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ABSTRACT
We present a detailed analysis of the properties of twisted, force-free magnetospheres of
non-rotating neutron stars, which are of interest in the modelling of magnetar properties and
evolution. In our models the magnetic field smoothly matches to a current-free (vacuum)
solution at some large external radius, and they are specifically built to avoid pathological
surface currents at any of the interfaces. By exploring a large range of parameters, we find
a few remarkable general trends. We find that the total dipolar moment can be increased by
up to 40 per cent with respect to a vacuum model with the same surface magnetic field, due
to the contribution of magnetospheric currents to the global magnetic field. Thus, estimates
of the surface magnetic field based on the large-scale dipolar braking torque are slightly
overestimating the surface value by the same amount. Consistently, there is a moderate increase
in the total energy of the model with respect to the vacuum solution of up to 25 per cent,
which would be the available energy budget in the event of a fast, global magnetospheric
reorganization commonly associated with magnetar flares. We have also found the interesting
result of the existence of a critical twist (ϕmax � 1.5 rad), beyond which we cannot find any
more numerical solutions. Combining the models considered in this paper with the evolution
of the interior of neutron stars will allow us to study the influence of the magnetosphere on
the long-term magnetic, thermal, and rotational evolution.
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1 IN T RO D U C T I O N

Soon after the discovery of pulsars, Goldreich & Julian (1969) pro-
posed the first realistic model of a neutron star magnetosphere in
order to explain qualitatively the observations. In their model, a
magnetic dipole aligned with the rotation axis of the star is able to
fill the magnetosphere with plasma and produce a variety of inter-
esting observational phenomena. Shortly afterwards, other models
for rotating magnetospheres were constructed by Michel (1973a,b,
1974). All these models are based on the assumption that the dy-
namics of the magnetosphere is dominated by the electromagnetic
field, and the plasma pressure as well as its inertia are negligible.
In such a case a reasonable approximation to the large-scale struc-
ture of the magnetosphere is given by force-free configurations,
in which the electric and magnetic forces on the plasma are ex-
actly balanced. For axially symmetric configurations, this condition
leads to the so-called pulsar equation (Michel 1973b; Scharlemann
& Wagoner 1973), a partial differential equation for the stream
function containing an additional unknown function that must be
determined consistently by imposing continuity of the solution at
the light cylinder. The first consistent solution to this equation with
a dipole magnetic field near the star had to wait till the end of the
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90s when Contopoulos, Kazanas & Fendt (1999) were able to ob-
tain a numerical solution by an iterative process. Since then, other
authors have solved this equation confirming the validity of the
solution (e.g. Timokhin 2006). More recently, solving the time-
dependent equations of force-free electrodynamics (Komissarov
2002), numerical models for non-aligned magnetospheres of ro-
tating neutron stars were obtained for the first time by Spitkovsky
(2006), and since then other authors have obtained similar solutions
(Kalapotharakos, Contopoulos & Kazanas 2012a; Kalapotharakos
et al. 2012b; Li, Spitkovsky & Tchekhovskoy 2012; Pétri 2012;
Tchekhovskoy, Spitkovsky & Li 2013; Philippov & Spitkovsky
2014).

Although the force-free condition is a reasonable approximation
for the global structure of the magnetosphere of a pulsar, it should
be noted that it nevertheless is unlikely to be precisely satisfied ev-
erywhere in the magnetosphere of a neutron star, and there may be
small regions (gaps) where particles are accelerated by the electric
field along the magnetic field lines. Such processes are also neces-
sary in order to explain emission mechanisms in the magnetosphere
(Beloborodov & Thompson 2007; Beloborodov 2013a,b).

We will focus our attention on the class of neutron stars with
the highest magnetic field strength, B ∼ 1014 G, the so-called mag-
netars. The spectra of magnetars suggest the presence of a twist
(a toroidal component) in the magnetosphere (Tiengo et al. 2013;
see Mereghetti, Pons & Melatos 2015 for a review on magnetar
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properties). This twist may be maintained on long time-scales by a
transfer of helicity from the interior of the star (Thompson & Duncan
1995), and also implies that the magnetosphere is not current-free.
Thus, magnetosphere models are important in the context of long-
term magnetic field evolution of neutron stars with strong magnetic
fields (Viganò et al. 2013). In the case of the twisted magneto-
sphere models that we discuss here, energy and helicity can be
transferred from the stellar interior into the magnetosphere and vice
versa, thus significantly affecting the evolution. Although rotation
is crucial to explain the emission mechanism of ordinary pulsars,
magnetars have a slow rotation rate and its effect will not be con-
sidered in this work. Thus, we will consider the force-free magne-
tosphere models of non-rotating neutron stars. Without rotation, the
pulsar equation reduces to the standard Grad–Shafranov equation
which determines the equilibrium structure of the magnetic field in a
plasma. Although much simpler than the pulsar equation, the Grad–
Shafranov equation contains an additional unknown function that
cannot be determined by imposing continuity of the solution, and
can be freely specified. Solutions to the Grad–Shafranov equation
are of interest both in the astrophysical context of magnetic fields
and in plasma physics in the context of magnetic confinement and
fusion. Notwithstanding this great interest, analytic or semi-analytic
solutions available for this case are rather limited (see e.g. Atanasiu
et al. 2004 in the context of magnetic confinement and Thompson,
Lyutikov & Kulkarni 2002 in the context of magnetars), and, in
general, numerical solutions are needed (Viganò, Pons & Miralles
2011; Glampedakis, Lander & Andersson 2014; Fujisawa & Kisaka
2014; Pili, Bucciantini & Del Zanna 2015). Viganò et al. (2011) use
a magneto-frictional method to relax an initial (random) magnetic
field to a force-free configuration. However, they require a surface
current in order to connect their solution to a current-free field at
the outer boundary. Glampedakis et al. (2014) solve for the interior
and exterior equilibrium magnetic fields simultaneously applying
the code of Lander & Jones (2009) to the two regions, while implic-
itly forcing the magnetic field to remain finite at infinity. A similar
approach is taken by Fujisawa & Kisaka (2014), who in addition
treat the core and crust separately by imposing magnetohydrostatic
equilibrium in the core and Hall equilibrium in the crust, giving
rise to surface currents at the crust-core interface. Pili et al. (2015)
solve the Grad–Shafranov equation in a single domain encompass-
ing the interior and the exterior by extending the interior solution
to the low-density exterior.

In this paper we present axisymmetric non-relativistic force-free
magnetosphere models for non-rotating stars with poloidal and
toroidal magnetic fields. For this purpose, we obtain numerical
solutions to the relevant Grad–Shafranov equation. Typical mag-
netar rotation periods lie in the range 2 to 12 s, which result in
a light cylinder located at a distance RL > 105 km. In the region
well inside the light cylinder (for r � RL ), the characteristic time-
scale to reach a force-free configuration, i.e. the Alfvén crossing
time (which is of the order of the light-crossing time r/c), is much
smaller than the rotational period and rotation can be safely ne-
glected. Only magnetic field lines from a small region around the
magnetic pole extend to greater distances, connecting the neutron
star to the light cylinder and beyond. For example, in the case of a
dipolar magnetic field, the angle from the magnetic axis of a field
line connected to the light cylinder is θL ≈ √

R∗/RL < 0.01 rad. In
this work we adopt the simplifying assumption that near the poles,
up to a certain critical field line, with θ > θL, the magnetic field is
current-free. We then assume that the force-free magnetic field with
a toroidal component is confined within a region delimited by the
critical current-free field line. This ensures that at large distances

the magnetic field strength decreases sufficiently fast, approaching
the current-free (vacuum) field, and eases the process of imposing
boundary conditions.

The structure of this paper is as follows. Section 2 is a review
of some relevant background theory related to the problem, and
that is useful for the magnetosphere model, which is then presented
in Section 3. The numerical methods applied are briefly described
in Section 4, sample results are discussed in Section 5, and the
conclusions are presented in Section 6.

