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Abstract 

The analysis has been carried out of the possible theoretical types of ternary systems 

regarding the distillation boundaries, for systems involving up to three binary 

azeotropes and one ternary azeotrope. The study reveals that there are some of these 

theoretical behaviors that classical activity coefficient models such as NRTL cannot 

predict. The objective of the present work is to show these limitations, analyze their 

causes and suggest possible solutions. The addition of one ternary interaction term to 

the Gibbs energy of excess function removes many of the limitations of classical models 

expanding the number and type of systems that could be correlated with the models and, 

what is more important, markedly improving the correlation capability of the model. 

 

Keywords: phase equilibria, VLE, LLE, data correlation, activity coefficient, NRTL 

model. 

Introduction 

Correlation of phase equilibrium data is a very important issue with relevant 

applications in chemical engineering, such as the design of separation equipment. 

Accurate description of vapor-liquid equilibrium (VLE) plays a major role in industrial 

separation processes. Efficient design and operation of distillation and rectification 

processes are based upon these equilibrium data. Due to this important practical 

application, an extensive number of papers have been dedicated to the experimental 

determination and correlation of VLE data for many binary and multicomponent 

systems and to a lesser extent of VLLE data. The multivolume DECHEMA series [1] is 

a very popular compilation of experimental phase-equilibrium data. The Dortmund Data 
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Bank (DDB) contains nearly all worldwide available phase equilibrium data [2]. The 

NIST SOURCE Data Archival System [3] implements all major principles of the 

concept of dynamic data evaluation which combines a large electronic database of 

equilibrium data with expert software designed to generate recommended data. 

The correlation of the experimental equilibrium data using an empirical or physically 

grounded equation allows the interpolation and, with caution, extrapolation of 

equilibrium data to new conditions of temperature and pressure. The thermodynamic 

equations used to correlate and predict VLE data are classified as excess Gibbs energy 

(GE) models, also named activity coefficient models, and equations of state (EOS). 

Classical models to represent the activity coefficient for the liquid phase, or 

equivalently the excess Gibbs free energy (GE) that are used for VLE calculations are: 

Margules [4], van Laar [5], NRTL [6] and UNIQUAC [7]. Another classical model such 

as the Wilson equation [8] can be used in the VLE calculations but not for LLE and 

VLLE due to the incapacity of this equation to produce liquid-liquid splitting. All these 

are activity coefficient models used nowadays and they are exactly the same as those 

used thirty or forty years ago, although the development of EOS has been much more 

relevant in the last years. This fact could suggest that the results obtained with the 

classical models to formulate the non-ideality of the liquid phase are sufficiently 

accurate and no relevant limitations are found. Nevertheless, this is not the case despite 

the significant contribution of these models to phase equilibrium data modelling during 

the past four decades, particularly NRTL and UNIQUAC. Many important limitations 

exist that have already been widely discussed in the literature [9,10]. Following, we 

summarize the most important ones: 

1. The activity coefficient models based on binary parameters have been developed with 

the aim of extrapolating from binary to multicomponent mixtures, but the facts show 

that very poor or uncertain results are obtained in these phase equilibria predictions. 

Therefore, the potential main value of these models is not achieved in practice. As a 

consequence, group contribution methods such as UNIFAC are used for phase 

equilibrium predictions involving liquid phases and local composition models such as 

NRTL and UNIQUAC are restricted to the experimental data correlation. 

2. For many systems these models cannot achieve a precise representation of the 

equilibrium data, as it is required, for example, for separation processes design. Many 
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examples of this can be found for VLE and LLE correlations of types 1 and 2 (Treybal 

classification [11]), to mention exclusively the most simple fluid phase equilibria [12] . 

