
                             Elsevier Editorial System(tm) for Applied Catalysis A 
                                  Manuscript Draft 
 
 
Manuscript Number: APCATA-D-14-01627R1 
 
Title: Platinum supported on highly-dispersed ceria on activated carbon for the total oxidation of VOCs
  
 
Article Type: Research Paper 
 
Keywords: Pt; Ceria; Activated carbon; VOCs; Total combustion 
 
Corresponding Author: Prof. Antonio Sepúlveda-Escribano, PhD 
 
Corresponding Author's Institution: University of Alicante 
 
First Author: Zinab Abdelouahab-Reddam 
 
Order of Authors: Zinab Abdelouahab-Reddam; Rachad El Mail; Fernando Coloma-Pascual; Antonio 
Sepúlveda-Escribano, PhD 
 
 
 
 
 
 

Usuario
Texto escrito a máquina

Usuario
Texto escrito a máquina

Usuario
Texto escrito a máquina

Usuario
Texto escrito a máquina
This is a previous version of the article published in Applied Catalysis A: General. 2015, 494: 87-94. doi:10.1016/j.apcata.2015.01.026

http://dx.doi.org/10.1016/j.apcata.2015.01.026


Activated carbon 

Ceria 

CeO2 
Pt 

*Graphical Abstract (for review)



Highlights 

- Pt-CeO2 catalysts supported on activated carbon are active in the total oxidation of VOCs. 

- These catalysts have shown higher activity than platinum supported on bulk ceria. 

- The best catalyst contained only 10wt% ceria.  

- Pt-10Ce/C catalyst showed a high stability under both dry and humid conditions. 
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Abstract 

Catalysts consisting in platinum supported on cerium oxide highly dispersed on 

activated carbon, with a Pt loading of 1 wt.% and ceria loadings of 5, 10 and 20 wt.% 

have been prepared by impregnation method and characterized by several techniques 

(N2 adsorption at 77 K, ICP, XRD, H2-TPR and XPS). Their catalytic behavior has been 

evaluated in the total oxidation of ethanol and toluene after reduction at 473 K. The 

obtained results show that the prepared catalysts have better performances than 

platinum supported on bulk CeO2. The best catalytic performance was obtained for 10 

wt.% ceria loading, likely due to an optimum synergistic interaction between highly 

dispersed cerium oxide and platinum particles. Pt-10Ce/C achieves total conversion of 

ethanol and toluene to CO2 at 433 K and 453 K, respectively, and shows no deactivation 

during a test for 100 h. Under humid conditions (relative humidity, RH, of 40 and 80 

%), the activity was only slightly influenced due to the hydrophobic character of the 

activated carbon support, which prevents the adsorption of water. 

 

Keywords: Pt; Ceria; Activated carbon; VOCs; Total combustion 

 

1. Introduction 

Volatile organic compounds (VOCs) are known as one of the most important class 

of air pollutants. Different human activities produce the emission of VOCs to the 

atmosphere, including transport and the use of solvents in several industries [1]. These 

compounds cause several health problems, ranging from simple discomfort like eyes 

and respiratory tract irritation to serious complications such as damage to liver and 

kidney and alterations in central nervous system and, further, some of them can cause 
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cancer after prolonged exposure [2,3]. Besides, VOCs play a key role on the process of 

formation of photochemical smog [4,5]. Catalytic oxidation is one of the most 

promising technologies for their abatement [6,7]. This technique reaches high efficiency 

at low temperatures, obtaining considerable environment and economic benefits [8]. 

The most commonly used catalysts in VOCs oxidation are supported noble metals (Pt, 

Pd, Rh, Au, etc) and metal oxides (CeO2, CuO, MnOx, CoOx, etc.) [9-14]. Among the 

catalysts based on metal oxides which are studied in the literature, cerium oxide is 

considered to be particularly suitable for total oxidation of VOCs, either pure or in 

combination with noble metals or other metal oxides [15-19]. The high activity of ceria 

in total oxidation reactions is ascribed to its high oxygen storage capacity (OSC) and its 

exceptional redox properties [20]. The beneficial effect due to the addition of a noble 

metal to the ceria-based catalysts has been demonstrated in the literature [21,22]. Thus, 

noble metals improve the reducibility of ceria through the establishment of a metal-

oxide interaction, which weakens the Ce−O bonds located at the interface Pt−CeO2 and, 

consequently, increases the mobility of lattice oxygen involved in VOCs oxidation 

through a Mars-van Krevelen reaction mechanism [16]. On the other hand, the 

efficiency of ceria-based catalysts in the total oxidation of VOCs can be improved by 

using an appropriate support as activated carbon. In fact, dispersion of ceria on a 

support with a high surface area such as activated carbon could lead to a most efficient 

catalyst, which provides more active sites available for the reaction with a lower cost 

with respect to bulk ceria catalysts. Moreover, activated carbon is a suitable support for 

catalysts destined to the complete oxidation of VOCs due to its hydrophobic character. 

In fact, the water vapour generated upon VOCs oxidation can deactivate the active sites 

of the supports, which show a hydrophilic behaviour, mainly at low temperatures. 