2 R E L E VA N T E QUAT I O N S A N D N OTAT I O N

2.1 The Grad–Shafranov equation

In general, any magnetic field (or more generally, any divergence-
less, i.e. solenoidal field) can be written as the sum of a poloidal
and a toroidal field (Chandrasekhar 1981). In particular, in the case
of axisymmetry, defining the poloidal and toroidal functions as P
and T, respectively, the magnetic field can be expressed as

B = ∇P × ∇φ + T ∇φ

= −∂zP

�
�̂ + ∂� P

�
ẑ + T

�
φ̂

= ∂θP

r2 sin θ
r̂ − ∂rP

r sin θ
θ̂ + T

r sin θ
φ̂. (1)

P and T are (stream) functions of radius r and polar angle θ in
spherical coordinates (r, θ , φ) and are functions of cylindrical radius
� and z in cylindrical coordinates (� , φ, z). Here, the gradient
of the azimuthal angle φ is used for mathematical convenience,
and is related to the azimuthal unit vector through ∇φ = φ̂/� =
φ̂/r sin θ .

The magnetic field can alternatively be expressed in terms of the
vector potential as

B = ∇ × A. (2)

The vector potential is undetermined up to a gauge freedom
A → A + ∇ψ . For an axisymmetric field this implies that the radial
(Ar) and colatitudinal (Aθ ) components of the vector potential are
undetermined up to some function. Comparing equations (1) and
(2), note that the poloidal function is related to the azimuthal com-
ponent of the vector potential, while the toroidal function depends
on a combination of the remaining two components,

P = �Aφ = r sin θAφ,

T = �Bφ = r sin θBφ =
[
∂r (rAθ ) − ∂θAr

]
sin θ. (3)

While Ar and Aθ are individually undetermined up to a gauge free-
dom, their combination giving the function T is determined.

The current density also has corresponding poloidal and toroidal
components,

4π J
c

= ∇ × B = −
GSP∇φ + ∇T × ∇φ, (4)

where �GS is the so-called Grad–Shafranov operator,


GS = � 2∇ · (�−2∇)

= ∇2 − 2

�
∂� = ∂2

� − 1

�
∂� + ∂2

z

= ∂2
r + sin θ

r2
∂θ

(
∂θ

sin θ

)
= ∂2

r + 1 − μ2

r2
∂2

μ. (5)
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We will also find it convenient to occasionally use the notation
μ ≡ cos θ . Note that the poloidal magnetic field is due to the toroidal
current density, and the toroidal magnetic field is due to the poloidal
current density.

For static axisymmetric equilibria in fluids, the magnetic force
cannot have an azimuthal (φ̂) component as there is no correspond-
ing hydrostatic force that can act to balance it. This requirement can
be expressed as ∇P × ∇T = 0, which implies that the poloidal and
toroidal functions must be functions of one another, for example
T = T(P). Note that this includes the special cases when the toroidal
function is constant or zero, or when the poloidal field is zero. Then
the force density, f , reduces to

4π f = (∇ × B) × B = −
GSP + G(P )

� 2
∇P , (6)

where we define G(P) = T(P)T ′(P). In a barotropic fluid, the force
density per unit mass f /	, where 	 is the density, must further be
expressible as a gradient of a potential. In fact, this is true in general,
even in the context of more general magnetic forces, both in normal
and in type II superconducting fluids (Akgün & Wasserman 2008).
This then gives the so-called Grad–Shafranov equation1


GSP + G(P ) = 	� 2F (P ), (7)

where F(P) is some arbitrary function of P (Lüst & Schlüter 1954;
Chandrasekhar 1956a,b; Chandrasekhar & Prendergast 1956; Pren-
dergast 1956; Shafranov 1957, 1958, 1966; Grad & Rubin 1958).
In particular, observe that:

(a) force-free fields are given by the equation �GSP + G(P) = 0,
i.e. F(P) = 0;

(b) current-free (vacuum) fields are further restricted by the in-
dividual requirements �GSP = 0 and G(P) = 0.

Also note that the current density in a force-free field is given by
(from equation 4)

4π J
c

= T ′(P )B. (8)

Thus, the current is parallel to the magnetic field (i.e. B is a Beltrami
vector field), and the current flows along the magnetic field lines,
which lie on the magnetic surfaces defined by constant P.

The Grad–Shafranov equation is of major interest in plasma
physics as well as in astrophysics; however only a limited range
of analytical solutions are available (for a review, see Atanasiu
et al. 2004). Numerical solutions have been constructed in the con-
text of magnetic equilibria in barotropic fluid stars with rotation
(Tomimura & Eriguchi 2005; Yoshida & Eriguchi 2006; Yoshida,
Yoshida & Eriguchi 2006; Lander & Jones 2009), without rota-
tion (Armaza, Reisenegger & Valdivia 2015), and including general
relativistic effects (Ioka & Sasaki 2003; Ciolfi et al. 2009; Ciolfi,
Ferrari & Gualtieri 2010). The force-free equation has also been
applied to the magnetospheres of pulsars and magnetars (Thomp-
son et al. 2002; Spitkovsky 2006; Beskin 2010; Viganò et al. 2011;
Glampedakis et al. 2014; Fujisawa & Kisaka 2014; Pili et al. 2015).

Incidentally, in the context of magnetic field evolution, Hall-
inactive (or Hall equilibrium) magnetic fields also satisfy a Grad–
Shafranov equation, with the only difference being that the mass
density 	 is replaced by the electron number density ne in the source
term on the right hand side of equation (7) (see e.g. Gourgouliatos
et al. 2013; Marchant et al. 2014). Moreover, the force-free solutions

1 Arguably, it may be fairer to name the equation after Lüst and Schlüter, as
their paper seems to precede those of either Grad or Shafranov.

for linear G(P) are of the same form as the Ohmic modes (Marchant
et al. 2014).

Finally, it is worth noting that the magnetic field and current
density are related to the magnetic flux 
 and current I through


 =
∫

B · dS and I =
∫

J · dS. (9)

The poloidal and toroidal functions P and T are constant on the
same magnetic surfaces, and the above definitions imply that the
poloidal function P corresponds to the flux passing through the area
enclosed by the corresponding magnetic surface, and T corresponds
to the current through the same area. More precisely, carrying out
the integrations over equatorial circles delineated by the magnetic
surfaces (and thus having unit normal vectors ẑ), we get 
 = 2πP
and I = cT/2.

2.2 Auxiliary definitions

In order to characterize the different models of magnetospheres, it
is useful to define several quantities of interest as described next.

2.2.1 Magnetic energy and helicity

In this work, we will be concerned with force-free magnetic fields.
In general, the energy of such fields can be expressed entirely in
terms of surface integrals (Chandrasekhar 1981)

8πE =
∫

B2 dV =
∮

B2(r · dS) − 2
∮

(r · B)(B · dS). (10)

Note that the second term vanishes over magnetic surfaces where
B ⊥ dS. The derivation of this important formula is given in Ap-
pendix A.

Magnetic helicity is defined as (Berger & Field 1984; Berger
1999, and references therein)

H =
∫

A · B dV , (11)

and measures the degree to which the magnetic field wraps around
itself, and is related to the linking number in topology. Under cer-
tain conditions (including ideal magnetohydrodynamics) helicity is
conserved. In terms of the components of the magnetic field B and
the vector potential A defined in equations (1) and (2), and carrying
out some integrations by part, the helicity can be written as

H = 2
∫

AφBφ dV −
∮

AθAφ(r̂ · dS). (12)

In obtaining this result we have made use of the fact that P =
0 along the axis. The remaining surface integral can be made to
vanish through an appropriate choice of the gauge, namely that
Aθ = 0 at the surface, and therefore we will not be concerned with
it in what follows.