When the complexity of the system increases, the restrictions are even higher. For 

example, as far as we know, commercial equilibrium data regression tools do not allow 

for the simultaneous regression of different equilibrium regions in type 3 and 4 ternary 

systems (Treybal classification [11]), neither data regression of island type ternary 

systems. For example, ChemCAD [13] specifies that it only deals with the regression of 

type 1 and 2 systems. It seems that the reason is a deficient quantitative description of 

these types of systems by means of these models, as we discussed in [14, 15]. 

3. The simultaneous description of VLE and LLE data is too frequently not possible 

[16] [9]. In this respect Sandler says in his book [17]: “There can be some qualitative 

and quantitative inconsistencies when correlating LLE data and then using the 

parameters obtained to predict VLLE. This is why in the predictive UNIFAC model, 

there is one set of parameters only for use in vapor–liquid equilibrium predictions and a 

separate UNIFAC-LLE parameter set only for LLE predictions”. This limitation is 

relevant because the design of separation processes requires a unique set of parameters 

able to represent all the different equilibrium regions.  

 

Many modifications of the classical models have been published which use different 

approaches to develop the mathematical functions for the dependence of the activity 

coefficients with composition and temperature, as for example: Rarey [9], 

Gebreyohannes et al. [18] and Neau et al. [19]. However, these and other similar 

modifications to the classical activity coefficient models do not seem to have influenced 

thoroughly the later work in this area of the phase equilibrium calculations. For 

instance, the activity coefficient models included in ThermoData Engine (TDE) [20], 

quite recent software to generate recommended data and model parameters based on 

experimental data from NIST SOURCE, are the classical ones.  

In some recent papers we have tried to go further into the reasons for all these 

limitations of the classical Gibbs energy of mixing models, in an attempt to modify 

them or propose new ones really capable of overcoming these restrictions. We have 

selected NRTL as a representative model of the classical activity coefficient equations 

because among equations for the excess Gibbs energy, it is considered as that which 
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offers the best balance between simplicity, reliability and applicability to numerous 

mixtures [21]. Some of the most important conclusions are the following: 

1. NRTL present “gaps” in the GE function for miscible binary mixtures, and 

consequently in the Gibbs energy of mixing (GM) sum of the ideal (Gid) and excess (GE) 

contributions. These gaps are the true reason for the impossibility of fitting many VLE 

and LLE data for many binary, ternary and multicomponent systems, as we have shown 

in papers [10, 22]. 

2. Many topological conditions must be fulfilled by the GM function, as is required by 

the tangent line (plane or hyper-plane) criterion for two (three or more components), 

respectively, in order to simultaneously reproduce different type of equilibrium regions. 

For example, VLE and VLLE of ternary systems with the presence of binary and 

ternary azeotropes; LLE and LLLE in type 3 (Treybal classification [11]) systems, LLE 

in island type ternary systems where liquid splitting in the ternary mixtures must be 

compatible with homogeneity in the three binary ones. Many more examples could be 

mentioned if this analysis is extended to the presence of solid phases with the possibility 

of different hydrates as in the case of type 4 (Treybal classification [11]) systems. These 

difficulties frequently lead to poor results when all the equilibrium regions are 

simultaneously regressed using a unique set of parameters and, as a consequence, partial 

fittings are carried out and published for these complex systems. 

All this analysis suggests that more flexible models, considering a higher number of 

molecules interacting and consequently with a higher number of parameters, must be 

developed, but what is more important: this process should be carried out taking into 

account the topology required by the GM function to be able to correctly represent the 

phase equilibrium behavior of the systems in all the regions to be correlated in 

accordance with the Gibbs minor common tangent equilibrium criteria. Nevertheless, 

this higher complexity, and the correspondingly higher number of parameters involved, 

should not be a limitation nowadays with the also highly improved calculation power of 

new computers. Consequently, we should remove classical prejudices for GE models 

such as: simplicity, two parameters (or very few more) per binary pair and only binary 

parameters. If primarily the model must represent the experimental data with the 

required accuracy, these demands could be too severe for the model to adequately 

represent many equilibrium behaviors that exist in nature. To reinforce these ideas, we 
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will comment on this peculiar comparison: the pressure vapor of a pure component as a 

function of temperature, which is a fairly simple continuously growing function for the 

moderate temperature involved in non-critical VL calculations, is usually represented by 

at least three parameters (e.g. Antoine’s equation) or even more (four parameters in the 

