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Abstract. Let A ∈ Rd×d, d ≥ 1 be a dilation matrix with integer entries and

| detA| = 2. We construct several families of compactly supported Parseval
framelets associated to A having any desired number of vanishing moments.

The first family has a single generator and its construction is based on refinable

functions associated to Daubechies low pass filters and a theorem of Bownik.
For the construction of the second family we adapt methods employed by

Chui and He and Petukhov for dyadic dilations to any dilation matrix A. The

third family of Parseval framelets has the additional property that we can find
members of that family having any desired degree of regularity. The number

of generators is 2d +d and its construction involves some compactly supported

refinable functions, the Oblique Extension Principle and a slight generalization
of a theorem of Lai and Stöckler. For the particular case d = 2 and based on

the previous construction, we present two families of compactly supported

Parseval framelets with any desired number of vanishing moments and degree
of regularity. None of these framelet families have been obtained by means of

tensor products of lower–dimensional functions. One of the families has only
two generators, whereas the other family has only three generators. Some

of the generators associated with these constructions are even and therefore

symmetric. All have even absolute values.

1. Introduction

The purpose of this paper is to construct symmetric smooth compactly supported
tight wavelet frames in L2(Rd) having any desired number of vanishing moments
associated to a general dilation matrix and such that the number of generators
does not depend on the number of vanishing moments and the degree of regularity.
None of these framelet families have been obtained by means of tensor products of
lower–dimensional functions.

The construction of multivariate compactly supported wavelet frames is an inter-
esting problem, both from the theoretical and the applied points of view. Compactly
supported wavelets and wavelets frames constructed by univariate tensor product
of wavelets (i.e., separable wavelets) have been used widely. However, Belogay and
Wang ([2]) remark that although separable wavelet bases are easy to construct and
simple to study, they nevertheless have a number of drawbacks. Referring specifi-
cally to image processing in R2 they point out that such wavelets have very little
design freedom, and that separability imposes an unnecessary product structure
on the plane, which is artificial for natural images. This can create unpleasant
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artifacts that become obvious at high image compression ratios. Velisavljević et al.
([49]) note that one-dimensional discontinuities in images (edges and contours) that
are very important elements in visual perception, intersect too many wavelet basis
functions and lead to a nonsparse representation, i.e, a large number of nonzero
transform coefficients. To avoid this, one usually uses wavelet frames associated to
a general dilation or nonseparable wavelets. Numerous papers have been written
on the construction of nonseparable wavelets, some influenced in part by Kovačević
and Vetterli’s seminal paper [29]. In view of these remarks, and bearing in mind
the redundancy inherent in representation by frames, it is clear that the study of
wavelet frames associated to a general dilation may be useful in practical applica-
tions.

The construction of tight wavelet frames has been discussed in an extensive and
rich literature. A relationship between vanishing moments of a framelet and good
approximation properties was shown, for instance, by Daubechies, Han, Ron and
Shen [13]. In dimension one and with dyadic dilation, Daubechies [11] constructed
compactly supported orthonormal wavelets with any number of vanishing moments
and any degree of regularity. For the multivariate case with a general dilation
matrix, it is still not known if there exist compactly supported smooth wavelets
with an arbitrary number of vanishing moments. Even for tight wavelet frames, the
problem of constructing compactly supported smooth tight wavelet frames having
vanishing moments and a fixed number of generators is open.

Han [22] proved the existence of tight wavelet frames associated to any dilation

matrix on Rd, such that their generators are compactly supported, with degree of
smoothness and vanishing moments of order as large as desired, and their number
bounded by a constant depending on the dimension and the determinant of the
dilation matrix, whereas Gröchenig and Ron [19] and Ron and Shen [38], [39] found
constructions of compactly supported tight framelets with any desired degree of
smoothness.

Associated to dyadic dilations, Chui, He and Stöckler [7] introduced the notion
of vanishing moment recovery function and applied it to the construction of com-
pactly supported tight wavelet frames with two generators to achieve the maximum
order of vanishing moments as allowed by an associated refinable function. Among
other significant results, Han and Mo [27] show how from a compactly supported
real-valued refinable function with stable shifts one can construct a tight wavelet
frame set with three generators having the highest possible order of vanishing mo-
ments. Related to this paper, there are several constructions by Chui and He [6],
Selesnick [44], Ayache [1], Petukhov [34], [35], Dong and Shen [14], Han [26], [25]
and Salvatori and Soardi [40]. Compactly supported wavelets with dilation factor 3
are constructed in Chui and Lian [9]. For dilation factor 4 see Han [21]. The paper
by Chui, He, Stöckler and Sun [8] deals with the construction of compactly sup-
ported tight wavelet frames with many vanishing moments associated to integral
factor dilations. In the same context, Petukhov [36] develops an algorithm for con-
structing tight wavelet frames from a given refinable function with minimal number
of generators and supports of minimal size. With a more general dilation matrix,
Skopina [46] (see also [47], [45]) describes an algorithm to construct compactly sup-
ported wavelet frames with vanishing moments. In Krivoshein [30], wavelet frame
systems providing any desired approximation order are constructed for any matrix
dilation.
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With a general dilation matrix, there are constructions of wavelet bi–frames. For
instance, see Ehler [15] and Ehler and Han [16].

In [41], San Antoĺın and Zalik developed a method to generate wavelet frames
using the Oblique Extension Principle and a slight generalization of a theorem of Lai
and Stöckler [32]. This method was used in [42] to construct, for a 2× 2 expansive
dilation matrix with integer entries and determinant ±2, families of compactly
supported tight framelets with three generators and with any desired degree of
smoothness. The same method was used in [43] to construct compactly supported
tight framelets having the following additional properties: both the framelets and
the refinable functions that generate them can be made as smooth as desired;
moreover, these refinable functions are nonseparable, in the sense that they cannot
be expressed as the product of two functions defined on lower dimensions.

In this paper we will use the same method to construct smooth compactly sup-
ported Parseval framelets and refinable functions with good approximation prop-
erties in L2(Rd), d ≥ 1, associated to a d × d expansive dilation matrix A with
integer entries and |detA| = 2. In Section 3 we construct a family of compactly
supported Parseval framelets with one or two generators and any desired number of
vanishing moments. In Section 4 we construct families of compactly supported Par-
seval framelets with generators that have any given number of vanishing moments
and any desired degree of regularity. For this family, the number of generators is
2d + d, and therefore does not depend on the regularity or the number of vanish-
ing moments. For d = 2 this allows us to construct Parseval framelets with six
generators.