2.2.2 Twist

A quantity closely related to helicity is the twist, which we define as
the azimuthal extent of a field line (measured in radians). Clearly,
in the absence of a toroidal field the twist is zero, and it increases
with toroidal field strength and field line length. The twist can be
calculated using the defining equations for a field line

dr

Br

= rdθ

Bθ

= r sin θdφ

Bφ

= d�

Bpol
, (13)
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Table 1. List of relevant quantities, notation and units.

Quantity Notation Units

Radius r R�

Toroidal function T BoR�

Poloidal function P BoR
2
�

Magnetic field strength B Bo

Energy E B2
o R3

�

Helicity H B2
o R4

�

Twist ϕ rad

where d� is the poloidal field line element (obtained through the
projection of the field line on to the (r,θ ) plane), Bpol is the poloidal
field magnitude (Bpol =

√
B2

r + B2
θ ), and Bφ is the toroidal field

magnitude. From the last two equations, it follows that the twist is
given by

ϕ ≡ �φ =
∫ �

0

Bφ

Bpolr sin θ
d�, (14)

where � is the total length of the poloidal field line, and all quantities
in the integration are evaluated along this line.

2.2.3 Multipole content

We define the multipole strength normalized to the surface as

al ≡ rlAl(r)

Rl
�

, (15)

where Al(r) is the lth component of the multipole expansion of
the poloidal function P(r, θ ) at some radius r (cf. Appendix C).
The multipole content is constant for a current-free field, while it
will vary with radius for a force-free field with a twist. Thus, the
multipole expansion at some radius beyond the largest extent of
the currents (present in the toroidal region) serves as a measure
of the deviation from the field at the stellar surface due to those
currents.

2.3 Dimensions

Throughout this work, we will express all quantities in dimension-
less units. All lengths will be measured in stellar radii (R�) and the
magnetic field strength will be measured in units of some Bo. We
choose the normalization in such a way that for a dipolar poloidal
function the magnetic field at the pole (r = R� and θ = 0) becomes
Br = 2Bo. In addition, in the purely dipolar case Bo corresponds to
the surface magnetic field strength at the equator (r = R� and θ =
π/2). All other dimensions used in the paper can be derived from
these two definitions. The most important ones are listed in Table 1.

3 FO R C E - F R E E M AG N E TO S P H E R E W I T H A
TO RO IDAL FIELD

In this work, we construct a force-free magnetosphere with a
toroidal field confined to a region defined by a certain poloidal field
line. Within the toroidal region there are currents, while outside of
it the magnetic field is current-free. The geometry of a sample mag-
netic configuration of this kind is illustrated in Fig. 1. We assume
that the toroidal function is given in terms of the poloidal function
through

T (P ) =
{

s(P − Pc)σ for P � Pc,

0 for P < Pc.
(16)

In terms of the Heaviside step function

�(x) =
{

1 for x � 0,

0 for x < 0,
(17)

we can express the toroidal function as2

T (P ) = s(P − Pc)σ �(P − Pc). (18)

In order to avoid divergences in the current density we must have
σ ≥ 1. The magnetic field configuration is described by the Grad–
Shafranov equation (equation 7), which in this case becomes


GSP + σs2(P − Pc)2σ−1�(P − Pc) = 0. (19)

Thus, there are three important parameters that define the toroidal
field: the coefficient s which determines the relative strength of the
toroidal field with respect to the poloidal field; the critical field line
Pc which defines the size of the toroidal region (in the magnetic
coordinate P); and the power index σ which sets the functional
dependence between the toroidal and poloidal fields.

In particular, for σ = 1, the Grad–Shafranov equation becomes
linear. In this case, the homogeneous part is of the same form as in
Ciro & Caldas (2014), so, in principle, the same analytical solutions
can be used for the toroidal region. These should then be matched to
the vacuum solutions outside the toroidal region, which, in general,
will contain any number of unknown multipoles. Thus, analytic
solutions involve intractable infinite sums of multipoles, and instead
we seek numerical solutions satisfying the requirement that beyond
the region containing the currents, the field (continuously) matches
to a vacuum solution that vanishes at infinity.

Since the Grad–Shafranov equation for σ = 1 is an elliptic partial
differential equation, the solutions are guaranteed to be smooth
(continuous and differentiable) to a certain degree. In particular,
the poloidal function should be at least twice differentiable. This
implies that the magnetic field, which involves the first derivative
of the poloidal function (equation 1), is continuous throughout the
entire region, and, in particular, across the boundary of the toroidal
region. On the other hand, while the Lorentz force (equation 6) is
guaranteed to be zero everywhere and therefore continuous in such
a configuration, the current density (equation 4) has a discontinuity
on the magnetic surface enclosing the toroidal field in the form of
a step function, which arises as a consequence of the discontinuity
in the first derivative of the toroidal function. At this boundary,
the toroidal (azimuthal) part of the current density (−�GSP∇φ)
vanishes, and the poloidal part of the current density (∇T × ∇φ)
is parallel to the poloidal magnetic field (∇P × ∇φ) which defines
the boundary, implying that the currents flow on, but not out of the
enclosing magnetic surface. Nevertheless, since the magnetic field is
continuous, crucially, there are no surface currents. To reemphasize,
this ‘current at a surface’ is a discontinuity in the form of a step
function �(P − Pc) without any further undesirable effects on
the physical quantities of interest, and is not to be confused with a
‘surface current’ which (in addition to being in a different direction)
is a severe pathology in the form of a delta function δ(P − Pc)
causing a discontinuity in the magnetic field.

2 More precisely, the toroidal function can be written in terms of the ramp
function, which is defined as R(x) = x�(x). The ramp (R), Heaviside (�)
and Dirac delta (δ) functions are related through R′(x) = �(x) and �′(x) =
δ(x). Additionally, note that the Dirac delta function satisfies xδ(x) = 0. This
property is significant as it ensures that the derivative of the toroidal function
for the σ = 1 case is still only a step function and not a (problematic) delta
function.
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Figure 1. An illustration of the magnetic field structure considered in this paper. The star is shown as a white circle, the force-free region containing the
toroidal field is shown in grey, and the surrounding current-free (purely poloidal) region is shown in white. A combination of a dipolar and a quadrupolar
component is depicted in the figure, and as a consequence the magnetic field lines are not symmetric with respect to the equator. In a realistic numerical solution
the number of multipoles is arbitrary, and the resulting structure is somewhat different than shown here.

In order to avoid a discontinuity in the current altogether, a higher
power relation must be taken for the toroidal function (σ > 1). In
that case, the differential equation becomes non-linear and analytic
solutions are no longer available. We observe that increasing the
power σ concentrates the toroidal field near the equator, and thus
reduces its effect on the outlying poloidal field. This is the justifica-
tion for taking σ to be small but larger than 1, with the usual choice
being σ = 1.1 (Lander & Jones 2009). However, we reiterate that
the limiting case of σ = 1 is also perfectly well-behaved for all our
purposes.

More generally, the Grad–Shafranov equation is a second-order
non-linear inhomogeneous partial differential equation, and the ex-
istence and uniqueness of its solutions are not trivial matters. To
be precise, in our case, equation (19) is quasi-linear, since it is
linear in the second (highest) derivatives. It can be written in the
form �GSP = f(P). If f ′(P) ≥ 0, it is possible to use a maxi-
mum principle to prove local uniqueness of the solution (see Taylor
1996, chapter 14). However, this is not the case: since σ ≥ 1,
for any value of P we have f ′(P) ≤ 0. Therefore, uniqueness of
the solution of the Grad–Shafranov equation cannot be guaranteed
in general. For sufficiently small values of T ′(P), Bineau (1972)
proved the uniqueness of force-free solutions, provided the solu-
tion domain is bounded and the field is not vanishing anywhere.
Notwithstanding these complications, we were able to construct
numerical solutions for a wide range of parameters without sig-
nificant difficulty (up to some maximum value of s, as discussed
later on).

