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Abstract

Cycloparaphenylenes (CPPs) are nanosized structures with chal-

lenging isolated and bulk properties. They can be also viewed as

synthetic targets for the template-driven (potentially) bottom-up syn-

thesis of carbon nanotubes. Thus, the step by step understanding of

the supramolecular order at the nanoscale is of utmost relevance for

further molecular engineering. We find here that intra-molecular non-

covalent (dispersion) interactions must be taken into account to obtain

accurate estimates of structural and optoelectronic properties of these

[n]CPP compounds, analyzing also their influence as the number of

repeat units increases from n = 4 up to n = 12, both in the gas phase

and in solution. We also address the supramolecular self-assembly of

[6]CPP, where both intra- and inter-molecular non-covalent interac-

tions are relevant, by calculating the binding energies of dimers taken

along several crystal directions. The latter are used also to estimate

the cohesive energy of the crystal, which is compared to the value

obtained by means of dispersion-corrected DFT calculations using pe-

riodic boundary conditions. The reasonable agreement found between

both computational strategies points towards a first estimate of the

[6]CPP cohesive energy of around 50 kcal/mol.
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1 Introduction

Cycloparaphenylenes (CPPs) represent the shortest sidewall segment of

armchair Single-Walled carbon NanoTube (SWNT) structures, and thus have

greatly captivated scientists very recently due to their unique architectural

features and envisioned possibilities (see Figure 1). The recent achievements

concerning the synthesis of these cycloparaphenylenes provide an unique

framework for understanding and fully control the template-driven synthesis

of fine-tuned nanotubes as envisioned target [1–3]. They also can be viewed

as a fragment of buckminsterfullerene structures [4]. For instance, preassem-

bled (tubular but discontinuous) CPPs structures might be further annealed

thermally or photochemically to achieve the desired SWNT [5], although the

crystalline structure of the former compounds is known to vary from herring-

bone to tubular packing, without still understanding in depth the reasons of

such different behavior. Furthermore, the unusual stability of their cationic

and anionic forms might pave the way towards novel synthetic procedures

for obtaining aromatic molecules [6].

The twisted and strained para-phenylene units, which close and self-

arrange to form the macrocycle in CPPs, allow for radially oriented π-type

electronic interactions, contrarily to linear parent para-phenylenes. This

closed configuration induces a large set of new and interesting properties with

respect to linear forms [7], such as the diameter of the nanohoop, the strain

energy arising from closing these para-phenylenes into a ring, or their nec-

essarily modified electronic and absorption properties. These achievements

have attracted recently the interests of several groups [8–17] in an attempt to

understand how these properties evolve with system size (n, where n refers

to the number of benzene units connected in para position) and how they
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manifest when real samples are obtained in solution or forming solid-state

phases. Note that the first cycloparaphenylene was synthesized in 2008 [19],

and that there is still a lot of opportunities concerning the rich chemistry of

these compounds. However, the subtle interplay between short-, medium-,

and long-range electronic effects, as a function of this system size or after

some functionalization of the [n]CPP molecules [18], is expected to have some

impact on the aforesaid size-dependent properties. This issue needs still to be

further studied, and addressed carefully by theoretical methods if one seeks

the greatest possible accuracy.

As a matter of example, we summarize next some interesting and highly

challenging achievements (in the supramolecular scale) recently accomplished

in the field: (i) the encapsulation of C60 by [10]-cycloparaphenylene ([10]CPP),

forming a host-guest complex stabilized roughly by 40 kcal/mol in toluene

[20] and with both molecules separated by a distance of 3.35 Å, which

equals the interlayer separation in graphite; actually, not all the [n]CPP

nanohoops (n = 8 − 12) are able to encapsulate C60 [21], but only [10]CPP,

which might arise from the interplay between attractive and repulsive intra-

and inter-molecular interactions; (ii) the association of C70 or the metallo-

fullerene La@C82 with [11]CPP was also recently studied [22,23], and shows

how both molecules are labile enough to accommodate each other, with

[11]CPP adopting an ellipsoidal shape in the former case; (iii) the chirality in

SWNTs might be induced by appropriately substituted cycloparaphenylene-

naphthalenes [24] or cycloparaphenylene-naphthylenes [25] compounds, con-

stituting thus the first step towards the controlled synthesis of chiroptical

SWNTs, which might create a diversity of forms and release the strain energy

of unsubstituted cycloparaphenylenes; and (iv) the dimerization of [n]CPP
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nanohoops, thanks to covalently-linked structures at only one specific posi-

tion along the macrocycle, which might pave the way towards increasingly

longer supramolecular architectures with customized nanochannels [26].

