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Abstract

We prove that, given a topological space X, the following conditions are
equivalent. (α) X is a Gruenhage space. (β) X has a countable cover by sets
of small local diameter (property SLD) by F∩G sets. (γ) X has a separating
σ-isolated family M ⊂ F ∩ G. (δ) X has a one-to-one continuous map into
a metric space which has a σ-isolated base of F ∩ G sets.

Besides, we provide an example which shows

Fragmentability ; property SLD ; the space to be Gruenhage.
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1. Introduction

1.1. Main Results

The notion of Gruenhage space is based on that of a σ-distributively
point-finite open cover. The latter was introduced by Gruenhage [4] in order
to solve a problem stated in [32]. Gruenhage spaces have already been studied
in [3, 21, 27, 28, 29, 30, 31].
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Preprint submitted to RACSAM December 8, 2014

Usuario
Texto escrito a máquina
This is a previous version of the article published in RACSAM. 2015, 109(2): 717-730. doi:10.1007/s13398-014-0211-5

http://dx.doi.org/10.1007/s13398-014-0211-5


The main result of this work is Theorem 1.1, which has been stated briefly
in the first paragraph of the abstract. Before stating it in full, we have to fix
some terminology.

Given a set A, we will denote by #A its cardinality. A family A of subsets
of a set X is said to be separating (resp. T2-separating), if given distinct
x, y ∈ X there exists A ∈ A such that #{x, y} ∩ A = 1 (resp. disjoint A,
B ∈ A such that x ∈ A and y ∈ B). As usual, we will denote by F (resp. by
G) the family of closed (resp. open) subsets of a topological space, by F ∩G
the family of sets which are the intersection of an open and a closed set, by
(F ∩G)σ the family of sets which are countable unions of elements of F ∩G,
and by Borel(X, τ) the Borel σ-algebra for the topology τ on X. Given two
families of sets A and B, by A ⊂ B it is understood that every set in A also
belongs to B. If d is a metric on X, we will denote by τd the topology on
X generated by d. In what follows, the reader will find some notions which
have not been introduced yet. These are defined in the next subsection.

Theorem 1.1. The following are equivalent for a topological space (X, τ).

(i) X is a Gruenhage space.

(ii) X has property SLD by F ∩ G sets (the decomposition may also be taken
finite and disjoint).

(iii) For some metric d on X, τd has a τ -σ-isolated network N ⊂ F ∩ G.

(iv) There is a separating σ-isolated family M⊂ F ∩ G (the family may also
be taken T2-separating).

(v) X has property d-SLD for some metric d and τd ⊂ (F ∩ G)σ. Hence
Borel(X, τd) ⊂ Borel(X, τ).

(vi) There is a metric space (Z, d) and a one-to-one map Φ : X → Z which
has a σ-isolated base B ⊂ F ∩ G.

It is worth noting that the notions which appear in the former result are
closely related to LUR renorming [16, 17, 18]. Property SLD was introduced
and studied by Jayne, Namioka, and Rogers [10], the notion of σ-isolated
family was introduced by Hansell [6], and the class of maps with a σ-isolated
function base was studied by Hansell [8]. More connections between General
Topology and Functional Analysis can be found in [13].

Our characterization had its genesis in the works of Stegall [31] and Ri-
barska [27]. In the latter it is proved that any Gruenhage space has property
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SLD. In addition, it is proved that if d is a metric on a regular topological
space (X, τ), X has property d-SLD, and either if d is lower semicontinuous
or if τd is finer than τ , then X is a Gruenhage space. After a deep inspection
of the proofs of these results, we state assertions (ii) and (iii) in Theorem 1.1.
Assertion (iv) provides a simpler version of [31, Proposition 7.4]. Also, in
(iv), we obtain a T2-separation assumption which does not imply metrizabi-
lity; in contrast with Rosenthal-type theorems [2, 5, 15, 24]. Assertion (v)
provides information about the relationship between the topologies τ and
τd. In particular, an inclusion between the corresponding Borel σ-algebras
is obtained. Let us note that both σ-algebras coincide when we consider
descriptive compacta, or when we consider Banach spaces which have pro-
perty JNR. Regarding the latter, we find an open problem [19, Problem 1.7].
Finally, assertion (vi) is related to the study of measurable selectors of upper
semi-continuous multivalued functions [18].

Next, let us focus on two classes of topological spaces which are directly
related to Gruenhage compacta. These are the class of descriptive compacta
and that of fragmentable spaces. Descriptive compacta were introduced by
Hansell [6] and comprehensively studied in [20], and connections with LUR
renorming theory can be found in [23]. The first proof of the fact that any
descriptive compact is Gruenhage compact is based on the characterization
of descriptive compacta in terms of property SLD due to Oncina and Raja
in [20]. On the other hand, the notion of fragmentable space was introduced
by Jayne and Rogers in [11] in connection with Borel selectors of multivalued
functions. In general, fragmentable compact spaces are not particularly well
behaved from the point of view of renorming. In [25] Ribarska stated an
internal characterization for fragmentable spaces, by means of which she
proved that any Gruenhage space is fragmentable.