Wagner vapor pressure equation and five parameters in ChemCAD [13] and other 

process simulators). Contrarily, the models to represent the complex behavior of the 

liquid phase activity coefficients required to calculate highly non-ideal or azeotropic 

systems are restricted to two (or three at most) parameters for each pair of compounds. 

Therefore, it seems reasonable and convenient to relax some of the requirements 

traditionally imposed to the activity coefficient models to favor the quality of the results 

obtained in phase equilibrium calculations, while taking into account the unquestionable 

advantages of the molecular thermodynamics insight.  

Regarding practical and engineered oriented results, it is important to emphasize that 

better results are not always accomplished with the apparently superior models, as we  

showed [23] in a study based on the DECHEMA Chemistry Data Series [24] correlation 

results. For example, the semi-empirical formalisms included in the UNIQUAC model, 

though it provides the model with a more realistic picture of the liquid mixtures, are not 

able to give better results than other simple models as Wilson or NRTL, when they are 

used in the correlation of VLE data. 

With this perspective in a recent paper (in press) [25], we have satisfactorily carried out 

the simultaneous correlation of the experimental equilibrium data for the VLL and VL 

regions of a ternary system with a unique set of parameters using an extended NRTL 

equation including a ternary term and a binary correction based on the NRTL equation. 

The limitations of the activity coefficient models have two consequences in phase 

equilibria calculations: a) qualitative but not quantitative description of specific 

experimental equilibrium data sets, or b) impossibility even in the qualitative 

description of certain type of systems. In the present paper we address the second issue 

analyzing the possible theoretical types of ternary systems regarding the distillation 

boundaries, for systems involving up to three binary azeotropes and one ternary 

azeotrope. The study reveals that there are many of these theoretical behaviors that 

equations such as NRTL cannot predict. The objective of the present work is to show 

these limitations, analyze their causes and suggest possible solutions. 
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The impossibility of NRTL to represent certain type of azeotropic ternary 

behaviors 

 

Perry’s Handbook of Chemical Engineering [26] presents 125 possible theoretical types 

of ternary systems regarding the distillation boundaries, for systems involving up to 

three binary azeotropes and one ternary azeotrope, although only a dozen or so represent 

most systems commonly encountered in practice. In page 58 of chapter 13 of the 

seventh edition of this handbook it is stated that “Residue curves can be constructed 

from experimental data or can be calculated analytically if equation-of-state or activity-

coefficient expressions are available (e.g., Wilson binary-interaction parameters, 

UNIFAC groups)….”. Nevertheless, this statement is not completely true since the 

classical activity coefficient equations such as NRTL cannot predict some of these types 

of systems, as it is illustrated below. 

 

The causes of such limitation must be searched for in the combination of the particular 

mathematical equations for the excess Gibbs energy for the liquid phase (e.g. NRTL) 

and for the vapor phase (e.g. ideal behavior and the liquid phase as the reference state), 

represented in Eq. (1) and Eq. (2), respectively, and the equilibrium conditions. The 

equilibrium conditions can be expressed as the equality of the partial derivatives of the 

GM function of both liquid (GM,L) and vapor (GM,V) phases, at the points of tangency of 

the common tangent plane to both GM surfaces, for ternary systems. If the system 

presents azeotropy, in addition to this condition both points merge in a single point for 

the same composition (zi) where the energies of both phases GM,L and GM,V are also 

equal, Eq. (3) and Eq. (4), and  zi is the azeotropic point. 
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The topological point of view may clarify these concepts for selected examples. This 

analysis could be performed using the Gibbs energy of mixing (GM) for the liquid and 

the vapor, as explained above. However, when considering azeotropy the first term in 

the right part of both equations Eq. (1) and Eq. (2) is the same (xi = yi = zi) , to analyze 

the tangent points between these two functions these terms can be omitted with the 

advantage that the resulting function for the vapor, referred as GV, is a plane at constant 

temperature: 

