Table 3), as already reported [41]. The evaluation of the light transmission of PLA-327 

based nanocomposites at 500 nm revealed that all the binary and ternary films were, in 328 

general, highly transparent, showing transmittance values higher than 90 %. A slight 329 

decrease (p < 0.05) in transmittance was observed in binary systems containing thymol, 330 

which might be due to the colourless transparent appearance of this additive. The 331 
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inclusion of Ag-NPs into the PLA films also produced some significant reduction (p < 332 

0.05) in transparency, which was related to the prevention of light transmission by the 333 

nanoparticles homogeneously dispersed through the polymer matrix [14]. The obtained 334 

results suggested that the amount of additives, thymol and Ag-NPs, used in these 335 

formulations did not affect dramatically the colour and transparency of PLA films. 336 

Therefore, their incorporation into the PLA matrix could be suitable for food packaging 337 

applications without compromising, to an unacceptable degree, its optical properties. 338 

Table 3 339 

 340 

3.4. Barrier properties 341 

The effect of the addition of thymol and Ag-NPs on the barrier properties (OTR and 342 

WVP) of PLA-based films was studied and the main results are shown in Table 2. Films 343 

with low oxygen permeability are desirable for food preservation, since oxygen can 344 

accelerate food oxidative degradation and facilitate the growth of aerobic 345 

microorganisms, thereby shortening the food shelf-life [11]. The OTR·e values obtained 346 

in this study showed that the oxygen barrier offered by neat PLA was not significantly 347 

modified (p > 0.05) in the presence of additives at the studied concentrations. 348 

The evaluation of the barrier properties to water vapour of these PLA-based 349 

nanocomposite films is important to assess their possibilities to be used as food 350 

packaging materials since one of their main functions should be to decrease the 351 

moisture transfer between food and the surrounding environment keeping quality and 352 

increasing shelf-life [44]. Water vapour barrier in films could be considered as the 353 

balance between the hydrophobic/hydrophilic characteristics of all their components. 354 

The WVP of the neat PLA film (Table 2) was not significantly affected (p > 0.05) by 355 

the incorporation of Ag-NPs (PLA/Ag). This behaviour may be due to the spherical 356 
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shape of silver particles and their high dispersion in the polymer matrix which may not 357 

develop a tortuous pathway to limit water vapour diffusion [43]. 358 

It has been stated that high water vapour permeabilities of films intended for food 359 

packaging could restrict considerably their use [45]. In this case, the addition of thymol 360 

to PLA-based films resulted in a significant decrease (p < 0.05) in WVP values for 361 

binary and ternary systems, up to 40 % compared to those values obtained for the neat 362 

PLA film. These results could be explained by the repulsion to water molecules caused 363 

by the addition of a highly hydrophobic component, such as thymol, at high 364 

concentrations [46]. Therefore, these thymol-containing nanocomposites allowed an 365 

important improvement in barrier properties to water vapour, which is a remarkable 366 

feature in food packaging applications, especially at storage conditions with high RH. 367 

Similar results were found by other authors under equivalent environmental conditions 368 

(23 ºC, 45% RH), reporting a WVP value of 1.99 x 10-14 kg m m-2 s-1 Pa-1 for neat PLA, 369 

and a 25 % reduction in WVP for PLA films loaded with α-tocopherol (4 wt%) [33]. 370 

Meanwhile, the addition of 2 wt% marigold flower extract containing astaxanthin 371 

resulted in the decrease in 21 % in WVP of PLA, which was attributed to the 372 

hydrophobic nature of this extract [47]. Conversely, no significant differences were 373 

observed for WVP of PLA/PCL-based films with thymol (3-12 wt %) compared to 374 

PLA/PCL films, showing 2.54 x 10-14 kg m m-2 s-1 Pa-1 as WVP value [22, 34]. 375 

 376 

3.5. Disintegrability under composting conditions 377 

Biodegradability tests are necessary to evaluate the environmental impact of plastic 378 

materials and to find solutions to avoid the disturbing accumulation of polymers after 379 

their commercial shelf-life. The disintegrability of PLA and PLA active nanocomposite 380 

films under composting conditions was studied to evaluate their degradation in natural 381 
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environments. The visual evaluation of all samples at different degradation times 382 

showed considerable changes, with a clear whitening, loss of transparency and evident 383 

deformation and size reduction after 2 days (Fig. 4). These results were indicative of the 384 

beginning of the hydrolytic degradation as it was reported in a previous study [23]. The 385 