The following result is already known [20, 23, 25] and shows the behaviour
of descriptive compacta, Gruenhage spaces and fragmentable ones.

Proposition 1.2. Let us consider the following properties for a topological
space X.

(i) X is a descriptive compact.

(ii) X is a Gruenhage space.

(iii) X is fragmentable.
Then we have (i) =⇒ (ii) =⇒ (iii), and no implication can be reversed.

When X is a compact space and every collection of open sets admits a
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σ-isolated refinement, then the three properties above are equivalent.

In the former result we have not made any mention of property SLD.
However, we have the following implications

fragmentability⇐ Gruenhage space⇒ property SLD.

The next example, together with the fact that [0, c] is not a Gruenhage
space [26], helps us clarify the relationship between Gruenhage spaces, spaces
which have property SLD, and fragmentable spaces. As usually, c denotes
the cardinality of the continuum and c+ the cardinal successor of c.

Example 1.3. [0, c+] is fragmentable but does not have property SLD,
whereas [0, c] is fragmentable and has property SLD.

Let us recall that it is unknown if there exists any σ-fragmentable Banach
space which does not have property JNR. However, Example 1.3 shows that
those two notions are not equivalent out of the frame of Banach spaces.

Finally, it seems natural to state the following problem regarding property
SLD and fragmentability.

Problem 1.4. Let (X, τ) be a topological space which has property SLD.
Is (X, τ) necessarily fragmentable?

The plan of the paper is as follows. In the next subsection we have
compiled the definitions of most of the notions which appear in the work.
Moreover, we give a proof of Proposition 1.2. In Section 2 we study properties
of metrics associated with separating σ-isolated families. In Proposition 2.4
we prove that those metrics provide property SLD. In Proposition 2.7 we
show that if the separating σ-isolated family is contained in F ∩ G, then
the metric associated also fragments the space. These propositions are used
in several proofs of the work, for instance in the proof of Theorem 1.1 in
Section 3. Besides, in Section 3, we state and prove Corollary 3.3. This
allows us to claim that in a Gruenhage space it is not restrictive to assume
that the metric which fragments it generates a topology finer than that ge-
nerated by the metric which provides property SLD. Remark 3.4 yields extra
information about the Stegall characterization and the definition of Gruenha-
ge space. The main goal of Section 4 is to prove Example 1.3. Nevertheless,
before that proof, some results concerning spaces which have property SLD
without F∩G sets are provided (Proposition 4.1 and Corollaries 4.2 and 4.3).
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1.2. Notation, definitions, and previous results
Next, let us introduce some notions needed in the development of this

work.
All spaces considered in this paper are assumed to be Hausdorff. Given a

set X and a family A of subsets of X, we denote by ord(x,A) the cardinality
of {A ∈ A : x ∈ A}, by ω the first infinite ordinal and by n any positive
integer.

A topological space (X, τ) is called a Gruenhage space if there exists an
open cover U of X which is σ-distributively point finite separating. That is to
say, U = ∪n<ωUn so that, for each pair of distinct x, y ∈ X, there exists n < ω
such that the subfamily Un separates x and y, and also either ord(x,Un) or
ord(y,Un) is finite. A compact space K is called a Gruenhage compact if K
is compact and a Gruenhage space.

Let us introduce now the notion of property SLD. Given a metric d on a
set X and a d-bounded set A ⊂ X, we will denote by d-diam(A) the diameter
of the set A respect to the metric d. Let d be a metric on a topological space
(X, τ), it is said that (X, τ) has a countable cover by sets of small local
d-diameter (X has property d-SLD) if for every ε > 0, there exists a countable
set Nε such that there exists a decomposition X = ∪n∈NεX

ε
n in such a way

that, for every n ∈ Nε and every x ∈ Xε
n, there is a τ -open set U which

contains x and verifies that d-diam(U∩Xε
n) < ε. Moreover, we say that X has

property d-SLD by F ∩G sets if X has property d-SLD and each Xε
n ∈ F ∩G.

In addition, we say that X has property d-SLD by a finite decomposition if X
has property d-SLD and each Nε is finite. Finally, we say that X has property
d-SLD by a disjoint decomposition if X has property d-SLD and Xε

n∩Xε
m = ∅

for different n, m and every ε > 0. We say that X has property SLD if X
has property d-SLD for some metric d on X. Moreover, we say that X has
property SLD by F ∩ G sets (and/or by a finite decomposition, and/or by a
disjoint decomposition) if X has property d-SLD by F ∩G sets (and/or by a
finite decomposition, and/or by a disjoint decomposition) for some metric d
on X. Property SLD is equivalent to property P (d, τ) introduced by Raja in
[22] and used in [9]. We will denote by weak, the weak topology of a Banach
space. A Banach space X has property JNR if (X,weak) has property SLD
respect to the metric given by its norm.