�� =
�	��	
�

	��
�
�	  (5) 

 

To show this situation, the isothermal triangular prismatic plot of Gp=gp/RT (where p 

indicates the liquid or vapor phases) in the vertical axis versus composition in the base 

of the prism for ternary systems could be represented for the vapor and the liquid phases 

representing GV and GE,L, respectively. In this type of representation, the G plane of the 

vapor phase moves downwards almost in a parallel way as the temperature increases, 

while the surface corresponding to the liquid phase (that has been considered as the 

reference state for all the components of the system) remains almost unaltered when the 

temperature increases. The situation presented in Fig. 1 corresponds to a system of type 

#47 of  Perry’s classification [26] involving a ternary minimum boiling point azeotrope 

(ternary mbpa) and a binary minimum boiling point azeotrope (binary mbpa). In this 

figure H, I and L are used for the components in the order of their boiling temperatures: 

H (heavy), I (intermediate) and L (light). For this type of ternary systems, when 

increasing the temperature (T1<T2<T3), the tangency between the GV and GE,L functions 

must firstly be obtained in the ternary azeotrope,  at T2 in Fig. 1c, and at higher 

temperature the tangency will occur in the binary azeotrope, at T3 in Fig. 1d. 
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The position of the vapor plane takes into account that the order for GV is H > I > L as is 

deduced from Eq. (5) where the vapor pressure increase as follows H < I < L. 

Considering the topology of this vapor surface GV and the tangency points required for 

the ternary and binary mbpa’s as a function of temperature, we can observe that Fig. 1c 

and 1d will only be possible if three conditions are satisfied by the excess Gibbs energy 

of the liquid surface for these type #47 ternary systems: GE,L must be positive and 

concave for all the compositions space but furthermore, it must present a maximum in 

one ternary composition. Moreover, the existence of such a maximum point is not a 

guarantee for the existence of the ternary mbpa because it also depends on the position 

of the plane for the vapor phase being possible that the binary azeotrope is obtained at 

lower temperature. So, concavity with a ternary maximum point in the GE,L surface will 

be a necessary but not sufficient condition to model type #47 ternary systems. In Fig. 1, 

the GE,L surface has been qualitatively drawn to present the conditions required by this 

type of system. In the present paper, we will show that using the NRTL model is not 

possible to represent this type of system because the conditions required to present only 

one binary pair with a minimum boiling point azeotrope (mbpa) lead to a GE,L surface 

unable to give the tangency in a ternary point at lower temperature as it is required by 

type #47 systems in the Perry’s classification [26]. 

 

Demonstration of a simplified case 

Initially we will consider, as a first step in this demonstration, that the two binary 

subsystems which do not present an azeotrope point (i.e. HI and HL binary pairs) are 

ideal in the liquid phase. After that, we will extend the conclusions to the more general 

situation in which no ideal behavior is assumed. For the two ideal binary subsystems the 

excess contribution to the Gibbs energy is zero. The presence of one mbpa in the binary 

IL pair requires concavity in the GE,L binary curve. This situation has been represented 

in Fig. 2 where three possibilities are discussed for the GE,L ternary surface: a) concave 

and with a maximum in a ternary composition, b) concave but without a maximum in a 

ternary composition, and c) convex. Cases such as that shown qualitatively in Fig. 2a 

produce a tangent point between the two Gibbs energy functions (GV and GE,L) at the 

same ternary composition for both liquid and vapor phases, that is to say a ternary 

azeotrope of minimum boiling point, when temperature increases. However, situations 

shown in Fig. 2b and 2c are not compatible with the presence of one ternary mbpa 
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because when the temperature increases, the tangency in the binary LI system occurs 

first. Pseudoternary planes with a constant ratio c=xL/xI are represented in Fig.2d-f for a 

better visualization. Following, we will show that the NRTL model is not able to 

produce a situation such as that shown in case a (Fig. 2a and 2d), and consequently the 

impossibility to reproduce a type #47 of Perry's classification with this equation will be 

demonstrated. 

