
1 

 

WALKING THROUGH THE CANTOR’S PARADISE AND ESCHER’S 
GARDEN: EPISTEMOLOGICAL REFLECTIONS ON THE MATHEMATICAL 
INFINITE (I) 

 

J.L. Usó-Doménech and J. Nescolarde-Selva  

Department of Applied Mathematics. University of Alicante. Alicante. Spain. 

 

H. Gash 

Education Department. St Patrick’s College, Dublin City University. Dublin. Ireland. 

 

 

I heap up monstrous numbers, 

Pile millions upon millions, 

I put aeon upon aeon and world upon world, 

And when from that awful height 

Reeling, again I seek thee, 

All the might of number increased a thousand fold 

Is still not a fragment of thee. 

I remove them and thou liest wholly before me. (Albrecht von Haller) 

 

Abstract 

Infinity is not an easy concept. A number of difficulties that people cope with when dealing with 

problems related to infinity include its abstract nature, understanding of infinity as a never ending 

process, understanding infinity as a set of an infinite number of elements and understanding some well-

known paradoxes. Infinity can be understood in a number of ways some of which are incompatible, and 

involve value judgments or assumptions that are neither explicit nor desired. In its definition, we 

distinguish several aspects, teleological, artistic (Escher, 2000), some essential, some potential, and others 

actual. Cantor’s work on set theory is linked to infinity and has implications for belief in God. 

 

po
st-

pri
nt 

Corr
es

po
nd

ing
 au

tho
r: j

os
ue

.se
lva

@
ua

.es



2 

 

Keywords: axiomatic formal system, infinity, metaphysics, paradoxes, set theory, transfinite regions  

 

1. INTRODUCTION: INFINITY AND TRANSCENDENCE 

Infinity does not exist in the material world. Although the number of elementary 

particles, atoms, stars, galaxies, etc. is immensely great, it is not infinite. However, 

infinity is a concept that is handled not only in mathematics but in theoretical physics. Is 

it "real", or is it a belief that only exists in the human mind? For Aristotle there was only 

infinite potential, i.e., the limit of a sequence and he denied actual infinity, which for 

Spinoza is infinite reason. Cantor "discovered" infinity in his work on set theory and 

transfinite regions. Although mathematicians seek to render unnecessary the 

metaphysical implications of transfinite theory, these implications are linked to that 

central fundamental human belief: the existence of God. An aim of this paper is to show 

this in both Cantor’s and associated work.  

 

 Infinity is that which is without (cannot have) term or end (Latin infinitus). Now, 

consider some problems. Is it possible to shorten the infinite, and what is the result? Can 

we have half of infinity? How many integers are there? How many even numbers are 

there? In each of these cases we have an infinite number, that is, the same in each case, 

as by definition nothing can be greater than infinity, no set can it be greater than the set 

of even numbers. 

But it seems obvious that the set of integers exceeds that of even numbers. If they are 

different, we would have to wonder how big the difference is. In this case, is the set of 

odd numbers infinitely large? The search to understand infinity has been constant in 

mathematical and philosophical thought, from its origins in Archaic Greece to 

contemporary science. We need to explain the world around us. We are perturbed by the 
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possibility of a point in space beyond which there is absolutely nothing, not even 

emptiness. What sort of world system do we believe in? 

The question “what is infinity?” remains intriguing for mathematicians We live in a 

world that usually offers tangible things, things we can measure that have a beginning 

and an end, finite things. However, for some things the boundaries are blurred, and hard 

to pin down. Time is one example, our life is finite, we are born and die, but when a 

creature dies, the weather continues impassively, and seems to have no end ... which is 

eternal. In every culture there seems to be a concept of endless time.  An immortal 

infinite existence is a quality frequently assigned to divine beings. The space around us 

seems without any defined boundary, we look to the horizon but if we move it remains 

equally distant. The same is true when looking at the stars, though not visible to the 

naked eye, we know that beyond the galaxies are further clusters of galaxies and, 

although the real world can seem finite, our imagination is not afraid to keep looking. 

Something in our brain tells us that space goes on forever, and if we say it does not, the 

question always arises, what lies beyond? Importantly, infinity raises issues about how 

concepts work and what we can know in our experience. Ideas about the unattainable, 

immortality, infinite time and space are amongst the crucial issues raised in 

understanding our humanity. 