However, in the fifth and last section we present families of Parseval framelets
with only two or three generators and d = 2. Apart from other implications, this
improves our results in [42] by adding the additional property of having any desired
number of vanishing moments.

2. Notation, Definitions, and Underlying Assumptions

We now introduce our notation, definitions, and underlying assumptions.
The sets of strictly positive integers, integers, rational numbers and real numbers

will be denoted by N, Z, Q and R respectively. We will write t = (t1, . . . , td)
T ∈ Rd

and x = (x1, . . . , xd)
T ∈ Rd. Unless otherwise stated, we will assume that n,m ∈ N.

Given a matrix A, its transpose will be denoted by AT , and the conjugate of its
transpose by A∗.

We say that A ∈ Rd×d is a dilation matrix preserving the lattice Zd if all its
eigenvalues have modulus greater than 1 and AZd ⊂ Zd. The set of all d×d dilation
matrices preserving the lattice Zd will be denoted by Ed(Z). Note that if A ∈ Ed(Z)

then |detA| is an integer greater than 1, and the quotient groups Zd/AZd and

A−1Zd/Zd are well defined. From [18, Lemma 2] we know that Zd/AZd has exactly

|detA| cosets, which readily implies that also A−1Zd/Zd has exactly |detA| cosets.
With the exception of Theorems B, D, and E, or unless otherwise stated, will assume
throughout that A ∈ Ed(Z) is such that |detA| = 2, By ΓA = {r0(A), r1(A)} we

will denote a full collection of representatives of the cosets of (AT )−1Zd/Zd such

that r0(A) = (0, . . . , 0)T and r1(A) = (r
(1)
1 , . . . , r

(d)
1 )T ∈ {0, 1/2}d. The existence

of ΓA is proved in Lemma 1 below. The letter a as a subscript will always stand

for an index in {1, . . . , d} such that r
(a)
1 = 1/2.
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Let f̂ denote the Fourier transform of the function f . Thus, if f ∈ L1(Rd) and

x, t ∈ Rd, then

f̂(t) :=

∫
Rd

f(x)e−2πix·tdx,

where x · t denotes the dot product of vectors x and t. The Fourier transform is
extended to L2(Rd) in the usual way.

A sequence {φn}∞n=1 of elements in a separable Hilbert space H is a frame for H
if there exist constants C1, C2 > 0 such that

C1‖h‖2 ≤
∞∑
n=1

|〈h, φn〉|2 ≤ C2‖h‖2, ∀h ∈ H,

where 〈·, ·〉 denotes the inner product on H. The constants C1 and C2 are called
frame bounds. The definition implies that a frame is a complete sequence of elements
of H. A frame {φn}∞n=1 is tight if we may choose C1 = C2.

Let A be any dilation matrix in Ed(Z). A set of functions Ψ = {ψ1, . . . , ψN} ⊂
L2(Rd) is called a wavelet frame or framelet with dilation A, if the system

{ψ`,j,k(x); j ∈ Z,k ∈ Zd, 1 ≤ ` ≤ N},

where ψ`,j,k(x) := |detA|j/2ψ`(Ajx + k), is a frame for L2(Rd). If this system is a

tight frame for L2(Rd) then Ψ is called a tight wavelet frame or tight framelet. If
the functions ψ`, ` = 1, . . . N are linearly independent they are called the genera-
tors of the framelet. If the frame constant is equal to 1 it will be called a Parseval
framelet in L2(Rd). Thus we have:

N∑
`=1

∑
j∈Z

∑
k∈Zd

|〈f, ψ`,j,k〉|2 = ||f ||2 ∀f ∈ L2(Rd).

A wavelet frame Ψ = {ψ1, . . . , ψN} ⊂ L2(Rd) has vanishing moments of order

m ∈ {0, 1, · · · }, if ψ̂`, ` = 1, · · · , N has a zero of order m at the origin.

3. Compactly supported tight framelets with vanishing moments

In this section we construct Parseval framelets associated to A with vanishing
moments of order n, and having one or two generators. In our construction we will
use the following trigonometric polynomials in R. For n = 1, 2, 3, · · · , let

(1) gn(t) := 1− cn
∫ t

0

(sin 2πξ)2n+1dξ,

where cn = (
∫ 1/2

0
(sin 2πξ)2n+1dξ)−1. These polynomials satisfy the following iden-

tity:

(2) gn(t) + gn(t+ 1/2) = 1.

For convenience, we now list additional properties of the functions gn:

Lemma A. ([50, Lemma 4.8]) For n = 1, 2, · · · , the trigonometric polynomials
gn satisfy the following:

(a) gn(0) = 1;
(b) gn(t) > 0 if t /∈ 1/2 + Z;
(c) gn(t) = 0 if t ∈ 1/2 + Z;
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(d) gn is Z–periodic and even.

From a lemma of Riesz ([12, Lemma 6.1.3] or [33, Lemma 10, p. 102]) we know
that there exist trigonometric polynomials

(3) qn(t) :=

2n+1∑
k=0

α
(n)
k e2πikt, α

(n)
k ∈ C,

such that |qn(t)|2 = gn(t) and qn(0) = 1. The coefficients of these polynomials may
be obtained by spectral factorization ([17]) and may be assumed to be real–valued.
From (2) we see that

(4) |qn(t)|2 + |qn(t+ 1/2)|2 = 1.

The following lemma confirms the existence of the collections of representatives
ΓA of the cosets of (AT )−1Zd/Zd that were defined in the previous section.

Lemma 1. There exists a full collection of representatives

ΓA = {r0(A) = (0, . . . , 0)T , r1(A) = (r
(1)
1 , . . . , r

(d)
1 )T }

of the cosets of (AT )−1Zd/Zd, such that ΓA is a proper subset of {0, 1/2}d.

Proof. Since the entries of AT are integers, it follows that the entries of (AT )−1 are
rational numbers. Thus

r1 := (r
(1)
1 , . . . , r

(d)
1 )T ∈ Qd.

Moreover 2r1 ∈ Zd or, equivalently, 2r
(`)
1 ∈ Z, ` = 1, . . . , d, because (AT )−1Zd/Zd

is an additive group of order 2.