The GE,L function considering the binary pairs 13 and 23 (LH and IH binary pairs in the 

previous discussion) as ideal in liquid phase is given by the following equation for the 

NRTL model: 

��,� = ��,�
�� = ���. / �.��.��� + �.��. + �0 +

��.��.��.�� + �. + �01 (6) 

since 

��0 = �0� = 0								�.0 = �0. = 0										⇒								��0 = �0� = 1											�.0 = �0. = 1 

The total derivative of this function can be written as 

3��,� = "��,�
"�� 3�� + "��,�

"�. 3�. + "��,�
"�0 3�0 (7) 

Taking into account the relation between the molar fractions �� + �. + �0 = 1, and 

consequently 3�0 = −3�� − 	3�., Eq. (7) can be written as: 

3��,� = !"��,�
"�� − "��,�

"�0 $3�� + !"��,�
"�. − "��,�

"�0 $3�. (8) 

 

The existence of any critical point in the GE,L function implies that the total derivative 

of that function is zero. This condition can be alternatively formulated by means of the 

two conditions in Eq (9) and Eq (10). 

!"��,�
"�� − "��,�

"�0 $ = 0 (9) 
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"�0 $ = 0 (10) 

 

When these two last equations are satisfied simultaneously Eq. (11) must be also true 

"��,�
"�� + "��,�

"�. − 2"��,�
"�0 = 0 (11) 

 

Using the expression given in Eq. (6) to calculate the partial derivatives indicated in Eq. 

(11) the following expression is obtained 

"��,�
"�� + "��,�

"�. − 2"��,�
"�0

= 6��+�.7 / �.��.��� + �.��. + �0 +
��.��.��.�� + �. + �01

+ ���. ! �.��.�61 − �.�76�� + �.��. + �07. +
��.��.61 − ��.76��.�� + �. + �07.$ 

(12) 

 

Considering that for the binary 1-2 to have one azeotrope of minimum boiling 

temperature, the GE,L function must be positive for any composition, which means that 

the term in brackets in Eq. (6) must be positive, it its derived that the first term in the 

right hand of Eq. (12) is also positive, regardless the sign of the NRTL parameters τ12 

and τ21. The sign of the second term in the right hand of Eq. (12) must be analyzed for 

two situations: a) Both binary parameters τ12 and τ21 are positive, and b) one of them is 

positive and the other one is negative. The situation in which both parameters are 

negative is not considered because it would lead to a system involving no binary with 

minimum boiling point azeotrope as it is required in the type #47 systems. For both a) 

and b) situations the sign of the second term in the right hand of   Eq. (12) is always 

positive since if τij<0 then Gij>1 ((1- Gij)<0) and if τij>0 then Gij<1 ((1- Gij)>0). 

Therefore, the condition given in Eq. (11) cannot be satisfied because the GE,L surface 

does not present any critical point (i.e. dGE,L>0), what implies that no maximum is 
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possible at any ternary composition preventing the possibility of existence of one 

ternary minimum boiling point azeotrope (mbpa). 