When we talk of the infinite, we tend to think of huge things but infinity can also be 

reached via smaller and smaller elements. Consider the Russian dolls (matriuskas) that 

are hollow inside, so that there is a new doll inside, and then in turn another, and 

another ... In this case the process would end by the human inability to create 

microscopic objects, but with numbers this limitation vanishes. Given a number, one is 

always able to get a smaller one.  
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One progressive approach to mathematical thinking is structuralist. Mathematics has 

been defined as the study of species of structures. The idea of mathematics as a "free 

creation" allows the thinker to propose alternative orders to that which previous 

mathematicians had considered fixed immutable laws of God. The aim is to capture, in 

one stroke, the entire nature of things, an explanation of the concept of structural species 

is one in which our universal system is a particular example. Mathematicians persist in 

thinking of a point as a dimensionless place in an n-dimensional manifold. Any 

manifold, upon this thought will have an infinite number of points. An "axiom of 

transcendence of the zero point1" in relation to the universe of any three-manifold 

implies that one can not specify a dimensionless point in a multi-dimensional space 

(Moore, 1991). The notion of a point as a non-dimensional point in an n-dimensional 

manifold is contradictory and confusing (and that is why sets behave paradoxically 

when trying to manipulate mathematically under the assumption of zero locations in the 

universe of a set). The confusion is resolved by specifying a dimensional point in a 

multi-dimensional space. This alternative position can be formalized in what is called 

the axiom of transcendence: a point of non-transcendent dimension in a universe of any 

type. The meaning of the axiom of transcendence is due to the position that a non-

dimensional point specification is essential for a rigorous definition of a continuous 

process, so that a space-time continuum is an unrealizable ideal notion for any actor. 

The idea of the infinite takes a central place in thinking about transcendence.  In it the 

identity model is broken, emphasizing the capacity of a thought to contain more than 
                                                           
1 Any manifold, in this thinking, will have an infinite number of points. An "axiom of zero-point 
transcendence" with regard to the universe of any dimensional manifold implies that you cannot specify a 
non-dimensional point on a dimensional manifold. The notion of a point as a non-dimensional location on 
an -n- dimensional manifold is contradictory and leads to confused mathematical thinking. You can only 
specify a dimensional point on a dimensional manifold. This alternative position may be formalized in 
what is termed the Axiom of Transcendence: a non-dimensional point is transcendent of the universe of 
any manifold. 
 

po
st-

pri
nt 

Corr
es

po
nd

ing
 au

tho
r: j

os
ue

.se
lva

@
ua

.es



5 

 

that which is thought. But a new break is needed: out of being (Levinas, 1977) as a 

place of transcendence, and a time that is not my time. The model is the Cartesian 

model of the relationship that I established with the Infinite, in which both terms are 

maintained with no possibility of being reduced. But this relationship is complex and is 

neither an occasion for delirium or insanity as loss of self, not is it a demonstration of 

the existence of God.  

 

2. PARADOXES AND PARADOXES OF INFINITY 

The concept of a paradox can be understood as one of the following:  

1) A contradictory statement appears to be true.  

2) A statement exhibiting inexplicable or contradictory aspects or qualities.  

3) A contradictory statement based on valid reasoning and logical assumptions. 

A fallacy paradoxes contain arises out of the circumstance that there are defined or 

presupposed wholes, whose existence would imply the existence of new elements 

definable only in terms of the whole (Gödel 1981: 51). Consider: All propositions are 

either true or false. We want to highlight the following: to prevent the emergence of 

paradoxes, Russell (Whitehead and Russell, 1910-1927) proposed his vicious circle 

principle that avoiding vicious circles involves simply showing that nothing is done that 

involves all of a collection being considered as a member of the collection, because if a 

supposed collection has a total and one tries to stipulate new members only definable in 

terms of that whole, then the collection in question is no longer a whole. It will have to 

include the new member if it wants to be a whole. It is as if we could not reach the 

whole, since we are always pushing one step further: it is always one step ahead. These 

wholes that 'escape us' are what Russell called illegitimate totalities. This does not 

mean, however, we cannot talk of wholes, or legitimate wholes. Legitimate wholes are 
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those that have been limited to complete their entirety, and any subsequent totality that 

relates to that whole must fall entirely outside the first whole. We can ask this question 

about the vicious circle principle: why should we accept it? In contrast to what happens 

in the case of the axiom of reducibility, Russell offers us a number of reasons for 

acceptance. Its usefulness in terms of destruction of the paradoxes seems to be enough 

to justify its existence. This is something that seems perfectly obvious. Indeed, the 

continent must be larger than the content. The paradox we want to analyze is that of 

