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Abstract

The analysis has been carried out of the posdiderétical types of ternary systems
regarding the distillation boundaries, for systemsolving up to three binary
azeotropes and one ternary azeotrope. The studalethat there are some of these
theoretical behaviors that classical activity cmgfht models such as NRTL cannot
predict. The objective of the present work is towhhese limitations, analyze their
causes and suggest possible solutions. The addifiome ternary interaction term to
the Gibbs energy of excess function removes marlyeofimitations of classical models
expanding the number and type of systems that dmikcbrrelated with the models and,

what is more important, markedly improving the etation capability of the model.

Keywords. phase equilibria, VLE, LLE, data correlation, aittivcoefficient, NRTL

model.
I ntroduction

Correlation of phase equilibrium data is a very ami@nt issue with relevant
applications in chemical engineering, such as thsigh of separation equipment.
Accurate description of vapor-liquid equilibrium I(#) plays a major role in industrial
separation processes. Efficient design and operadfodistillation and rectification

processes are based upon these equilibrium data. t®uhis important practical
application, an extensive number of papers have lgeglicated to the experimental
determination and correlation of VLE data for mabyary and multicomponent
systems and to a lesser extent of VLLE data. Thiévolume DECHEMA serie$l] is

a very popular compilation of experimental phaseHdgrium data. The Dortmund Data
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Bank (DDB) contains nearly all worldwide availalpbase equilibrium datg2]. The
NIST SOURCE Data Archival Systeff8] implements all major principles of the
concept of dynamic data evaluation which combindarge electronic database of

equilibrium data with expert software designed¢oeyrate recommended data.

The correlation of the experimental equilibriumalating an empirical or physically
grounded equation allows the interpolation and,hwdaution, extrapolation of
equilibrium data to new conditions of temperatunel @ressure. The thermodynamic
equations used to correlate and predict VLE dateckassified as excess Gibbs energy
(GF) models, also named activity coefficient modelsd @&quations of state (EOS).
Classical models to represent the activity coedfiti for the liquid phase, or
equivalently the excess Gibbs free energ§) (Bat are used for VLE calculations are:
Margules[4], van Laarf5], NRTL [6] and UNIQUAC]7]. Another classical model such
as the Wilson equatiof8] can be used in the VLE calculations but not folELand
VLLE due to the incapacity of this equation to prod liquid-liquid splitting. All these
are activity coefficient models used nowadays dm&y tare exactly the same as those
used thirty or forty years ago, although the depmient of EOS has been much more
relevant in the last years. This fact could suggleat the results obtained with the
classical models to formulate the non-ideality bé tliquid phase are sufficiently
accurate and no relevant limitations are found.exneless, this is not the case despite
the significant contribution of these models to gghaquilibrium data modelling during
the past four decades, particularly NRTL and UNIQ@LAMany important limitations
exist that have already been widely discussed énliterature[9,1(. Following, we

summarize the most important ones:

1. The activity coefficient models based on binaayameters have been developed with
the aim of extrapolating from binary to multicomgoi mixtures, but the facts show

that very poor or uncertain results are obtainedhase phase equilibria predictions.
Therefore, the potential main value of these modelisot achieved in practice. As a

consequence, group contribution methods such asFAGIl are used for phase

equilibrium predictions involving liquid phases alodal composition models such as
NRTL and UNIQUAC are restricted to the experimentaia correlation.

2. For many systems these models cannot achievee@se representation of the

equilibrium data, as it is required, for exampla, $eparation processes design. Many
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examples of this can be found for VLE and LLE clatiens of types 1 and 2 (Treybal
classification[11]), to mention exclusively the most simple fluid paaquilibrig/12] .
When the complexity of the system increases, tls¢ricions are even higher. For
example, as far as we know, commercial equilibratae regression tools do not allow
for the simultaneous regression of different eguilim regions in type 3 and 4 ternary
systems (Treybal classificatiofil]), neither data regression of island type ternary
systems. For example, ChemCAD [13] specifies thainly deals with the regression of
type 1 and 2 systems. It seems that the reasonlédi@ent quantitative description of
these types of systems by means of these modeis dscussed in [14, 15].