 

The same conclusion is obtained using an alternative analysis, in which the comparison 

between the magnitude of the GE, L function for the binary and the ternary regions is 

carried out. To do that, Eq. (6) must be compared with the NRTL equation for a binary 

system (Eq. (13)) where prime is used for the compositions in the binary region in 

planes of equal composition of the component 1 (i.e. x1=x1’ and x2’=x2+x3 that implies 

x2’>x2) 

��,� = ��,�
�� = �′��′. / �.��.��′� + �.��′. +

��.��.��.�′� + �′.1 (13) 

 

The product x1·x2 is in the binary always higher than x’1·x’2 in the ternary region. The 

second term between brackets is equal in both equations Eq. (6) and Eq. (13), only the 

first term in brackets remains for this comparison and because Gij>1 for τij<0 (Gij<1 for 

τij>0) is easily checked that for any value of the composition this term takes always 

higher values for the binary compared with the ternary region. The conclusion is that 

GE,L values given by Eq. (13) are always higher than those in Eq (6). Consequently, the 

same conclusion about the impossibility for the NRTL model to present a maximum in 

the GE,L surface (when one binary subsystem presents a mbpa and the other two binary 

subsystems are ideal) has been achieved by means of two different arguments used: the 

analysis of the conditions for the existence of critical points in the GE,L ternary region, 

and by means of the comparison of the magnitude of the GE,L function in the binary and 

ternary regions. 

  

 
For systems type #48 [26], as that represented in Fig. 3a, the situation is similar to that 

described above. This is because the change in the binary pair with one mbpa (in this 

case HL unlike type #47) leads to the same conclusion derived for type #47: the NRTL 

equation is not able to model this type of ternary systems because of the inability to 

reproduce a GE,L surface with a maximum point at any ternary composition. Because 

only a convex surface or, in the best case, a concave one but without a ternary 

maximum point is obtained (Fig. 3b), there is not possibility to obtain the conditions 

required by the type #48 ternary systems.  
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Adding ternary interactions 

In this section we show that the modification of the classical activity coefficient models 

by means of the addition of ternary interactions could solve the limitations discussed in 

the previous section, resulting in the possibility of fitting VLE data for systems such as 

those of types #47 and #48 [26], used as examples in the present paper. 

For example, the addition of the following term to the NRTL model  

��,�
�� (ternary interaction)= ���.�0 9��� + 9.�. + 90�01 + 9:���.�0  (14) 

 

where t1, t2, t3 and t4 are fitting parameters, is able to substantially modify the GM,L 

surface, e.g Eq.(1) for the NRTL model, leading to the topology required by the excess 

(or mixing) G L and GV functions to satisfy the VLE of many type of systems, as those 

#47 and #48 discussed in the present paper. The contributions of this modified GM,L 

function are the following 

��,� = ��,�
�� = ��	
,�

�� + ��,�
�� (classical)+ ��,�

�� (ternary interaction) (15) 

 

The analysis of the sign of the total derivative of the GE,L function given by the sum of 

the classical and ternary interaction contributions, when they are represented by the 

NRTL equation and Eq.(14), respectively, shows that dGE,L may now take the value 

zero for a ternary composition depending on the parameter and composition values, 

even for the less favorable situation in which the two binary subsystems without 

presence of azeotrope are ideal.  

To illustrate this point we show in Fig. 4 an example where both the temperature and 

the Gibbs energy surfaces versus composition have been represented using the original 

NRTL equation (Fig. 4a and 4b) and the modified NRTL equation that includes the 

ternary interaction term (Fig. 4c and 4d). The parameter values that have been used to 

reproduce these figures are presented in Table 1. The original NRTL parameter values 

are the same as those used when the additional term to the NRTL equation is added. Fig 

4b and 4d have been represented at the temperature of the binary azeotrope and, 
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consequently, the required topology for to model a type #47 ternary system of Perry's 

classification [26] implies that the plane for the vapor phase must intersect the surface 

for the liquid phase. Fig. 4a and 4b show that this fact only occurs for the extended 

NRTL equation with the ternary contribution and for this reason the ternary azeotrope 

appears in the T versus composition diagram shown in Fig 4c but not in Fig 4a. These 

examples illustrate how the modification of the NRTL model is able to reproduce VLE 

data corresponding to a system of type #47 of Perry's classification [26], involving 

ternary and binary minimum boiling point azeotropes, which cannot be generated by 

NRTL equation. 