Given a family A of subsets of a set X, we denote by ∪A the set obtained
as the union of elements of the family A. Given a sequence of families of sub-
sets, {An}n<ω, we will denote by ∪n<ωAn the family formed by the union of
all of the families An. A family A of subsets of a topological space X is said
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to be isolated, if for every A ∈ A there exists an open set U such that U ⊇ A
and U ∩ Ã = ∅ for every Ã ∈ A \ {A}; equivalently, A ∩

⋃
A \ {A} = ∅. A

family A is said to be σ-isolated if it can be expressed as A = ∪n<ωAn and
each subfamily An is isolated. In fact, when A is a σ-isolated family, we de-
note by An those isolated subfamilies of A corresponding to a decomposition
of A, i. e., A = ∪n<ωAn.

Let us fix topological spaces X and Y , and a map Φ : X → Y . We say
that a family B of subsets of X is a function base for Φ if, whenever V is
open in Y , then Φ−1(V ) is union of sets of B.

A family N of subsets of a topological space (X, τ) is said to be a network
for τ if every open set is a union of sets from N . A compact space K is called
descriptive compact if it has a σ-isolated network.

Let d be a metric on a topological space (X, τ), X is called d-fragmentable
(or fragmented by d), if for each nonempty A ⊂ X and ε > 0 there is
some (non empty) relatively open set in A with d-diameter less than ε.
A topological space (X, τ) is fragmentable if there exists a metric d on X
such that (X, τ) is d-fragmentable. A topological space (X, τ) is said to be
σ-fragmented by d, if given ε > 0 there exists a countable decomposition
X = ∪n<ωXn such that for every n, each A ⊂ Xn has a (non empty) rela-
tively open set of d-diameter less than ε. A topological space (X, τ) is said
to be σ-fragmentable if (X, τ) is σ-fragmented for some metric d on X. A
Banach space X is said to be σ-fragmentable if (X,weak) is σ-fragmented by
the metric provided by the norm.

We complete this subsection by giving a proof of Proposition 1.2.

Proof of Proposition 1.2. In the introduction we have given the correspon-
ding references for the proofs of the implications (i)⇒(ii)⇒(iii). However,
these implications can also be obtained as consequence of Corollary 2.9, Theo-
rem 1.1, and Corollary 3.3.

Now assume that X is a fragmentable compact space, and that every
collection of open sets admits a σ-isolated refinement. Let d be a fragmenting
metric on the compact X. By [25, Corollary 1.11] (or [1, Theorem 5.1.12]),
it is not restrictive to suppose that τd is finer than the initial topology. Now
we apply [6, Theorem 1.10] and X admits a σ-isolated network.

2. Metrics associated with separating σ-isolated families

The aim of this section is to construct metrics associated with separating
σ-isolated families and to study some of their properties. At the beginning,
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it will be shown that those metrics provide property SLD. Later on, it will be
proved that, when the separating σ-isolated families are subfamilies of F∩G,
the associated metrics also fragment the space. These results will be used in
the subsequent sections.

Let us begin with a lemma without proof which will allow us to provide
the first definition of the section.

Lemma 2.1. Let (X, τ) be a topological space,M = ∪n<ωMn be a separating
family of subsets of X such that each Mn is a disjoint cover of X. Let us
define d : X ×X → R by

d(x, y) := 1/n0 where n0 = min{n : ∃M ∈Mn s.t. #{x, y} ∩M = 1}.

Then d is a metric on X and M is a subbase for τd. In particular, the open
ball B(x, 1/n) coincides with the set ∩{M ∈ Mi : x ∈ M and i ≤ n}, for
every x ∈ X and n < ω.

Definition 2.2. The metric d in the former lemma is called the metric gene-
rated by the family M.

Next, we introduce the notion of metric associated with a separating
σ-isolated family.

Definition 2.3. Let (X, τ) be a topological space and d a metric on X. It is
said that d is a metric associated with a separating σ-isolated family, if there
exists a separating σ-isolated familyM such that d is a metric generated by
the family ⋃

n<ω

Mn ∪ {X \ ∪Mn}.

In this situation d is said to be the metric associated with M.

Let us show how this kind of metrics provide property SLD.

Proposition 2.4. Let (X, τ) be a topological space and d a metric on X
associated with a separating σ-isolated family. Then X has property d-SLD
by a finite and disjoint decomposition.