Additionally, ambient air usually contains water molecules, which should negatively 

affect the catalytic activity [23]. In this sense, the objective of the present paper is to 

prepare platinum catalysts supported on highly dispersed ceria on activated carbon, with 

different ceria loadings, in order to determine the effect of the oxide content on the 

catalytic activity in the total oxidation of ethanol and toluene, selected as representative 

molecules of VOCs. 

 

2. Experimental 

2.1. Preparation of catalysts 
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Highly dispersed ceria on activated carbon (xCe-C supports, where x is the ceria 

loading) have been prepared by impregnation with excess of solvent. A commercial 

activated carbon (Nuchar RGC 30, from Mead Westvaco) referred as “C” was 

impregnated with acetone solutions containing the appropriate amounts of the Ce 

precursor (Ce(NO3)3
.
6H2O) to obtain an oxide loading of 5, 10 and 20 wt.%. Excess of 

solvent was removed by flowing nitrogen through the slurries at room temperature, and 

then the solid samples were dried during 12 h at 383 K, and treated under a helium flow 

(50 mL·min
-1

) at 623 K for 5 h, with a heating rate of 1 K·min
-1

, with the purpose to 

decompose the cerium precursor and to obtain CeO2 [24]. For the sake of comparison, a 

bulk ceria (CeO2) support was prepared by precipitation from an aqueous solution of 

Ce(NO3)3·6H2O containing an excess of urea. The solution was heated at 353-363 K 

and kept under stirring during 8 h to facilitate urea decomposition. Then, a few drops of 

concentrated ammonia solution were added slowly with stirring to ensure complete 

precipitation. The suspension was then cooled down to room temperature, filtered and 

washed with ultrapure water. Resulting solids were dried at 383 K for 12 h, and finally 

calcined at 673 K for 4 h, with a heating rate of 3K·min
-1

. 

Catalysts were prepared by the impregnation of the previously obtained supports 

with an acetone solution of the Pt precursor (H2PtCl6
.
6H2O) with the appropriate 

concentration to obtain 1 wt.% Pt. After 24 h, the solvent excess was removed under 

vacuum at room temperature in a rotary evaporator. The obtained catalysts were dried 

during 12 h at 383 K and labeled by adding Pt/ to the nomenclature used for the 

corresponding supports. 

 

2.2. Characterization of catalysts 

Textural properties of the supports have been determined by N2 adsorption at 77 

K, on a home-designed and made fully automated manometric equipment. Previous to 

measurements, samples were out-gassed under vacuum (<10
-5

 Pa) at 523 K for 4 h. 

Specific surface area, SBET, was calculated using the BET method. Micropore volume, 

V0, was calculated by application of the Dubinin–Radushkevich (DR) equation.  

Volume of mesopores, Vmeso, was obtained by subtracting the volume of micropores V0 

from the total, estimated by the uptake at a relative pressure of 0.95.  

The actual metal content on the catalysts was determined by ICP-OES analysis 

with a Perkin-Elmer 7300DV spectrometer. Previous to the experiments, the metal was 
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extracted from the catalysts by burning out the carbon support and then refluxing the 

ashes in aqua regia for 8 hours. 

X-ray powder diffraction patterns of the samples were recorded on a JSO-

Debyeflex 2002 system, from Seifert, fitted with a Cu cathode and a Ni filter, using a 

20º·min
-1

 scanning rate. The average crystal size for CeO2 was estimated by application 

of the Scherrer equation to the (111) ceria diffraction peak. 

Temperature-programmed reduction (TPR) measurements were carried out in a 

home-made gas flow system using an U-shaped quartz reactor, using a 5%H2/He gas 

flow of 50 mL·min
-1

 and about 100 mg of catalyst. The temperature was raised at 10 

K·min
-1

 from room temperature to 1273 K. Hydrogen consumption was followed by 

online mass spectrometry (Omnistar, Pfeiffer). 

X-Ray photoelectron spectroscopy was performed with a K-ALPHA spectrometer 

(Thermo Scientific). All spectra were collected using Al-Kα radiation (1486.6 eV), 

monochromatized by a twin crystal monochromator, yielding a focused X-ray spot with 

a diameter of 400 µm, at 3 mA × 12 kV. The alpha hemispherical analyser was operated 

at the constant energy mode with survey scan pass energies of 200 eV to measure the 

whole energy band and 50 eV in a narrow scan to selectively measure the particular 

elements. Charge compensation was achieved with the system flood gun that provides 

low energy electrons and low energy argon ions from a single source. The powder 

samples were pressed and mounted on the sample holder and placed in the vacuum 

chamber. Before recording the spectrum, the samples were maintained in the analysis 

chamber until a residual pressure of ca. 5 × 10
−7

 N·m
-2

 was reached. The quantitative 

analysis were estimated by calculating the integral of each peak, after subtracting the S-

shaped background, and by fitting the experimental curve to a combination of 

Lorentzian (30%) and Gaussian (70%) lines. Reduction of the samples were carried out 

“ex situ” in an U-shaped quartz reactor under flowing hydrogen (50 mL·min
-1

) at 473 K 

for 1 h and introduced in an octane solution (in inert atmosphere). Suspensions were 

evaporated in the XPS system under vacuum conditions. 