 

Checking a general case 

As already indicated, we have considered in the previous discussion that the two binary 

subsystems which do not present an azeotrope point (13 and 23 binary pairs) are ideal in 

the liquid phase. Now we will extend the conclusions to the more general situation in 

which no ideal pair is assumed. To eventually reach such a behaviors the two binary 

subsystems with no azeotropic point should present a positive GE,L, but not so positive 

to present a mbpa. The limit of such situation is schematically presented in Fig. 5 and 

can be expressed by Eq. (16) 

�� �� �	 = −;��	��	 + �	�< (16) 

 

where i represents the L or I component and j = H. This condition has been derived 

from the slope of the GV straight line and the value of the first derivative of the GE,L 

curve at xL or xI →1. The first member in this equation should be lower than the second 

one to prevent the presence of a binary mbpa: 

�� �� �	 < −;��	��	 + �	�< (17) 

 

The mathematical demonstration equivalent to the simplified seems not easy since the 

GE,L surface may now exhibit a maximum. Alternatively we show an example where we 
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have calculated the T vs. x,y and GE,L vs. z and GV vs. z diagrams for the same system 

previously considered using the NRTL model but parameters corresponding to the two 

binary subsystems with no azeotrope in a limit required by Eq. (17). 

Fig 6a-d show the equivalent figures to those previously shown in Fig 4a-d but now 

with the two binary subsystems 1-3 and 2-3 being non-ideal just in a limit imposed by 

Eq (16), which it can be considered as the highest non-ideality behavior without 

presence of binary azeotropes. We have analyzed many similar cases with different  pi
0 

and τij values (always subjected to the described restriction) and we have reached the 

same conclusion. The observation and comparison of all these figures reveal the 

incapability of the NRTL model to represent type #47 systems not only for the 

simplified example shown in Fig 4a and 4b, in which a ternary maximum is not possible 

for the GE,L surface (as it has been theoretically demonstrated above in this paper), but 

also for the case shown in Fig 6a and 6b, where it is possible the existence of such 

maximum due to the high non-ideal contribution of the two non-azeotropic binary pairs. 

Again, Fig. 6c and 6d show how the addition of a convenient ternary interaction term to 

the NRTL model avoids this limitation to satisfactorily achieve the modeled of this type 

of systems in the same way as it was shown in Fig. 4c and 4d for the more simplified 

case. Intersection areas between the vapor and liquid Gibbs energy surfaces, the last one 

obtained with the additional term, are evident in both cases represented in Fig. 4d and 

6d for the ideal and non-ideal cases, respectively. 

From the 125 possible theoretical types of ternary systems presented in the Perry’s 

Handbook of Chemical Engineering [26] regarding the distillation boundaries, for 

systems involving up to three binary azeotropes and one ternary azeotrope, thirty-six 

cannot be modeled using the NRTL equation what can be ascertained by analogy with 

the cases discussed in the present paper. Moreover, seventeen type of systems would 

have serious difficulties to be correlated and only very restricted cases could be 

calculated using the classical activity coefficient equations as the NRTL model. The 

suggested modification should be considered as an example of how modifying the 

behavior of the GE,L function the required topological condition by the system could be 

fulfilled. Other possible ternary interactions could be proposed leading to similar or 

better results. Furthermore, the addition of a ternary interaction contribution to the 

classical model could not be enough for some specific systems, requiring other 

modifications of the model (i.e the binary terms) to provide the required greater 
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flexibility. In conclusion, the modifications of the models taking into account the 

topological requirements of the Gibbs energy function should be encouraged to achieve 

better practical results in the experimental equilibrium data correlation. This practice 

could require a higher number of adequately selected parameters, but the number of 

parameters to be fitted should not be a problem for modern computers.     