Russell. This paradox can be explained very simply as follows: There are some classes 

that contain themselves and others that do not contain themselves. Examples of the 

latter are the class of all math professors and we have no major problem with it. An 

example of the first is the class of all the ideas presented in this paper. This class 

contains among its objects the same class, because the class of all the ideas presented in 

this paper is an idea that is in this paper. The question is this: is the class of all classes 

that do not contain themselves a member of itself? If it is not a member of itself, should 

be, because the class includes all classes that are not members of themselves, and if 

instead it contains itself it should not contain itself, since the class is only of classes that 

do not contain themselves.  This is Russell's paradox. Now let's see what happens in the 

case of the solution to it. Russell tells us that a class is an object derived from a function 

(φ) and assumes the role for which it is derived. φ x assumes the function φ *x. 

Therefore, a class cannot significantly be the argument of the function to which it 

relates. We can then say that a class is not admissible as an argument of the function to 

which it is related. Thus, there is no question of the class of all classes that are members 

of it. If there is no question of this class, it is impossible that the paradox arises because 

the paradox we are talking about depends on how one can talk about the class 

mentioned. 
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For Russell, all paradoxes arise from the ambiguity of words like falsehood, class, name 

etc ...The paradox brings out this ambiguity in these words and highlights the 

appearance of self-contradiction present in all paradoxes. However, Russell also thinks 

that this ambiguity, or rather, these ambiguous words should not be sacrificed. They are 

necessary in mathematics and mathematical logic, since these fields often need to be 

used with a multitude of ideas to be able to interpret an infinity of different 

determinations. Ambiguity in these fields allows the same reasoning to be applied to a 

large number of cases. What was clear to Russell is that this ambiguity should be kept 

heavily guarded and watched over so that it cannot exercise its influence without critical 

examination. 

 

2.1. Some paradoxes on infinity 

Historically, the infinite has always been a source of difficulties and paradoxes. From 

the point of view of mathematical theory, many of the difficulties of infinity have been 

resolved as that concept has been defined as a mathematical object with its own field of 

operation; particularly in the work of Bolzano, discussed in his book appropriately 

entitled Paradoxes of the Infinite (1950).  

 

Example 1: Gabriel's trumpet, or Torricelli's trumpet is a funnel-shaped surface (or 

trumpet). It starts broad and narrows quickly, but never closes – i.e., to infinity. The 

surface of the trumpet is infinite, but the volume that it contains is not infinite2. Suppose 

we paint the trumpet gold inside. The surface is infinite, and so an infinite amount of 

                                                           
2 If the surface has an infinite surface it should have an infinite volume. But when the 
calculation is done, it turns out that the volume of this object is Π! It is therefore an 
object with an infinite surface but with a finite volume. 
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paint is required for the outside. However, a finite amount of paint, which corresponds 

to the volume of the trumpet is required to paint the inside. Then which is more 

confusing: the idea that an infinite surface implies a finite volume or the idea that a 

finite amount of paint covers an infinite surface? Galileo’s disciple Torricelli was the 

first to think of this problem, which he found so extraordinary that at first he thought he 

had done something wrong. Interestingly, in the case of the famous paradoxes of Zeno, 

there also arises a conflict between two components of a different nature. Recall the 

essence of these paradoxes (which can be considered as paradoxes of the infinitely 

small): Zeno of Elea (c. 450 BCE) questioned the belief that, "the sum of an infinite 

number of quantities can be made as large as desired, even if each quantity is extremely 

small (∞ x ε = ∞), and also that the sum of a finite or infinite amount of zero-

dimensional numbers is zero.” His arguments emphasize the difficulty arising from 

understanding a line as consisting of points (the problem of the relationship between the 

continuous and discrete). Zeno posed paradoxical situations in which this is illustrated, 