 

2.3. Catalytic tests 

Three catalytic tests have been used to determine the behaviour of the prepared 

samples: toluene hydrogenation and the catalytic combustion of ethanol and toluene, 

selected as probe molecules of VOCs. 
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Toluene hydrogenation has been used as a tool to estimate differences in the metal 

dispersion of the prepared catalysts. The use of this reaction is justified by its structure-

insensitive character, which makes the catalytic activity to only depend on the amount 

of metallic sites available at the catalyst surface. Toluene hydrogenation tests were 

performed in a U-shape quartz reactor at atmospheric pressure, and the products were 

monitored by on-line gas chromatograph (Agilent 6890N) with a flame ionization 

detector and HP-Plot/Q (30 m x 0.53 mm) column. Prior to reaction, the samples (100 

mg of catalyst diluted in SiC to a total volume of 1.5 mL) were reduced in situ at 473 

and 773 K for 2 h under flowing hydrogen (50 mL·min
-1

) and then cooled under 

hydrogen to the reaction temperature (333 K). Then, a reaction mixture with a total flow 

of 50 mL·min
-1

 containing hydrogen and toluene in a H2/C7H8 ratio of 36, obtained by 

passing the hydrogen flow through a thermostabilized saturator containing toluene at 

293 K, was fed to the catalyst. 

The experiments of total oxidation of ethanol and toluene were carried out in a U-

shape quartz reactor operating in continuous mode, using 150 mg of catalyst diluted in 

SiC to a total volume of 1.5 mL. Previous to reaction, the catalysts were reduced in situ 

under flowing hydrogen (50 mL·min
-1

) at 473 K for 1 h, at a heating rate of 2 K·min
-1

. 

At the end of the reduction treatment, H2 was replaced by He at the same temperature 

during 1 h and the catalyst was cooled to the reaction temperature under He flow. 

Catalytic activity was evaluated in the temperature range 323-523 K under atmospheric 

pressure using a reaction mixture containing 1000 ppm of VOC in air flow of 100 

mL·min
-1

. Reaction products were determined with an on-line gas chromatograph 

(Agilent 6890N) equipped with a flame ionization detector and HP-Plot/Q (30 m x 0.53 

mm) column. An on-line IR detector (SENSOTRAN IR) was also employed for the 

quantitative analysis of CO2. In humid condition, distilled water was injected by a 

Gilson 307 HPLC pump and evaporated in a heat box, operating at 473 K. All gas lines 

of the reaction system were heated to 383 K in order to avoid ethanol, toluene and water 

adsorption and condensation on tube walls. 

 

3. Results and discussion 

3.1. Characterization 

3.1.1. N2 adsorption 

The nitrogen adsorption-desorption isotherms for the original activated carbon 

and the carbonaceous supports (not shown) correspond to a mixed Type I and IV 
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isotherms. They have a large adsorption capacity at low relative pressures, what is 

characteristic of microporous materials, together with a hysteresis loop at high relative 

pressures that indicates the presence of a certain proportion of mesoporosity. The 

textural properties obtained from these isotherms and from the one corresponding to 

with bulk CeO2 are shown in Table 1. In the case of carbon-based supports, the BET 

surface areas decrease with increasing the oxide loading. This reduction is 

accompanied, as expected, with a decrease in the micro and mesopores volumes, due to 

the partial blockage of the porosity by ceria crystallites. Moreover, the introduction of 

the oxide leads to a reduction of activated carbon mass in the sample, which implies an 

additional negative effect on the porosity since ceria provides lower surface area than 

the same mass of activated carbon, as can be seen in Table 1. Impregnation with the 

platinum precursor did not affect the porous texture of the supports. 

 

3.1.2. ICP-OES 

Ceria and platinum loadings of the prepared catalysts, determined by ICP-OES, 

are summarized in Table 2. It can be seen that the nominal and actual platinum loadings 

are similar for all the catalysts. However, the measured loading of ceria in the supported 

catalysts is lower than the nominal values, what indicates that some amount of the ceria 

precursor was lost during the impregnation process and therefore, it was not 

incorporated to the support. The difference between the actual and the nominal CeO2 

contents increases with oxide loading, maintaining a good correlation between both 

values. 

 

3.1.3. X-ray diffraction 

Fig. 1 shows the X-ray diffraction patterns of Pt/Ce-C catalysts with 5, 10, 20 

wt.% ceria loading, together with that of Pt/CeO2. All the profiles show four diffraction 

peaks, at 28.5º, 33º, 47.5º and 56.3º, corresponding to fluorite phase of ceria (JCPDS 

34-394). Moreover, the sample with low content on ceria (Pt/5Ce-C) exhibits two broad 

peaks at approximately 25º and 44º characteristic of amorphous carbonaceous materials 

(JCPDS 75-1621). As can be seen, the Pt/CeO2 pattern shows intense and well defined 

diffraction peaks, while the carbon-supported catalysts present broad peaks, whose 

intensities rise with the increase of ceria loading. This indicates the presence of small 

particles of CeO2 highly dispersed on the carbonaceous support. The average crystallite 

sizes of ceria in all the catalysts have been estimated by the application of the Scherrer 
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equation [25], and the results are summarized in Table 2. The ceria particle size in 

Pt/CeO2 is almost three times larger than those in the activated carbon supported 

catalysts. No peaks of platinum were observed in the XRD patterns of catalysts, this 

suggesting that the Pt particles are well dispersed on the catalysts surface. 

