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ABSTRACT 

We describe for the first time the synthesis and photochemical properties of a coumarin-caged 

cyclic RGD peptide, and demonstrate that uncaging can be efficiently performed with 

biologically-compatible green light. This was accomplished by using a new dicyanocoumarin 

derivative (DEAdcCE) for the protection of the carboxyl function at the side chain of the 

aspartic acid residue, which was selected on the basis of Fmoc-tBu SPPS compatibility and 

photolysis efficiency. The shielding effect of a methyl group incorporated in the coumarin 

derivative near the ester bond linking both moieties in combination with the use of acidic 

additives such as HOBt or Oxyma during the basic Fmoc-removal treatment was found to be 

very effective for minimizing aspartimide-related side-reactions. In addition, a conjugate 

between the dicyanocoumarin-caged cyclic RGD peptide and ruthenocene, which was selected 

as a metallodrug model cargo, has been synthesized and characterized. The fact that green-light 

triggered photoactivation can be efficiently performed both with the caged peptide and with its 

ruthenocenoyl bioconjugate reveals a great potential for DEAdcCE-caged peptide sequences as 

selective drug carriers in the context of photocontrolled targeted anticancer strategies.  
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INTRODUCTION 

Light can be used to control where, when and to what extent active species are released from 

stable, non-biologically active parent molecules.
1
 Besides offering a high level of 

spatiotemporal control, light does not contaminate the living system and its wavelength and 

intensity can be precisely regulated.
2
 A promising approach consists of introducing 

photocleavable protecting groups (PPGs or caging groups)
1b,3

 in key positions of the molecule 

whose biological activity has to be suppressed temporarily. As a result, the active species from 

the resulting caged compound will be released only upon light irradiation, leading to the 

expected biological effect at the desired target site. The approach of using caging groups to 

regulate the activity of molecules with light has found a widespread application
1-3

 both to cage 

small compounds
4 
and larger biomolecules such as peptides and proteins

5
 and oligonucleotides.

6
  

Caged peptides can be prepared by introduction of PPGs at the side chain of trifunctional amino 

acids by taking advantage of the amino (Lys), carboxylate (Asp and Glu), thiol (Cys) and 

hydroxyl (Ser, Thr and Tyr, and their phosphorylated derivatives) functions.
7
 In addition, caging 

groups have been introduced at the peptide backbone
8
 and, very recently, a bisbipyridyl 

ruthenium(II) complex has been used to cage histidine residues.
9
 However, most reported 

peptide caging groups based on organic chromophores (e.g. o-nitrobenzyl derivatives or the 

first-generation of coumarins) require irradiation with shorter wavelengths (UV or blue light) 

for uncaging, which compromise in vivo applications due to their poor capacity of penetration 

into tissues
10

 and known photocytotoxicity.
11 

Among receptors overexpressed on tumour cells, integrins are particularly attractive targets 

since they have been linked to tumour angiogenesis, which is an essential process for tumour 

growth and metastasis.
12

 Moreover, integrins are frequently overexpressed in tumour endothelial 

cells as well as on various tumour cells. Owing to the ability of some integrin subtypes 

(especially αVβ3) to selectively recognize the tripeptide motif -Arg-Gly-Asp-, RGD-containing 

peptides, particularly the conjugable version of Cilengitide, c(RGDfK), have been used for 

tumour imaging and for targeted drug delivery of cytotoxic compounds,
13

 including metal-based 

anticancer agents.
14

 In recent years, only few examples of caged versions of RGD peptides have 
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been described by modifying the Asp residue
7ce

 with a photolabile protecting group or by 

incorporating an o-nitrobenzyl group within the backbone skeleton.
8a

 The fact that such caging 

groups prevent integrin recognition has been exploited to control integrin-mediated cell 

adhesion to surfaces by using UV light.  

Taking into account the potential of caged peptides in photocontrolled targeted drug delivery 

therapies and as tools to study of and interfere with complex biological processes,
2
 triggering 

the uncaging process with wavelengths of light compatible with biological entities is highly 

appealing. Here we report for the first time the solid-phase synthesis of a cyclic RGD-

containing peptide that has been caged at the side chain of the Asp residue with a 

dicyanocoumarin derivative, which allows photoactivation to be efficiently performed with 

green light (Figure 1). By synthesizing its ruthenocenoyl conjugate, we have also demonstrated 

that the uncaging process can be triggered in the presence of a metallodrug model cargo, which 

opens the door to the use of this caged RGD peptide or other dicyanocoumarin-caged peptide 

sequences in photocontrolled targeted anticancer therapies. 