Proof. Let M = ∪nMn be a separating σ-isolated family and d a metric
associated with M. For any n < ω and M ∈ Mn, we choose an open set
UM ⊃ M such that UM ∩ (∪Mn \ {M}) = ∅. In this way, we define the
family Un := {UM : M ∈Mn} for every n ≥ 1, and finally, U := ∪n<ωUn.
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In order to obtain property d-SLD we define, for every n < ω,
Xn

1 := ∪Mn and Xn
2 := X \ ∪Mn. The necessary decomposition of X

will be obtained after taking finite intersections. Namely, let us fix ε > 0 and
n0 such that 1/n0 < ε. We define

Xi1,i2,...,in0
:= X1

i1
∩ ... ∩Xn0

in0
, where ij ∈ {1, 2}.

Then
X =

⋃
1≤ij≤2
1≤j≤n0

Xi1,i2,...,in0
,

is a finite and pairwise disjoint union. Moreover, let us fix x ∈ Xi1,i2,...,in0
.

For every l ∈ {1, . . . , n0}, we will define the set Vl in the following way. If
x ∈ X l

1, we define Vl := U ∈ G, where U ∈ Un and x ∈ U . On the contrary,
if x ∈ X l

2, we define Vl := X ∈ G. In both situations, the elements of each
set Vl ∩X l

ij
are not separated by the coverMl ∪{X \∪Ml}. Now, we define

V := ∩1≤l≤n0Vl ∈ G. Then, x ∈ V and

d-diam(V ∩Xi1,i2,...,in0
) < 1/n0 < ε.

Next, we state a lemma which will be used in several places of this paper.

Lemma 2.5. Let (X, τ) be a topological space and M an isolated subfamily
of F ∩ G. Then ∪M ∈ F ∩ G.

As a consequence, a σ-isolated family M is contained in F ∩ G if, and
only if, ∪Mn ∈ F ∩ G, for every n < ω.

Proof. We refer the reader to [6, Lemma 3.3]. In fact, we apply that lemma
to the special case B0.

Now, we will study some properties of those metrics which are associated
with separating σ-isolated families contained in F ∩ G. Let us define them.

Definition 2.6. Let (X, τ) be a topological space and d a metric on X. It is
said that d is a metric F ∩ G associated with a separating σ-isolated family,
if there exists a separating σ-isolated family, M, such that for every n < ω,
∪Mn = Fn ∩Gn (for some Fn ∈ F and Gn ∈ G) and d is a metric generated
by the family ⋃

n<ω

Mn ∪ {Fn \Gn, X \ Fn}.

In this situation d is said to be the metric F ∩ G associated with M.
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Proposition 2.7. Let (X, τ) be a topological space and d a metric on X
which is F ∩ G associated with a separating σ-isolated family. Then the
following statements hold.

(i) X has property d-SLD by F ∩ G sets and by a finite and disjoint decom-
position.

(ii) X is fragmented by d.

Proof. Let d be a metric F ∩ G associated with the separating σ-isolated
family M = ∪Mn. Given n ≥ 1, we fix sets Fn ∈ F and Gn ∈ G such that
∪Mn = Fn ∩Gn in such a way that d is a metric generated by⋃

n<ω

Mn ∪ {Fn \Gn, X \ Fn}.

Now, for any n ≥ 1 and M ∈ Mn, we choose an open set UM ⊃ M such
that UM ∩ (∪Mn \ {M}) = ∅. In this way, for every n ≥ 1, we define the
family Un := {UM : M ∈Mn}, and finally U := ∪n≥1Un.

Let us prove part (i). For every n ≥ 1, we define

Xn
1 := X \ Fn ∈ G, Xn

2 := ∪Mn ∈ F ∩ G, and Xn
3 := Fn \Gn ∈ F .

Taking finite intersections, we will obtain a decomposition of X which will
provide property d-SLD. Namely, we fix ε > 0 and choose n0 such that
1/n0 < ε. Next, we define

Xi1,i2,...,in0
:= X1

i1
∩ ... ∩Xn0

in0
∈ F ∩ G, where ij ∈ {1, 2, 3}.

Then X =
⋃

1≤ij≤3
1≤j≤n0

Xi1,i2,...,in0
, and it is a finite and pairwise disjoint union.