From the set of examples mentioned above, it becomes thus clear how

the large interplay between intra- and inter-molecular dispersion (attractive)

effects might drive size-dependent properties of these compounds, and will

be thereof the main interest of this study. The use of the term ’dispersion’

is normally associated with specific long-range inter-molecular non-covalent

interactions [27], whose strength peaks at around 3.5−7 Å and beyond, being

normally related to crystal directional growth and supramolecular stability.

However, these effects might have also some influence for isolated molecules

such the ones studied here, due to their particular closed form. For this rea-

son, we have chosen to study in depth the [6]CPP case, which has face-to-face

opposite benzene units separated by around 6 Å, where the above-mentioned

intra-molecular interactions might play an important role. On the other

hand, the interactions between adjacent benzene units are below that cut-

off, and are thus better termed as medium-range interactions. Despite their

weaknesses, these interactions cannot be (in principle) neglected even for

medium-sized organic molecules, as it has been recently emphasized in order

to obtain accurate results [28].

Last but not the least, we want to point out that some trade-offs between

accuracy and computational cost will be needed to adequately incorporate

the aforementioned interactions, due to the increasing size of the systems

studied here. Therefore, we will first describe some theoretical (and techni-
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cal) details before discussing the results for increasingly longer [n]CPP (indi-

vidual) systems. Then, we will extend the study to the [6]CPP bulk (mainly

in its solid-state) case, which is known to present striking differences with

respect to other molecules when it is allowed to supramolecularly organize

in real samples. This approach will allow us to disentangle the importance

of underlying physical effects on some key properties, as well as to tackle

challenging supramolecular issues in this family of interesting compounds.

2 Theoretical details

Density Functional Theory (DFT) [29,30] using standard functionals will

be employed along the study. More costly methods, scaling with the system

size as O(N5) (with N being related to that size) or beyond, such as O(N7)

Coupled-Cluster Singles Doubles with perturbative Triples [CCSD(T)], are

prohibitive for the larger systems tackled here. Note that the main focus

of this work is the possible influence of dispersion interactions, not only as

a guideline for further exploiting structure-property relationships but also

to bracket their not-yet-studied influence on global properties of these com-

pounds, rather than the benchmarking of theoretical methods and/or den-

sity functionals [31–33]. This is why we just consider the BLYP [34, 35]

and B3LYP [36–38] exchange-correlation functionals, as an example of pure

(without exact-like exchange) and hybrid (with a 20 % of exact-like exchange)

models respectively, combined with an adequate representation of atomic or-

bitals (i.e. the 6-31+G* or the family of def2-SVP/def2-TZVP/def2-QZVP

basis sets [39]) and with state-of-the-art corrections for dispersion effects;

because the latter are expected to play a key role due to the particulari-

ties of the systems investigated here, influencing both analytical gradients
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evaluation (i.e. structures) and single-point calculations (i.e. energetics).

Although electrostatics and induction interactions can be partially described

by the BLYP and B3LYP uncorrected functionals, the prediction of disper-

sion interactions is still particularly challenging and some corrections have

to be customarily introduced. Note also that these systems display some

inhomogeneous behavior due to the central vacuum region, and that a com-

plete theoretical (electrodynamics) description would necessitate treatment

of many-body effects [40, 41], which will be neccessarily truncated and thus

approximated here. The approximations followed are described in more de-

tail next:

a) We have addressed these effects by resorting in all cases to the -D3(BJ)

method [42,43]. We have first incorporated these effects into the DFT-

based calculations to correctly tackle the evolution of intra-molecular

properties of [n]CPP with system size, and then the strength of inter-

molecular interactions (in the case of [6]CPP) in a further step. This

is effectively done through the function:

E
(2)
D3(BJ)(RAB) = −

∑

n=6,8

sn

atom pairs
∑

B>A

CAB
n

Rn
AB + fn(R0

AB)
, (1)

where a two-body correction to the electronic energy, E(2), is added as a

function of: (i) some functional-dependent parameters sn to efficiently

couple both energy, electronic and dispersion, terms; (ii) the averaged

(isotropic) nth-order interatomic dispersion coefficients CAB
n ; (ii) all

the existing internuclear distances RAB = |RA − RB|; and (iii) the

damping function fn = (a1R
0
AB + a2)

n, which allows to switch the

energy from medium- to short-distances, with R0
AB =

√

CAB

8

CAB

6

and a1(2)

fitted parameters for the functionals used here [44–46]. Note that the

older -D2 correction [47, 48] is a simplification (a first-version) of the
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above approach, which is however widely and successfully used too. The

latter correction will be employed (vide infra) for the crystal treatment

of [6]CPP, together with corresponding periodic boundary conditions.