 

Conclusions 

For a simplified case where the two binary subsystems showing no azeotropy in types #47 

and #48 ternary systems [26] were considered as ideal in the liquid phase it has been 

mathematically demonstrated that the NRTL equation cannot predict such behaviour. In 

addition, when the NRTL constants corresponding to those binary subsystems are in the limit 

of presenting azeotropy, it has been tested that the same impossibility persists. It has also 

been proved that the addition of a ternary term in the GE,L model provides the required 

flexibility to that function for removing such limitation. 
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Table 1. Parameters corresponding with Fig. 4 (simplified case), where both the 

classical and extended NRTL models have been used to formulate the Gibbs energy of 

excess for the liquid phase. 

 Antoine equation constants (*) 

component A B (ºC) C (ºC) 

1 8.76 2000 253 

2 7.90 1600 225 

3 8.35 1700 230 

NRTL parameters (K) Ternary interaction parameters 

A12 200 t1 11 

A21 200 t2 6 

A13 0.0 t3 5 

A31 0.0 t4 30 

A23 0.0 

A32 0.0 

α12 = α13 = α23 0.2 

(*) Antoine equation: log ������	 = � −



� + �
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Table 2. Parameters corresponding with Fig. 6 (non-ideal case), where both the 

classical and extended NRTL models have been used to formulate the Gibbs energy of 

excess for the liquid phase. 

 Antoine equation constants (*) 

component A B (ºC) C (ºC) 

1 8.76 2000 253 

2 7.90 1600 225 

3 8.35 1700 230 

NRTL parameters (K) Ternary interaction parameters 

A12 200 t1 11 

A21 200 t2 6 

A13 39 t3 5 

A31 50 t4 30 

A23 130 

A32 50 

α12 = α13 = α23 0.2 

(*) Antoine equation: log ������	 = � −



� + �
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Fig. 1. System type #47 [26], ternary minimum boiling point azeotrope (ternary mbpa) 

and a binary minimum boiling point azeotrope (IL binary mbpa): a) Distillation region 

diagram, b-d) Vapor and liquid Gibbs energy surfaces at different temperatures 

(T1<T2<T3) showing the situations where the ternary and binary azeotropes are present.
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Fig. 2.  Vapor and liquid Gibbs energy surfaces showing three possibilities for the GE,L surface: a) concave with a maximum in a ternary 

composition, b) concave (without a ternary maximum), and c) convex. Pseudoternary planes with a constant ratio c=xL/xI are represented in d-f), 

respectively.
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Fig. 3. System type #48 [26], ternary minimum boiling point azeotrope (ternary mbpa) 

and a binary minimum boiling point azeotrope (LH binary mbpa): a) Distillation region 

diagram, and b) vapor and liquid Gibbs energy surfaces at low temperature (lower than 

ternary and binary mbpa). 
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b) 

 

c) 

 

 

d) 

 

Fig. 4. Temperature versus composition and Gibbs energy surfaces (vapor and liquid) 

for a ternary system with a binary minimum boiling point azeotrope (1-2) and two ideal 

binary subsystems (1-3 and 2-3) using both: a, b) the NRTL model, and c, d) the 

extended NRTL model. Parameters for the liquid and vapor phases are in Table 1. 

Gibbs energy representations are at the temperature of the binary azeotrope (350K). 
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Fig. 5. Analysis of the limit situation in the concavity of the GE,L function for non-ideal 

HL and HI binary pairs without azeotrope, related to the slopes of the vapor and liquid 

functions at the more-volatile component (L or I). 
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d) 

 

Fig. 6. Temperature versus composition and Gibbs energy surfaces (vapor and liquid) 

for a ternary system with a binary minimum boiling point azeotrope (1-2) and two non-

ideal binary subsystems (1-3 and 2-3) using both: a, b) the NRTL model, and c, d) the 

extended NRTL model. Parameters for the liquid and vapor phases are in Table 2. 

Gibbs energy representations are at the temperature of the binary azeotrope (350K). 

 