The overall strength of the magnetic field scales out in our calcu-
lations and our results do not explicitly depend on it. On the other
hand, the relative strength of the toroidal and poloidal fields is de-
termined (non-linearly) by the parameters of the toroidal function
s, Pc and σ . In the units listed in Table 1, the parameter s has di-
mensions of B1−σ

o R1−2σ
� , and the toroidal field is then given in units

of Bo.

4 N U M E R I C A L M E T H O D S

4.1 Numerical solution of the Grad–Shafranov equation

We have directly solved the (axisymmetric) Grad–Shafranov equa-
tion (equation 19) for a force-free magnetic field numerically by
discretizing the equation using a uniform grid in radius and po-
lar angle and imposing boundary conditions at the stellar surface,
along the axes, and at some arbitrary external radius where the
field is current-free. For a toroidal function T of the form given by
equation (16), the discretized equations for the poloidal function P
form, in general, an algebraic non-linear system of equations that
can be expressed as a block tridiagonal system with a non-linear
source term that depends on P implicitly through the function G(P).
A solution can be found providing an initial guess for P for the
non-linear term, then solving the linear algebraic system of equa-
tions, and repeating the process iteratively until convergence. An
advantage of the numerical method is that it can deal with non-linear
functions for T(P), such as the step function considered here.

We write the Grad–Shafranov equation (equation 19) in discrete
form through

Pi+1,j − 2Pi,j + Pi−1,j

(�r)2
− Pi,j+1 − Pi,j−1

2r2
i �θ

cot θj

+ Pi,j+1 − 2Pi,j + Pi,j−1

r2
i (�θ )2

= −G(P old
i,j ), (20)

where the indices i and j correspond to the grid points (ri, θ j). The
source term on the right-hand side is given in terms of the previous
(old) guess for Pi, j through

G(P old
i,j ) = σs2(P old

i,j − Pc)2σ−1�(P old
i,j − Pc). (21)

We impose Dirichlet boundary conditions along the axis (by
setting P = 0) and at the stellar surface, where the form of the
function P is to be determined by the interior magnetic field. At the
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The force-free twisted magnetosphere 1899

external radius, we require that the field smoothly matches to a vac-
uum field solution by imposing Neumann boundary conditions on
the derivative of P. This is accomplished by carrying out a multipole
expansion at some radius beyond the largest extent of the toroidal
region, and imposing that each multipole decay radially, consis-
tently with its corresponding vacuum profile. This requirement can
also be implemented in other equivalent ways, and each has been
found to work excellently.

For a given set of parameters s, Pc and σ , we solve the resulting
block tridiagonal system by standard methods based on the tridiago-
nal matrix algorithm, also known as the Thomas algorithm (Thomas
1949), to determine the updated (new) guess for Pi, j. When a non-
linear toroidal field (such as the step function considered here) is
present, we need to carry out iterations, as the shape of the toroidal
region is not known beforehand, and must be calculated consis-
tently. At each iteration we calculate the square of the difference
between the previous guess and the updated solution, averaged over
the entire grid, and check for convergence of the solution. Thus, we
define the correction to the previous guess at the kth iteration as

χ2
k ≡

Nr ,Nθ∑
i,j

(P k
i,j − P k−1

i,j )2

NrNθ

. (22)

Here the summation is carried out over the entire (two dimensional)
grid of Nr × Nθ points, and P 0

i,j is the first starting guess. We con-
sider that convergence is achieved once the value of χ2

k is sufficiently
small, typically many orders of magnitude less than 10−6, but we
accept solutions with corrections up to that level. Once convergence
is achieved, we calculate several quantities of interest, among them
energy, helicity and maximum twist. We also study the dependence
of these quantities on the parameters of the toroidal field s, Pc,
and σ .

Throughout the iterations we maintain the three parameters s,
Pc and σ fixed. This is in contrast to the iteration scheme of Pili
et al. (2015), who instead require the critical field line containing
the currents to pass through a given point on the equatorial plane,
and therefore allow for Pc to change between iterations. This subtle
difference in the iteration schemes may result in convergence to
different results when there are multiple solutions for the same pa-
rameters (since the Grad–Shafranov equation may not have unique
solutions, as discussed in Section 3), and may explain some of the
differences between the two works.

As will be discussed in greater detail in Section 4.4, we have
performed a number of tests on accuracy. We have confirmed that
the code is able to reproduce the analytic cases for a purely poloidal
field (s = 0), as well as the analytic solutions for the linear case T =
sP (with s �= 0). For the latter case, the solution is given in terms of
spherical Bessel functions (as discussed, for example, in Atanasiu
et al. 2004 and Viganò et al. 2011), and we have adopted analytical
boundary conditions, since these solutions cannot be matched to a
vacuum.

4.2 Numerical computation of the energy

The energy of a force-free magnetic field can be calculated in terms
of surface integrals through the formula given by equation (10) as
long as the magnetic field is differentiable (which then implies that
it is also continuous). This requirement, in turn, implies that the
poloidal function P should be twice differentiable and the toroidal
function T should be once differentiable (Appendix A), which are
satisfied for all σ ≥ 1 (and, in particular, are satisfied in the limit
σ → 1).

Thus, we can calculate the energy stored in the entire magne-
tosphere (from the stellar surface to infinity) using the value of
the magnetic field (as determined through the functions P and T)
specified at the stellar surface. This provides an alternative form of
checking for the continuity of the magnetic field, since the energy
can also be calculated over a finite volume from the stellar surface
up to an arbitrary radius extending beyond the toroidal region and
where the magnetic field is that of a vacuum, plus a surface integra-
tion at that radius for the vacuum field extending to infinity. If these
two energies are not consistent, then there may be surface currents,
and consequently, magnetic field discontinuities in some regions. As
shown in Fig. 2 and discussed in Section 4.4, the energies calculated
in these two ways are indeed in good agreement.

It is worth noting that although the energy can be written purely
as a surface integration, this surface integration (equation 10) in-
volves the components of the magnetic field B, in particular Bθ ,
and therefore involves radial derivatives of the poloidal function P,
which are only determined numerically. Explicitly, from equation
(10) it follows that the energy contained in the volume beyond a
radius r can be written as

8πE =
∫ (

B2
r − B2

θ − B2
φ

)
rdSr , (23)

noting that the surface normal vector at r is n̂ = −r̂ . While Bφ

is given analytically at the surface (through the function T), and
Br can (in principle) be constructed analytically from the function
P (through its angular derivatives), Bθ involves radial derivatives
of P and always needs to be determined numerically. Moreover,
we calculate the first radial derivatives using forward differences,
which are less precise than central differences used in the interior
of the radial grid.