b) When dealing with supramolecularly nanostructured forms (several

self-assembled molecules forming a nanoaggregate) of [6]CPP, a three-

body correction has been also employed. This is done through the

function [49]:

E(3)(RAB, RAC , RBC) =
atom triples

∑

A>B>C

CABC
9

(3 cos θAB cos θBC cos θAC + 1)

(RABRBCRAC)3 fn(RABC),

(2)

where CABC
9 is the corresponding nth-order interatomic dispersion co-

efficient, approximated by CABC
9 ≈ −

√

CAB
6 CBC

6 CAC
6 , and θI are the

internal angles of the triangle formed by the internuclear distances

RAB−RBC−RAC . RABC is the geometric mean of RAB, RBC , and RAC .

The damping function fn also holds a similar form to the one used in

Eq. (1). Note that a satisfactory agreement has been recently found

between highly accurate CCSD(T) (and thus many-body) calculations

and this correction for trimers of crystalline benzene [50].

c) Another way to incorporate part of the missing non-covalent interac-

tions is to rely on a nonlocal (-NL) correction to the electronic energy

in the form:

E
(2)
NL =

∫

drρ (r)
[

β(b) +
1

2

∫

dr′ρ (r′) Φ (r, r′)
]

, (3)

with the function Φ (r, r′) coupling the total electronic densities, ρ (r)

and ρ (r′) at two different sampled points of the electronic coordinates

space. For the final form of the correction we use the modern construc-

tion VV10 [51], and the attenuation parameter b, β = 1
32

(

3
b2

)3/4
, as
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obtained from the literature for the BLYP and B3LYP models [52,53]

together with the functional selected. Note that we have only selec-

tively used this method as a “sanity check” for some cases, which will

be always conveniently indicated.

d) For the larger nanoaggregates of [6]CPP studied here, we have also em-

ployed a corrected Hartree-Fock (HF) method. The computational cost

is largely reduced by using a small basis set (MINIX) and three cor-

rections (-3c) to account for missing effects. Thus, the total electronic

energy is given by [54]:

EHF−3c = EHF/MINIX + E
(2)
D3(BJ) + EgCP

BSSE + EcRAB
, (4)

where E
(2)
D3(BJ) is merely a re-parameterized version of the expression de-

fined previously, EgCP
BSSE denotes a geometrical counterpoise correction

(gCP) to account for basis sets incompleteness issues, and EcRAB
cor-

rects the systematically overestimated covalent bond lengths for elec-

tronegative elements A and B.

As a matter of summary, Table 1 gathers for clarity the various method-

ologies used in the study reported here, as well as the properties estimated

from them.

3 Results and discussion

3.1 Increasingly longer isolated [n]CPPs

The GAUSSIAN09 [55] package was used for all the calculations described

in this part of the study. For the geometry optimization of biphenyl, triph-

enyl, and the set of [n]CPP (n = 4 − 12) molecules, the moderate 6-31+G*
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basis set was fixed, thanks to the well-established trade off between accuracy

and computational cost and for comparison with previous results found in

the literature. Hence, all the geometries were fully optimized at the B3LYP-

D3(BJ)/6-31+G* level, without symmetry constraints, checking carefully af-

terwards that all the frequencies were positive, to firmly guarantee in all cases

that we have found a true minimun along the hypersurface. Tables 2 and

3 summarize the main results (diameter and strain energy of the nanohoop,

and energy difference between frontier molecular orbitals) that will be dis-

cussed separately next.

We analyze first two main structural features chosen as example. The

first one is the diameter of every [n]CPP, defined as the distance between the

opposite ipso-carbon atoms for the even members, or as the distance between

the ipso-carbon atom and the center of mass of the opposite benzene ring

for the odd members. As it would be expected, the influence of dispersion

corrections, at the B3LYP-D3(BJ)/6-31+G* level, is to slightly decrease the

diameter in all cases with respect to previously calculated (B3LYP/6-31G*)

values [11]. The diameter is found to evolve with system size (n) following the

relationship d = 1.379n−0.011. The second structural parameter considered

is the dihedral angle between adjacent benzene units, that is the Co-Cipso-

Cipso′-Co′ angle. Owing to the close relationship between these two structural

parameters, diameter and dihedral angles, the values for the latter are ex-

pected to concomitantly increase with respect to previously calculated values.