3. The simultaneous description of VLE and LLE datdoo frequently not possible
[16] [9]. In this respect Sandler says in his b¢dK]: “There can be some qualitative
and quantitative inconsistencies when correlatinge Ldata and then using the
parameters obtained to predict VLLE. This is whythe predictive UNIFAC model,
there is one set of parameters only for use in mdjgoid equilibrium predictions and a
separate UNIFAC-LLE parameter set only for LLE peédns”. This limitation is
relevant because the design of separation procesgeses a unique set of parameters

able to represent all the different equilibriumices.

Many modifications of the classical models havenbpablished which use different
approaches to develop the mathematical functionghi® dependence of the activity
coefficients with composition and temperature, awx fexample: Rarey [9],
Gebreyohannes et al. [18] and Neau et al. [19]. él@ny these and other similar
modifications to the classical activity coefficianbdels do not seem to have influenced
thoroughly the later work in this area of the phaspiilibrium calculations. For
instance, the activity coefficient models includadThermoData Engine (TDE) [20],
quite recent software to generate recommended atatamodel parameters based on

experimental data from NIST SOURCE, are the clatsines.

In some recent papers we have tried to go furthtw the reasons for all these
limitations of the classical Gibbs energy of mixingpdels, in an attempt to modify
them or propose new ones really capable of ovemgrthese restrictions. We have
selected NRTL as a representative model of thesiclalsactivity coefficient equations

because among equations for the excess Gibbs entligyconsidered as that which
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offers the best balance between simplicity, religband applicability to numerous
mixtures [21]. Some of the most important conclasiare the following:

1. NRTL present “gaps” in the "Gfunction for miscible binary mixtures, and
consequently in the Gibbs energy of mixind"jGum of the ideal (&) and excess (&
contributions. These gaps are the true reasorhéomupossibility of fitting many VLE
and LLE data for many binary, ternary and multicomgnt systems, as we have shown
in papers [10, 22].

2. Many topological conditions must be fulfilled Bye G" function, as is required by
the tangent line (plane or hyper-plane) criterion tivo (three or more components),
respectively, in order to simultaneously reprodditerent type of equilibrium regions.
For example, VLE and VLLE of ternary systems witle tpresence of binary and
ternary azeotropes; LLE and LLLE in type 3 (Treyblalssification [11]) systems, LLE
in island type ternary systems where liquid spigtin the ternary mixtures must be
compatible with homogeneity in the three binarysondany more examples could be
mentioned if this analysis is extended to the pres®f solid phases with the possibility
of different hydrates as in the case of type 4 ylba classification [11]) systems. These
difficulties frequently lead to poor results wheil the equilibrium regions are
simultaneously regressed using a unique set ofrpeteas and, as a consequence, partial

fittings are carried out and published for theseplex systems.

All this analysis suggests that more flexible medelonsidering a higher number of
molecules interacting and consequently with a highember of parameters, must be
developed, but what is more important: this procdssuld be carried out taking into
account the topology required by th& @inction to be able to correctly represent the
phase equilibrium behavior of the systems in a# tiegions to be correlated in
accordance with the Gibbs minor common tangentlibguim criteria. Nevertheless,
this higher complexity, and the correspondinglyhleignumber of parameters involved,
should not be a limitation nowadays with the algghly improved calculation power of
new computers. Consequently, we should remove ickssrejudices for & models
such as: simplicity, two parameters (or very fewrenxger binary pair and only binary
parameters. If primarily the model must represdm &xperimental data with the
required accuracy, these demands could be too esdwerthe model to adequately

represent many equilibrium behaviors that existature. To reinforce these ideas, we



will comment on this peculiar comparison: the puess/apor of a pure component as a
function of temperature, which is a fairly simplentinuously growing function for the
moderate temperature involved in non-critical Vicoéations, is usually represented by
at least three parameters (e.g. Antoine’s equatoyven more (four parameters in the
Wagner vapor pressure equation and five param@éeGhemCAD [13] and other
process simulators). Contrarily, the models to espnt the complex behavior of the
liquid phase activity coefficients required to adéte highly non-ideal or azeotropic
systems are restricted to two (or three at mosgrpaters for each pair of compounds.
Therefore, it seems reasonable and convenient l&ax ®ome of the requirements
traditionally imposed to the activity coefficienioatels to favor the quality of the results
obtained in phase equilibrium calculations, whalkimg into account the unquestionable

advantages of the molecular thermodynamics insight.