Thus r
(`)
1 = (1/2)w

(`)
1 + k

(`)
1 where w

(`)
1 ∈ {0, 1} and k

(`)
1 ∈ Z, and we conclude

that Γ is a subset of a full collection of representatives of the cosets of 2−1Zd/Zd.
Since 2−1Zd/Zd is an additive group with cardinality 2d, the assertion follows. �

3.1. Tight framelets with one generator. Let us construct tight wavelet frames
with one generator and vanishing moments. Our construction is based on refinable
functions associated to Daubechies low pass filters and a theorem of Bownik.

We have the following

Proposition 1. Let n ∈ N and let

(5) Pn(t) = qn(ta),

where qn is defined by (3). Then the infinite product

∞∏
j=1

Pn((AT )−jt)

converges to a nonzero continuous function φ̂n in L2(Rd) such that ‖φ̂n‖L2(Rd) ≤ 1,

φ̂n(0) = 1, and satisfies the refinement equation

φ̂n(AT t) = Pn(t)φ̂n(t), t ∈ Rd.

Moreover, the function φn ∈ L2(Rd) whose Fourier transform is φ̂n is nonzero and

compactly supported, and the functions |φ̂n(t)|, |Pn(t)|, and |Pn(t + r1(A))| are
even.
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Proof. Since |qn(t)|2 = gn(t) and gn(t) is even, we readily conclude that |Pn(t)| is

even, which in turn readily implies that |φ̂n(t)| is even. By periodicity,

|Pn(−t + r1(A))| = |Pn((−t− r1(A)) + 2r1(A))| = |Pn(t + r1(A))|.

Since Pn is a trigonometric polynomial on Rd such that Pn(0) = 1 and

(6) |Pn(t)|2 + |Pn(t + r1)|2 = gn(ta) + gn(ta + 1/2) = 1,

the infinite product
∏∞
j=1 Pn((AT )−jt) converges pointwise. Thus the assertions

follow by [3, Lemma 4 and Theorem 1], except for the compactness of the support

of φ̂n, which is established replicating an argument of Wojtaszczyk [50, p. 79]. �

Proofs of parts of Proposition 1 for the dyadic case and a single variable may be
found in e.g. [4, Corollary 5.1], [12] or [28].

We have:

Theorem 1. Let ψn ∈ L2(Rd) be defined by

(7) ψ̂n(AT t) := e2iπtaPn(t + r1(A))φ̂(t).

Then ψn is a compactly supported Parseval framelet in L2(Rd) with vanishing mo-

ments of order n, and both the absolute values of ψ̂n(t) and the generator function
φ(t) are even.

Proof. Let r1 := r1(A). A straightforward computation shows that

(8) Pn(t)e−2iπtaPn(t + r1) + Pn(t + r1)e−2iπ(ta+1/2)Pn(t + r1 + r1) = 0.

If `0 := (0, . . . , 0) and `1 := AT r1, we readily see that {`0, `1} is a full collection

of representatives of the cosets of Zd/ATZd. If m0(t) := Pn(t) and m1(t) :=

e2iπtaPn(t + r1), then (6) implies that

|m0(t)|2 + |m1(t)|2 = 1,

(8) implies that

m0(t)m1(t) +m0(t + (AT )−1`1)m1(t + (AT )−1`1) = 0,

and applying [3, Lemma 5 and Theorem 4] we conclude that ψn is a Parseval
framelet.

Since φn has compact support and the function e2iπtaPn(t + r1) is a trigono-
metric polynomial, it follows that the function ψn is compactly supported. The

function |ψ̂n(t)| is even because |φ̂n(t)| and |Pn(t + r1(A))| are even.
We now verify that ψn has vanishing moments of order n. Since the absolute

value of the eigenvalues of AT is greater than one, there exists C > 0 such that

‖AT t‖ ≥ C‖t‖. Therefore, since 0 ≤ |φ̂(t)| ≤ 1, using (6) we have:

lim
t→0

|ψ̂n(AT t)|2

‖AT t‖2n
≤ lim

t→0

|Pn(t + r1)|2

C2n‖t‖2n
≤ lim
ta→0

1− gn(ta)

C2n|ta|2n

=
1

C2n
lim
ta→0

cn
∫ ta

0
(sin 2πξ)2n+1dξ

|ta|2n
= 0.

�
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3.2. Tight framelets with two generators. Let us construct tight wavelet frames
with two generators and vanishing moments. We obtain these tight framelets using
the Unitary Extension Principle and the refinable functions introduced in the pre-
vious subsection. We adapt the constructions by Chui and He [6] and Petukhov [34]
(see also [10]), which were done for dyadic dilations. Our argument is based on the
Oblique Extension Principle, a method based on the Unitary Extension Principle;
it was developed by Chui, He and Stöckler [7], and independently by Daubechies,
Han, Ron, and Shen [13], who gave the method its name. The Oblique Extension
Principle may be formulated as follows:
Theorem B. Let A ∈ Ed(Z) and let φ ∈ L2(Rd) be compactly supported and
refinable, i.e.

φ̂(AT t) = P (t)φ̂(t),

where P (t) is a trigonometric polynomial. Assume moreover that |φ̂(0)| = 1. Let
S(t) be another trigonometric polynomial such that S(t) ≥ 0 and S(0) = 1. Assume
there are trigonometric polynomials or rational functions Q`, ` = 1, · · · , N , that
satisfy the OEP condition

S(A∗t)P (t)P (t + j) +

N∑
`=1

Q`(t)Q`(t + j)(9)

=

{
S(t) if j ∈ Zd, .

0 if j ∈
(

(A∗)−1(Zd)/Zd
)
\ Zd

If

ψ̂`(A
∗t) := Q`(t)φ̂(t), ` = 1, . . . , N,

then Ψ = {ψ1, . . . , ψN} is a Parseval framelet in L2(Rd) with dilation matrix A.

With an additional decay condition, Theorem B follows from [13, Proposition 1.11],
except for the value of the frame constant, which follows from, e.g. [37, Theorem
6.5]. However, recent results of Han imply that this decay condition is redundant.
Indeed, Theorem B in its present formulation is a consequence of Proposition 4,
Corollary 12 and Theorem 17 in [24] (for a simpler version of Han’s results in
dimension one see [23]).