first, that if continuous variables (such as time and space) were infinitely divisible, then 

movement could not exist; but on the other hand, if space was infinitely divisible (by 

the existence of indivisible parts), then there could be no movement! Aristotle believed 

that one of the first problems is that when Zeno’s paradox suggests that the infinite 

division of space requires an infinite time to complete, he mixes two types of infinity: 

infinite divisibility of space, and an infinite length of time. For Aristotle, Zeno's 

paradoxes reveal the incoherence of something which is divided into an infinite number 

of parts (which involves the construction of an actual infinite). So, Aristotle argues that 

it is false to assume that the continuous consists of indivisible elements. Zeno's 

paradoxes arise when mixing the discrete with the continuous (by applying a number to 

an extent), and Aristotle's solution was to separate the discrete from the continuous. 
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We live in a fractured world or quantized space-time where and due to zero point 

convergence (energy), it is difficult to specify a manifold (space). Zeno in his paradoxes 

had implicitly answered the question whether space-time is continuous or 

discontinuous. The physical sciences today seem to have responded similarly to this 

question with the notion of a "Planck unit" of space-time as a unit with a fundamentally 

different zero point of space-time. Calculation does not resolve the paradoxes of Zeno 

because an extremely small transformation in space-time is not yet a zero point, but a 

fragment of a whole which has, in turn, an infinite number of points. Infinitesimal 

analysis, the most favorable evaluation, only approaches the notion of continuous 

movement and is only relevant when the theories are expressed in terms of classical 

concepts of physics. However; quantum theory says that movement is essentially 

discontinuous. The dichotomy paradox, which, in our opinion, summarizes the other 

paradoxes of Zeno, as stated by Aristotle, postulates a continuum space-time of an 

infinite number of points, and then goes on to question how movement might be 

possible in such circumstances, as anybody moving in continuous space-time must pass 

through an infinite number of intermediate points in any interval of space. The solution 

that we can reasonably propose to Zeno's paradox is similar to the Achilles solution in 

Lewis Carroll (1985)3: for Achilles to catch the tortoise, he must, at a point in arbitrary 

time, equate a different point of zero fraction of space with a convergence zero point of 

space, then take advantage of this logical trick to reach the tortoise. 

 

Example 2: Galileo's paradox: although not all numbers are square numbers there are 

not more numbers than square numbers. This paradox is a demonstration of one of the 

                                                           
3 http://www.ditext.com/carroll/tortoise.html  
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surprising properties of infinite sets. The paradoxical character arises by calling into 

question the principle that the whole is greater than its parts. 

In his final scientific work, Two New Sciences, Galileo Galilei made two apparently 

contradictory statements about positive integers. First, some numbers have the property 

of being a perfect square, while others do not. Therefore, the set of all numbers, 

including both square and non-square, has to be larger than the set of squares. However, 

for each square there is exactly one number which is the square root, and for each 

number there is exactly one square. Therefore, there cannot be more of one type than 

another. Galileo concluded that the concepts of less than, equal and greater applied only 

to finite sets, and could not be applied to infinite sets. In the nineteenth century, Cantor, 

using the same methods, showed that although Galileo’s result was correct when 

applied to integers, or even rational numbers, the general conclusion was not true: some 

infinite sets are larger than others, in the sense that they cannot be related in one-to-one 

correspondence. 

 

3. THE CANTOR’S PARADISE 

“No one will drive us from the paradise which Cantor created for us.”(Hilbert) 

Ontological arguments supporting Cantor's theory of transfinite numbers are unknown 

to most of the mathematical community. Current mathematical discussion has limited 

the concept of infinity to potential and actual infinity. The philosophical-mathematical 

infinity spectrum contains in Cantor’s work a metaphysical variant, which is called 

"Absolute Infinity". The transfinite theory of sets is located between the absolute infinite 

and the finite. However, the fact that transfinite regions are accessible to human 
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knowledge (mathematical) is an argument against the Kantian thesis4 that man cannot 

rise above his own finite position with respect to knowledge, that is, it is not possible to 

leave the limits of possible experience by finding a knowledge of the infinite. Human 

beings, according to Cantor, are unable to have a proper knowledge of absolute infinity 

(God). However, this does not mean that man has no proper access to the infinite. 