Regarding practical and engineered oriented resitilis important to emphasize that
better results are not always accomplished withaghygarently superior models, as we
showed [23] in a study based on the DECHEMA ChemiBata Series [24] correlation
results. For example, the semi-empirical formalisnaduded in the UNIQUAC model,
though it provides the model with a more realigicture of the liquid mixtures, are not
able to give better results than other simple nmeodslWilson or NRTL, when they are

used in the correlation of VLE data.

With this perspective in a recent paper (in pré&s), we have satisfactorily carried out
the simultaneous correlation of the experimentaiildggium data for the VLL and VL
regions of a ternary system with a unique set oamaters using an extended NRTL

equation including a ternary term and a binaryexion based on the NRTL equation.

The limitations of the activity coefficient modelsave two consequences in phase
equilibria calculations: a) qualitative but not qtitative description of specific
experimental equilibrium data sets, or b) impodisjpieven in the qualitative
description of certain type of systems. In the en¢paper we address the second issue
analyzing the possible theoretical types of termrsystems regarding the distillation
boundaries, for systems involving up to three hinarzeotropes and one ternary
azeotrope. The study reveals that there are marthesie theoretical behaviors that
equations such as NRTL cannot predict. The objeativthe present work is to show

these limitations, analyze their causes and suggssiible solutions.



The impossibility of NRTL to represent certain type of azeotropic ternary

behaviors

Perry’'s Handbook of Chemical Engineering [26] preésel25 possible theoretical types
of ternary systems regarding the distillation bamek, for systems involving up to
three binary azeotropes and one ternary azeotattheugh only a dozen or so represent
most systems commonly encountered in practice. dgep58 of chapter 13 of the
seventh edition of this handbook it is stated tliResidue curves can be constructed
from experimental data or can be calculated arcalyi if equation-of-state or activity-
coefficient expressions are available (e.g., Wilsbimary-interaction parameters,
UNIFAC groups)....”. Nevertheless, this statemening completely true since the
classical activity coefficient equations such asliNRannot predict some of these types
of systems, as it is illustrated below.

The causes of such limitation must be searchedhftre combination of the particular
mathematical equations for the excess Gibbs erfergthe liquid phase (e.g. NRTL)
and for the vapor phase (e.g. ideal behavior aadidgid phase as the reference state),
represented in Eqg. (1) and Eq. (2), respectivehgl the equilibrium conditions. The
equilibrium conditions can be expressed as theligwd the partial derivatives of the
G function of both liquid (&) and vapor (¢8'") phases, at the points of tangency of
the common tangent plane to botH' Gurfaces, for ternary systems. If the system
presents azeotropy, in addition to this conditiothlpoints merge in a single point for
the same composition fzwhere the energies of both phasé$-Gand GV are also

equal, Eq. (3) and Eq. (4), andizthe azeotropic point.
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The topological point of view may clarify these cepts for selected examples. This
analysis could be performed using the Gibbs enefgyixing (G*") for the liquid and
the vapor, as explained above. However, when ceriagl azeotropy the first term in
the right part of both equations Eq. (1) and Eg.i§2he same (x ;= z) , to analyze
the tangent points between these two functionsetltesns can be omitted with the

advantage that the resulting function for the vapefierred as &§ is a plane at constant

temperature:
. P

GV = Z yiln — (5)
i=1 P

To show this situation, the isothermal triangulasmatic plot of G=¢°/RT (where p
indicates the liquid or vapor phases) in the valtaxis versus composition in the base
of the prism for ternary systems could be represkfdr the vapor and the liquid phases
representing Gand G, respectively. In this type of representation, @plane of the
vapor phase moves downwards almost in a parallgl agathe temperature increases,
while the surface corresponding to the liquid ph@bkat has been considered as the
reference state for all the components of the systemains almost unaltered when the
temperature increases. The situation presentedyiriLlFeorresponds to a system of type
#47 of Perry’s classification [26] involving a mary minimum boiling point azeotrope
(ternary mbpa) and a binary minimum boiling poiaeatrope (binary mbpa). In this
figure H, | and L are used for the components endrder of their boiling temperatures:
H (heavy), | (intermediate) and L (light). For thigpe of ternary systems, when
increasing the temperature;€Ir,<Ts), the tangency between thé€ @nd G functions
must firstly be obtained in the ternary azeotropat T, in Fig. 1c, and at higher

temperature the tangency will occur in the binagarope, at 3in Fig. 1d.