This is clearly observed for the even members of [n]CPP (n = 4, 6, 8, 10, 12),

for which one obtains Co-Cipso-Cipso′-Co′ values of 21.9◦, 29.1◦, 32.4◦, 34.0◦,

and 35.1◦, respectively, exceeding by 1−2◦ the corresponding values predicted

before at the B3LYP/6-31G* level [10]. Note that the linear extrapolation
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of this dihedral angle, with respect to the inverse of the system size (1/n),

provides a value of 42◦ at the n → ∞ limit, and thus close to that found for

biphenyl [56] as it should be expected when the strain induced by forming

the cycle is completely released.

Another interesting property of these nanohoops is their strain energy,

rendering them challenging synthetic targets. Strain energies can be evalu-

ated by different ways, among which homodesmotic are probably the best

reactions suited for it [57]: Roughly speaking, both the number of each type

of C–C bond as well as the number of each type of C atom should be equal

in both members of the chemical equation, basically balancing all kinds of

stereoelectronic effects. We thus calculate the strain energy of increasingly

longer [n]CPPs by means of the expression:

∆Hstrain ([n]CPP) = n ∆H⊖

f (p-triphenyl)−
{

∆H⊖

f ([n]CPP) + n ∆H⊖

f (biphenyl)
}

,

(5)

where ∆H⊖

f refers to the enthalpy (at 0 K and with the zero-point vibra-

tional energy included) of optimized structures of p-triphenyl, [n]CPP, and

biphenyl, following the sketch (Scheme 1) used to measure this energy:

Scheme 1

Since strain energies are known to pose a challenge to synthetic chemistry,

their computational estimate might thus help over synthetic strategies as well

as for a better understanding of the inter-molecular interactions dominating

the final supramolecular organization of the samples. We next compare in
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Figure 2 the calculated values at the B3LYP-D3(BJ)/6-31+G* level with

those obtained at the B3LYP/6-31G* level, the latter taken from Ref. [10].

From the bunch of results obtained, one can state that: (i) the contribution

of the dispersion energy, obtained from Eq. (1), to strain energies decreases

with system size, as it should be due to the R−6
AB decay of weak interactions,

roughly ranging (in absolute values) around ∼ 6(∼ 2) kcal/mol for the small-

est (largest) nanohoop studied here; (ii) the weight (in relative values) of this

contribution to strain energies remains, however, almost independent of sys-

tem size due to the observed decrease of their values with system size, roughly

ranging between 3.4 − 4.4 % of the final values; and (iii) the strain energy

calculated at the B3LYP-D3(BJ)/6-31+G* level evolves with the system size

(n) following a power function A0n
−A1 , with A0 = 525.0 and A1 = 0.9807,

and a correlation coefficient of 0.9994.

Figure 2 also shows the difference between the Highest Occupied (HO)

and the Lowest Unoccupied (LU) Molecular Orbital (MO) energies, as cal-

culated here at the (single-point) B3LYP/def2-TZVP//B3LYP-D3(BJ)/6-

31+G* level, and their comparison with those calculated at the B3LYP/6-

31G* level (taken from Ref. [11]). As the system size increases, the energy of

the HOMO decreases (stabilizes) while that of the LUMO increases (destabi-

lizes), so that their energy difference grows accordingly. These counterintu-

itive results, in sharp contrast with linear oligophenylenes, originate from the

size dependence of aromaticity of benzenoid rings, and have been repeatedly

shown in the literature and confirmed by Raman spectroscopy [58]. Since

the detailed assignment of the UV-vis absorption spectra of these compounds

has been also recently done [59], we will exclusively focus in the following

on the effect (if any) of the dispersion-corrected geometries on this energy

12



gap. Note that, although we have used the large (and then sufficiently po-

larized) def2-TZVP basis set, the (single-point) results between B3LYP/def2-

TZVP//B3LYP-D3(BJ)/6-31+G* and B3LYP/6-31+G*//B3LYP-D3(BJ)/6-

31+G* were found to differ only by 0.02 eV in all cases. The stabilization of

roughly 0.1 eV, gained in [n]CPP molecules with respect to previously cal-

culated values, comes thus mainly from the dispersion-corrected geometries,

since it has also been established before that the torsion between neigh-

bouring benzene rings (higher here by 1 − 2◦ upon inclusion of dispersion

corrections) correlate with an increase of the HOMO-LUMO gap [59].

Summarizing, the overall effect of intra-molecular dispersion corrections is

found to be small on individual molecules, but non-negligible if one searches

the greatest possible accuracy. The effect is, as it was expected, more pro-

nounced for the smallest nanorings, but we can generally conclude with re-

spect to previously dispersion-uncorrected values that: (i) diameter (pore

size) may decrease up to 0.1 − 0.4 Å whereas dihedral angles between adja-

cent benzene rings may increase by 1 − 2◦; (ii) strain energies decrease by

3− 4 % still following a strong decay with system size, and (iii) the HOMO-

LUMO gap decrease by 0.1 eV, which is however not expected to largely

affect optoelectronic properties of these compounds.