We need the following version of Proposition 1:

Proposition 2. Let gn be defined by (1), let

(10) gn,m(t) := [gn(t)]m,

and let Pn,m(t) := [gn(ta)]m. Then the infinite product
∞∏
j=1

Pn,m((AT )−jt)

converges to a nonnegative continuous function φ̂n,m in L2(Rd) such that

‖φ̂n,m‖L2(Rd) ≤ 1, φ̂n,m(0) = 1, and φ̂n,m satisfies the refinement equation

φ̂n,m(AT t) = Pn,m(t)φ̂n,m(t), t ∈ Rd.

Moreover, the function φn,m ∈ L2(Rd) whose Fourier transform is φ̂n,m is nonzero,
compactly supported, ‖φn‖L2(Rd) ≤ 1, and the functions φn,m(t), Pn,m(t), and

Pn,m(t + r1(A)) are even.
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Proof. Since

[gn(0)]2m = 1 and [gn(t)]2m + [gn(t+ 1
2 )]2m ≤ 1,

the first part of the proof is established proceeding as in the proof of [3, Theorem 1]
(see also [22, Lemma 2.1]). That |φn,m(t)|, Pn,m(t), and Pn,m(t + r1(A)) are even
follows by the same arguments as in the proof of Proposition 1, bearing in mind
that if a function is even, so is its inverse Fourier transform.

Finally, replicating an argument of Wojtaszczyk [50, p. 79] it is easy to see that

φ is compactly supported on Rd. �

Using Proposition 2 we can now prove:

Theorem 2. Let hn,m be a trigonometric polynomial on R such that

|hn,m(t)|2 = 1− [gn,2m(t) + gn,2m(t+
1

2
)],

let Hn,m(t) := hn,m(ta), and let

Ψn,m = {ψ(1)
n,m, ψ

(2)
n,m}

be the set of functions in L2(Rd) defined by

ψ̂(1)
n,m(AT t) := e2πitaPn,m(t + r1(A))φ̂n,m(t),

ψ̂(2)
n,m(AT t) := Pn,m(t)Hn,m(AT t)φ̂n,m(t).

Then Ψn,m is a Parseval framelet in L2(Rd) with dilation matrix A and vanish-

ing moments of order n, the functions ψ
(`)
n,m have compact support, the functions

|ψ̂(`)
n,m(t)| are even, and the generating function φn,m(t) is even and has compact

support.

Proof. Let r1 := r1(a), S(t) := gn,2m(ta) + gn,2m(ta + 1
2 ), Q1(t) := e2πitaPn,m(t +

r1), and Q2(t) := Pn,m(t)Hn,m(AT t). Then

S(AT t)|Pn,m(t)|2 +

2∑
`=1

|Q`(t)|2 =

S(AT t)|Pn,m(t)|2 + |Pn,m(t + r1)|2 + |Pn,m(t)Hn,m(AT t)|2 =

S(AT t)gn,2m(ta) + gn,2m(ta +
1

2
) + gn,2m(ta)(1− S(AT t)) = S(t).

Moreover, bearing in mind that AT r1 ∈ Zd, we have

S(AT t)Pn,m(t)Pn,m(t + r1) +

2∑
`=1

Q`(t)Q`(t + r1) =

S(AT t)Pn,m(t)Pn,m(t + r1)− Pn,m(t + r1)Pn,m(t)

+ Pn,m(t)Hn,m(AT t)Pn,m(t + r1)Hn,m(AT (t + r1)) =

S(AT t)gn,m(ta)gn,m(ta +
1

2
)− gn,m(ta +

1

2
)gn,m(ta)+

gn(ta)gn,m(ta +
1

2
)(1− S(AT t)) = 0,
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and applying the Oblique Extension Principle we conclude that Ψn,m is a Parseval
framelet.

We now show that the functions in Ψn,m have vanishing moments of order n.
Since the absolute values of the eigenvalues of AT are greater than one, there exists

C > 0 such that ‖AT t‖ ≥ C‖t‖. Moreover, using the inequalities 0 ≤ |φ̂n,m(t)| ≤ 1
and gn,2m(t) + gn,2m(t+ 1

2 ) ≤ 1, we have:

lim
t→0

|ψ̂(1)
n,m(AT t)|2

‖AT t‖2n
≤ lim

t→0

|Pn,m(t + r1)|2

C2n‖t‖2n
≤ lim

t→0

1− gn,2m(ta)

C2n|ta|2n
.

We can write gn,2m(t) = 1 + pn(t) where pn is a trigonometric polynomial on R
such that

lim
t→0

|pn(t)|
|t|2n

= 0.

Hence ψ̂
(1)
n,m has a zero of order n at the origin.

Now,

lim
t→0

|ψ̂(2)
n,m(t)|2

‖t‖2n
≤ lim

t→0

|Hn,m(t)|2

C2n‖t‖2n
≤ lim

t→0

1− gn,2m(ta)

C2n|ta|2n
= 0,

and we conclude that ψ̂
(2)
n,m has a zero of order n at the origin.

The remaining assertions follow as in the proof of Theorem 1. �

4. Smooth compactly supported tight framelets with vanishing
moments

In this section we construct tight framelets that have the additional property
of regularity. Whereas the tight frames in the previous section have only one or
two generators, the framelets we construct here have 2d + d generators, which,
nevertheless, is a number that does not depend on the smoothness or the number
of vanishing moments.

We have

Lemma 2. Let the trigonometric polynomial gn,m(t) be defined by (10), and

(11) Pn,m(t) :=

d∏
s=1

gn,m(ts).

Then Pn,m(t) is nonnegative and even. Moreover,

(12) [Pn,m(t)]2 + [Pn,m(t + r1(A))]2 ≤ 1.

Proof. Since gn is nonnegative and even, it follows that Pn,m(t) is nonnegative and
even.

Since 0 ≤ gn(t) ≤ 1, we have

[Pn,m(t)]2 + [Pn,m(t + r1(A))]2 ≤ gn(ta) + gn(ta + 1/2) = 1.

�

We also have the following analog of Proposition 1. The proof may be done using
Lemma 2 and the same arguments as in the proof of Proposition 2.
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Proposition 3. The infinite product

∞∏
j=1

Pn,m((AT )−jt)

converges to a nonnegative even continuous function φ̂n,m in L2(Rd) such that

‖φ̂n,m‖L2(Rd) ≤ 1, φ̂n,m(0) = 1, and φ̂n,m satisfies the refinement equation

φ̂n,m(AT t) = Pn,m(t)φ̂n,m(t), t ∈ Rd.