Indeed, the formation of transfinite mathematical concepts must prove that the Kantian 

limitation is unnecessary. To reinforce this argument, Cantor resorts to arguments of 

rational theology, one that Kant had totally eliminated from the field of possible 

knowledge. This is based on Cantor’s impatience and lack of understanding in relation 

to the mathematical “horror infiniti” that in fact, was just a critical reserve against a 

certain type of philosophy introduced in mathematics. Actually, Cantor uses rational 

theology and philosophical reflections to pass from the conceptualization of the 

transfinite, to its theoretical relevance to reality. Cantor distinguishes in mathematical 

concepts, especially in regard to the concept of number, two realities: intrasubjective or 

immanent reality and extrasubjective or transcendent reality5. The immanent reality of 

certain concepts is understood to be well defined. In addition to this, that the concepts 

also have transcendent reality means they have to be considered as an expression or 

                                                           
4 Kant (2011) believed that reason is always looking for the condition or foundation of things. Scientific 
research rests on this desire of Reason to understand the causes, conditions or foundations of phenomena. 
But if the spontaneous functioning of Reason is not limited by critics, how will people think about the 
conditions or foundations of phenomena: in relation to our psychic life, the physical world and the 
foundation of all phenomena, both physical and mental. When Reason acts in an uncontrolled way, it will 
end up thinking of the traditional objects of metaphysics: the soul, the world as a whole and God. Kant 
believed that the use of reason, which he calls dialectical - is inadequate and leads to fallacies and 
contradictions. 
 

5 Some Jewish writing (Kaplan 1990; Saks 1990, 2002; Schochet 1979) refer to different levels of infinite 
spiritual worlds, an idea similar to Georg Cantor’s idea that there is an infinite sequence of 
(mathematical) infinities: ℵ0 < ℵ1 < ℵ2 < …. . Cantor’s demonstration that the infinite cube contains 
exactly the same number of points as in the one-inch cube helps to understand “the paradox of God’s 
simultaneous transcendence and immanence”  
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image of processes and relationships concerning our experience of the external world, 

by the intellect. Epistemological conceptions by which Cantor distinguishes between a 

transcendent reality and an immanent reality are difficult and mysterious. However, in 

Cantor the requirement "mathematically free", turns transfinite theory into a possible 

mathematical object, even if only to ensure that the concepts are well-defined 

modifications of the substance of the human spirit.  

The point of view of Cantor offered in many mathematical disciplines (theory of 

functions, topology, etc.) as new fields of activity, presented new problems that on finite 

bases had not been resolved or would have needed a very subtle and careful treatment. 

What is important is not that certain demonstrations were correct or not, but whether 

they should be used or not. Cantorian criticism of set theory is very similar to Kant's 

critique of metaphysics in the Transcendental Dialectic. In the same way that what 

matters to Kant is not to attack demonstrations of rational theology, cosmology and 

psychology as correct proofs, but rather the question of the meaning of the 

demonstration in classic areas of metaphysics. In the same way in the discussion on sets 

and transfinite powers, Cantor was not so interested in the various mathematical 

demonstrations that are not correct, but rather in opening a possible field of scientific 

problems. Whoever accepts Cantor’s speculation regarding the concept of infinity as the 

foundation of a new field of mathematical activity, cannot, as a mathematician, refuse to 

accept the propositions and demonstrations of transfinite theory. As Cantor’s set theory 

led to certain contradictions similar to some antinomies analyzed by Kant, it is no 

surprise that Cantor had to have recourse to rational theology and cosmology. 

The conceptual world of set theory has come to be the universal basis of current 

mathematics, only under the assumption that, as a mathematician, it must be released 

from the corresponding metaphysics, i.e., you can talk as Cantor but not think as Cantor. 
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You may walk in Cantor’s paradise without having to worship the God who guarantees 

this metaphysical paradise as Platonic or empirical, pursuant to its peculiar inclinatio 

infiniti6. However, Hilbert believed he could separate philosophical sophistry from 

mathematics. His solution was a formal or theoretical structural interpretation of 

mathematics. This point of view made it possible for relatively arbitrary (as to their 

content) systems of propositions to be transformed into a legitimate object of 

mathematical research. This is regardless of the precise meaning of the terms that have 

content, and conceiving these terms formally, through forms of statements of the system 

of propositions. It is a premise that the investigated system of propositions is free of 

contradictions, or, at least, that there has not been, until now, any contradiction. 