 

Figure 1. Schematic representation of the uncaging process of a dicyanocoumarin-caged peptide when 

attached to a drug cargo. 
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RESULTS AND DISCUSSION 

Synthesis and photochemical properties of coumarin-caged Asp derivatives 

Coumarinylmethyl derivatives have been used to cage carboxylic acid functions through 

esterification, being particularly interesting the high red-shifted absorption of the 7-(N,N-

diethylamino) series.
15

 Upon irradiation, a solvent-assisted photoheterolysis produces the free 

carboxylate from the caged carboxylic acid and a solvent-trapped coumarin as a photo by-

product.
16

 Recently, del Campo and collaborators
7e

 have found that protection of the side chain 

of Asp during solid-phase peptide synthesis (SPPS) is more convenient with DEACE coumarin 

(1) than with the classical DEACM (2) (Scheme 1).
7e

 The reason relies on the steric hindrance 

provided by the methyl group incorporated in the coumarin moiety that led to an increase of the 

stability of the ester bond during the Fmoc-removal basic treatment as compared with the parent 

DEACM. Based on these precedents, we first focused on modifying the lactone function of the 

N-(9-fluorenylmethoxycarbonyl) (Fmoc)-protected Asp derivatives 3 and 4
7e

 (Scheme 1) with 

the aim of studying: 1) if uncaging could be triggered by green light (> 500 nm), and 2) their 

compatibility with Fmoc-tBu solid-phase peptide synthesis (SPPS) procedures for synthesizing 

a caged cyclic RGD peptide. As shown in Scheme 1, four new caged Asp derivatives have been 

synthesized by replacing the carbonyl group of the coumarinyl moiety by thiocarbonyl (5 and 6) 

or by dicyanomethylene (7 and 8), since both approaches are known to cause a significant red-

shift absorption of the coumarin chromophore
15b,17

 which has been exploited to uncage model 

carboxylic acids and amines with blue light. 

The synthesis of the new Asp monomers (5-8) was planned from 3 and 4, which were prepared 

from DEACM and DEACE coumarins following previously reported procedures with minor 

modifications. The synthesis of the thionated derivatives was carried out by reaction with 

Lawesson’s reagent in toluene at 70ºC for 12 h. Compounds 5 and 6 were isolated by silica gel 

column chromatography in good yields (81 and 80%, respectively) and fully characterized by 

UV-vis, HR-ESI MS and NMR. According to the higher reactivity of the Lawesson’s reagent 

for lactones than for esters,
18

 thionation occurred exclusively at the coumarin protecting group 

(DEACM or DEACE) rather than in the ester or carbamate functions of the amino acid moiety. 
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Indeed, the chemical shift of the carbonyl group of the lactone in the 
13

C NMR spectra of 4 

(161.7 ppm) was shifted by ca 36 ppm in 6 (197.0 ppm) due to thionation, and the adjacent 

proton in 
1
H NMR was shifted from 6.1 ppm (4) to 7.0 ppm (6). Similar effects were observed 

with compound 5. The dicyanomethylenecoumarinyl-Fmoc-protected Asp derivatives were 

obtained by condensation of the respective thionated precursors with malononitrile in the 

presence of triethylamine and silver nitrate (Scheme 1) in 81% (7) and 65% (8) yield after silica 

gel column chromatography and fully characterized by UV-vis, HR ESI MS and NMR. The 

purity of the amino acid derivatives was also assessed by reversed-phase HPLC (Figure S1 in 

the Supporting Information). It is worth noting that amino acid derivatives 5 and 7 were isolated 

as a mixture of two diastereomers due to the additional stereogenic center created by the 

incorporation of the methyl group at the coumarin skeleton. 

Scheme 1. Synthesis of the coumarin-caged Fmoc-protected Asp derivatives (5-10). 