Proof. The proof follows from Lemma 2, proceeding as in the proof of [3, Theorem
1] (see also [22, Lemma 2.1]). �

The following well known result may be found in, e.g., [50, Appendix A.2]. The
proof is straightforward and will be omitted.

Theorem C. Let C0 be the class of continuous functions in L2(Rd), and let Cr,
r = 1, 2, . . . be the class of functions f such that all partial derivatives of f of order
not greater than r are continuous and in L2(Rd). If

|f̂(t)| ≤ C(1 + |t|)−N−ε

for some integer N ≥ d and ε > 0, then f is in CN−d.

Implicit in the proofs of [48, Lemma 3.1], [50, Proposition 5.23] and [19, Re-
sult 2.6] is the following

Theorem D. Let A ∈ Ed(Z), let Γ = {r`}| detA|−1
`=0 be a collection of representatives

of the quotient set (AT )−1Zd/Zd such that r0 = 0, and let P be a trigonometric

polynomial on Rd such that P (r`) = 0 if ` 6= 0 and P (t) = 1 if and only if t ∈ Zd.
Then there exist numbers ε, C > 0 such that

∞∏
j=1

P ((AT )−j)(t) ≤ C|t|−ε, t ∈ Rd, t 6= 0.

We can now prove

Proposition 4. Let n ∈ N. Then there exist two positive constants ε and C such
that

(13)

∞∏
j=1

Pn,1((AT )−jt) ≤ C|t|−ε, t ∈ Rd, t 6= 0.

Proof. From Lemma A we know that g(t) = 1 if and only if t ∈ Z, which implies that

Pn,1(t) = 1 if and only if t ∈ Zd. Moreover, from the same Lemma A we also know
that g(t) = 0 if and only if t ∈ Z + 1/2. This in turn implies that Pn,1(r1) = 0 for

any full collection of representatives Γ = {r0 = (0, . . . , 0)T , r1 = (r
(1)
1 , . . . , r

(d)
1 )T }

of the cosets of (AT )−1Zd/Zd such that r1 ∈ {0, 1/2}d. The assertion now follows
from Theorem D. �

We will now obtain some refinable functions that we will use to construct tight
wavelet frames.
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Proposition 5. Let φ̂n,m be the function defined as in Proposition 3. Then the

function φn,m ∈ L2(Rd) whose Fourier transform is φ̂n,m is even, nonzero, and
compactly supported, and ‖φn,m‖L2(Rd) ≤ 1. Moreover, if εm− d > α > 1, where ε

is such that (13) is satisfied, then φn,m is in continuity class Cα.

Proof. Since φ̂n,m is in L2(Rd) and is nonzero, it follows that also φn,m is in L2(Rd)
and is nonzero. Moreover, ‖φn,m‖L2(Rd) = ‖φ̂n,m‖L2(Rd) ≤ 1.

Replicating the already mentioned argument of Wojtaszczyk [50, p. 79], it is easy

to see that φn,m is compactly supported on Rd.
It remains to prove the estimate for the degree of smoothness of φn,m. By

Proposition 4 we have

|φ̂n,m(t)| =
∞∏
j=1

Pn,m((AT )−jt) =

 ∞∏
j=1

Pn,1((AT )−jt)

m

≤ Cm|t|−εm.

Therefore, since φ̂n,m is continuous with φ̂n,m(0) = 1,

(14) |φ̂n,m(t)| ≤ K(1 + |t|)−εm.
Hence, if εm − d > α > 1, Theorem C implies that φn,m is in continuity class
Cα. �

We will use the following slight generalization of Theorem 3.4 of Lai and Stöckler
[32]. The proof is similar, and is outlined in [41, Theorem 1], where the theorem is
stated in a trivially equivalent form. We have included the constructive algorithm
implicit in the original formulation of the theorem.

Theorem E . Let A ∈ Rd×d be a dilation matrix preserving the lattice Zd, let
dA := |detA|, let {qs}dA−1

s=0 be a full collection of representatives of the cosets of

Zd/AZd with q0 = 0, and let {rs}dA−1
s=0 be a full collection of representatives of the

cosets of (AT )−1Zd/Zd with r0 = 0. Let P (t) be a trigonometric polynomial defined
on Rd that satisfies the condition

dA−1∑
s=0

|P (t + rs)|2 ≤ 1,

let

P(t) := (P (t + rs); s = 0, . . . , dA − 1)
T
,

and let

(15) M(t) := d
−1/2
A

(
ei2πql·(t+rs); l, s = 0, . . . , dA − 1

)
be the polyphase matrix, where s denotes the row index and l denotes the column
index.

Let the dA × 1 matrix function G(t) be defined by

(16) G(t) :=M∗(t)P(t) =
(
Lk(AT t); k = 0, . . . , dA − 1

)T
.

Suppose that there exist trigonometric polynomials P̃1(AT t), . . . , P̃M (AT t) such that

(17)

dA−1∑
k=0

|Lk(t)|2 +

M∑
j=1

|P̃j(t)|2 = 1.
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Let N := dA +M and let the N × 1 matrix function G(t) be defined by

G(t) :=
(
Lk(AT t); k = 0, . . . , dA − 1, P̃j(A

T t); 1 ≤ j ≤M
)T

,

and
Q̃(t) := IN×N − G(t)G∗(t).

Let H(t) denote the first dA ×N block matrix of Q̃(t),

Q(t) :=M(t)H(t),

and let [Q1(t), . . . , QN (t)] denote the first row of Q(t). Then the trigonometric
polynomials P and Q`, ` = 1, . . . , N , satisfy the identity

P (t)P (t + j) +

N∑
`=1

Q`(t)Q`(t + j)(18)

=

{
1 if j ∈ Zd, .

0 if j ∈
(

(AT )−1(Zd)/Zd
)
\ Zd.