Therefore, there are formal axiomatic systems, those that Hilbert states are starting 

points for mathematical research, and therefore are definiens of mathematical objects. 

Mathematics no longer makes categorical statements about what nature is, but only 

hypothetical statements based on what is, when there is a certain formal structure. Thus, 

a mathematician can eliminate discussion of the metaphysical foundations of Cantor’s 

set theory, and at the same time, keep this set theory in the form of a formal axiomatic 

system, as a foundation of mathematics. Thus, the antinomies of set theory give no 

reason to banish the conceptual world of Cantor from the mathematical world; rather 

they led to the replacement of Cantor’s call for a naive set theory by a formal axiomatic 

system, which so far has not led to the appearance of any contradiction. Likewise, the 

axiomatic-formal interpretation of the whole of mathematics is not without problems. 

First, it gives to mathematics an immense amount of possible objects, whose 

designation as "formal theories" can only obscure the fact that for many of them, it is 

                                                           
6 For any current mathematical metaphysics of Cantorian infinity is more suspect than the metaphysics of 
philosophers. 
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not possible to substantiate a theoretical nature, without resorting to Cantor’s 

metaphysics. 

There is another argument that one can understand relatively formal theories as theories 

of explanation or description. This justification is based precisely on the concepts and 

"realities" of set theory, which are in Cantor’s paradise. The Cantorian ontological 

regions provide sufficient possibilities of interpretation to almost justify arbitrary formal 

theories. This statement is more trivial than it seems, since the syntactic possibilities that 

should be adjusted for the formation of formal theories, harmonize with reasonable 

accuracy Cantor's conceptions about the ontology of sets. If the axioms of set theory 

represent the ontological principles of a region of entities and facts, which are legitimate 

objects of human knowledge, then we could understand axiomatic set theory as a 

formalized theory in this region. But this still does not exclude another possibility: the 

theoretical-applied interpretation of conceptual formalizations of set theory. In this case, 

we should interpret the axioms of set theory as mere assumptions that are justified by 

scientific applicability. Those who do not believe in Cantor’s paradise but appreciate the 

heuristic value of conceptual formations adopt this position. 

The position of theoretical application thus obtained denies any fundamental difference 

between laws and mathematical models and concepts and axioms (on a foundation of 

set theory), and rejects another explanation for this difference. Set theory would be a 

physical hypothesis among others, or would not clarify any difference in conflict with 

the "facts" of the patent difference between mathematics and physics. The second point 

of view would be unworthy of a theoretical scientist, even if he had to give up this 

position, leaving the conceptual world of Cantor. For example, in the case of a 

"hypothetical" interpretation of the mathematical foundations of set theory, there has to 

be a temporary emergency solution. This is true more so as there is a concurrent 
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foundation of mathematics, which not only avoids the highlighted difficulty, but also 

restores the theoretical character of mathematics in an Aristotelian sense7. This starting 

point, finite, constructive or operative, defines mathematics as a theory of actions or of 

more schematic and perceptible operations, and is represented by the reflections of the 

later work of Hilbert and Wittgenstein, Dingler and Lorenzen. 

Mathematical assertions do not refer to empirical facts, but patterns of action, and thus 

assume "experience" only as an exercise. With this, the mathematician gets information 

about the "foundation" of arithmetic facts, insofar as that these may be referred to as the 

simplest of all systems: do it and do it again, based on the above result, as concrete 

"objects" of arithmetic. If instead one desires to continue the current trend in the 

interpretation of arithmetic, we should refer to mystical entities as the set containing as 

its only element the empty set, or the set of all sets of an element8. Or submit an 

axiomatic formal system as the "beginning" of arithmetic, for example, a form of Peano 

axiomatic system. In the first case, one is forwarded to Cantor’s metaphysical 

speculations regarding the foundation of the ontology of sets; in the second case, one is 

                                                           
7 The concept of theory, insofar as that it has determined the history of philosophy and science, was first 
used by Aristotle. It is a fundamental component of the meaning of the Aristotelian terms ϑεωρια  and 