 

 

As a next step the compatibility of the four Asp monomers with Fmoc-tBu SPPS was studied 

(Figures S2-S5 in the Supporting Information). Unfortunately, thionated monomers were not 
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completely stable to the TFA cleavage and deprotection conditions, since a considerable amount 

of desulfurization occurred (about 30% for 5 and 20% for 6). Both amino acids were also 

unstable to the typical Fmoc-removing conditions. Reaction of piperidine with the thiolactone 

was the major side product. By contrast, dicyanomethylenecoumarin-caged Asp monomers 

(DEAdcCE 7 and DEAdcCM 8) were found stable to the acid and basic treatments typically 

used in Fmoc-tBu SPPS (Figures S4-S5), as well as in cell culture medium (DMEM 

supplemented with 25% fetal bovine serum) after incubation for 1 h at 37ºC (Figure S6). The 

latter is a prerequisite for exploring the biological applications of coumarin-caged peptides. 

On the basis of the stability studies, we selected dicyanomethylenecoumarin (DEAdcCE and 

DEAdcCM) as a caging group of Asp and focused on studying the photophysical and 

photochemical properties of 7 and 8 (see Table 1 and Figures 2 and S7-S10). The UV-vis 

absorption spectra of both compounds are very similar with an absorbance maximum around 

500 nm belonging to * transitions of the coumarin chromophore. As shown in Table 1, max 

values were slightly red-shifted with respect the corresponding free dicyanocoumarin alcohols 

(11 and 14; the structures are shown in Scheme 2), which correlates with the tendency 

previously found in other compounds.
15b

 Similarly, the fluorescence emission maxima upon 

excitation at max was also shifted to longer wavelengths in the caged amino acids.  

 

  

Figure 2. Comparison of the UV-vis spectra (left, 20 M) and fluorescence emission spectra (right, 50 

nM) of DEAdcCE coumarin alcohol (11) and of Fmoc-Asp(DEAdcCE)-OtBu (7) in Tris buffer pH 

7.5/ACN 1:1. 
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Table 1. Photophysical and photochemical properties of the compounds. 

 Absorption Emission Uncaging 

 max
a
  max)

b
 em

c
 Δν

d
 




e
 (505)

b 
x

f 

7 492 30.3 551 59 0.24 24.5 58 

8 489 27.5 555 66 0.10 22.5 22 

11 483 33.5 545 62 - - - 

14 479 28.6 549 70 - - - 
 

a
Absorption maximum (nm); 

b
Extinction coefficient at max or at 505 nm (mM

-1 
cm

-1
); 

c
Fluorescence 

emission maximum upon excitation at max (nm); 
d
Stokes’s shift (nm); 

e
Quantum yield for the uncaging process 

at 505 nm; 
f
Efficiency of the uncaging process (M

-1 
cm

-1
) (see the Supporting Information). 

 

On the basis of the shape of the absorption curve and of the molar extinction coefficients of both 

DEAdcCM- and DEAdcCE-caged Asp derivatives at their max and at 505 nm (Table 1), we 

decided to evaluate if green light could be used to deprotect them efficiently, because it is less 

harmful to cells and penetrates deeper in tissues than UV or blue light.
10,11

 Photolysis studies 

were carried out by using a LED as a light source and the course of the uncaging process was 

monitored by reversed-phase HPLC-ESI MS. As shown in Scheme 2 and in Figures S11-S12, 

irradiation at 505 nm induced conversion to the uncaged Fmoc-Asp-OtBu and the 

corresponding coumarin alcohol derivatives in both cases as the main photolytic by-products 

(11 from 7 and 14 from 8). The fact that uncaging of 7 was slightly faster compared with that of 

8 (2 min vs 5 min, for a complete deprotection) can be attributed to the higher stability of the 

secondary carbocation intermediate generated during photoheterolysis
16

 of the ester bond of 7. 

In good agreement with such photolysis studies, the uncaging quantum yield () for 7 was 

higher than for 8 (Table 1), resulting in a high product (x), thereby indicating a higher 

efficiency for the uncaging process.
1b 
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Scheme 2. Photoactivation of dicyanocoumarin-caged Asp monomers. 