hydrolytic degradation process in PLA nanocomposites and the increase in their opacity 386 

can be attributed to various simultaneous phenomena, such as the formation of low 387 

molar-mass degradation by-products during hydrolysis due to the water absorption and 388 

the increase in PLA crystallinity [48]. After 4 days, neat PLA and binary and ternary 389 

systems became brittle and just small pieces of films were recovered. The faster 390 

degradation of these active nanocomposite films when compared to previous results 391 

obtained with injection moulded samples [20] can be explained by the lower thickness 392 

of films, which showed considerable modifications in colour and a general loss of 393 

transparency after 7 days under composting conditions. 394 

Figure 4 395 

 396 

Fig. 5 shows the evolution of disintegrability values (%) of films with time. A 397 

progressive degradation of samples with the burial time was obtained, which was 398 

visually corroborated by the clear whitening and transparency loss and evident 399 

deformation observed in samples (Fig. 4). A similar behaviour was reported by 400 

Fortunati et al., who indicated that the PLA hydrolysis begins in the amorphous region 401 

of the polymer structure producing an overall increase in polymer crystallinity [16]. 402 

This increase in crystallinity was expectable by the intrinsic amorphous character of the 403 

PLA used in this work with a large content in D-LA enantiomer [49]. Furthermore, 404 

results obtained before the beginning of the burial test (day 0) suggested that the 405 

influence of thymol on PLA degradation profile is important, since significantly higher 406 
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disintegration values were obtained for PLA/T6, PLA/T8, PLA/Ag/T6 and PLA/Ag/T8 407 

compared to PLA or PLA/Ag samples (p < 0.05). It was described that thymol hydroxyl 408 

groups can contribute to PLA hydrolysis after absorbing water from the composting 409 

medium, resulting in a noticeable increase in disintegrability values for thymol-410 

containing PLA nanocomposites [23]. 411 

After 4 days of treatment, no significant differences (p > 0.05) were observed for all 412 

samples regardless of their composition and the burial time (Fig. 5), showing similar 413 

weight loss and disintegrability ratio. It should be also highlighted that the testing 414 

temperature (58 °C) was higher than the Tg of the PLA-based films, previously reported 415 

in the 40-45 °C range, resulting in some induction of the crystallization process into the 416 

amorphous zones in the polymer matrix and chain mobility, accelerating the hydrolytic 417 

degradation process. This behaviour could also be related to the low thickness of the 418 

tested samples [50]. 419 

It was observed that after 14 days of the burial test all materials reached complete 420 

degradation with weight losses higher than 90% (as indicated in the ISO 20200 standard 421 

for a biodegradable material). These results suggest that these active nanocomposite 422 

films could be used as biodegradable materials requiring short disintegration times. 423 

Figure 5 424 

 425 

4. Conclusions 426 

Degradable active films based on PLA, thymol and Ag-NPs were successfully obtained 427 

by extrusion and further characterized in their main thermal, morphological, optical and 428 

barrier properties. Disintegrability under composting conditions was also studied. It was 429 

found that the presence of thymol and Ag-NPs through the PLA matrix influences the 430 

thermal stability of the ternary systems. The addition of thymol to PLA-based films 431 
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resulted in a decrease in Tg of PLA, due to a slight plasticizing effect of this additive. 432 

Optical properties suggest that the amount of additives, thymol and Ag-NPs, used in 433 

these formulations did not affect dramatically the colour and transparency of PLA films. 434 

FESEM micrographs showed a good incorporation of both additives and homogeneous 435 

film surfaces. An enhancement in the barrier properties to water vapour was also 436 

obtained by the incorporation of thymol, which provides improved protection to 437 

packaged food. Additionally, the degradation study of active nanocomposite films under 438 

composting conditions showed that the inherent degradable character of PLA remained 439 

after the incorporation of these additives. In fact, the incorporation of 8 wt% of thymol 440 

to PLA-based formulations increased the disintegration rate of the polymer matrix, due 441 

to the presence of the reactive free hydroxyl groups in the thymol molecule. The 442 

combination of thymol and Ag-NPs induced higher degradation rates, suggesting their 443 

advantages in industrial applications where degradation could be an issue, such as in 444 

food packaging. 445 

Further work is currently on-going to evaluate the multifunctional applicability of the 446 

proposed active nanocomposite films, such as antioxidant and antibacterial behaviour or 447 

kinetics release from the polymer matrix, to ensure their ability to be used in food 448 

packaging applications. 449 
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Figure Captions 588 