 

3.1.4. Temperature-programmed reduction (TPR) 

Fig. 2 shows the evolution of H2 consumption as a function of temperature for the 

prepared supports. TPR profile of the unsupported CeO2 includes two broad peaks, at 

around 785 and 1113 K, associated to the reduction of surface and bulk ceria, 

respectively [26-28]. In the case of Ce-C supports, all the TPR profiles present a 

continuous reduction process between 670 and 1120 K, presented as two overlapped 

shoulders, whose intensities increase with CeO2 loading. This would indicate a high 

dispersion of ceria on the carbonaceous support, with a small CeO2 particle size, 

facilitating ceria reduction as compared with the bulk ceria support [29]. 

Fig. 3 shows the temperature-programmed reduction profiles obtained with Pt/Ce-

C and Pt/CeO2 catalysts. The TPR signal for Pt/CeO2 shows an additional peak centered 

at 518 K, as compared to the CeO2 support. According to the literature, this peak at low 

temperature can be attributed to the reduction of the ceria surface in close contact with 

the platinum species, together with the reduction of the latter to metallic platinum [24, 

30-33]. The second peak, at 730 K, is related to the reduction of surface ceria that is not 

in close contact with the metal but whose reduction takes place at lower temperatures 

via H2 spillover [32, 33]. Indeed, it is well known the ability of noble metals to facilitate 

the reduction of reducible oxides, such as ceria, via hydrogen spillover, where hydrogen 

molecules are chemically adsorbed and readily dissociated into atomic species on the 

surface of the metal. Then, atomic hydrogen spills over to the support surface and easily 

reacts with the oxide which is in the oxide-metal interface or in the proximity of the 

latter, promoting the reduction of the oxide at low temperature [24, 34]. Finally, the 

broad peak appearing around 924 K is related to the bulk reduction of ceria [24,27,35]. 

Reduction profiles for carbon-supported catalysts show the same feature than Pt/CeO2, 

with two overlapping peaks at lower temperatures (356-600 K) and a broad shoulder 

centered around 845 K.  

The appearance of an additional reduction peak at low temperatures along with 

the peaks shifted toward lower temperatures (in both ceria-supported and carbon-

supported catalysts TPR profiles), reveal the presence of an intimate metal-ceria 
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interaction. This fact promotes the reduction of ceria at lower temperatures through 

hydrogen spillover from platinum particles towards the support. On the other hand, it 

can be seen that the use of activated carbon as support of ceria leads to a significant 

shift in reduction peaks towards lower temperatures with respect to the bulk catalyst. 

This would indicate a high dispersion of ceria with a larger surface able to interact with 

the metal particles this enhancing its reducibility via spillover. 

 

3.1.5. X-ray photoelectron spectroscopy (XPS) 

Pt 4f level XPS spectra for fresh and reduced Pt/10Ce-C are shown in Fig. 4. In 

both cases, independently of the applied treatment, platinum spectra exhibit two broad 

bands, corresponding to the Pt 4f7/2 and Pt 4f5/2 levels. Each of these bands can be 

deconvoluted into two components. The binding energies for the different Pt 4f7/2 

components and their contributions on the signal are reported in Table 3. Fresh catalyst 

spectrum shows two peaks whose maximum intensities are located at 72.6 and 73.9 eV, 

that can be assigned to Pt(II) and Pt(IV) respectively, according to the literature [36-38]. 

The presence of divalent platinum in this catalyst could be due to decomposition of the 

platinum precursor during support impregnation, involving reduction of Pt(IV) to Pt (II) 

[39-41]. After reduction at 473 K, a shift of Pt 4f7/2 band towards lower binding energy 

can be observed. The peak at 71.5 eV can be attributed to metallic platinum, while the 

peak appearing at 73.3 eV indicates that a proportion of platinum present in the catalyst 

remains in oxidized state [36]. Thus, the treatment at 473 K only achieves about 50% of 

platinum species reduction on the catalyst surface to Pt
0
, with higher binding energies 

for platinum 4f7/2 transition. This behavior is very consistent with TPR results and could 

be explained by the presence of platinum-ceria intimate interaction on the catalyst 

surface, which hinders metal reduction at a lower temperature such as 473 K. The XPS 

data of the ceria-free catalyst (Pt/C) shown in Table 3 also confirm this fact. Indeed, 

they show a total reduction of the platinum at 473 K with lower binding energy than for 

the same catalyst containing ceria (Pt/10Ce-C) affirming that the presence of ceria 

affects largely the response of platinum to reduction. Furthermore, the presence of 

residual chlorine inhibits platinum reduction due to formation of stable 

oxychloroplatinum species (PtOxCly), the reduction of which occurs at higher 

temperatures than for PtOx species [42-45]. 