 

 

Synthesis of a dicyanocoumarin-caged cyclic RGD peptide  

The next step involved the evaluation of both dicyanomethylenecoumarin derivatives 

(DEAdcCM and DEAdcCE) as PPGs of the side chain of Asp during the Fmoc-tBu SPPS of a 

linear pentapeptide containing the RGD sequence (15 and 16, respectively; see Scheme 3). First, 

compounds 7 and 8 were reacted with HCl in dioxane for 15 h at 50ºC to remove the tert-butyl 

group, affording the corresponding caged Asp monomers 9 and 10, respectively (Scheme 1) 

suitable for the assembly of the peptide. As shown in Scheme 3, the assembly of the linear 

tetrapeptide was carried out on 2-chlorotrityl chloride resin using DIPC and HOAt. After 

incorporation of both Asp monomers (9 or 10) and Fmoc removal using standard conditions 

(20% piperidine in DMF), an acidic treatment was carried out to check the quality of the crude 

peptide. To our surprise, HPLC-ESI MS analysis (Figures S13 and S14 in the Supporting 

Information) revealed that protection of Asp with both dicyanocoumarin derivatives promotes 

the formation of an aspartimide side product (17, Scheme 3). In fact, the use of DEAdcCM 

monomer (10) did not afford the expected peptide (16) after standard piperidine treatment but 

the corresponding aspartimide derivative as a major product (Table S1 in the Supporting 

Information). By contrast, this undesired cyclization was substantially reduced with monomer 9, 

which facilitated peptide 15 to be obtained in a 1:1 ratio with respect 17. Aspartimide formation 

is well known to occur during the piperidine-catalyzed Fmoc removal of peptides containing 

Asp and it is very dependent on several factors including the side chain protecting group of this 

amino acid and its neighboring residue
19

 (D-amino acids are known to increase aspartimide 
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formation and in our case D-Phe is adjacent to the dicyanocoumarin-esterified Asp). Since the 

addition of organic acids to the standard piperidine-based Fmoc deprotection cocktail has been 

described to reduce the formation of aspartimide side products, we evaluated the use of three 

additives.
20

 As shown in Figures S13 and S14 and in Table S1, HOBt and Oxyma were very 

effective in reducing this side reaction, particularly when the sterically-shielded DEAdcCE 

monomer (9) was used. However, the level of aspartimide was still very high with DEAdcCM 

monomer (10) under the optimal conditions for 9. The overall results confirm that the steric 

hindrance provided by the methyl group of DEAdcCE around the -carboxyl ester in 

combination with HOBt or Oxyma additives during Fmoc-removal represents the best choice to 

minimize the nucleophilic attack of the amidate anion at the carbonyl group and for instance to 

reduce aspartimide formation.  

 

Scheme 3. Evaluation of aspartimide formation (compound 17) during Fmoc-tBu SPPS of the linear 

peptide H-Asp(DEAdcCM or DEAdcCE)-D-Phe-Lys-Arg-Gly-OH (15 or 16) by using dicyanocoumarin-

protected Asp monomers (9 or 10, respectively) together with different Fmoc-removal conditions.  
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Taking into account the synthetic problems encountered with DEAdcCM monomer (10) 

together with its slow photodeprotection rate with green light, we selected DEAdcCE monomer 

(9) to synthesize the target caged cyclic RGD peptide, c(RGD(DEAdcCE)fK) (18). As shown in 

Scheme 4, a Lys building block incorporating a short Boc-protected polyethyleneglycol spacer 

at the ε-NH2 was used during the assembly of the linear pentapeptide. After cleavage under mild 

acidic conditions and overnight cyclization with PyBOP, the protected peptide, c[-Arg-(Pbf)-

Gly-Asp(DEAdcCE)-D-Phe-Lys(Boc-linker)-] was obtained. Finally, the remaining side chain 

protecting groups (Boc and Pbf) were eliminated by acidic treatment. Peptide 18 was purified 

by reversed-phase HPLC and characterized by HR ESI-MS (see Figures S15 and S16 in the 

Supporting Information). Similarly, the non-caged peptide (19) was synthesized as a control.
14e

  

 

Scheme 4. Synthesis of the DEAdcCE-caged cyclic RGD peptide (18) and its ruthenocenoyl conjugate 

(20). 
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Synthesis and photochemical properties of a conjugate between ruthenocene and the 

dicyanocoumarin-caged cyclic RGD peptide  

Having at hand peptide 18, we conjugated ruthenocene
21

 as a metallodrug model cargo to 

evaluate the compatibility of a metal complex with uncaging conditions. As shown in Scheme 4, 

ruthenocene carboxylic acid was attached to 18 by using HATU and DIPEA. Analysis by 

HPLC-ESI MS showed a main peak (Figure S17), which was isolated and characterized as the 

expected ruthenocene conjugate (20). Similarly, the control ruthenocene-RGD conjugate (21) 

was obtained by using peptide 19 (Figure S19). After purification by semipreparative HPLC and 

lyophilization, the trifluoroacetate salts of 20 (overall yield from 18: 46%) and 21 (overall yield 

from 19: 30%) were obtained as orange and white solids, respectively. In both cases, high-

resolution ESI MS analysis afforded m/z values consistent with the calculated value of the 

charged species ([M+H]
+
 and [M+2H]

2+
) and with the appropriate isotopic mass distribution 

patterns of ruthenium (Figures S18 and S20).  