3.2 [6]CPP as a case study

The [6]CPP system is chosen next to further extend the study when go-

ing from isolated (gas-phase) to solvent- or solid-state phases. Note that this

system is the only example, among the set of [n]CPP compounds studied up

to date, known to self-organize into completely linear, nanotube-like, struc-
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tures in the solid-state, which might pave the way towards the envisioned

template-driven synthesis of SWNTs [5]. Therefore, the influence of inter-

molecular forces between weakly interacting molecules, arising from their

self-aggregation in the solid-state, will be particularly challenging.

3.2.1 Solvation phase

The impact that solvation of [6]CPP molecules might have on their prop-

erties is approximately described here by using a dielectric continuum, the

Polarizable Continuum Model (PCM) with the default technical parame-

ters [60, 61] and for the dielectric constants (ǫ) corresponding to the set of

solvents (of increasing dielectric force) used : n-hexane (ǫ = 1.88), DMSO

(ǫ = 7.42), and THF (ǫ = 46.8). The results in solution were obtained at the

B3LYP-D3(BJ)/6-31+G* level with GAUSSIAN09 through the use of the

implemented PCM continuum model. We note, related with the most re-

markable properties studied before for the isolated system, that: (i) the pore

size of [6]CPP does not change from gas- to solvent-phase, keeping a value

of 8.38 Å independently of the dielectric constant of the solvent; and (ii)

the strain energy, ∆Hstrain ([6]CPP) as obtained from Eq. (5), only slightly

changes from gas-phase (89.83 kcal/mol) to solution (e.g. 89.03 kcal/mol

using THF as solvent). The small variation of these properties upon solvent

polarity supports previous claims done in the literature, mainly based on

isolated molecules [59,62].

We have also observed small changes for the HOMO-LUMO gap, passing

from 3.09 eV (gas-phase) to 3.08, 3.05, and 3.04 eV, in n-hexane, DMSO,

and THF, respectively. Actually, the strongest maximum absorption (λmax)

14



for this molecule does not originate from a HOMO to LUMO transition, but

involves few transitions and peaks at around 340 nm independently of solvent

effects [59]. Note that the vibronic effects on these optical properties have

been recently investigated [63, 64]. We have thus calculated, at the Time-

Dependent (TD) DFT level and with the same functional (B3LYP) and basis

set (6-31+G*) than those used before for obtaining the ground-state geom-

etry, the TD-B3LYP/6-31+G* level, the lowest vertical absorption energy

showing a non-negligible oscillator strength. In an attempt to disentangle

the impact on the several concurring effects, we have systematically calcu-

lated the value of λmax: (i) in gas-phase and at the ground-state geometry

optimized without the dispersion correction; (ii) in gas-phase but employ-

ing dispersion-corrected ground-state geometries; and (iii) in solvent (with

PCM) and at the latter dispersion-corrected geometries. The values found

are 326, 334, and 343 − 345 nm, respectively, with the latter values almost

negligibly depending on the solvent polarity, are in close agreement with the

experimental result.

3.2.2 Interacting molecules

The ORCA 3.0.0 package [65] was used for all calculations involving a

discrete number of non-covalently bound molecules. The sequence of def2-

SVP (moderate), def2-TZVP (large) and def2-QZVP (very large) basis sets

were used to largely (when the latter two are employed) reduce the Ba-

sis Set Superposition Error (BSSE) expected for binding energies of these

non-covalently bound molecules. Thus, counterpoise correction to reduce

the BSSE are not needed at this stage for DFT calculations. However, the

numerical thresholds for integration grids, as well as for convergence of self-
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consistent calculations or optimizations, were always made tighter with re-

spect to defaults, to reduce numerical errors when dealing with flat potential

energy hypersurfaces or when accurate electronic densities were needed. Ad-

ditionally, in the case of the larger systems tackled here, and again with the

ORCA package, the computational effort was significantly reduced by invok-

ing the ’resolution of the identity’ (RI) [66] algorithm for Coulomb integrals,

using for it the corresponding matching auxiliary basis sets [67].