Superficial composition and cerium oxidation state in the as-prepared and reduced 

Pt/10Ce-C, obtained by XPS, are reported in Table 3. It can be observed that the 
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reduction treatment at 473 K produces a slight decrease in the atomic Pt/C and Pt/Ce 

ratios, which can be considered as an estimation of platinum dispersion on the support. 

This diminution can be due to a slight sintering of platinum particles during reduction 

treatment at 473 K. It must be taken into account that the catalyst has not been 

submitted to any heat treatment prior to reduction. Therefore, it is expected to occur a 

minor sintering of metal particles during the first heat treatment posterior to the 

impregnation process. On the other hand, it can be observed that the atomic Ce/C ratio 

remains unchanged after the reduction treatment, indicating that this treatment does not 

alter the size of the ceria particles. 

XPS analysis also revealed the presence of a considerable amount of chlorine 

residual species on the catalyst surface. Table 3 reports the Cl/Ce ratios in both the fresh 

and the reduced catalysts. Chlorine remains on the Pt/10Ce-C surface after reduction at 

473 K as it could be expected, since it has been reported in previous works that chlorine 

is still retained on ceria-based catalyst surface even after reduction treatments at 1173 K 

[46]. Furthermore, the Cl/Ce ratio increases from 0.3 to 0.5 after reduction of Pt/10Ce-

C, indicating chlorine surface enrichment. Similar behavior was observed by Silvestre et 

al. when studying a PtZn/CeO2 catalyst prepared from chlorinated platinum precursor 

[36]. The authors observed an increase of the chlorine species concentration on the 

catalyst surface with the reduction temperature, reaching high chlorine enrichment after 

treatment reduction at 773 K. This enrichment has been related to superficial formation 

of CeOCl. Several works have reported the presence of such species on the surface of 

ceria crystals when catalysts were prepared from chlorinated salts [47,48]. Moreover, it 

has been confirmed that residual chloride anions are highly mobile and can migrate 

from platinum particles to the support, substituting the oxygen vacancies of ceria, which 

gives rise to formation of highly stable CeOCl phase [47-50]. 

In Fig. 4, experimental and fitted Ce3d spectra of fresh and reduced Pt/10Ce-C are 

shown. The spectra fitting were carried out as has been reported in the literature. It can 

be seen that there are ten peaks assignments, labeled u and v following the notation 

established by Burroughs et al. [51], related to the 3d3/2 and 3d5/2 spin-orbit components, 

respectively. Concretely, v, u, v´´, u´´, v´´´ and u´´´ refer to Ce
4+

 final state, while v0, u0, 

v´ and u´ correspond to Ce
3+

 final state [50-55]. The degree of ceria reduction was 

estimated using the following equation [56-58]: 
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As can be seen in Table 3, the catalyst shows an appreciable amount of Ce
3+

 even 

in the absence of reduction treatment, which may be related to a photoreduction process 

of CeO2 during XPS experiment [53, 57-59]. After reduction at 473 K, the extent of 

reduced ceria increases from 43 to 50%. This result confirms the presence of an intimate 

interaction between platinum particles and ceria in this sample, which promotes the 

reduction of the latter at relatively low temperatures by hydrogen spillover. Moreover, 

the increase of surface Ce
+3

 can be attributed to formation of CeOCl crystallites on the 

catalysts surface, according to previous studies [46,50, 60-62]. Thus, Bernal et al. [46] 

evaluated the ceria degree reduction in Rh/CeO2 catalysts prepared with chlorinated and 

chlorine-free metallic precursors and observed a high proportion of Ce
3+

 in the 

chlorinated catalyst after reduction treatment. Furthermore, the authors observed that the 

extent of reduced ceria varies very slightly with successive evacuation/H2 adsorption 

cycles, while the reduction process was reversible for the chlorine-free precursor 

catalyst. These results have been explained through a ceria lattice oxygen substitution 

by chloride ions, producing an irreversible reduction of CeO2. The incorporation of 

these ions on the oxide surface inhibits both the direct and back spillover processes 

responsible for the reversibility of ceria reduction by hydrogen. 

 

3.2. Catalytic activity 

3.2.1 Toluene hydrogenation 

An estimation of the relative platinum dispersion on the prepared catalysts has 

been performed by evaluating their catalytic activity in the toluene hydrogenation 

reaction. In the case of the ceria-based catalysts, the usual methods of H2 and CO 

chemisorption used to determine metallic dispersion in supported catalysts are unviable 

because of the ceria ability to adsorb both gases at room temperature [63-65], producing 

an overestimation of the metal surface exposed [66,67]. Toluene hydrogenation is a 

structure-insensitive reaction, in which the catalytic activity is exclusively related to the 

amount of metal atoms exposed on the catalyst surface independently of the metal 

particle size. However, in spite of the insensitivity to the structure, this reaction can be 

affected by the presence of electronic effects of partially reduced ceria on the metal 

particles, generated upon reduction at high temperature. Nevertheless, this effect can be 
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manifested similarly in both hydrogenation reactions as in the hydrogen chemisorption 

process [68]. 