Fig. 1. DSC thermogram from the second heating scan (a), TG (b) and DTG (c) curves of PLA-589 

based films. 590 

Fig. 2. FESEM surface images of PLA and active nanocomposite films. 591 

Fig. 3. Visual observation of neat PLA and binary and ternary nanocomposite films. 592 

Fig. 4. Visual appearance of neat PLA and active nanocomposite films at different testing days 593 

under composting conditions at 58 °C. 594 

Fig. 5. Disintegrability (%) of neat PLA and nanocomposite films at different times under 595 

composting conditions at 58 °C (mean ± SD, n = 3). The line at 90 % represents the goal of 596 

disintegrability test as required by the ISO 20200 standard. Different superscripts over different 597 

samples at the same time indicate statistically significant different values (p < 0.05). 598 
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Table 1. PLA-based active nanocomposite films and thickness (mean ± SD, n = 3). 600 

Formulation PLA (wt%) Ag (wt%) Thymol (wt%) Thickness (µm) 

PLA 100 - - 35 ± 4a 

PLA/Ag 99 1 - 39 ± 4a 

PLA/T6 94 - 6 40 ± 2a 

PLA/T8 92 - 8 41 ± 5a 

PLA/Ag/T6 93 1 6 42 ± 3a 

PLA/Ag/T8 91 1 8 39 ± 6a 

Different superscripts within the same column indicate statistically significant different 
values (p < 0.05). 
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Table 2. Characterization of neat PLA and nanocomposite films (mean ± SD, n = 3). 

Formulation 
Tg  

(ºC) 
Tini  

(ºC) 
Tmax 
(ºC) 

WVP*10-14 
(kg m s-1 m-2 Pa-1) 

Reduction 
in WVP (%) 

OTR*e 
(cm3 mm m-2 day-1) 

PLA 56.3 ± 2.2a 320 ± 4a 363 ± 2a 1.84 ± 0.12a - 19.9 ± 2.1a 

PLA/Ag 53.7 ± 0.8a 316 ± 4a 354 ± 5a 1.77 ± 0.01a 4 26.2 ± 8.4a 

PLA/T6 43.3 ± 0.2b 321 ± 3a 351 ± 3a 1.33 ± 0.11b 27 18.5 ± 1.6a 

PLA/T8 43.5 ± 1.0b 312 ± 2a 354 ± 3a 1.10 ± 0.09c 40 20.7 ± 1.8a 

PLA/Ag/T6 42.6 ± 0.8b 281 ± 3b 332 ± 5b 1.12 ± 0.05b,c 39 18.3 ± 1.1a 

PLA/Ag/T8 43.0 ± 0.4b 284 ± 5b 334 ± 6b 1.17 ± 0.09b,c 36 18.3 ± 1.9a 

Tg: determined by DSC from the second heating scan at 10 ºC min-1. 
Tini and Tmax: determined by TGA at 10 ºC min-1 in N2 atmosphere. Corresponding to the 2nd degradation step. 
Different superscripts within the same column indicate statistically significant different values (p < 0.05). 
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Table 3. Optical properties of neat PLA and nanocomposite films (mean ± SD, n = 3). 603 

Formulation 

Colour parameters Transparency 

L* a* b* ∆E* T500nm (%) 

PLA 47.36 ± 0.09a -0.19 ± 0.03a -0.12 ± 0.02a,c - 94.77 ± 0.01a 

PLA/Ag 46.67 ± 0.29b 1.53 ± 0.03b 8.04 ± 0.07b 8.37 ± 0.09a 91.31 ± 0.01b 

PLA/T6 48.25 ± 0.20c -0.15 ± 0.02a -0.22 ± 0.04c 0.89 ± 0.16b 93.53 ± 0.03c 

PLA/T8 48.33 ± 0.31c -0.28 ± 0.02c -0.06 ± 0.02a 0.97 ± 0.34b 94.41 ± 0.03d 

PLA/Ag/T6 45.47 ± 0.27d 1.21 ± 0.03d 8.83 ± 0.08d 9.25 ± 0.10c 90.21 ± 0.01e 

PLA/Ag/T8 46.38 ± 0.22b 1.04 ± 0.02e 9.57 ± 0.06e 9.81 ± 0.06d 90.80 ± 0.02f 

Different superscripts within the same column indicate statistically significant different values (p < 0.05). 
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