Moreover, let us fix x ∈ Xi1,i2,...,in0
. For every l ∈ {1, . . . , n0}, we will define

a set Vl in the following way. If x ∈ X l
1, we define Vl := X \Fl ∈ G. However,

if x ∈ X l
2, we define Vl := Gl ∩ U ∈ G, where U ∈ Un and x ∈ U . Finally,

if x ∈ X l
3, we define Vl := X ∈ G. In all cases, the elements of each set

Vl∩X l
ij

are not separated by the coverMl∪{Fl \Gl, X \Fl}. Now, we define
V := ∩1≤l≤n0Vl ∈ G. Then x ∈ V and d-diam(V ∩Xi1,i2,...,in0

) < 1/n0 < ε.
The proof of statement (ii) is similar to the previous one. Let us fix now

a subset A ⊂ X and ε > 0. Let n0 < ω be such that 1/n0 < ε. We define
the open set V1 in this way. If A 6⊂ F1, then V1 := X \ F1. Instead, if
A ∩ F1 ∩ G1 6= ∅, we choose some U ∈ U1 such that A ∩ U 6= ∅ and define
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V1 := G1 ∩U . Finally, if A ⊂ F1 \G1, then we define V1 := X. If 1 < l ≤ n0,
then we fix Al−1 := A ∩ V1 ∩ . . . Vl−1, and define the corresponding open set
Vl in the analogous procedure. Thus, if Al−1 6⊂ Fl then Vl := X \ Fl. If
Al−1 ⊂ Fl ∩ Gl, we choose some U ∈ Ul such that Al−1 ∩ U 6= ∅ and define
Vl := Gl∩U . Finally, if Al−1 ⊂ Fl\Gl, then we define Vl := X. Therefore, we
have obtained a finite family of open sets {Vl}n0

l=1, such that V := ∩n0
l=1Vl ∈ τ ,

V ∩ A 6= ∅, and d-diam(V ∩ A) < 1/n0 < ε.

In Propositions 2.4 and 2.7, we are not able to relate the topology τd with
the initial topology τ of the space X. Nevertheless, in this inquiry line, we
state the following result.

Proposition 2.8. Let (X, τ) be a topological space and d a metric associated
(or F ∩ G associated) with a separating σ-isolated family M. Assume that
M is a network for some topology τ̃ on X. Then τd is finer than τ̃ .

Proof. We will only study the case of a metric F ∩ G associated with a
separating σ-isolated family since, in the other case, the proof is exactly the
same. Given a separating σ-isolated family M ⊂ F ∩ G on X, we consider,
for every n < ω, Fn ∈ F and Gn ∈ G such that ∪Mn = Fn ∩ Gn in such a
way that d is the metric generated by⋃

n<ω

Mn ∪ {Fn \Gn, X \ Fn}.

The conclusion is a consequence of the fact thatM is contained in a subbase
for τd. Namely, we fix x ∈ X and U ∈ τ̃ such that x ∈ U . Then there
exists N ∈ Mn such that x ∈ N ⊂ U . Now, for every i < n, we take
Mi ∈Mi ∪ {Fi \Gi, X \ Fi} such that x ∈Mi. In conclusion,

x ∈ Bd(x, 1/n) = ∩i<nMi ∩N ⊂ U.

Next result is a direct consequence of the former propositions. Besides,
it is related to Proposition 1.2 of the introduction.

Corollary 2.9. Let (X, τ) be a regular topological space with a σ-isolated
network. Then there exists a metric d on X such that the following statements
hold
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(i) X has property d-SLD by F ∩ G sets and by a finite and disjoint decom-
position.

(ii) X is fragmented by d.

(iii) τd is finer than τ .

Proof. Let us consider a σ-isolated network N on X. By Lemma 2.5 and
the regularity hypothesis, it is not restrictive to assume that N ⊂ F ∩G; see
[20] for more details. Then, for every n < ω, there exist Fn ∈ F and Gn ∈ G
such that ∪Nn = Fn ∩Gn. Let d be a metric generated by⋃

n<ω

Nn ∪ {Fn \Gn, X \ Fn}.

Assertions (i) and (ii) are consequence of Proposition 2.7 and assertion (iii)
of Proposition 2.8.

3. Gruenhage spaces

The aim of this section is to prove Theorem 1.1 and to establish some of
its consequences. Let us begin this section by showing some useful results.
The first one is an equivalence in [17, Proposition 2]. Here, we will provide
a direct proof in order to have a self-contained work.

Proposition 3.1. Let (X, τ) be a topological space and d a metric on X.
Then X has property d-SLD if, and only if, τd has a τ -σ-isolated network.

Proof. Let us assume that X has property d-SLD. Then, for every m ≥ 1, we
split X = ∪i≥1X

m
i in such a way that for every x ∈ Xm

i , there exists an open
set U containing x such that d-diam(U ∩Xm

i ) < 1/m. Now, let B = ∪l≥1Bl
be a base of τd such that each subfamily Bl is discrete. For any m, i, and
B ∈ B, set Um,i

B := intXm
i

(B ∩ Xm
i ), i.e., the interior of the set B ∩ Xm

i in
the induced topology in Xm

i . Now for any l, m, and i, we define the isolated
family

N l,m,i := {Um,i
B : B ∈ Bl}.