Note that (18) is a particular case of (9).
Once we have obtained the trigonometric polynomial Pn,m(t) defined by (11)

and an associated refinable function φn,m ∈ L2(Rd) defined as in Proposition 5,
we may apply the algorithm described in Theorem E and the Oblique Extension
Principle to construct a family of tight framelets Ψ associated to the dilation matrix

A. All that remains is to find trigonometric polynomials P̃j(t) such that (17) holds.
Given n,m ∈ N and the trigonometric polynomial gn,m defined by (10), let hn,m

and un,m be trigonometric polynomials on R such that

|hn,m(t)|2 = 1− gn,2m(t)− gn,2m(t+ 1/2), and

|un,m(t)|2 = gn,2m(t) + gn,2m(t+ 1/2).
(19)

To see that these polynomials exist note that, for example,

1− gn,2m(t)− gn,2m(t+ 1/2) ≥ 0,

and, as before, the assertion follows applying the lemma of Riesz.
We prove:

Lemma 3. Let Ω := {0, 1/2}d \ ΓAT , let un,m(t) and hn,m(t) be trigonometric
polynomials that satisfy (19), let Pn,m(t) be defined by (11), let K = 2d − 2, and
let ρ : Ω→ {d+ 1, · · · ,K + d} be a bijection. If

P̃ (j)
n,m(AT t) := hn,m(tj)

d∏
s=j+1

un,m(ts), j = 1, · · · , d− 1,

P̃ (d)
n,m(AT t) := hn,m(td)

and
P̃ (ρ(r))
n,m (AT t) := Pn,m(t + r), r ∈ Ω,

then

(20)
∑

r∈ΓAT

|Pn,m(t + r|2 +

K+d∑
j=1

|P̃ (j)
n,m(AT t)|2 = 1.
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Proof. Let Γ = ΓAT . We have:∑
r∈Γ

|Pn,m(t + r)|2 +

K+d∑
j=1

|P̃ (j)
n,m(AT t)|2

=
∑

u∈{0,1/2}d
|Pn,m(t + u)|2 +

d∑
j=1

|P̃ (j)
n,m(AT t)|2

=

d∏
`=1

(
1∑
s=0

gn,2m(t` +
s

2
)

)
+

d∑
j=1

|P̃ (j)
n,m(AT t)|2.

Therefore∑
r∈Γ

|Pn,m(t + r)|2 +

K+d∑
j=1

|P̃ (j)
n,m(AT t)|2

=

d∏
j=1

|un,m(tj)|2 +

d−1∑
j=1

|hn,m(tj)|2
d∏

s=j+1

|un,m(ts)|2
+ |hn,m(td)|2

=
(
|un,m(t1)|2 + |hn,m(t1)|2

) d∏
j=2

|un,m(tj)|2

+

d−1∑
j=2

|hn,m(tj)|2
d∏

s=j+1

|un,m(ts)|2
+ |hn,m(td)|2

=

d∏
j=2

|un,m(tj)|2 +

d−1∑
j=2

|hn,m(tj)|2
d∏

s=j+1

|un,m(ts)|2
+ |hn,m(td)|2.

Repeating this procedure a finite number of times, we finally obtain∑
r∈Γ

|Pn,m(t + r)|2 +

K+d∑
j=1

|P̃ (j)
n,m(AT t)|2 = |un,m(td)|2 + |hn,m(td)|2 = 1,

as we wanted to prove. �

We are now ready to state the main result of this section.

Theorem 3. Let Pn,m(t) be defined by (11),

L0(AT t) :=
1√
2

(Pn,m(t) + Pn,m(t + r1(A)) ,

L1(AT t) :=
ei2πt·q1

√
2

(Pn,m(t)− Pn,m(t + r1(A)) ,

and let the functions Q
(`)
n,m(t), ` = 1, 2, . . . , 2d + d be the functions Q`(t), ` =

1, . . . , N , described in Theorem E with N = 2d + d and P (t) = Pn,m(t). Let

ψ̂(`)
n,m(AT t) := Q(`)

n,m(t)φ̂n,m(t), ` = 1, . . . , 2d + d,

Then Ψn,m := {ψ(`)
n,m(x) ; ` = 1, . . . , 2d+d} is a Parseval framelet in L2(Rd) with

dilation matrix A, the functions ψ
(`)
n,m are compactly supported, and have vanishing

moments of order n. If εm− d > α > 1 and ε satisfies (13), the functions ψ
(`)
n,m,



14 SMOOTH COMPACTLY SUPPORTED TIGHT FRAMELETS WITH VANISHING MOMENTS

` = 1, . . . , 2d + d, are in continuity class Cα. Moreover, the generating function
φn,m(t) is even and has compact support.

Proof. Since

|L0(AT t)|2 + |L1(AT t)|2 = |Pn,m(t + 0)|2 + |Pn,m(t + r1(A))|2,

Lemma 3 implies that (20) is satisfied, and from Theorem E we conclude that
Pn,m(t) and Q1(t), . . . , Q(2d+d)(t) satisfy (18). Applying the Oblique Extension
Principle (Theorem B), we conclude that Ψn,m is a Parseval framelet.

Since the functionsQ
(`)
n,m(t) are trigonometric polynomials and therefore bounded

on Rd, the smoothness of the functions ψ
(`)
n,m follows from (14) and Theorem C.

Since φn,m has compact support and the functions Q` are trigonometric poly-

nomials, it follows that the functions in ψ
(`)
n,m, ` = 1, · · · , 2d + d, are compactly

supported.
That φn,m(t) is even follows from Proposition 3.
It remains to prove that the functions in Ψn,m have vanishing moments of order

n. Since the absolute value of the eigenvalues of AT is greater than one, there exists

C > 0 such that ‖AT t‖ ≥ C‖t‖. Moreover, using that 0 ≤ |φ̂n,m(t)| ≤ 1 and that
Pn,m(t) and Q1(t), . . . , Q(2d+d)(t) satisfy (18), we have:

(21) lim
t→0

|ψ̂(`)
n,m(AT t)|2

‖AT t‖2n
≤ lim

t→0

1− |Pn,m(t)|2

C2n‖t‖2n
= lim

t→0

1−
∏d
s=1 gn,2m(ts)

C2n‖t‖2n
.

Moreover, gn,2m(t) = 1 + pn(t) where pn is a trigonometric polynomial on R such
that

(22) lim
t→0

|pn(t)|
|t|2n

= 0.

Therefore, combining (21) and (22), and bearing in mind that 0 ≤ gn(t) ≤ 1, we
obtain

lim
t→0

|ψ̂(`)
n,m(t)|2

‖t‖2n
≤ 1

C2n
lim
t→0

d∑
s=1

|pn(ts)|
t2ns

= 0,

and we conclude that ψ̂
(`)
n,m has a zero of order n at the origin. �

5. A bivariate construction of tight framelets

In the previous section we used Lemma 3 to construct a set of 2d+d generators.
For d = 2 this would yield six generators. In this section we show that if A ∈
E2(Z) we may bypass Lemma 3 and obtain generating sets with only two or three
generators. This suggests that Theorem 3 could be improved considerably.