The catalytic activity for toluene hydrogenation at 333 K (as µmol of toluene 

transformed per gram of Pt) obtained for all catalysts after reduction at 473 K is 

reported in Table 2. As can be seen, after reduction at 473 K, Pt/10Ce-C shows the best 

performance in toluene hydrogenation, reaching a much higher activity than all the 

catalysts. Moreover, the activity of the other prepared catalysts decreases as ceria 

content increases. Thus, catalyst Pt/CeO2 shows the lower activity, with 10.6 µmol·s
-

1
·gPt

-1
. Taking into account the structure-insensitivity of the toluene hydrogenation 

reaction, this decrease can be related to a lower amount of surface platinum atoms. 

Also, it can be deduced that Pt/10Ce-C exhibits a high Pt dispersion since it shows a 

higher activity for toluene hydrogenation than the other catalysts. On the other hand, the 

low value for the unsupported catalyst activity could be indicative of a low platinum 

dispersion. 

Table 2 also reports the values of catalytic activity for hydrogenation of toluene 

after reduction at 773 K. An increase in the reduction temperature from 473 to 773 K 

produces an important decrease in the catalytic activity for all the prepared catalysts, 

achieving very low values. This behavior is justified by the presence of a strong 

interaction between the noble metal and ceria particles induced by the reduction at high 

temperature [27,47,68-71]. In the literature, this interaction has been explained by the 

presence of electronic effects on the platinum generated by ceria particles partially 

reduced after high-temperature reduction treatment and which are in contact with it. 

This interaction changes the metal electronic structure by electronic transfer from ceria, 

which affects the Pt−toluene bond strength and then hinders the hydrogenation reaction 

[27,68,72]. These results are in accordance with those of characterization, confirming 

that metal and ceria particles are in close contact on the surface of these catalysts. 

 

3.2.2. Total oxidation of ethanol 

Fig. 5 shows the ethanol conversion and the CO2 evolution yield as a function of 

reaction temperature on the evaluated catalysts. It must be mentioned that acetaldehyde, 

CO2 and water were the only products formed during the reaction. The Pt/C catalyst 

exhibits a lower activity and selectivity than ceria-containing supported catalysts, 

showing that the presence of ceria clearly promotes the oxidation of ethanol. On the 

other hand, it can be seen clearly that the carbon-supported catalysts show a higher 
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catalytic activity than Pt/CeO2, which can be due to the high ceria dispersion on the 

surface of the carbonaceous support. Presence of well dispersed small ceria particles 

provides a high active surface area, as well as promotes the interaction between ceria 

and platinum particles, which enhances the catalytic behavior in this reaction. Carbon-

supported catalysts show two different behaviors in the investigated temperature range. 

Thus, at low temperatures the activity of these catalysts increases with decreasing ceria 

loading. However, in the 398 - 473 K temperature range, the activity order observed is: 

Pt/10Ce-C > Pt/20Ce-C > Pt/5Ce-C, achieving a total ethanol conversion at 398 K, 438 

K and 458 K, respectively. These results suggest that the reaction proceeds by two 

different mechanisms at high and low temperature. On the other hand, total conversion 

is not reached with Pt/CeO2 unsupported catalyst in the studied temperature range, 

showing a conversion of 97.9% at 473 K.  

Regarding the selectivity, the carbon-supported catalysts exhibit a considerably 

higher selectivity to CO2 than Pt/CeO2 over the whole temperature range. The catalytic 

selectivity to CO2 pursues the following order: Pt/10Ce-C > Pt/20Ce-C > Pt/5Ce-C > 

Pt/CeO2, reaching a total conversion to CO2 at 433, 441 and 458 K, respectively. 

Nevertheless, in the case of the Pt/CeO2 catalyst, it is only possible to achieve a 

selectivity to CO2 of 66.6% at 473 K, for an ethanol conversion of 97.9%. 

Catalytic data show that Pt/10Ce-C is the most active and selective of all the 

prepared catalysts in the total oxidation of ethanol. This sample reaches conversion and 

selectivity values significantly higher than those obtained for the other catalysts. 

Moreover it achieves a total ethanol conversion to CO2 at low temperature. These 

results agree with those obtained in the toluene hydrogenation reaction, where Pt/10Ce-

C shows the highest activity. Therefore, this fact could be related to the high dispersion 

of platinum particles, which is clearly confirmed by the toluene hydrogenation results. 

Furthermore, this behavior could be explained by the presence of an optimal interaction 

between the ceria and highly dispersed platinum particles. This interaction promotes the 

generation of highly active sites on the catalyst surface and then improves its behavior 

in the reaction. Indeed, it is well known that metal oxide interaction plays a crucial role 

in the catalytic oxidation reactions over supported noble metal catalysts on reducible 

oxides such as ceria. This interaction is enhanced when particles of both, metal and 

oxide, are small and well dispersed. When an intimate interaction M-CeO2 is achieved, 

the metal promotes the redox activity of the ceria located at the M-CeO2 interface and 

thus increases the ceria lattice oxygen mobility and reactivity, which is involved in the 
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VOCs oxidation through a Mars-van Krevelen mechanism [73-75]. The latter may be 

the predominant mechanism of the reaction for Pt/Ce-C catalysts but certainly not the 

only one. In fact, in these catalysts some platinum particles should be found deposited 

on the carbon support and consequently are isolated from ceria. According to the 

literature, the reaction of total oxidation of VOCs over these particles usually proceeds 

through a Langmuir-Hinshelwood mechanism [76, 77]. 