The position of the vapor plane takes into accthait the order for Gis H> 1> L as is
deduced from Eg. (5) where the vapor pressure asereas follows H < | < L.
Considering the topology of this vapor surfacéa®d the tangency points required for
the ternary and binary mbpa’s as a function of &majure, we can observe that Fig. 1c
and 1d will only be possible if three conditiong aatisfied by the excess Gibbs energy
of the liquid surface for these type #47 ternargtems: G- must bepositive and
concave for all the compositions space but furthermoremitst present anaximum in
one ternary composition. Moreover, the existencsuwh a maximum point is not a
guarantee for the existence of the ternary mbpausecit also depends on the position
of the plane for the vapor phase being possiblethiebinary azeotrope is obtained at
lower temperature. So, concavity with a ternary imaxn point in the &" surface will

be a necessary but not sufficient condition to rhogee #47 ternary systems. In Fig. 1,
the G surface has been qualitatively drawn to presemtctnditions required by this
type of system. In the present paper, we will stbat using the NRTL model is not
possible to represent this type of system becdwesednditions required to present only
one binary pair with a minimum boiling point azegte (mbpa) lead to a6 surface
unable to give the tangency in a ternary poinbatek temperature as it is required by
type #47 systems in the Perry’s classification [26]

Demonstration of a ssimplified case

Initially we will consider, as a first step in thiemonstration, that the two binary
subsystems which do not present an azeotrope fi@ntHl and HL binary pairs) are
ideal in the liquid phase. After that, we will emtethe conclusions to the more general
situation in which no ideal behavior is assumed.the two ideal binary subsystems the
excess contribution to the Gibbs energy is zere. fiitesence of one mbpa in the binary
IL pair requires concavity in the"& binary curve. This situation has been represented
in Fig. 2 where three possibilities are discussedtie G ternary surface: a) concave
and with a maximum in a ternary composition, b)aawe but without a maximum in a
ternary composition, and c) convex. Cases suclhatsshown qualitatively in Fig. 2a
produce a tangent point between the two Gibbs gnfemctions (G and GY) at the
same ternary composition for both liquid and vapbases, that is to say a ternary
azeotrope of minimum boiling point, when temperatuncreases. However, situations

shown in Fig. 2b and 2c are not compatible with pnesence of one ternary mbpa



because when the temperature increases, the tgngetite binary LI system occurs
first. Pseudoternary planes with a constant ratiq /x; are represented in Fig.2d-f for a
better visualization. Following, we will show th#ie NRTL model is not able to
produce a situation such as that shown in caségadk and 2d), and consequently the
impossibility to reproduce a type #47 of Perryassification with this equation will be

demonstrated.

The G- function considering the binary pairs 13 and 28 @nd IH binary pairs in the
previous discussion) as ideal in liquid phase vegiby the following equation for the
NRTL model:

EL
’ T,1G T:,G
GEL — g _ % 2( 21021 + 12012 ) (©)
RT X1+ Gy1Xy + X3 Gipxq + Xy + X3
since
Ti3 =T33 =0 Ty3 = T3, =0 = G13 =063, =1 Gy3 =Gz, =1

The total derivative of this function can be writtas

aGE,L d N aGE,L d N aGE,L
1 dx, X2 x5

Taking into account the relation between the mddactionsx; + x, + x3 = 1, and

dGE =

d 7
d0xq X3 0

consequentlylx; = —dx; — dx,, EQ. (7) can be written as:

dGEL_ aGE,L aGE,L 4 N aGE,L aGE,L 4 o
—\ oxy dx; "1 dx, dx; *2 ®

The existence of any critical point in thé'Gfunction implies that the total derivative
of that function is zero. This condition can besaiatively formulated by means of the
two conditions in Eq (9) and Eq (10).

aGEL  AGE*
(o) &

d0x, dx;




aGE,L aGE,L
- =0 10
( dx, 0x; > (10)

When these two last equations are satisfied simedtasly Eq. (11) must be also true

oGEE  0GEL oGE*-
-2 =0 11
dx, + dx, dx; 1D

Using the expression given in Eq. (6) to calcuthtepartial derivatives indicated in Eq.