5.1. Tight wavelet frames with three generators. Two matrices A and B
with integral entries are integrally similar if there exists a matrix U with integral
entries such that |detU | = 1 and A = U−1BU . Let

(23) A1 :=

(
0 2
1 0

)
, A2 :=

(
0 2
−1 0

)
, A3 :=

(
0 2
−1 1

)
,

A4 :=

(
0 −2
1 −1

)
, A5 :=

(
1 1
−1 1

)
, A6 :=

(
−1 −1

1 −1

)
.
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The following complete classification of all matrices in E2(Z) with |detA| = 2 was
found by Lagarias and Wang [31, Lemma 5.2 ].

Lemma F. Let A ∈ E2(Z). If detA = −2 then A is integrally similar to A1,
and if detA = 2 then A is integrally similar to one of the matrices Ak, k = 2, . . . , 6.

We now focus on the dilation matrices Ak. Let

(24) Λ := {q0 = (0, 0)T ,q1 = (1, 0)T },

(25) Γk := {r0 = (0, 0)T , r1 = (1/2, 0)T }, k = 1, 2, 3, 4,

Γk := {r0 = (0, 0)T , r1 = (1/2, 1/2)T }, k = 5, 6.

It is easy to see that, for k = 1, . . . , 6, Λ is a full collection of representatives of
the cosets of Z2/AkZ2, Γk is a full collection of representatives of the cosets of
(ATk )−1Z2/Z2.

Given m,n ∈ N, t = (t1, t2)T ∈ R2 and the trigonometric polynomial gn(t)
defined in (1), let the trigonometric polynomial Pn,m(t) be defined on R2 by

(26) Pn,m(t) := gn,m(t1) = (gn(t1))m.

For convenience we have used the same notation for these polynomials and for those
defined in (11). Both sets of polynomials have similar properties. For example, if
Ak is one of the dilation matrices defined in (23) and Γk = {r0, r1} is the full
collection of representatives of the cosets of (ATk )−1Z2/Z2 defined in (25), then

(27) |Pn,m(t)|2 + |Pn,m(t + r1)|2 ≤ gn(t1) + gn(t1 + 1/2) = 1,

and the equality only holds for an at most countable set of points. Moreover, using
the same arguments as in the proofs of Proposition 1 and Proposition 2, we have
the following similar result:

Proposition 6. Let Ak be one of the matrices defined in (23), and let Pn,m(t) be
defined as in (26). Then the infinite product

∞∏
j=1

Pn,m((ATk )−jt)

converges to an even nonnegative continuous function φ̂n,m in L2(R2) such that

‖φ̂n,m‖L2(R2) ≤ 1,

φ̂n,m(0) = 1 and satisfies the refinement equation

φ̂n,m(ATk t) = Pn,m(t)φ̂n,m(t), t ∈ R2.

We now need to establish the validity of an analog of Proposition 4. However,
from Lemma A, (26) and (27), we see that Pn,m(t) might equal 1 without t being

in Z2, and therefore we cannot use Theorem D directly. Nevertheless, we can prove:

Proposition 7. There exist two positive constants ε and C such that

(28)

∞∏
j=1

Pn,1((ATk )−jt) ≤ C|t|−ε, t ∈ R2, t 6= 0.
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Proof. We will prove the assertion for A1. The proof for the other cases is similar
and will be omitted. We have

∞∏
j=1

Pn,1((AT1 )−jt) =

∞∏
j=1

Hn,1((MT
1 )−jt),

where

M1 := A2
1 and Hn,1(t) = Hn,1(t1, t2) := Pn,1(t)Pn,1(AT1 t) = gn(t1)gn(t2).

We see that Hn,1(t) = 1 if and only if t ∈ Z2. On the other hand, if Γ1 = {0, r1} is

the full collection of representatives of the cosets of (AT1 )−1Z2/Z2 defined in (25),
then {0, r1, (A

T
1 )−1r1, r1 + (AT1 )−1r1} is a full collection of representatives of the

cosets of (MT
1 )−1Z2/Z2. Furthermore, Lemma A and (27) imply that Pn,1(r1) = 0.

Thus

Hn,1(r1) = Pn,1(r1)Pn,1(AT1 r1) = 0, and

Hn,1((AT1 )−1r1) = Pn,1((AT1 )−1r1)Pn,1(r1) = 0.

Moreover, since AT1 r1 ∈ Z2,

Hn,1(r1 + (AT1 )−1r1) = Pn,1(r1 + (AT1 )−1r1)Pn,1(AT1 r1 + r1)

= Pn,1(r1 + (AT1 )−1r1)Pn,1(r1) = 0,

and the assertion follows from Theorem D. �

We need the following proposition. The proof is similar to that of Proposition 5
and will be omitted.

Proposition 8. Let φ̂n,m be the function whose existence is established in Proposi-

tion 6. Then the function φn,m ∈ L2(R2) whose Fourier transform is φ̂n,m is even,
nonzero, compactly supported, and ‖φn,m‖L2(Rd) ≤ 1. Moreover, if εm− 2 > α > 1

where ε is such that (28) is satisfied, then φn,m is in continuity class Cα.

Let hn,m be trigonometric polynomials on R such that |hn,m(t)|2 = 1−[gn(t)]2m−
[gn(t+ 1

2 )]2m, where gn is defined by (1).
The following theorem describes the construction of smooth tight framelets

Ψ = {ψ0, ψ1, ψ2} in L2(R2) with dilation matrix Ak, having compact support, ar-
bitrary degrees of smoothness. any number of vanishing moments, and symmetric
generating function.

Theorem 4. Let Ak be one of the matrices defined in (23), and let

Q(1)
n,m(t) :=

1√
2

[1− gn,2m(t1)− gn,m(t1)gn,m(t1 + 1/2)] ,

Q(2)
n,m(t) :=

ei2πt1√
2

[1− gn,2m(t1) + gn,m(t1)gn,m(t1 + 1/2)] ,

Q(3)
n,m(t) := −P̃1(ATk t)gn,m(t1),

φ̂n,m(t) :=

∞∏
j=1

Pn,m((ATk )−jt),

ψ̂(`)
n,m(ATk t) := Q(`)

n,m(t)φ̂n,m(t), ` = 1, 2, 3.
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Then Ψn,m = {ψ(`)
n,m(t), ` = 1, 2, 3} is a Parseval framelet in L2(R2) with dilation

matrix Ak and vanishing moments of order n. Moreover, if εm − 2 > α > 1,

where ε is such that (28) is satisfied, then ψ
(`)
n,m is in continuity class Cα and the

generating function φn,m(t) is even and has compact support.