4.3 Scaling

We carry out three scaling experiments to determine the run-time
as a function of the number of grid points. The resulting scaling is
shown on a log–log plot on the left-hand side in Fig. 2. Starting with
a 25 × 25 grid in radius and angle, three scaling tests are performed:
first, the angular grid is increased in multiples of two, while the ra-
dial grid is kept constant (denoted as angular); next, starting from
the same initial configuration, the same is carried out for the radial
grid, while the angular grid is kept constant (denoted as radial);
and finally, both the radial and the angular grid are simultaneously
doubled (denoted as combined). The execution time (run-time) de-
pends both on machine specifications, and on the machine load at
the time the test is carried out. A typical run of 30 iterations for a
given s and Pc on a 100 × 100 grid takes about ∼10 s on a desktop
computer. As fluctuations in the run-time can at times be significant,
we choose to express instead the relative run-time, in units of that
of the starting experiment performed on a 25 × 25 grid (denoted
as t25×25 in the figure). Power-law relations approximating each of
the scaling tests are shown in dotted lines. Our numerical procedure
depends on the order in which the indices are implemented. In our
case the first index is the radial index, and the CPU time-scales as
N3

r , while it scales linearly with the angular index Nθ . These scaling
relations should be kept in mind when implementing such numeri-
cal methods, and the better scaling index should be chosen for the
higher number of grid points. Overall, increasing the accuracy re-
quires both the radial and angular grid to be increased. In this case,
the scaling of the code with the number of grid points (N ≡ NrNθ )
is N3

r Nθ .
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Figure 2. Scaling of run-time (left) and accuracy (right) with the number of grid points. Left: the scaling of our code with the number of grid points is shown
on a log–log plot. The run-time (t) is rescaled by the first experiment’s execution time (t25×25), and the number of grid points (N) is shown in units of 25 (n
= N/25). Scaling relations for the angular, radial and combined (both angular and radial) grids are shown. Power-law relations approximating each of the
scaling tests are shown in dotted lines. Right: sample tests of accuracy as functions of the number of grid points are shown on a log–log plot. The numerically
calculated energy E and dipole strength a1 are shown relative to their respective vacuum values for the purely poloidal case (s = 0). As discussed in Section
4.2, the energy can be calculated either as a volume integral plus a surface integral at some outer radius (solid line), or directly as a surface integral at the stellar
surface (dashed line).

4.4 Accuracy

We also perform checks on the accuracy of the code as a func-
tion of the number of grid points. Sample results are shown on a
log–log plot on the right-hand side in Fig. 2. Imposing a dipolar
field at the surface, and starting with a grid size of 25 × 25, we
repeatedly double the grid in each dimension (thus quadrupling the
total number of points) and compare the numerical results for the
energy and the dipole strength for the current-free (purely poloidal)
case (corresponding to s = 0) with their exact values. As noted in
Section 4.2, the energy can be calculated either as a volume integral
plus a surface integral at some outer radius (solid line), or directly
as a surface integral at the stellar surface (dashed line). We express
the relative difference between these two numerical results and the
exact vacuum value (which for a dipole is Evac = 1/3, cf. equation
B3, in the units listed in Table 1) as

�E

Evac
= E − Evac

Evac
. (24)

The volume plus surface integration (solid line) appears to be
slightly more precise than the purely surface integration (dashed
line). This is a consequence of the fact that the radial derivatives
used in the surface integration have lower precision than the deriva-
tives used in the volume integration (as noted in Section 4.2).

Similarly, we compare the dipole strength as defined through
equation (15) for the vacuum case (where its value is avac = 1 in the
units listed in Table 1), and calculate the relative difference as

�a1

avac
= a1 − avac

avac
, (25)

shown as the dotted line in Fig. 2. The number of grid points (in
each of the two dimensions) is shown in units of 25 (i.e. the total

number of grid points is N2). In all cases accuracy improves with
increased number of grid points.

We have also applied our code to reproduce analytic solutions for
the vacuum field and for the linear toroidal field (T = sP) for several
multipoles. Such analytic solutions are discussed, for example, in
Atanasiu et al. (2004) and Viganò et al. (2011). In all cases the
agreement is excellent, and typically around six significant digits.
Thus, the linear solver is fairly robust.

5 R ESULTS AND DI SCUSSI ON

5.1 Sample models for given s, Pc and σ

We begin the discussion of our results by showing the magnetic
field lines for two sample models in Fig. 3. In the left panels the
surface magnetic field is that of a dipole (hereafter referred to as
model A), while in the right panels it is a combination of a dipole
and a quadrupole (labelled model B). In both cases, the poloidal
function at the surface can be expressed as a combination of the
first two multipoles (cf. Appendix C),

P (r, θ ) = (1 − μ2)

[
wP ′

1(μ)

r
+ (1 − w)P ′

2(μ)

r2

]
. (26)

Here, the parameter w controls the relative strength of the dipolar
and quadrupolar components, and we take w = 1 for the purely
dipolar case and w = 0.5 for the combined case. The toroidal field
is of the form given by equation (16), with σ = 1, and the complete
list of parameters for the two models are listed in Table 2. We use
a grid of 600 × 601 points (the odd number for the angular grid is
used in order to resolve the equator).
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The force-free twisted magnetosphere 1901

Figure 3. Top: field lines of two twisted magnetosphere models in three dimensions. The dipolar field (model A) is shown on the left, and the combination
of a dipolar and quadrupolar field (model B) is shown on the right. The same set of field lines is reproduced in intervals of π/2 in the azimuthal angle φ.
In the current-free region (for P < Pc) there is no twist and the field lines are coplanar. Bottom: planar projection of some field lines in the top panels. The
critical field line enclosing the toroidal region is highlighted with a thick line. The corresponding vacuum fields in both cases are shown as dotted lines in the
background for comparison. The parameters and some calculated quantities for these two models are listed in Table 2.

Table 2. List of parameters and numerical results for various quantities for
the two models shown in Fig. 3. The parameter w is the weight defined
in equation (26). The derived quantities are defined in Section 2.2 and are
expressed in the units listed in Table 1. Numerical results are given to three
significant digits.

Model A Model B

Parameters:
w 1 0.5
s 1.6 1.15
Pc 0.5 0.25
σ 1 1

Derived quantities:
Energy, E 0.393 0.432
Energy, E/Evac (per cent) 118 per cent 113 per cent
Helicity, H 4.20 3.24
Maximum twist, ϕmax 1.22 1.07
Dipole strength, a1 1.22 0.699
Quadrupole strength, a2 – 0.655

The magnetic energy of the current-free (vacuum) solution, with
P given as in equation (26) and T = 0, is (cf. equation B3)

Evac = w2

3
+ 6(1 − w)2

5
, (27)

in the units listed in Table 1. In particular, for a pure dipole (w =
1) this gives 1/3, and for w = 0.5 it gives 23/60. We can express
the energies of the twisted magnetosphere models listed in Table 2
relative to the energy of the vacuum solution. We thus obtain that
models A and B contain 18 per cent and 13 per cent more energy
than the corresponding vacuum solutions, respectively.

The twist is defined as the azimuthal extent of a field line through
equation (14). Fig. 4 shows a projection of field lines on the stellar
surface, and illustrates how twist depends on latitude. Outside the
toroidal region, the twist is zero as there is no toroidal field. The twist
increases linearly with the toroidal field strength (which increases
towards the middle of the toroidal region), but it also depends (non-
linearly) on the field line length, which becomes vanishingly small
in the same limit. Therefore, the maximum twist is reached for an
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Figure 4. Surface map of the footprints of field lines on the stellar surface, in terms of latitude (π/2 − θ , vertical) and longitude (or, azimuthal angle, which
in this case is the same as the twist ϕ, horizontal), in radians and degrees, for the same models as in Fig. 3. Only field lines in the toroidal region are shown.
(Purely poloidal fields have zero twist.) Each field line has two footprints: the points where the field lines come out of the surface are shown with empty circles,
and the points where the field lines reenter the surface are shown with full circles. The points of exit and reentry for the same line are connected with a dotted
line, which is also the projection of the three-dimensional field line on to the surface. Note that at the boundary of the toroidal region and at the central point
where the field line length is zero (which corresponds to the equator for the dipolar case in model A, and to ≈28.◦5 for model B) the twist goes to zero. The
maximum twist for model A is ϕmax ≈ 1.22 rad, and for model B it is ϕmax ≈ 1.07 rad (Table 2).

intermediate angle, and then drops back to zero as we approach the
equator (for model A) or ≈28.◦5 (for model B), corresponding to the
maximum of the function P defined in equation (26). Interestingly,
for both models, this maximum twist is similar (1.22 and 1.07 rad,
respectively; see Table 2). In the following sections we extend the
discussion about this point.