(11) the following expression is obtained

aG"L 9GP+ _9GE*
+ 2

d0x, dx, dx;

T21G21 + T12G12 )
X1+ Gy1Xy + X3 Gioxq + Xy + X3

( 721621(1 - 621) T1ZG12(1 - G12) >
+ x1%,

(%1 + Goyxy +x3)%2  (Gioxq + x5 + x3)?

Considering that for the binary 1-2 to have oneotmmpe of minimum boiling
temperature, the & function must be positive for any composition, gthimeans that
the term in brackets in Eq. (6) must be positivétsi derived that the first term in the
right hand of Eq. (12) is also positive, regardlss sign of the NRTL parameters
andt,;1. The sign of the second term in the right han&@f (12) must be analyzed for
two situations: a) Both binary parametersandt,; are positive, and b) one of them is
positive and the other one is negative. The siimatn which both parameters are
negative is not considered because it would leaal $gstem involving no binary with
minimum boiling point azeotrope as it is requiradthe type #47 systems. For both a)
and b) situations the sign of the second term énripht hand of Eq. (12) is always
positive since iftj<0 then G>1 ((1- Gj)<0) and if ;>0 then G<1 ((1- G)>0).
Therefore, the condition given in Eq. (11) cannetsatisfied because thé Bsurface

does not present any critical point (i.e. ©@80), what implies that no maximum is
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possible at any ternary composition preventing plessibility of existence of one

ternary minimum boiling point azeotrope (mbpa).

The same conclusion is obtained using an alteraatnalysis, in which the comparison
between the magnitude of thé"G function for the binary and the ternary regions is
carried out. To do that, Eq. (6) must be comparghd the NRTL equation for a binary
system (Eq. (13)) where prime is used for the casitipms in the binary region in
planes of equal composition of the component 1 Xi®X;: and %'=x,+Xx3 that implies

X2'>X2)

E,L

T,1G T12G
GEL _9 _ x'lx'2< : 21421 B 1’2 12 : )
RT X1+ Gyx, Gpx'q+x,

(13)

The product x- X, is in the binary always higher than %', in the ternary region. The
second term between brackets is equal in both emqsaEq. (6) and Eq. (13), only the
first term in brackets remains for this comparismd because&1 for tij<0 (Gij<1 for
Tij>0) is easily checked that for any value of tlemposition this term takes always
higher values for the binary compared with the deyrregion. The conclusion is that
G values given by Eq. (13) are always higher thasehin Eq (6). Consequently, the
same conclusion about the impossibility for the NIRModel to present a maximum in
the G* surface (when one binary subsystem presents a ariip#he other two binary
subsystems are ideal) has been achieved by meaws different arguments used: the
analysis of the conditions for the existence ofi@l points in the &" ternary region,
and by means of the comparison of the magnitudeeotS- function in the binary and

ternary regions.

For systems type #48 [26], as that representedgin3a, the situation is similar to that
described above. This is because the change ihitlaey pair with one mbpa (in this
case HL unlike type #47) leads to the same cormtuderived for type #47: the NRTL
equation is not able to model this type of ternsygtems because of the inability to
reproduce a 8- surface with a maximum point at any ternary coritfmrs Because

only a convex surface or, in the best case, a eencame but without a ternary
maximum point is obtained (Fig. 3b), there is nosgbility to obtain the conditions

required by the type #48 ternary systems.
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Adding ternary interactions

In this section we show that the modification of ttlassical activity coefficient models
by means of the addition of ternary interactionsldsolve the limitations discussed in
the previous section, resulting in the possibitifyfitting VLE data for systems such as

those of types #47 and #48 [26], used as exampligeipresent paper.
For example, the addition of the following termtiie NRTL model

E,L (t it i ): tlxl + tzxz + t3x3 (14)
—— (ternary interactiony x; x,x
RT y 230ty xy x5

where {, t,, t; and § are fitting parameters, is able to substantiallydify the G*"
surface, e.g Eq.(1) for the NRTL model, leadinghe topology required by the excess
(or mixing) G- and G functions to satisfy the VLE of many type of syste as those
#47 and #48 discussed in the present paper. Thieimdions of this modified &
function are the following

ML Mid,L EL EL
g

M,L _ — S (15)
G = = + (classmal H (tern ary interactior I)

The analysis of the sign of the total derivativettef G- function given by the sum of
the classical and ternary interaction contributjowken they are represented by the
NRTL equation and Eq.(14), respectively, shows th@t" may now take the value
zero for a ternary composition depending on theapater and composition values,
even for the less favorable situation in which tia® binary subsystems without

presence of azeotrope are ideal.