The crystal packing of these molecules was recently resolved [21], lead-

ing to the discovery of a (somewhat unexpected) structural change, passing

from a solid-state herringbone packing in the set of [8−12]CPP molecules to

a linear alignment of [6]CPP molecules forming a discontinuous, nanotube-

like, structure. This supramolecular organization might drive, for instance,

a consistent bottom-up synthesis of a (6, 6)SWNT. To gain a further under-

standing of the strength and directionality of the underlying inter-molecular

forces, as well as to investigate the energetical stability of these non-covalently

bound dimers, we have resorted again to Eqs. (1)-(4), trying also to provide

a robust answer to these questions independently of the method and/or cor-

rection employed. We are also aware that final crystalline structures may de-

pend on other factors, such as difference in solvents or crystal packing forces,

but estimating the strength and directionality of the underlying forces may

nonetheless be of great interest.

We start by fully optimizing a dimer of [6]CPP molecules with the BLYP-

D3(BJ) method and the sequence of def2-SVP, def2-TZVP, and def2-QZVP

basis sets. Figure 3 shows the optimized structure of this dimer, either for a

lateral (top) or for a tubular (middle) alignments, as both are envisioned in
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real molecular samples (see Figure 4 for the arrangement of [6]CPP molecules

in the crystalline state) [5]. The association (or binding) energy of every com-

plex, which is known to be completely driven by non-covalent interactions,

is calculated at this optimized structures by the expression:

∆Ebinding = E (complex) − 2 E (monomer) , (6)

where dispersion-corrected energies are consequently used thereof for both

the complex, [6]CPP· · ·[6]CPP, and the monomer, a single [6]CPP molecule.

We take first the lateral structure as example for further discussion and

benchmarking, with the calculated values for ∆Ebinding being −9.33, −7.57,

and −7.33 kcal/mol at the BLYP-D3(BJ)/def2-SVP, BLYP-D3(BJ)/def2-

TZVP, and BLYP-D3(BJ)/def2-QZVP levels, respectively. We note the (ex-

pectedly large) BSSE when using the smallest (def2-SVP) basis set, and

how this error is practically negligible with the (large) def2-TZVP exten-

sion (around 0.2 kcal/mol with respect to the nearly-converged def2-QZVP

value). Interestingly, the BLYP-D3(BJ)/def2-TZVP method gives for the

tubular structure a value for ∆Ebinding of −12.95 kcal/mol, which is 1.7 times

larger than the corresponding for the lateral case.

However, the use of large basis sets (such as def2-TZVP and beyond)

might hamper the study of larger nanoaggregates of [6]CPP molecules if

needed. This is why we apply next, and to the lateral case again, the less

costly HF-3c method, noticing for fully optimized geometries that: (i) the

pore size of a [6]CPP monomer amounts to 8.36 Å, and it is thus close to the

value (8.39 Å) obtained before with the BLYP-D3(BJ)/def2-QZVP method;

and (ii) the ∆Ebinding value is now −7.26 kcal/mol, being also very close to the

best value (−7.33 kcal/mol) obtained with the BLYP-D3(BJ)/def2-QZVP

method. These results seem to render the HF-3c method as very accurate
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for further studies of large systems, as it has been also recently highlighted

for the refinement of protein structures [68]. As a matter of example, the

tubular alignment for a dimer of [6]CPP molecules is now predicted to have a

∆Ebinding value of −12.36 kcal/mol, and again approximately twice as large

as that for the lateral arrangement studied before, which also points to a

possible microscopic epitaxy-like growth mechanism.

We can therefore afford with the HF-3c method the study of more ex-

tended (e.g. lateral trimer and tetramer) fully optimized packing forms (see

the bottom structure displayed in Figure 3) thanks to the excellent trade-off

found between accuracy and computational cost. Actually, the ∆Ebinding en-

ergy is calculated now to be −19.48 and −27.32 kcal/mol, for the trimer and

tetramer, respectively. We additionally apply a three-body correction, see

Eq. (2), to account for part of the still missing many-body effects [69, 70],

which is repulsive and amounts to 0.89 and 1.51 kcal/mol for the trimer

and the tetramer, respectively, leading to final estimates of −18.59 and and

−25.81 kcal/mol. If we divide now this association energy by the number

of interacting pairs of dimers, the strength of the dimer interactions can be

estimated, with due caution, to be −6.20 and −5.16 kcal/mol, respectively.

We want to note in passing that the energies are now lower than those cal-

culated for an isolated dimer since the latter misses some many-body effects.