The last two quantities listed in Table 2 are the dipole and
quadrupole content of the models. For model A, the dipole compo-
nent at the surface is 1, but the currents in the twisted magnetosphere
augment this to a1 = 1.22. Similarly, for model B the surface dipole
and quadrupole components of 0.5 each are augmented to a1 = 0.699
and a2 = 0.655, respectively. In Fig. 5 we plot the coefficients Al of
the multipole expansion at rout = 5, showing how higher multipoles
drop off quickly (as r−l). We also note that the symmetry of the sur-
face field is preserved, and the magnetospheric currents in model A
only generate odd multipolar components. Note that the multipole
coefficients rescaled to their surface values (al defined in equation
15) are independent of the radius where the expansion is carried
out, as long as it lies beyond the region containing the currents.

5.2 Dependence of the results on the parameters s, Pc and σ

In the dipolar model A, the parameter s = 1.6 was chosen to be
very close to the maximum value for which convergence could
be reached. For values s � 1.62, we could not find any solu-

tions. In this subsection, we explore how this maximum value of
s is correlated with the other parameters Pc and σ , and how the
physical quantities (energy, helicity, twist and dipole content) de-
pend on these parameters. In all models considered in this section,
we impose a dipolar field for the poloidal function at the stellar
surface.

In Fig. 6, we show contours of relative energy, helicity, maximum
twist and relative dipole strength, in a two-dimensional parameter
space (as functions of s and Pc), and for three models with σ = 1
(left panels), 1.1 (central panels), and 2 (right panels). The relative
energy and dipole strength are calculated with respect to the vacuum
solution, through equations (24) and (25), respectively. Note that
both of these quantities represent an increase with respect to the
vacuum case. The plots are produced for grids of around 200 ×
200 points in radius and angle, where the error in the numerical
calculation of the energy for the vacuum case (s = 0) is of the order
of 0.1 per cent (cf. Fig. 2).

At first sight, we can detect a few interesting features. First, the
energy and dipole strength of models with twisted magnetospheres
are increased by moderate amounts, typically in the vicinity of
10 per cent, with respect to their vacuum values, with the largest
increases that we have been able to find being around 25 per cent
for the energy, and up to 40 per cent for the dipole strength. The
helicity of these models is found to reach values of up to ∼5, while
the maximum twist is typically � 1.5.
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The force-free twisted magnetosphere 1903

Figure 5. Multipole content of the vacuum field for the two models shown
in Fig. 3. In both cases, Al are the amplitudes from the multipole expansion
(equation C1) at the external radius rout = 5, where the field is current-free.
Note that the even multipoles are absent (except for numerical noise) for
model A, and the amplitudes of higher multipoles decrease rapidly with l
for both models.

The most intriguing fact is that, irrespective of the large varia-
tions in the parameter space (in s, Pc and σ ), all models seem to fail
to find new solutions when the maximum twist is around 1.2−1.5.
We note that the white region on the lower right part of each plot
(corresponding to the parameter space where convergence fails) is
remarkably well aligned with some quantities, but especially with
the maximum twist. Apparently, very different models, whether in-
volving large volumes (small Pc), but limited to small s, or involving
small volumes (Pc close to 1), but allowing for large s, are limited by
the same reason: when the maximum twist of any field line reaches
a critical value of ≈ 1.2 –1.5 no more solutions are found.

The plots for σ = 1.1 demonstrate the close resemblance to
the case for σ = 1. Increasing σ further concentrates the toroidal
field near the equator, and consequently diminishes its effect on the
structure of the poloidal field. Therefore, solutions span a larger
area of the parameter space in s and Pc, as can be seen in the plots
for σ = 2, yet, crucially, the above conclusion for the maximum
twist still holds.

We also find that the contours shown in Fig. 6 are fairly well
described by a function of the form

s = γP m
c

(1 − Pc)n
. (28)

The three unknown parameters γ , m and n can be determined
through a best fit, or more simply, by imposing three equations
at three arbitrary points along a given contour. Following the latter
procedure, we find that the energy, helicity and dipole strength con-
tours can be quite well represented by such a function, where the

parameters need to be determined individually for each line. Even
more spectacular is the fit to the maximum twist. The contour lines
and some sample fits are shown for this case in Fig. 7, and the pa-
rameters of these fits are listed in Table 3. In general, the parameters
are also functions of ϕmax. From an inspection of the values listed
in the table, we observe that γ is approximately linear with ϕmax,
while m and n do not vary much.

We next discuss in more detail the dependence of the solutions
on each of the two parameters s and Pc.

5.2.1 Dependence on s

In Fig. 8 we show the relative energy, helicity, maximum twist and
relative dipole strength as a function of s for a fixed Pc. Two cases for
Pc = 0.5 and Pc = 0.75 are shown and in both cases we set σ = 1. We
plot all quantities normalized to their maximum values (which are
always reached just as convergence fails, and are listed in Table 4).
For comparison, we show the relative energy increase calculated
with the two methods described in Section 4.2: as a volume integral
of the magnetospheric region plus a surface integral for the region
external to the outer numerical boundary (shown with a solid line),
or, alternatively, as a surface integral (shown with empty circles).
Both are in good agreement, save for numerical errors due to the
finite resolution.

Clearly, the (normalized) helicity H and maximum twist ϕmax

are closely correlated. In the limit when the poloidal field lines are
not strongly modified by the presence of magnetospheric currents
(for small s), both quantities grow linearly with s, as should be
expected since both depend linearly on the toroidal field Bφ . The
deviation from the linear dependence of H and ϕmax is visible only
near the maximum value of s. On the other hand, the relative energy
�E and the relative dipole strength �a1 both scale as s5/2. This
is an indication that, to leading order, the increase in the energy
of the magnetosphere model is mostly due to the amplification of
the dipolar field. If the energy increase could be attributed to the
toroidal field, it should scale as �E ∝ B2

φ ∝ s2. Conversely, if the
energy increase is due to the increase of the dipolar field strength, we
would expect to have �E ∝ �(B2

pol) ∝ (a1 + �a1)2 − a2
1 ∝ �a1,

since we are still in the regime �a1 � a1. This explains why both
normalized functions (�E and �a1) scale in the same way.

5.2.2 Dependence on Pc

In Fig. 9, we show the dependence of the same quantities on 1 −
Pc, for s = 1 (left) and s = 2 (right). As in Fig. 8, we normalize all
quantities to their maximum values (listed in Table 4) attained at
the critical value of Pc beyond which the numerical solution does
not converge.

For a dipole field, Pc has a maximum value of 1 at the equator
on the stellar surface. In this case, the toroidal field is confined to a
single point and the field configuration reduces to the vacuum case
(as is evident in the figure for the limit Pc → 1). As Pc is decreased
from 1 (i.e. as 1 − Pc is increased from 0), the volume occupied by
the toroidal field increases and subsequently the poloidal field lines
are increasingly modified with respect to the vacuum configuration.
Beyond some minimum Pc (listed in Table 4) no solutions are found.

Plotting the quantities as functions of 1 − Pc (rescaled by its
largest value) reveals some nice scalings. In particular, the maxi-
mum twist scales as x3/2, the total helicity as x5/2, the relative energy
(with respect to the vacuum) as x4, and the relative dipole strength
as x5. When Pc is near 1, the field lines are very close to the equator
and very short, and consequently higher resolution is required in
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Figure 6. Relative energy, helicity, maximum twist and relative dipole strength for three models with σ = 1, 1.1 and 2 as functions of the parameters s and Pc.
The regions where solutions have not been found are shown in white. The levels of the contours are indicated in the plots. Note that, in particular, the contours
of the maximum twist seem to align remarkably well with the boundary where convergence fails.
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The force-free twisted magnetosphere 1905

Figure 7. Fitting functions for the contours of the maximum twist. The same
contours for the maximum twist ϕmax are shown for σ = 1 (dashed lines) and
σ = 2 (dotted lines), as in Fig. 6. The fitting functions are shown with solid
lines, and are of the form given by equation (28). The parameters for each
line are listed in Table 3.

order to maintain accuracy. This explains the observed divergence
in the scalings for small values of 1 − Pc.