Finally, we claim that the family N := ∪l,m,iN l,m,i, is a network for τd. Let
us check it. We fix arbitrary x ∈ X and r > 0. To shorten notation, we will
denote by Bd the open ball with radius r and centre x. Let l ≥ 1 and B0 ∈ Bl
such that x ∈ B0 ⊂ Bd. It is not restrictive to assume that there exists some
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0 < r̂ < r such that B0 = B(x, r̂), otherwise we could follow the argument
with a subset B(x, r̂) of B0. Let m0 be such that 0 < 1/m0 < r̂. Consider
the decomposition X = ∪i≥1X

m0
i given by property d-SLD for ε = 1/m0.

Now, we fix i0 ≥ 1 such that x ∈ Xm0
i . Then there exists U ∈ τ verifying

x ∈ U ∩Xm0
i0
⊂ B0 ⊂ Bd. (1)

Thus x ∈ Um0,i0
B0

= intXm0
i0

(B0 ∩ Xm0
i0

). In fact Um0,i0
B0

⊂ Bd, because if

y ∈ Um0,i0
B0

, there exists V ∈ τ such that y ∈ V ∩Xm0
i0
⊂ B0∩Xm0

i0
⊂ Bd. Let

us note that in the last inclusion we have used (1).
For the reverse implication, we assume that τd has a σ-isolated network

N . If we fix ε > 0, then the sets Xε
n := ∪{N ∈ Nn : d-diam N < ε} provide

the suitable decomposition of X for property d-SLD.

Now, we focus our efforts in the proof of Theorem 1.1. For that reason
we begin to manage property SLD by F ∩ G sets.

Proposition 3.2. Let (X, τ) be a topological space and d a metric on X, the
following are equivalent.

(i) (X, τ) has property d-SLD by F ∩ G sets.

(ii) τd has a τ -σ-isolated network N ⊂ F ∩ G.

(iii) (X, τ) has property d-SLD and τd ⊂ (F ∩ G)σ.

Proof. The implication (i)⇒(ii) follows from the only if part of the proof of
the former proposition. In this case, we have also to apply that each Xm

i is a
F ∩ G-set. Thus, since each Um,i

B can be written as Um,i
B = U ∩Xm

i for some
U ∈ τ , then Um,i

B ∈ F ∩ G.
The implication (ii)⇒(i) follows from the if part of the proof of the former

proposition. In this case we have also to apply that each Xε
n is a isolated

union of F ∩ G sets. Applying Lemma 2.5, Xε
n is again a F ∩ G set.

In the implication (ii)⇒(iii), the first assertion follows from the former
proposition. For the second one we fix a network N ⊂ F∩G for τd such that
N = ∪n≥1Nn and each Nn is τ -isolated. Hence, given U ∈ τd, there
exists M ⊂ N such that U = ∪M. For every n, we define the family
Mn := M∩Nn. Hence U = ∪n≥1 ∪Mn. Applying Lemma 2.5 again, we
conclude that each set ∪Mn is a F ∩ G set, which finishes the proof of this
implication.

12



Finally, we will prove (iii)⇒(ii). Let us fix a base B = ∪n<ωBn for τd
such that each subfamily Bn is d-discrete. By hypothesis, each B ∈ B can be
decomposed as B = ∪i<ωU i

B in such a way that each U i
B ∈ F ∩ G. Next, we

define
Bn,i := {U i

B, B ∈ Bn}.

Then ∪n,i<ωBn,i ⊂ F ∩G is a network for τd. To obtain a σ-isolated network
for τd, we have to refine the former one. By Proposition 3.1, there exists a
network for τd, N = ∪n<ωNn, such that each subfamily Nn is τ -isolated. For
every N ∈ Nn, we define

Ñ := N \ ∪ (Nn \ {N}).

Since each family Nn is isolated, then each family

Ñn := {Ñ : N ∈ Nn},

is also isolated. Therefore, each family

Ñn,k,i := {Ñ ∩ U i
B;N ∈ Nn, B ∈ Bk} ⊂ F ∩ G,

is also τ -isolated. Moreover, the family
⋃
n,i,k

Ñn,k,i is a network for τd (because

∪n,iBn,i is a network for τd).

Before showing Theorem 1.1, we state an interesting consequence of the
former result.

Corollary 3.3. Let (X, τ) be a topological space and d a metric on X such
that X has property d-SLD by F ∩ G sets. Then there exists another metric
d1 on X which fragments X and such that τd1 is finer than τd.

Proof. Let us consider the σ-isolated network N ⊂ F ∩ G for τd given by
Proposition 3.2 assertion (ii). Then, for every n < ω, there exist Fn ∈ F and
Gn ∈ G such that ∪Nn = Fn ∩Gn. Let d1 be a metric generated by⋃

n<ω

Nn ∪ {Fn \Gn, X \ Fn}.

Then Propositions 2.7 and 2.8 apply.
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The former result, together with [19, Theorem 1.3], provides a direct
proof of the known fact that each Banach space having property JNR is
fragmentable by a metric which generates a finer topology than that given
by the initial norm. The first proof of this fact is based on a game which
characterizes fragmentability [14].