In order to evaluate the stability of the catalysts during the reaction, an experiment 

has been performed under extended reaction times using the same reaction conditions. 

For this purpose, Pt/10Ce-C has been selected as it is the most active catalyst in terms of 

conversion and selectivity. Fig. 6 shows the evolution of ethanol conversion and the 

yield to CO2 at 373 K as a function of reaction time for this catalyst. Practically no 

deactivation is observed after 100 h, maintaining similar values of ethanol conversion 

and CO2 yield during all the experiment. This indicates that Pt/10Ce-C is appropriate 

for the complete ethanol combustion reaction, in terms of activity/selectivity and 

stability. 

The effect of water vapor on the catalytic activity of the best catalyst, Pt/10Ce-C, 

has been studied in the ethanol combustion reaction. As it has been mentioned 

previously, water has been found to act as inhibitor of VOCs oxidation, specially over 

noble metals catalysts supported on inorganic oxides at low temperatures [78,79]. Thus, 

the performance of Pt/10Ce-C has been tested under relatively high humidity feed steam 

conditions, employing a reactant mixture containing 1000 ppm of ethanol in a total air 

flow of 100 mL·min
-1

 and relative humidity of 40 and 80%. For comparative purposes, 

the effect of the presence of water vapor on the catalytic behavior of Pt/CeO2 has also 

been studied. Fig. 7 shows the effect of water vapor concentration on the evolution of 

ethanol conversion and the yield to CO2 over the studied catalysts as a function of the 

reaction temperature. It can be seen that all the conversion profiles shift to higher 

temperatures in the presence of water vapor, and that this shift enhances with increasing 

water vapor concentration in the reaction mixture. However, in the case of the carbon-

supported catalyst, the conversion decrease is very slight compared with the other 

sample. In fact, in the absence of humidity this catalyst reaches a total ethanol 

conversion at 398 K, whereas under relative humidities of 40% and 80%, the 

temperature of the total conversion is 403 K. On the other hand, the presence of water 

slightly affects the selectivity of the carbon-supported catalyst, achieving a complete 

conversion to CO2 at same temperature of 433 K in the absence of humidity and in the 
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presence of a high water vapor concentration (RH = 80%). However, the presence of 

water vapor has a significant negative effect on the selectivity of the Pt/CeO2 catalyst. 

Moreover, the yield to CO2 on this catalyst decreases with increasing water vapor 

concentration. 

The observed behaviour can be ascribed to a competition of water and ethanol 

molecules for adsorption on the active sites of the catalysts [76,80]. The coverage of 

these sites by water molecules leads to a diminution in the amount of active sites 

available for the oxidation reaction, which results in a decrease of the catalytic activity. 

The high stability of the carbon-supported catalyst with respect to the ceria-unsupported 

catalyst can be explained by the hydrophobic character of activated carbon, which 

prevents water molecules adsorption on the support. This fact results in only a slight 

decrease of activity. [81-83]. Nevertheless, inorganic supports such as ceria can retain 

significant amounts of water molecules evolved during combustion, after a competitive 

adsorption between them and VOCs molecules, which produces a significant decrease 

in catalytic activity. 

 

3.2.2. Total oxidation of toluene 

The evolution of toluene conversion versus the reaction temperature for the 

catalysts is shown in Fig. 8. The reaction products were only CO2 and water. The 

catalytic activity values follow the same trend as that found in the ethanol oxidation 

reaction. Consequently, the catalytic activity decreases in the following order: Pt/10Ce-

C > Pt/20Ce-C > Pt/5Ce-C > Pt/CeO2, reaching toluene total conversion at 453, 466, 

473 and 503 K, respectively. However, the temperatures required for toluene conversion 

are higher than those observed for ethanol using the same catalysts. Indeed, while 

Pt/10Ce-C achieves a total conversion of ethanol at 398 K, this temperature is 453 K for 

toluene total conversion. These results are in agreement with the literature, which 

reports that toluene total oxidation requires higher temperatures than alcohols 

[16,17,19,84-87]. Previous studies concluded that the reactivity of VOCs for the total 

oxidation reaction depends on their functional groups. Thus, the reactivity for these 

compounds decreases in the following order: alcohols > aromatics > ketones > 

carboxylic acids > alkanes. These studies related the VOCs reactivity with the strength 

of C−H bonds, in such a way that those compounds containing C−H single bonds are 

more reactive and, therefore they are oxidized at lower temperatures [88-90]. 
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It should be noted that the conversion values obtained for the ceria-free catalyst 

(Pt/C) are lower than those of ceria-supported catalysts, confirming the role of the ceria 

in the reaction of oxidation of VOCs. On the other hand, these results show that the 

maximum catalytic activity is found for the catalyst containing 10 wt.% in ceria. This 

indicates that, regardless of the volatile organic compound structure, Pt/10Ce-C exhibits 

the optimum activity for the total conversion of VOCs among all the catalysts evaluated 

in this study. As mentioned above, the optimal behavior of this catalyst may be related 

to the presence of a Pt−CeO2 optimal interface. Thus, the high platinum dispersion 

along with the presence of small ceria particles on the catalyst surface promotes the 

establishment of an optimal interaction between both species, which creates highly 

active sites at the metal-ceria interface. 