This difference in the scalings of the maximum twist and helicity
can be attributed to the larger volume occupied by the magneto-
sphere as 1 − Pc increases. The maximum twist depends only on
the toroidal field strength and the field line length, but the helic-

Table 3. List of parameters for the fitting function given by equation (28)
for the contours of the maximum twist ϕmax for σ = 1 and σ = 2 shown in
Fig. 7.

σ = 1 σ = 2
ϕmax γ m n γ m n

0.1 0.155 0.892 1.41 0.156 0.284 2.56
0.2 0.315 0.903 1.38 0.310 0.280 2.53
0.4 0.661 0.937 1.26 0.621 0.296 2.41
0.8 1.35 0.983 1.00 1.13 0.309 2.12

Table 4. List of the values of the quantities used in the normalization of
Figs 8 and 9 (in the units listed in Table 1 and expressed to three significant
digits). The vacuum values of the energy and dipole strength used to calculate
the relative values defined through equations (24) and (25) are Evac = 1/3
and avac = 1, respectively. The numbers shown in parentheses are kept fixed
in their respective columns.

Fig. 8 Fig. 9
Quantity Left Right Left Right

s 1.62 4.35 (1) (2)
Pc (0.5) (0.75) 0.376 0.560
E 0.400 0.374 0.380 0.396
H 4.51 1.96 4.41 3.90
ϕmax 1.31 1.11 1.21 1.22
a1 1.25 1.08 1.25 1.20

ity is a volume integrated quantity. In Appendix D we present a
mathematical construct which allows us to analytically calculate
the helicity and maximum twist for a simple model. In addition to
being a useful tool for performing numerical checks, this model is
also valid in the limit of weak toroidal fields where the poloidal
field structure remains nearly unchanged. Taking the corresponding

Figure 8. Log–log plots of normalized energy, helicity, maximum twist and dipole strength as functions of normalized s for Pc = 0.5 (left) and Pc = 0.75
(right). In both cases σ = 1. The energy and dipole strength are expressed relative to their vacuum values as defined through equations (24) and (25), respectively.
All quantities have been rescaled by their largest values, listed in Table 4. For reference, we have included trend lines of linear and x5/2 dependence. Note that
all quantities approach their vacuum values (in this case, 0) as s → 0.
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Figure 9. Log–log plots of normalized energy, helicity, maximum twist and dipole strength as functions of normalized 1 − Pc for s = 1 (left) and s = 2 (right).
In both cases σ = 1. As in Fig. 8, we plot the relative energy and dipole strength and normalize all quantities by their largest values (which for Pc corresponds
to its smallest value), listed in Table 4. The vacuum case is retrieved in the limit Pc → 1.

limit for small 1 − Pc, we indeed verify that the scalings of helicity
and maximum twist shown in Fig. 9 are correct (cf. equation D6).

6 C O N C L U S I O N S

In this work, we study the properties of force-free magnetosphere
models, which satisfy appropriate boundary conditions at the stellar
surface, at the axis, and at infinity. In particular, we impose that the
magnetic field match smoothly to a current-free (vacuum) solution
at some large external radius. Our models are designed in a way
that ensures there are no pathological surface currents at any of
the interfaces. The boundary condition at the stellar surface allows
us to prescribe any poloidal function P and toroidal function T(P),
where, for the latter, we assume the form given by equation (16). The
sample solutions shown in Fig. 3 correspond to dipolar and mixed
(dipolar plus quadrupolar) configurations. Clearly, these models are
very specific, but they serve as an illustration of our method. In
general, changing the surface profiles of P and T would affect the
form of the resulting magnetosphere.

We have carried out an extensive parametric study revealing how
important quantities (energy, helicity, twist, and multipole content)
vary with the different parameters describing our model. We find
that the total dipolar moment can be increased by up to 40 per cent
with respect to a vacuum model with the same surface magnetic
field. This is simply reflecting the contribution of the magneto-
spheric currents to the global magnetic field. Thus, the estimates
of the surface magnetic field based on properties of the large-scale
dipole (e.g. braking torque) are slightly overestimating the sur-
face value. We also find a moderate increase in the total energy of
the model with respect to the vacuum solution of up to 25 per cent.
We attribute most of this energy increase to the higher dipole mo-
ment, rather than to the energy stored in the toroidal field, since the
volume occupied by the toroidal field is not large and the volume in-
tegrated poloidal component (which extends to very long distances)
always dominates.

We have also found the interesting result of the existence of a crit-
ical twist (ϕmax ≈ 1.2 − 1.5 rad, for the models studied). This idea
has been suggested by different authors in other contexts and with
other approaches. For example, by performing numerical simula-
tions of resistive MHD applied to the disruption of coronal arcades,
Mikic & Linker (1994) arrived at the result that there are no more
force-free equilibria beyond a maximum twist (maximum shear in
their terminology) of ϕmax ≈ 1.6 rad, for their particular functional
form of the applied shear. This fact has interesting implications:
if some internal mechanism (for example, MHD instabilities, Hall
drift, or ambipolar diffusion) results in a slow transfer of helicity to
the magnetosphere (thus increasing the twist), there appears to be
a critical value of the twist beyond which force-free solutions no
longer exist. Further increasing this value might result in the sudden
disruption of the magnetospheric loops and may be at the origin of
phenomena such as soft gamma repeaters (SGRs) or X-ray bursts.

In general, our results agree qualitatively with previous works
(Fujisawa & Kisaka 2014; Glampedakis et al. 2014; Pili et al. 2015),
with some minor differences. Unlike Fujisawa & Kisaka (2014) and
Pili et al. (2015), we do not find solutions with disconnected toroidal
loops, which, as is argued in both papers, are probably unstable. The
formation of such loops seems to be a consequence of the fact that
they make use of a different iteration scheme in their work, where
they fix the size of the toroidal region while allowing Pc to vary
between iterations. When such disconnected loops are formed, in
principle, it is possible to inject more helicity and twist into the
magnetosphere, thus also increasing the dipole content and, in par-
ticular, the energy budget available for fast, global magnetospheric
activity. However, such solutions are not found when carrying out
iterations for a fixed value of Pc, while allowing the size of the
toroidal region to vary, as in our case. Instead, our solutions al-
ways seem to converge to magnetospheres with smaller toroidal
regions, and with field lines connected to the stellar surface. Thus,
it is plausible that the disconnected loops represent highly localized
regions in the parameter space where the Grad–Shafranov equation
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has more than one acceptable solution, with those presented in this
paper representing the lower energy (and helicity and twist) solu-
tions, and thus being energetically favourable over the seemingly
unstable disconnected ones. At the moment this remains purely as
a conjecture, and more work needs to be carried out in order to
better understand the possible degeneracy of the solutions and its
implications.