However, if we apply the BLYP-NL/def2-QZVP method, at the HF-3c opti-

mized structure for a dimer, we find an energy of −5.81 kcal/mol. The above

results point towards a ∆Ebinding ≃ 5− 6 kcal/mol as a rough estimate for a

dimer of lateral molecules within the same layer of the crystal structure; and

further legitimate the conclusions dropped before about the larger stability

of the tubular arrangement.
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3.2.3 Crystalline structure

The crystalline structure is necessarily more involved due the large set of

existing intra-layer and inter-layer (dimer) interactions. One can calculate

the lattice or cohesive energy through the set of unique dimer interactions

within the unit cell [71–73]. Structural data for the unit cell, as taken from

the Cambridge Crystallographic Data Centre (code archive CCDC 852989),

were used rigidly herein. Figure 4 shows that in this case they reduce to

the three pairs named here as lateral (i.e. two adjacent molecules belonging

to the same layer and interacting along the a, b directions), tubular-like (i.e.

two adjacent and superimposed molecules belonging to different layers and

interacting along the c axis), and diagonal (i.e. two molecules belonging to

different layers but not superimposed). In this case, the cohesive energy is

given by:

Ecohesive =
1

2

dimers
∑

i

ni∆E
(i)
binding, (7)

where ni refers to the number of symmetry-related pairs, with their corre-

sponding binding energy calculated by the HF-3c method. The result must

be divided by two due to the counting method used, see Ref. [74] for further

details. We obtain ∆Ebinding values (in kcal/mol) of −7.23 (ni = 6), −12.92

(ni = 2), and −3.74 (ni = 12) for the lateral, tubular-like, and diagonal

packing motifs, respectively, which we use next to feed Eq. (7), yielding a

cohesive energy of −57.0 kcal/mol.

We now proceed to compare the above estimate with that obtained by

dispersion-corrected DFT calculations using periodic boundary conditions
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(PBC) [75–77] as:

Ecohesive =
Ebulk

Z
− Emolecule, (8)

where Ebulk is the total energy of a unit cell (a = b = 19.3957 Å, c = 6.1998 Å,

α = β = 90◦, γ = 120◦), including Z molecules, and Emolecule the energy of an

isolated molecule, both energies calculated here at the dispersion-corrected

BLYP-D2 level. The ABINIT code [78–80] was employed for the calculations

we report next. The technical details for these calculations are briefly pre-

sented next for clarity: (i) the norm-conserving Martins-Troullier pseudopo-

tentials of the extended Car-Parrinello molecular dynamics pseudolibrary

(http://cpmd.org), converted to the FHI format, were employed [81]; (ii) a

cutoff energy of plane waves was fixed at 100Ry after checking for conver-

gence of values up to 0.1 kJ/mol; (iii) the Monkhorst-Pack scheme was used

to sample the Brillouin zone, with a k-point grid of 2x2x6 checked also for

convergence with respect to the corresponding 3x3x6 grid; and (iv) the en-

ergy of the corresponding monomer was obtained at the Γ point using a cell

of dimensions 35x35x20 Å alongside the x, y, and z directions, respectively,

checked also for convergence with respect to a cell of dimensions 40x40x25 Å.

This leads to a calculated cohesive energy of −47.6 kcal/mol, slightly lower

than that calculated before at the HF-3c level from pair interactions.

Nonetheless, the agreement found between the two values is quite remark-

able, taking into account the strong differences between both computational

strategies. This allows us to consider a value around 50 kcal/mol as a first

estimate of the [6]CPP cohesive energy. These results indicate also that

the computationally cheap HF-3c method provides accurate-enough values,

in agreement with previous findings for the X23 dataset of molecular crys-

tals [82], and can be used for instance to quantitatively bracket the cohesive
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energies or to rapidly screen larger systems. Finally, the PBC-BLYP-D2

value is made positive and further used to estimate a sublimation enthalpy

(at the room temperature of 298.15 K and not yet measured [83]) of 42.6

kcal/mol by using the expression ∆sH(T ) = −Ecohesive − 2RT , with 2RT

being the thermal contribution to be included [84–88].

4 Concluding remarks

In summary, we have theoretically studied first a set of intra-molecular

properties of increasingly larger [n]CPP (n = 4 − 12) systems to better un-

derstand the influence of the dispersion interactions, as a function of the

system size. Despite the fact that the diameter of the macrocycle increases

with n, and thus the face-to-face interactions between atoms belonging to

opposite benzene rings are reduced due to the decay with their increasing

distance, these macrocycles still hold large interactions between adjacent

benzene rings. Hence, these interactions are found to slightly affect all kind

of properties of isolated molecules, such as the diameter of the macrocycle,

the dihedral angles between adjacent benzene rings, the strain energy to close

the chain into a macrocycle, or the frontier orbital energies and their corre-

sponding energy difference.