Proof of Theorem 1.1. The equivalence of assertions (ii), (iii), and (v) follows
from Proposition 3.2. Let us note that equivalence (i)⇔(iv) is essentially
stated in [27]. However, we provide a complete and self contained proof.

(i)⇒(ii) Let U = ∪n≥1Un be a σ-distributively point finite separating
open cover on X. For all integers n ≥ 1 and p ≥ 0, we define the set

Cn,p := {x ∈ ∪Un; ord(x,Un) = p} ∈ F ∩ G,

and consider the family Un,p of open sets consisting of intersections of p
distinct elements of Un. Let us note that the sequence of families (Un,p)n,p
satisfies the same properties as the original sequence (Un)n. Now we are
in the situation of [31, Proposition 7.4]. Let us relabel the sub indexes in
order to simplify the notation. We will denote the sets Cn,p by Cn and the
families Un,p by Un. For every n ≥ 1, we fix Fn ∈ F and Gn ∈ G such that
Cn = Fn ∩Gn. ThenM := ∪n<ω{U ∩Cn;U ∈ Un} is a separating σ-isolated
family by F ∩ G sets. Let d be a metric generated by⋃

n<ω

Mn ∪ {Fn \Gn, X \ Fn}.

By Proposition 2.7, X has property d-SLD by F ∩G sets and by a finite and
disjoint decomposition.

The implication (ii)⇒(iii) follows from Proposition 3.2.
(iii)⇒(iv) The network N given in (iii) is a T2-separating family and it

inherits this separation property from τd.
(iv)⇒(i) Let us fix now a separating family N ⊂ F ∩ G such that

N = ∪n<ωNn and each subfamily Nn is isolated. We will obtain a σ-dis-
tributively separating open cover. Since N is σ-isolated, given n ≥ 1 and
N ∈ Nn, there exist GN and FN ∈ F in such a way that N = FN ∩GN and
GN∩M = ∅, ∀M ∈ Nn\{N}. For every n ≥ 1, Lemma 2.5 yields that the set
Cn := ∪Nn = Fn ∩ Gn, for some Fn ∈ F and Gn ∈ G. Besides, we define a
family of open sets

Vn := {GN ;N ∈ Nn} ∪ {GN ∩ F c
n;N ∈ Nn}.
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Now, we will check that the family V := ∪n<ωVn is a σ-distributively se-
parating cover. Let x, y ∈ X, then there exists n0 ∈ ω and N ∈ Nn0 such
that #{x, y} ∩ N = 1. It is not restrictive to assume that x ∈ N and,
in this case, we will prove that ord(x,Vn0) = 1. Since x 6∈ GM for every
M ∈ Nn0 \ {N}, then either x ∈ GN or x ∈ GN ∩ F c

n0
. But x 6∈ GN ∩ F c

n0

because x ∈ Cn0 ⊂ Fn0 .
The implications (ii)⇒(v)⇒(iii) follow from Proposition 3.2.
(iii)⇒(vi) Let us fix the metric d of (iii) and consider the identity map

Id : (X, τ) → (X, d). Then, the network given by assertion (iii) is just the
desired σ-isolated base for the identity map.

(vi)⇒(iv) Let us check that B is separating. For this purpose we fix
distinct x, y ∈ X. Then there exists ε > 0 such that Φ(y) 6∈ B(Φ(x), ε).
Then y 6∈ Φ−1(B(Φ(x), ε)) = ∪B1, for some B1 ⊂ B.

The former proof provides the following extra information regarding
Gruenhage spaces.

Remark 3.4.

(1) It is not restrictive to assume in [31, Proposition 7.4] that the families
involved are T2-separating.

(2) Every Gruenhage space X has an open cover U = ∪n<ωUn, such that if
x, y ∈ X, then there exists n0 verifying that

(a) x and y are separated by the subfamily Un0 ;

(b) ord(x,Un0) = 1.

Next, a consequence of Theorem 1.1. As usual, by τpointwise we denote the
pointwise convergence topology.

Corollary 3.5. Let (X, τ) be a topological space, K a compact space, and
Φ : (X, τ) → (C(K), τpointwise) a one-to-one continuous map which has a
σ-isolated base. Then X is a Gruenhage space.

Proof. By [7, Theorem 1], the map Φ has a σ-isolated base B ⊂ F ∩ G
with respect the norm topology of C(K). Now assertion (vi) of Theorem 1.1
applies.

15



4. Property SLD and fragmentability

Characterizations for spaces having property SLD can be found in [17].
We begin this section by providing two results in this aim. The first one
checks that F ∩ G sets are suitably preserved to get Theorem 1.1.

Proposition 4.1. The following are equivalent for a topological space (X, τ).