Finally, it can be concluded that Pt/10Ce-C appears to be efficient in the complete 

oxidation of VOCs regardless of the compound studied. This catalyst shows a high 

activity and selectivity towards the final products of the reaction at low temperatures, as 

well as an excellent stability under the reaction conditions both in the absence and 

presence of humidity. 

 

4. Conclusions 

Platinum catalysts supported on activated carbon and promoted with ceria have 

been prepared with different ceria loadings and tested in the total oxidation of two 

representative VOCs, ethanol and toluene. Characterization data have shown that ceria 

particles are highly dispersed on the surface of the activated carbon support. Moreover, 

the existence of an intimate interaction between ceria and platinum has been evidenced 

from the TPR experiments. Toluene hydrogenation has been used as a model reaction to 

have an estimation of the platinum relative dispersion. Thus, Pt/10Ce-C has exhibited 

the best performance with a very high hydrogenating activity, which indicates a high 

platinum dispersion in this catalyst. In the complete oxidation of VOCs, ceria-promoted 

carbon-supported catalysts have shown higher activity than platinum supported on bulk 

ceria, both for ethanol and toluene. Furthermore, the most advantageous catalytic 

performances were found for the catalyst with a 10 wt.% ceria loading, probably due to 

an optimum synergistic interaction between highly dispersed ceria and platinum 

particles. 
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Table 1. Textural properties of the supports 

Sample SBET (m
2
·g

-1
) V0 (cm

3
·g

-1
) Vmeso (cm

3
·g

-1
) 

AC 1525 0.51 0.65 

5Ce-C 1428 0.48 0.59 

10Ce-C 1324 0.45 0.53 

20Ce-C 1126 0.40 0.45 

CeO2 124 0.01 0.05 

 

 

Table 2. Metal content, CeO2 crystallite size and catalytic activity for toluene hydrogenation 

of the catalysts 

Catalyst Pt(wt.%)
a
 CeO2 (wt.%)

a
 DCeO2 (nm)

b
 

Activity (µmol·s
-1

·gPt
-1

)
c

 

Red. 473 K Red. 773 K 

Pt/5Ce-C 0.82 3.97 5.1 30.9 0.6 

Pt/10Ce-C 0.89 7.28 4.8 137.8 0.3 

Pt/20Ce-C 0.85 13.18 5.1 24.3 0.5 

Pt/CeO2 1.09  13.7 10.6 0.1 
a
 Determined by ICP-OES. 

b
 Estimated from the (111) ceria diffraction peak using Scherrer equation. 

c
 Reaction temperature: 333 K, H2 flow: 50 ml.min

-1
, H2/C7H8 ratio: 36. 

 

 

 

Table 3. Pt/C and Pt/10Ce-C catalysts characterization by XPS 

Catalyst T Red (K) BE Pt 4f7/2 (eV) Pt/C Pt/Ce Ce/C Cl/Ce Ce
3+

(%) 

Pt/C 
- 73.8 (100%) 0.0006 - - - - 

473 71.8 (100%) 0.0003 - - - - 

Pt/10Ce-C 

- 
72.6 (64.6%) 

73.9 (35.4%) 
0.0007 0.06 0.01 0.3 43.3 

473 
71.5 (54.2%) 

73.3 (45.8%) 
0.0005 0.04 0.01 0.5 50.0 

 

Table



 

Fig. 1. X-ray diffraction patterns of Pt/Ce-C and Pt/CeO2 catalysts. 

 

 

 

 

 

 

Fig. 2. TPR curves (H2 consumption) for Ce-C and CeO2 supports. 

  

Figure



 

Fig. 3. TPR profiles of the Pt/Ce-C and Pt/CeO2 catalysts. 

 

 

 

 

Fig. 4. XPS Pt 4f and Ce 3d spectra of the as-prepared and reduced Pt/10Ce-C catalyst. 

  



 

 

 

Fig. 5. Ethanol conversion as a function of reaction temperature for all catalysts. Reaction 

conditions: 1000 ppm ethanol, 100 ml.min
-1

 air flow, reduction in situ at 473 K (1h, 50 

ml.min
-1

 of H2). 

  



 

 

Fig. 6. Stability test for Pt-10Ce/C catalyst at 373 K (1000 ppm ethanol, 100 ml.min
-1

 air 

flow, reduction in situ at 473 K (1h, 50 ml.min
-1

 of H2). 

 

 

 

 

Fig. 7. Conversion of ethanol and yield to CO2 for Pt/10Ce-C (RH=0% , RH=40%  and 

RH=80% ) and Pt/CeO2 (RH=0% , RH=40%  and RH=80% ) catalysts. Reaction 

conditions: 1000 ppm ethanol, 100 ml.min
-1

 air flow, reduction at 473 K (1h). 

  



 

Fig. 8. Toluene conversion as a function of reaction temperature for all the catalysts. Reaction 

conditions: 1000 ppm toluene, 100 ml.min
-1

 air flow, reduction at 473 K (1h). 

 

 