ϑεωρητιχηεπστηυη , which point out the difference between knowing about the logic or 

explanation for a particular state of affairs and the pure verification of this state of affairs. Theories, in the 
Aristotelian sense, are answers to questions that begin with the interrogative "why" ( τιδια ). Using an 

Aristotelian example (Aristotle, 2002), a theorist is one who knows why fire is hot, unlike the purely 
empirical person, who simply knows it's hot. In Aristotelian philosophy theories are referred to as 
"theories based on principles" or theories of explanation. Theoretical knowledge is liberated by definition, 
according to Aristotle, of any need for justification. In this way, the same right could be granted to formal 
theories, whether or not they legitimately belong to the tradition of theory. Indeed, Aristotle provides a 
justification in the Nicomachean Ethics (2011). Aristotle distinguishes theoretical science, from logic 
which is the essential upgrade of reason. For this reason, theory, especially metaphysics, such as research 
and knowledge of the latest principles, may be the perfection of praxis of man as man and leads to 
happiness that is linked to this praxis. 
 
 

8 Both are ontological interpretations of set theory of number 1. 
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again faced with the difficulty of being unable, under the arguments already discussed, 

to provide an immanent formal justification of formal arithmetic, while theoretical 

science, and therefore the problem of the foundation of arithmetic is not solved, it is just 

left out. 

One could insist on the heuristic advantages of a foundation based on set theory with 

respect to a constructivist point of departure, which until now has been poorly 

explained. If the Platonism of set theory is understood as a theory based on implications 

in the sense defined above, it could have essentially specific implications i.e., that 

constructively are neither achievable nor irreplaceable, but nevertheless indispensable in 

the fields of application of mathematics. There is no reason for conflict as the natural 

sciences are possible, especially physics, without the Platonism of set theory as a basic 

hypothesis9. By contrast, for the mathematical tools of theoretical physics, there is a 

constructive basis that provides all the essentials. The simple fact that Physics uses the 

transfinite, its own interpretation of the ontology of set theory, the infinitesimal 

calculus, and does not use its constructivist interpretation, is not demonstrating any 

necessary link. 

From here one can only infer that the task of preparing a comprehensive and sufficiently 

constructivist elemental analysis system, and introduce the mathematician knowledge of 

the physical, has not yet been realized. If this were done, it would have placed an 

archangel before the door of Cantor's paradise. 

 

3.1. Some problems 

                                                           
9 As regards the physical, such was the opinion of Cantor. He refers to physics, not to support the 
assumption of a transfinitum in natura naturata, but refers to biological and psychological data. 
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1) We will introduce some preliminary concepts. We say that a number is definable if 

there is any property that defines it. π and 8/5 are definable numbers. In reality all 

rational numbers are definable, although some irrational are also definable, like the 

aforementioned π. Other well known irrational numbers include the number e (Euler’s 

Number), the square root of two and the golden ratio10. We include in this concept, all 

conceivable, past, present or future definitions. That is, a definable number is any one 

that has ever been defined or that could ever be defined at some point in the future 

(whether that definition is really ever written, or simply expressible). 

No definable numbers are ineffable. That is, ineffable numbers are those numbers that 

have never been defined and never, even in theory, can be defined at any time or place. 

Georg Cantor proved that the set of real numbers is uncountable. That is, it is 

impossible to establish a one-to-one mapping between the set of real numbers and the 

set of natural numbers. The set of real numbers has an order of infinity higher than the 

set of natural numbers.  

 

Theorem 1: The set of all possible definitions is countable.  

 

Proof 

The order of infinity of this set is the same as that of the set of natural numbers. 

Therefore, in a well defined sense, there are more real numbers than possible definitions 

                                                           
10 In Mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their 
sum to the larger of the two quantities. The figure on the right illustrates the geometric relationship. 

Expressed algebraically, for quantities a and b with a > b,  ϕ
def

b
a

a
ba

==
+

 where the Greek letter 

φrepresents the golden ratio. Its value is: ...6180339887.1
2

51
=

+
=ϕ  
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and therefore it is impossible that there is a one to one correspondence between real 

numbers and their definitions (past, present or future).  