Finally, the photoactivation of the coumarin-caged peptide (18) and its ruthenocene conjugate 

(20) was studied. As shown in Figure 3, both compounds strongly absorb in the visible region 

showing a maximum of absorption at max= 496 nm, which was slightly red-shifted with respect 

monomer 7 (492 nm). Irradiation of 18 at 505 nm caused a fast release of the free peptide 19 

(90% after 10 min irradiation at 37
o
C in PBS buffer) and the corresponding coumarin alcohol 11 

(Figure S21). By contrast, uncaging of conjugate 20 was slightly slower and required 30 min to 

achieve a similar percentage of deprotection (Figures 3 and S22), which could be attributed both 

to the different medium employed in the experiments and to the presence of the metal complex. 

A similar tendency was found when comparing the uncaging quantum yields of the caged 

peptide (10
2
0.85) and of the conjugate (10

2
0.72). Importantly, only ruthenocene-

c(RGDfK) conjugate 21 was photoreleased from 20 upon green light irradiation, which 

indicates that uncaging conditions are completely compatible with the integrity of the 

bioconjugate. In addition, the stability of the ruthenocenoyl conjugate in cell culture medium 

(DMEM-25% FBS, 1 h 37ºC; Figure S23) opens the door to using dicyanocoumarin-caged 

RGD peptides as drug carriers in cells overexpressing αVβ3 integrins. 
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Figure 3. Left: comparison of the UV-vis spectra of peptide 18 and its ruthenocene conjugate 20. Right: 

reversed-phase HPLC traces for the uncaging of conjugate 20 upon irradiation at 505 nm (37
o
C, 

PBS/ACN 8:2) at t=0 (top) and t=30 min (bottom). The structure of coumarin derivative 12 is shown in 

Figure S22 in the Supporting Information. 
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CONCLUSIONS 

In summary, we have described for the first time the synthesis and photochemical 

characterization of a caged cyclic RGD peptide that can be efficiently photoactivated with 

biologically-compatible green light. This was accomplished by using a new dicyanocoumarin 

derivative (DEAdcCE) for the protection of the carboxyl group at the side chain of the aspartic 

acid residue, which was selected on the basis of Fmoc-tBu SPPS compatibility and photolysis 

efficiency. Indeed, the acid and basic stability of dicyanocoumarin-caged Asp monomers (7 and 

8) was found to be substantially higher than that of the thiocoumarin precursors (5 and 6) and, 

among them, the DEAdcCE moiety was preferred over DEAdcCM due to higher uncaging 

efficiency and reduced aspartimide formation. Minimization of aspartimide side-reaction was 

accomplished by using acidic additives such as HOBt or Oxyma during the basic Fmoc-removal 

treatment in combination with the Fmoc-Asp(DEAdcCE)-OH monomer (9) in which the 

incorporation of a methyl group at the coumarin skeleton near the ester bond linking both 

moieties led to a steric shielding effect around this functionality.  

On the other hand, a conjugate between the coumarin-caged cyclic RGD peptide and 

ruthenocene, which was selected as a metallodrug model cargo, has been synthesized and 

characterized. The fact that green-light triggered photoactivation can be efficiently performed 

both with the caged peptide (18) and with its ruthenocenoyl bioconjugate (21) opens the door to 

exploring the use of DEAdcCE-caged peptide sequences as selective drug carriers in the context 

of photocontrolled targeted anticancer strategies. Work is in progress to extend this approach to 

other coumarin derivatives with improved red-shifted properties, particularly those removable 

within the optical window of the tissues, as well as to the conjugation between caged peptides 

and other anticancer agents, including Pt(IV) pro-drugs. 
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EXPERIMENTAL SECTION 

Materials and Methods. 