Proof. Let

L0(t) :=
1√
2

(gn,m(t1) + gn,m(t1 + 1/2)) ,

L1(t) :=
e−i2πt1√

2
(gn,m(t1)− gn,m(t1 + 1/2)) ,

and let P̃1(t) be the trigonometric polynomial hn,m(t) that satisfies (19). Since

|L0(t)|2 + |L1(t)|2 + |P̃1(t)|2

=
1

2

(
gn,m(t1) + gn,m(t1 +

1

2
)

)2

+
1

2

(
gn,m(t1)− gn,m(t1 +

1

2
)

)2

+1− gn,2m(t1)− gn,2m(t1 + 1/2) = 1,

we see that (17) is satisfied. Applying the algorithm described in Theorem E we

see that Pn,m, Q
(1)
n,m, Q

(2)
n,m and Q

(3)
n,m satisfy (18) for N = 3, with P = Pn,m and

Q
(`)
n,m = Q`, ` = 1, 2, 3, and from the Oblique Extension Principle we conclude that

Ψn,m is a Parseval framelet.
The remaining assertions follow as in the proof of Theorem 3. �

Finally, from Theorem 4 and Lemma F we have the following construction with
three generators valid for any A ∈ E2(Z) with |detA| = 2:

Theorem 5. With the notation of Theorem 4, let A ∈ E2(Z) with |detA| = 2,
and let k ∈ {1, . . . , 6} be such that A is integrally similar to Ak. Let U ∈ Z2×2 be
such that A = U−1AkU and |det(U)| = 1. If

(29) θ(`)
n,m(t) := ψ(`)

n,m(Ut), ` = 1, 2, 3,

then Θn,m = {θ(1)
n,m, θ

(2)
n,m, θ

(3)
n,m} ⊂ L2(R2) is a Parseval framelet in L2(R2) with

dilation matrix A, and the functions θ
(`)
n,m have compact support and vanishing

moments of order n. Moreover, if εm − 2 > α > 1, where ε is such that (28) is

satisfied, then the functions θ
(`)
n,m are in continuity class Cα.

Proof. Since U−1Z2 = Z2, the assertion that Θ is a Parseval framelet readily follows
by a change of variable of the form t→ U−1t.

Moreover, (29) implies that ψ̂
(`)
n,m has a zero of order n at the origin if and only

if θ̂
(`)
n,m has a zero of order n at the origin.
Let α be an integer such that εm − 2 > α > 1, where ε is such that (28) is

satisfied. Since ψ
(`)
n,m is in continuity class Cα, applying the chain rule we conclude

that also θ
(`)
n,m is in continuity class Cα. �

The reason why Theorems 4 and 5 have been stated separately is that, whereas
we have a constructive procedure to obtain the wavelets in Theorem 4, Theorem
5 does not provide a constructive method, for it relies on an existence theorem.
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However, bearing in mind that the eigenvalues of A2, A3, A4, A5 and A6 are ±
√

2i,
(1 ±

√
7i)/2, (−1 ±

√
7i)/2, 1 ± i and −1 ± i respectively, and in view of Lemma

F, it is not difficult to determine which of these matrices is integrally similar to a
given A ∈ E2(Z) with |detA| = 2. The same observation applies to the relationship
between Theorem 6 and Theorem 7 below.

5.2. Tight wavelet frames with two generators. Using the results we obtained
in Subsection 3.2, we have the following:

Theorem 6. Let Ak be one of the matrices defined in (23), and let t = (t1, t2)T ∈
R2. Let Pn,m(t) be defined in (26), and let

φ̂n,m(t) :=

∞∏
j=1

Pnm((ATk )−jt).

Let hn,m be a trigonometric polynomial on R that satisfies (19), and let Hn,m ∈
L2(R2) be defined by Hn,m(t) := hn,m(t1). Let

Ψn,m = {ψ(1)
n,m, ψ

(2)
n,m}

be the set of functions defined by

ψ̂(1)
n,m(ATk t) := e2πit1Pn,m(t + r1)φ̂n,m(t),(30)

ψ̂(2)
n,m(ATk t) := Pn,m(t)Hn,m(Akt)φ̂n,m(t).(31)

Then Ψn,m is a Parseval framelet with dilation matrix Ak. The functions ψ
(`)
n,m are

square–integrable on R2 and have compact support. In addition, Ψn,m has vanishing
moments of order n. If εm− 2 > α > 1, where ε is such that (28) is satisfied, then

ψ
(`)
n,m is in continuity class Cα. Moreover, the generating function φn,m(t) is even

and has compact support.

That Ψn,m = {ψ(1)
n,m, ψ

(2)
n,m} is a Parseval framelet can be proved as in the proof

of Theorem 2. The remaining assertions follow as in the proof of Theorem 4. The
details will be omitted.

The main result in this subsection is

Theorem 7. Let A ∈ E2(Z) with |detA| = 2 and let k ∈ {1, . . . , 6} be such
that A is integrally similar to Ak. Let U ∈ Z2×2 with |det(U)| = 1 be such that
A = U−1AkU . Let m,n ∈ N and t = (t1, t2)T ∈ R2, let Pn,m(t) be defined

in (26), let the function φ̂n,m ∈ L2(Rd) be defined as in Proposition 6, and let

Ψn,m = {ψ(1)
n,m, ψ

(2)
n,m} be the set of functions defined in Theorem 6. If

θ(`)
n,m(t) := ψ(`)

n,m(Ut) ` = 1, 2,

then Θn,m = {θ(1)
n,m, θ

(2)
n,m} ⊂ L2(R2) is a tight framelet with dilation matrix A, and

the functions θ
(`)
n,m have compact support. In addition, Θn,m has vanishing moments

of order n. Moreover, if εm− 2 > α > 1 where ε is such that (28) is satisfied, then

the functions θ
(`)
n,m are in continuity class Cα.

Theorem 7 can be proved in a way similar to that of Theorem 5, using Theorem
6 instead of Theorem 4.
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