 

We have demonstrated that there are ineffable numbers (in fact, that there are an infinite 

number of ineffable numbers). There are no examples. By its very nature, it is 

impossible to specify a particular ineffable number. Every number we are able to 

mention is inevitably definable.  

 

Theorem 2:  The sum of an ineffable number and a definable number is an ineffable 

number. 

 

Proof 

 Let x be an ineffable number anyone and q be a definable number. We have to prove 

that z = x + q is ineffable. 

Suppose, by the absurd, that z was definable. Then, since x = z - q, then x would 

definable because it could be defined as: "It is the result of subtracting the number that 

satisfies (copy here the definition of z) minus the number that satisfies (copy here the 

definition of q)." 

This contradicts the assumption that x is ineffable. Thus z is also ineffable. 

 

Now, what do we mean when we say in a demonstration " Let x be any ineffable 

number?” 

What do you mean “any"? It is usually understood that the use of the word "any" 

indicates that what is being done is "generic reasoning," that is reasoning that can be 
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repeated in every particular case. As it were: "you replace x by any ineffable number 

and you will see that everything that is said is true afterwards." 

But ... how can such an interpretation be accepted in this case if it is impossible (and 

will always impossible) to take even a particular example? Is this a valid proof of 

Theorem 2? Does it make sense of the concept of ineffable numbers, although set theory 

allows us to prove that there exists an infinite number of such numbers?  

 

2) In the theory of Cantor, two infinite sets have the same cardinal number if for any 

element of one set there corresponds an element and only one of the other set. Any set 

whose members can be matched with the set of positive integers is given the cardinal 

number 0ℵ . Thus, the set of perfect squares has for cardinal 0ℵ . Correspondence can be 

represented by: 

1

1



4

2



9

3



16

4



25

5



•

•



•

•

  

Each number N corresponds to a number N2 and vice versa. Although the set of squares 

represents a subset of the set of integers, it has the same cardinality. In the theory of 

infinity, often the whole is not greater than one of its parts. It is known that the set of all 

points on a straight line, the rational and irrational numbers, each have a cardinal 

number that is greater than 0ℵ . Using his diagonal procedure, Cantor showed that in 

this set of real points there is no correspondence between each member and an integer. 

The set has cardinality 02ℵ . 

If a determinant of n-order is developed in an algebraic polynomial, it contains n! terms. 

A determinant is defined as the limit of a determinant of n-order when n tends to 
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infinity and is a perfectly respectable mathematical entity; it is known that its 

development contains 02ℵ terms. What is not known is how to build a biunivocal 

correspondence, i.e., term to term, between this development and the 02ℵ  points on the 

straight line (Goodman, 1948).  

 

3) This is one of the most famous unsolved problems is Cantor's continuum hypothesis 

(Manin, 1981): .2 1
0 ℵ=ℵ : the smallest transfinite number greater than 0ℵ  is the number 

of points on a straight line. There is also a generalization of the continuum hypothesis 

called the generalized continuum hypothesis (GCH) which says that for all ordinals , 

.2 1
0

+
ℵ ℵ= α  The unresolved problem is to prove that this hypothesis is true or that it is 

not. Cantor thought was true. The proposition is equivalent to the following: all infinite 

subsets of a continuum have either the power of the set of integers, or the power of the 

entire continuum. However, Gödel (1947) adds some considerations: a superior limit 

cannot be assigned to the power of the continuum. It is not known whether this power is 

regular or singular, accessible or inaccessible. Gödel was inclined to think that the 

hypothesis will ultimately be false. As the reason he gives the extremely unexpected 

and implausible nature of the consequences it entails. But the fact that a theorem is 

special and incredible is not sufficient to demonstrate its falsity. Mathematics is full of 

perfectly valid things that intuitively might find impossible results. However, as 

knowledge progresses doubts arise. 

An example of the strange and wonderful properties of this hypothesis is that the 

relationship .2 1
0 ℵ=ℵ results from the following proposition: three sets Ei (i = 1,2,3) can 

be defined whose Euclidean plane is their union, and three straight lines Di (i = 1,2,3) in 

the plane such that the set Ei cut all lines parallel to Di in a finite number of points. It 
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can be shown that a proposition of the same kind, but considerably less exacting, also 

contains the continuum hypothesis. 

Questions are raised for those who wish to walk in Cantor’s paradise. 
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