In this work, we do not solve for the internal magnetic field of
the star, and instead impose boundary conditions on the poloidal
and toroidal functions at the stellar surface. While solutions of the
Grad–Shafranov equation are useful for constructing equilibria in
the interior of barotropic stars, these equilibria are unlikely to be
stable (Markey & Tayler 1973; Tayler 1973; Lander & Jones 2012;
Mitchell et al. 2015). A solution to the stability problem may be
the so-called non-barotropic fluids where stable stratification due
to composition and entropy gradients can balance some of the in-
stabilities (Reisenegger 2009; Akgün et al. 2013). In this case,
solutions of the Grad–Shafranov equation are no longer required,
and there is a wider range of acceptable magnetic field configura-
tions in equilibrium. Either way, once the long-term evolution of
the internal magnetic field due to the Hall, Ohmic and ambipo-
lar terms kicks in, it is clear that no matter what the initial field
is chosen to be, the magnetic field at subsequent snapshots will
not be a solution of the Grad–Shafranov equation. Thus, from the
perspective of long-term evolution, the interior field is determined
through the evolution equations, while the magnetosphere relaxes
on much shorter time-scales to a force-free configuration match-
ing the surface boundary conditions. This paper is the preliminary
step of further future work, where we will combine this family of
magnetosphere models with the long-term magnetic field evolution
inside the star obtained from the code described by Viganò, Pons &
Miralles (2012), to explore the influence of the magnetosphere on
the magneto-thermal evolution of neutron stars.
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A P P E N D I X A : E N E R G Y O F FO R C E - F R E E
FI ELDS

The energy of any general force-free magnetic field can be expressed
entirely in terms of surface integrals. Following Chandrasekhar
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(1981), consider the integral of the work done by the Lorentz force,∫
r · (∇ × B) × B dV =

∫
εijkεjlmriBk(∇lBm)dV

= εijkεjlm

[∮
riBkBmdSl −

∫
∇l(riBk)BmdV

]

= −
∮

riB
2
k dSi +

∮
riBiBkdSk

−
∫

∇k(riBk)BidV +
∫

∇i(riBk)BkdV

= −
∮

riB
2
k dSi +

∮
riBiBkdSk

+ 2
∫

B2
k dV + 1

2

∫
ri∇iB

2
k dV

= −1

2

∮
riB

2
k dSi +

∮
riBiBkdSk + 1

2

∫
B2

i dV . (A1)

Here, we carry out a second integration by parts in the last line and
make use of the relation between the Levi–Civita symbol εijk and
the Kronecker delta δij,

εijkεklm = δilδjm − δimδjl, (A2)

as well as the derivatives of the radial vector,

∇i rj = δij , (A3)

which, in particular, for the divergence gives ∇ · r = ∇i ri = δii =
3. In vector notation, the final result can be expressed as∫

r · (∇ × B) × B dV

= −1

2

∮
B2(r · dS) +

∮
(r · B)(B · dS) + 1

2

∫
B2 dV . (A4)

For a force-free field the left-hand side vanishes and we can write
the magnetic energy purely in terms of surface terms,

8πE =
∮

B2(r · dS) − 2
∮

(r · B)(B · dS), (A5)

which is reproduced as equation (10) in this text.
Note that in order to be able to use this formula, the magnetic

field should be at least once differentiable. This, in turn, implies
that the poloidal function P should be at least twice differentiable
and the toroidal function T should be at least once differentiable (cf.
equation 1). Thus, for example, when surface currents are present
and the magnetic field is not continuous, this formula cannot be
applied.

A P P E N D I X B : E N E R G Y O F C U R R E N T- F R E E
( VACUUM) FIELDS

Current-free fields satisfy ∇ × B = 0, implying that the magnetic
field can be written in terms of some scalar potential through B =
∇�. Since the magnetic field is divergenceless (solenoidal), the
function � is given as a solution of Laplace’s equation, ∇2� = 0. It
can also be reconstructed directly from the multipolar expansion of
the poloidal function P. Using equation (C1) and that B = ∇� =
∇P × ∇φ, we get

�(r, θ ) =
∞∑
l=1

A′
l(r)Pl(μ), (B1)

where the radial functions Al(r) are given by equation (C5) for the
vacuum case.

Using Gauss’s (divergence) theorem, the magnetic energy can
then be written as (Marchant, Reisenegger & Akgün 2011)

8πE =
∫

(∇�)2 dV

=
∫

∇ · (�∇�) dV =
∮

�∇� · dS. (B2)

Thus, we can write the energy of a current-free field either as in
equation (A5) or as in here. Note that the vectors ∇P, ∇φ and
B = ∇� = ∇P × ∇φ are mutually orthogonal, and subsequently,
depending on the shape of the surface over which the integra-
tion is carried out, using one or the other formula may be more
advantageous.

For reference, the energies stored in the vacuum dipole and
quadrupole are

Edip = B2
o R3

�

3
and Equad = 6B2

o R3
�

5
, (B3)

respectively.

A P P E N D I X C : M U LT I P O L E E X PA N S I O N

The poloidal function P can be expanded in multipoles as

P (r, θ ) = (1 − μ2)
∞∑
l=1

Al(r)P ′
l (μ). (C1)

Here Pl are the Legendre polynomials, which are solutions of the
Legendre differential equation

[(1 − μ2)P ′
l (μ)]′ = −l(l + 1)Pl(μ). (C2)

The dipole corresponds to l = 1 and the quadrupole to l = 2. The
corresponding Legendre polynomials are

P1(μ) = μ and P2(μ) = 3μ2 − 1

2
. (C3)

In general, the radial functions Al(r) are determined from the
Grad–Shafranov equation (equation 7). For the current-free (vac-
uum) case (�GSP = 0), using the definition of the Grad–Shafranov
operator (equation 5) and the Legendre differential equation (equa-
tion C2), we get

(1 − μ2)
∞∑
l=1

[
A′′

l (r) − l(l + 1)

r2
Al(r)

]
P ′

l (μ) = 0. (C4)

In this case the multipoles are completely decoupled (which is not
necessarily the case in general) and the solutions are of the form

Al(r) = alr
−l + blr

l+1. (C5)

In the stellar exterior we need to take bl = 0. Thus, the vacuum
dipole and quadrupole fields in the exterior are of the form

Pdip = a1
sin2 θ

r
,

Pquad = a2
3 sin2 θ cos θ

r2
. (C6)

A P P E N D I X D : M AT H E M AT I C A L C O N S T RU C T

There is no general analytic solution for the force-free case with
both poloidal and toroidal components of the form considered in
this text. Nevertheless, it is possible to construct a mathematical
model which although not realistic can still serve for performing
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numerical checks and as a useful approximation in some limiting
cases.

Assume that the poloidal field is that of a vacuum dipole, which
in the units listed in Table 1 can be expressed as (equation C6)

P (r, θ ) = sin2 θ

r
, (D1)

while the toroidal field is still given through equation (16) for some
values of the three parameters s, Pc and σ . We choose σ = 1 which
is the easiest to calculate analytically. This solution corresponds to
the limit of the weak toroidal field, and can be used as an indication
of how various quantities that depend on the toroidal field behave
in that limit.

The volume occupied by the toroidal field (in the magnetosphere)
is a function of the critical field line Pc (which also defines the
integration boundary) and in this case is given through

Vtor = 4π
√

1 − Pc

3P 3
c

×
[
Pc(1 − P 2

c ) + 3

5
(1 − Pc)2 − 1

7
(1 − Pc)3

]
. (D2)

Similarly, helicity as defined through equation (12) can be deter-
mined as a function of s and Pc,

H = 16πsPc

3

×
[

1 + 2Pc

Pc

√
1 − Pc − 3 ln(1 +

√
1 − Pc) + 3

2
ln Pc

]
.

(D3)

The twist defined through equation (14) for a field line Po which
lies within the toroidal region (i.e. for Pc ≤ Po ≤ 1) is a function of
s and Pc, as well as Po

ϕ = 2s(Po − Pc)
√

1 − Po

P 2
o

. (D4)

The value of Po for which the twist becomes a maximum (ϕmax) is
given through

Po = 3Pc + 2 −
√

(3Pc + 2)2 − 16Pc

2
. (D5)

When Pc is near 1 (corresponding to a point on the equator for the
dipole case considered here) the contribution of the toroidal field
to the overall structure of the poloidal field lines is small, and the
above expressions serve as useful limits. The leading order terms
for small 1 − Pc ≡ ε are found to be (cf. Fig. 9)

Vtor → 8πε3/2

3
+ O(ε5/2)

H → 32πsε5/2

15
+ O(ε7/2)

ϕmax → 4
√

3sε3/2

9
+ O(ε5/2) (D6)

This paper has been typeset from a TEX/LATEX file prepared by the author.
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