Unless otherwise stated, common chemicals and solvents including Fmoc-protected amino 

acids, resins and coupling reagents for solid-phase synthesis were purchased from commercial 

sources and used without further purification. Milli-Q water was directly obtained from a Milli-

Q system equipped with a 5000-Da ultrafiltration cartridge. Aluminium plates coated with a 0.2 

mm thick layer of silica gel 60 F254 were used for thin-layer chromatography analyses (TLC), 

whereas column chromatography purification was carried out using silica gel 60 (230-400 

mesh). Analytical reversed-phase HPLC analyses were carried out on a Jupiter Proteo column 

(250x4.6 mm, 4 m, flow rate: 1 mL/min), using linear gradients of 0.045% TFA in H2O 

(solvent A) and 0.036% TFA in ACN (solvent B). In some cases, small-scale purification was 

carried out using the same column. Large-scale purification was carried out on a Jupiter Proteo 

semipreparative column (250 x 10 mm, 10 m, flow rate: 3 mL/min), using linear gradients of 

0.1% TFA in H2O (solvent A) and 0.1% TFA in ACN (solvent B). After several runs, pure 

fractions were combined and lyophilized. Electrospray ionization mass spectra (ESI-MS) were 

recorded on an instrument equipped with single quadrupole detector coupled to an HPLC, and 

high-resolution (HR) ESI-MS on LC/MSTOF instrument. NMR spectra were recorded at 25ºC 

in a 400 MHz spectrometer using deuterated solvents. Tetramethylsilane (TMS) was used as an 

internal reference (0 ppm) for 
1
H spectra recorded in CDCl3 and the residual signal of the 

solvent (77.16 ppm) for 
13

C spectra. Chemical shifts are reported in part per million (ppm) in the 

 scale, coupling constants in Hz and multiplicity as follows: s (singlet), d (doublet), t (triplet), q 

(quadruplet), qt (quintuplet), m (multiplet), dd (doublet of doublets), td (doublet of triplets), ddd 

(doublet of doublet of doublets), br (broad signal). UV-vis spectra were recorded with a UV-

Vis-NIR spectrophotometer and fluorescence measurements were performed on a Quanta-

Master fluorimeter. Photolysis studies were performed at 37ºC in a custom-built irradiation 

setup from Microbeam including a cuvette, thermostated cuvette holder and a mounted high 

power LED of 505 nm (100 mW/cm
2
). In a typical experiment, the irradiation samples 
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contained the caged amino acids (20 M) in a 1:1 (v/v) mixture of Tris buffer pH 7.5 and ACN. 

After irradiation, the samples were analyzed by reversed-phase HPLC-ESI MS in a Jupiter 

Proteo C18 column (250x4.6 mm, 90 Å 4 m, flow rate: 1 mL/min) using linear gradients of 

0.1% formic acid in H2O (A) and 0.1% formic acid in ACN (B). 

Synthesis of the caged amino acid derivatives. 

7-(N,N-diethylamino)-4-(1-hydroxyeth-1-yl)-coumarin (1)
7e 

A solution of 4-carbaldehyde-7-(N,N-diethylamino)coumarin (2.58 g, 11 mmol) in dry THF (60 

mL) was cooled at -78ºC using a mixture of acetone and dry ice and kept under argon 

atmosphere. Then, a solution of methylmagnesium chloride (6.3 mL, 3 M) in THF was added 

dropwise and the reaction mixture was stirred for 2 h at -78ºC in the dark. After that, a second 

portion of methylmagnesium chloride (3.0 mL) was added. After stirring 2 additional hours at -

78ºC in the dark, a saturated aqueous solution of ammonium chloride (50 mL) was added and 

the reaction mixture was allowed to reach room temperature. The mixture was extracted with 

ethyl acetate (3 x 50 mL). The combined organic layers were dried over Na2SO4, filtered and the 

solvent was removed under reduced pressure. The red residue was purified by column 

chromatography (silica gel, 0-3.5% MeOH in DCM). The appropriate fractions were collected 

and the solvents were removed to give a 1.94 g (71% yield) of a yellow solid. TLC: Rf (5% 

MeOH in DCM) 0.31. 
1
H NMR (400 MHz, CDCl3) δ (ppm): 7.43 (1H, d, J= 9.2 Hz), 6.57 (1H, 

dd, J= 9.2 Hz, J= 2.6 Hz), 6.50 (1H, d, J= 2.6 Hz), 6.27 (1H, br s), 5.15 (1H, m), 3.41 (4H, q, J= 

7.0Hz), 2.18 (1H, br s), 1.57 (3H, d, J= 6.8 Hz), 1.21 (6H, t, J= 7.0 Hz). ESI-MS, positive mode: 

m/z 261.55 (calcd mass for C15H20NO3 [M+H]
+
: 262.14). 