To illustrate this point we show in Fig. 4 an exdenwhere both the temperature and
the Gibbs energy surfaces versus composition haga bepresented using the original
NRTL equation (Fig. 4a and 4b) and the modified MR3quation that includes the
ternary interaction term (Fig. 4c and 4d). The paeter values that have been used to
reproduce these figures are presented in Tabldd.ofiginal NRTL parameter values
are the same as those used when the additionataeime NRTL equation is added. Fig
4b and 4d have been represented at the temperatutiee binary azeotrope and,

12



consequently, the required topology for to mode&ye #47 ternary system of Perry's
classification [26] implies that the plane for t@por phase must intersect the surface
for the liquid phase. Fig. 4a and 4b show that fhit only occurs for the extended
NRTL equation with the ternary contribution and this reason the ternary azeotrope
appears in the T versus composition diagram showfig 4c but not in Fig 4a. These
examples illustrate how the modification of the NRModel is able to reproduce VLE
data corresponding to a system of type #47 of Reghassification [26], involving
ternary and binary minimum boiling point azeotrgpefich cannot be generated by

NRTL equation.

Checking a general case

As already indicated, we have considered in theipus discussion that the two binary
subsystems which do not present an azeotrope {ddrdnd 23 binary pairs) are ideal in
the liquid phase. Now we will extend the conclusi@aa the more general situation in
which no ideal pair is assumed. To eventually reswwth a behaviors the two binary
subsystems with no azeotropic point should preagmtsitive G, but not so positive
to present a mbpa. The limit of such situationcisesnatically presented in Fig. 5 and
can be expressed by Eq. (16)

po
lnﬁ = _(TjiGji + Tij) (16)
L

where i represents the L or | component and j =This condition has been derived
from the slope of the Gstraight line and the value of the first derivatiof the G*
curve at x or x - 1. The first member in this equation should be Iothan the second
one to prevent the presence of a binary mbpa:

0

P;

i

The mathematical demonstration equivalent to thgkiied seems not easy since the

G surface may now exhibit a maximum. Alternatively show an example where we

13



have calculated the T vs. x,y an&'Gss. z and & vs. z diagrams for the same system
previously considered using the NRTL model but peaters corresponding to the two

binary subsystems with no azeotrope in a limit neguby Eq. (17).

Fig 6a-d show the equivalent figures to those mesly shown in Fig 4a-d but now
with the two binary subsystems 1-3 and 2-3 beingrideal just in a limit imposed by
Eq (16), which it can be considered as the higmest-ideality behavior without
presence of binary azeotropes. We have analyzeg sianilar cases with different;’p
andt; values (always subjected to the described restnicend we have reached the
same conclusion. The observation and comparisomllothese figures reveal the
incapability of the NRTL model to represent type7#dystems not only for the
simplified example shown in Fig 4a and 4b, in whacternary maximum is not possible
for the G" surface (as it has been theoretically demonstraibede in this paper), but
also for the case shown in Fig 6a and 6b, wherg ftossible the existence of such
maximum due to the high non-ideal contributionhs two non-azeotropic binary pairs.
Again, Fig. 6¢c and 6d show how the addition of avemient ternary interaction term to
the NRTL model avoids this limitation to satisfatpachieve the modeled of this type
of systems in the same way as it was shown in4agand 4d for the more simplified
case. Intersection areas between the vapor and ligjbbs energy surfaces, the last one
obtained with the additional term, are evident athbcases represented in Fig. 4d and

6d for the ideal and non-ideal cases, respectively.

From the 125 possible theoretical types of terreystems presented in the Perry’s
Handbook of Chemical Engineering [26] regarding thistillation boundaries, for

systems involving up to three binary azeotropes @mel ternary azeotrope, thirty-six
cannot be modeled using the NRTL equation whatbmaascertained by analogy with
the cases discussed in the present paper. Moresergnteen type of systems would
have serious difficulties to be correlated and owméry restricted cases could be
calculated using the classical activity coeffici@guations as the NRTL model. The
suggested modification should be considered asxamge of how modifying the

behavior of the &" function the required topological condition by tystem could be

fulfilled. Other possible ternary interactions abule proposed leading to similar or
better results. Furthermore, the addition of aagrninteraction contribution to the
classical model could not be enough for some gpesystems, requiring other

modifications of the model (i.e the binary terms) grovide the required greater

14



flexibility. In conclusion, the modifications of ¢hmodels taking into account the
topological requirements of the Gibbs energy fuorcghould be encouraged to achieve
better practical results in the experimental efilim data correlation. This practice
could require a higher number aflequately selected parameters, but the number of

parameters to be fitted should not be a problenmimdern computers.