(i) X has property d-SLD (the decomposition may also be taken finite and
disjoint).

(ii) There exists a separating σ-isolated family on X (the family may also be
taken T2-separating).

(iii) There exists a metric space (Z, d) and a one-to-one map Φ : X → Z
which has a σ-isolated base.

Proof. (i)⇒(ii) follows from Proposition 3.1 and implication (ii)⇒(i) from
Proposition 2.4. For the proof of the implication (ii)⇒(iii) we consider
a separating σ-isolated family M and a metric d generated by the family
∪nMn ∪ {X \ ∪Mn}. Then

B := {∩i∈IMi : Mi ∈Mi ∪ {X \ ∪Mi}, i ∈ I < ω},

is a base for the identity map between (X, τ) and (X, d). Finally, let us
check (iii)⇒(ii). We assume that Φ : (X, τ) → (Z, d) is a one-to-one map
with a σ-isolated base B. Next, we check that B is separating. If we fix
distinct x, y ∈ X, then Φ(x) 6= Φ(y). Thus, there exists ε > 0 such that
Φ(y) 6∈ B(Φ(x); ε). Hence, y 6∈ Φ−1(B(Φ(x); ε)) and there exists an element
B ∈ B such that y 6∈ B but x ∈ B.

Let us note that the following result is a consequence of Proposition 3.1,
however it is more suitable to state it here because of the topic of this section.

Corollary 4.2. Let (X, τ) be a topological space and d a metric on X such
that X has property d-SLD. Then, there exists another metric d1 on X such
that X has property d1-SLD by a finite and disjoint decomposition and, in
addition, τd1 is finer than τd.

Proof. We consider the σ-isolated network N for τd provided by Proposi-
tion 3.1. Let d1 be a metric generated by⋃

n<ω

Nn ∪ {X \ ∪Nn}.

Then Propositions 2.4 and 2.8 apply.
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Corollary 4.3. Let (X, τ) be a topological space, (Y, d) a metric space, and
Φ : (X, τ)→ (Y, d) a one-to-one Baire map. Then X has property SLD.

Proof. By [18, Corollary 2.4], the map Φ has a σ-isolated function base.

Now we will prove Example 1.3 stated in the introduction. Its proof will
use the following result

Lemma 4.4. Let X be a topological space which has property SLD. Then
there exists a collection of sets pairwise disjoint, {Xi}i<c, such that
X = ∪i<cXi and {x} is a Gδ set of Xi, for every x ∈ Xi.

Proof. For every m < ω, we consider the decomposition X = ∪k<ωXm
k given

by condition SLD for ε = 1/m. By Corollary 4.2, it is not restrictive to
assume that each previous decomposition is disjoint. Now we define, for every
element of the Baire space k̄ = (k1, k2, . . . ) ∈ ωω, the set Xk̄ = ∩i<ωX i

ki
. It

is clear that each element of Xk̄ is a Gδ set of Xk̄.

Proof of Example 1.3. It is easy to check that the topological space [0, γ] is
fragmentable by the discrete metric for every ordinal γ. In fact, if we fix
A ⊂ [0, γ], we can consider α = minA. If α > 0 then {α} = (β, α + 1) ∩ A
for each β ∈ X, β < α. If α = 0, then {0} = [0, 1) ∩ A.

Next, we will show that [0, c+] does not have property SLD. We will do
it by contradiction. For this purpose, we suppose that X has property SLD.
Applying Lemma 4.4, we can decompose [0, c+] = ∪i<cXi in such a way that
for every x ∈ Xi, {x} is a Gδ set of Xi. Now, we fix the stationary set

Z := {α ∈ [0, c+] : cofinality(α) > ω}.

If α ∈ Z ∩Xi, then there exists ϕ(α) < α such that

(ϕ(α), α] ∩Xi = {α}.

We now apply [12, Fodor lemma] to the map ϕ : Z → [0, c+]. Then there
exists a stationary subset Z ′ ⊂ Z such that the corresponding restriction is
constant, i. e., ϕ|Z′ ≡ γ ∈ [0, c+]. Cardinality of the set {z ∈ Z ′; z > γ}
is bigger than c+. Thus, there exists i < c such that the cardinality of the
set Z ∩ Xi is bigger than c. As a consequence, we can take α and β both
belonging to Z ∩Xi, satisfying α < β and

α ∈ (γ, β] ∩Xi = {β},
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which is a contradiction.
Finally, let us check now that [0, c] has property SLD. Indeed, let X

be a topological space of cardinality at most continuum. Then there ex-
ists a one-to-one map g : X → R. Let us define the metric d on X by
d(x, y) := |g(x) − g(y)|, for every x, y ∈ X. Then X has property d-SLD.
In fact, for every ε > 0, X may be decomposed into countably many sets of
d-diameter less than ε.

Acknowledgements
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