7-(N,N-Diethylamino)-4-hydroxymethylcoumarin (2)
7e 

4-carbaldehyde-7-(N,N-diethylamino)coumarin (3.71 g, 15.1 mmol) and sodium borohydride 

(0.57 g, 15.1 mmol) were stirred at room temperature for 4 h in ethanol (300 mL) protected 

from light. After addition of 1 M HCl (80 mL) and dilution with water (50 mL), the red solution 

was extracted with DCM (3 x 50 mL). The combined organic layers were washed with water 

(50 mL), dried over anhydrous MgSO4 and filtered. After removal of the solvent under reduced 

pressure, a red solid was obtained (3.31 g, yield 90%) and used without further purification in 
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the next step. TLC: Rf (5% MeOH in DCM) 0.25. 
1
H NMR (400 MHz, CDCl3) δ (ppm): 7.31 

(1H, d, J= 9.2 Hz), 6.57 (1H, dd, J= 9.2 Hz, J= 2.8 Hz), 6.49 (1H, d, J= 2.8 Hz), 6.26 (1H, s, 

H3), 4.83 (2H, s), 3.40 (4H, q, J= 7.2 Hz), 1.20 (6H, t, J= 7.2 Hz). ESI-MS, positive mode: m/z 

247.88 (calcd mass for C14H18NO3 [M+H]
+
: 248.13). 

Fmoc-Asp(DEACE)-O
t
Bu (3)

7e 

Fmoc-Asp-O
t
Bu (2.52 g, 6.12 mmol), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide 

hydrochloride (1.39 g, 7.25 mmol) and DMAP (38 mg, 0.31 mmol) were dissolved in dry DCM 

(50 mL). A solution of 1 (1.44 g, 5.56 mmol) in dry DCM (50 mL) was added and the reaction 

mixture was stirred at room temperature in the dark under argon atmosphere for 4 h. The solvent 

was removed in vacuum and the crude material was purified via column chromatography (silica 

gel, 0-1.5% methanol in DCM) to obtain 1.42 g (57 % yield) of a yellow crystalline solid. TLC: 

Rf (5% MeOH in CH2Cl2) 0.68. 
1
H NMR (400 MHz, CDCl3) δ (ppm): 7.75 (2H, t, J= 6.8 Hz), 

7.58 (2H. t, J= 6.8 Hz), 7.39 (3H, q, J= 7.2 Hz), 7.31 (2H, t, J= 7.2 Hz), 6.57 (1H, ddd, J= 8.8 

Hz, J= 6 Hz, J= 2.4 Hz), 6.50 (1H, dd, J= 5.6 Hz, J= 2.4 Hz), 6.12 (1H, d, J= 4 Hz) , 6.06 (1H, 

m), 5.75 (1H, m), 4.55 (1H, m), 4.35 (2H, m), 4.22 (1H, q J= 6.8 Hz), 3.39 (4H, q, J= 7.2 Hz), 

3.02 (2H, m), 1.60 (3H, d, J= 6.4 Hz), 1.56 (1H, s), 1.48 (4H, s), 1.40 (4H, s), 1.19 (6H, dt, J= 

7.2 Hz,). 
13

C NMR (100 MHz, CDCl3) δ (ppm): 170.1, 169.9, 169.5, 169.3, 162.0, 161.9, 156.6, 

155.9, 155.1, 154.8, 150.6, 143.9, 143.8, 143.7, 141.2, 127.7, 127.1, 125.2, 124.8, 124.6, 120.0, 

119.9, 108.7, 105.5, 105.1, 104.9, 98.0, 83.0, 82.9, 68.4, 68.2, 67.3, 50.9, 50.8, 47.1, 44.7, 36.9, 

27.9, 27.8, 20.9, 12.4. ESI-MS, positive mode: m/z 654.9 (calcd mass for C38H42N2O8 [M+H]
+
: 

654.76).  