Then, in a further step, we have thoroughly extended the study to the

self-aggregation of [6]CPP molecules, which is known to form discontinuous

nanotube-like structures upon crystallization. We have systematically stud-

ied a dimer ([6]CPP· · ·[6]CPP) in the two main arrangements found in the

solid-state: either with the two macrocycles being lateral or with one on top

of the another. Our results have shown a much larger energy stability, driven
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completely by non-covalent interactions, of the latter structure with respect

to the former, which might help to understand the mechanism followed by

these molecules upon crystallization.

Besides this, with the help of the whole set of results for the unique dimer

packing motifs, along several directions of the crystalline lattice, we have cal-

culated the (strong) cohesive energy of the [6]CPP crystals. The seemingly

large value found has been further confirmed using periodic boundary con-

ditions, giving us confidence in the value obtained.

We hope these results will help to understand better the rich properties

of these compounds, as well as to pave the way towards further theoretical

studies of self-aggregation or inclusion compounds formed by these fascinat-

ing molecules.
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[48] P. Jurečka, J. Černý, P. Hobza, D. R. Salahub, J. Comput. Chem. 2007,

28, 555.

[49] O. A. von Lilienfeld, A. Tkatchenko, J. Chem. Phys. 2010, 132, 234109.

[50] M. R. Kennedy, A. R. McDonald, A. E. DePrince III, M. S. Marshall,

R. Podeszwa, C. David Sherrill, J. Chem. Phys. 2014, 140, 121104.

[51] O. A. Vydrov, T. Van Voorhis, J. Chem. Phys. 2010, 133, 244103.

[52] W. Hujo, S. Grimme, J. Chem. Theory Comput. 2011, 7, 3866.

[53] W. Hujo, S. Grimme, J. Chem. Theory Comput. 2013, 9, 308.

[54] R. Sure, S. Grimme, J. Comput. Chem. 2013, 34, 1672.

[55] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,

J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Peters-

son, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov,

J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota,

R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,

H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro,

M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov,

R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant,

S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J.

E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts,

R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W.

Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth,

P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas,
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• Table 1. Summary of main computational details employed in the

study.

• Table 2. Evolution of the diameter (d, in Å) of increasingly longer

[n]CPP compounds, as calculated at the B3LYP-D3(BJ)/6-31+G* level.

The difference with respect to previously reported B3LYP/6-31G* dispersion-

uncorrected values is shown in parentheses.

• Table 3. Evolution of strain energy (∆Hstrain, in kcal/mol) and HOMO-

LUMO energy difference (∆ǫ, in eV) of increasingly longer [n]CPP

compounds, as calculated at the B3LYP-D3(BJ)/6-31+G* level.
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Table 1:

Dispersion Basis Software

Property Method correction sets package Release

d, Co-Cipso-Cipso′-Co′ B3LYP -D3(BJ) 6-31+G* GAUSSIAN09 D.01

∆Hstrain B3LYP -D3(BJ) 6-31+G* GAUSSIAN09 D.01

∆Ebinding BLYP -D3(BJ) def2-TZVP/def2-QZVP ORCA 3.0.0

-NL def2-TZVP/def2-QZVP ORCA 3.0.0

HF-3c -D3(BJ) – ORCA 3.0.0

Ecohesive BLYP -D2 plane waves/pseudopotentials ABINIT 7.4.3

HF-3c -D3(BJ) – ORCA 3.0.0
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Table 2:

n d

4 5.68 (−0.02)

5 6.67 (−0.38)

6 8.38 (−0.02)

7 9.48 (−0.30)

8 11.10 (−0.02)

9 12.32 (−0.17)

10 13.85 (−0.02)

11 15.12 (n.a.)

12 16.58 (−0.02)

32



Table 3:

n ∆Hstrain ∆ǫ

4 134.12 2.47

5 108.58 2.60

6 89.80 3.07

7 79.16 3.11

8 67.77 3.35

9 61.91 3.35

10 54.25 3.49

11 50.72 3.48

12 45.15 3.57
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• Figure 1. Chemical structure of a model armchair SWNT (left) and

that of the investigated [n]CPP compounds (right). The hydrogen

atoms and corresponding C–H bonds have been omitted for clarity.

• Figure 2. From top to bottom: (i) Evolution of strain energies with

the number (n) of rings in [n]CPP compounds; (ii) evolution of energy

difference between the frontier orbitals with the number (n) of rings in

[n]CPP compounds.

• Figure 3. From top to bottom: Optimized structure of a dimer in

both (a) lateral and (b) tubular-like views, and of a (c) tetramer of

[6]CPP molecules.

• Figure 4. Packing arrangement of [6]CPP in the crystalline state.
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