Conclusions

For a simplified case where the two binary subsgystehowing no azeotropy in types #47
and #48 ternary systems [26] were considered aal idethe liquid phase it has been
mathematically demonstrated that the NRTL equatiannot predict such behaviour. In
addition, when the NRTL constants correspondinipése binary subsystems are in the limit
of presenting azeotropy, it has been tested treis#ime impossibility persists. It has also
been proved that the addition of a ternary ternthim G- model provides the required

flexibility to that function for removing such litation.
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Table 1. Parameters corresponding with Fig. 4 (simplifietse), where both the
classical and extended NRTL models have been wstarhulate the Gibbs energy of

excess for the liquid phase.

Antoine equation constants (*)
component A B (°C) C (°C)
1 8.76 2000 253
2 7.90 1600 225
3 8.35 1700 230
NRTL parameters (K) Ternary interaction parameters
A1 200 1 11
Az 200 b 6
A1z 0.0 13 5
Az 0.0 f 30
Aoz 0.0
Az 0.0
012 =013 =023 0.2
B

*) Antoine equation: | Hg)=A———
*) q ogp(mmHg) Tre



Table 2. Parameters corresponding with Fig. 6 (non-ideaejawhere both the
classical and extended NRTL models have been wstatrhulate the Gibbs energy of

excess for the liquid phase.

Antoine equation constants (*)

component A B (°C) C (°C)
1 8.76 2000 253
2 7.90 1600 225
3 8.35 1700 230
NRTL parameters (K) Ternary interaction parameters
A1z 200 1 11
Az 200 b 6
Ais 39 1 5
Az 50 T4 30
Az 130
Aso 50
012 =013 =023 0.2

(*) Antoine equation:

] H)=A———
ogp(mmHg) TIC
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Fig. 1. System type #47 [26], ternary minimum boiling point azeotrope (ternary mbpa)
and a binary minimum boiling point azeotrope (IL binary mbpa): a) Distillation region
diagram, b-d) Vapor and liquid Gibbs energy surfaces at different temperatures

(T1<T2<T3) showing the situations where the ternary and binary azeotropes are present.
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Fig. 2. Vapor and liquid Gibbs energy surfaces showing three possibilities for the GF" surface: @) concave with a maximum in a ternary

composition, b) concave (without a ternary maximum), and c) convex. Pseudoternary planes with a constant ratio c=x,/x, are represented in d-f),

respectively.
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Fig. 3. System type #48 [26], ternary minimum boiling point azeotrope (ternary mbpa)
and a binary minimum boiling point azeotrope (LH binary mbpa): a) Distillation region
diagram, and b) vapor and liquid Gibbs energy surfaces at low temperature (lower than

ternary and binary mbpa).
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Fig. 4. Temperature versus composition and Gibbs energy surfaces (vapor and liquid)
for aternary system with a binary minimum boiling point azeotrope (1-2) and two ideal
binary subsystems (1-3 and 2-3) using both: a, b) the NRTL model, and c, d) the
extended NRTL model. Parameters for the liquid and vapor phases are in Table 1.
Gibbs energy representations are at the temperature of the binary azeotrope (350K).
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Fig. 5. Analysis of the limit situation in the concavity of the GF* function for non-ideal
HL and HI binary pairs without azeotrope, related to the dopes of the vapor and liquid
functions at the more-volatile component (L or I).
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Fig. 6. Temperature versus composition and Gibbs energy surfaces (vapor and liquid)

for aternary system with a binary minimum boiling point azeotrope (1-2) and two non-
ideal binary subsystems (1-3 and 2-3) using both: a, b) the NRTL model, and c, d) the
extended NRTL model. Parameters for the liquid and vapor phases are in Table 2.

Gibbs energy representations are at the temperature of the binary azeotrope (350K).