Fmoc-Asp(DEACM)-O
t
Bu (4)

7e 

Fmoc-Asp-O
t
Bu (1.83 g, 4.45 mmol), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide 

hydrochloride (1.01 g, 5.27 mmol) and DMAP (25 mg, 0.20 mmol) were dissolved in dry DCM 

(50 mL). After addition of a solution of 2 (1.01 g, 4.09 mmol) in dry DCM (50 mL), the 

reaction mixture was stirred at room temperature in the dark under argon atmosphere for 4 h. 

The solvent was removed under vacuum and the crude material was purified via column 

chromatography (silica gel, 0-3% MeOH in DCM) to obtain 1.37 g (53% yield) of a yellow 
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crystalline solid. TLC: Rf (5% MeOH in DCM) 0.74. 
1
H NMR (400 MHz, CDCl3) δ (ppm): 7.76 

(2H, d, J=7.7 Hz), 7.60 (2H, d, J= 7.2 Hz), 7.39 (2H, t J= 7.2 Hz), 7.31 (3H, m), 6.56 (1H, m), 

6.51 (1H, m), 6.12 (1H, s), 5.75 (1H, d, J= 7.6 Hz), 5.24 (2H, m), 4.58 (1H, m), 4.38 (2H, m), 

4.23 (1H, t, J= 7.2 Hz), 3.40 (4H, q, J= 7.2 Hz), 3.04 (2H, m), 1.46 (9H, s), 1.19 (6H, t, J=7.2 

Hz). 
13

C NMR (100 MHz, CDCl3) δ (ppm): 170.3, 169.4, 161.7, 156.3, 155.9, 150.7, 148.8, 

143.8, 141.3, 127.7, 127.1, 125.2, 124.4, 120.0, 108.7, 106.8, 105.9, 97.9, 83.1, 67.3, 61.9, 50.9, 

47.1, 44.8,  36.8, 27.9, 12.4. ESI-MS, positive mode: m/z 640.95 (calcd mass for C37H41N2O8 

[M+H]
+
: 641.29).  

Fmoc-Asp(DEATCE)-O
t
Bu (5) 

Lawesson’s reagent (0.41 g, 1.01 mmol) was added to a solution of Fmoc-Asp(DEACE)-O
t
Bu 

(3, 1.10, 1.68 mmol) in toluene (40 mL). After stirring overnight at 70ºC under an argon 

atmosphere and protected from light, the solvent was evaporated under reduced pressure and the 

resulting orange crude solid was purified via column chromatography (silica gel, 0-1% MeOH 

in DCM) to obtain 0.91 g (81% yield) of dark orange solid; mp 95-97 ºC. TLC: Rf (2% MeOH 

in DCM) 0.71. 
1
H NMR (400 MHz, CDCl3) δ (ppm): 7.75 (2H, m), 7.58 (2H, m), 7.40 (3H, m), 

7.31 (2H, m), 7.04 (1H, d, J= 6 Hz), 6.65 (2H, m), 6.08 (1H, m), 5.74 (1H, t J= 8 Hz), 4.55 (1H, 

m), 4.37 (2H, m), 4.23 (1H, m), 3.41 (4H, m), 3.10-2.92 (2H, m), 1.59 (4H, m), 1.48 (4H, s), 

1.40 (4H, s), 1.21 (6H, m). 
13

C NMR (100 MHz, CDCl3) δ (ppm): 197.3, 197.2, 170.1, 170.0, 

169.5, 169.3, 159.4, 155.9, 150.9, 147.3, 147.0, 143.9, 143.8, 141.3, 127.7, 127.1, 125.2, 124.8, 

124.7, 120.0, 119.3, 119.1, 110.4, 107.8, 97.7, 83.0, 82.9, 68.1, 67.9, 67.3, 67.2, 53.4, 50.8, 

50.8, 47.1, 44.9, 37.0, 36.9, 27.9, 27.8, 20.9, 20.8, 12.4. HR ESI-MS, positive mode: m/z 

671.2777 (calcd mass for C38H43N2O7S [M+H]
+
: 671.2791). Analytical RP-HPLC (0 to 100% B 

in 30 min, 10 min isocratic 100% B; A: 0.1 % formic acid in H2O, B: 0.1% formic acid in ACN; 

Rt = 32 min).  

Fmoc-Asp(DEATCM)-O
t
Bu (6) 

Lawesson’s reagent (1.18 g, 2.92 mmol) was added to Fmoc-Asp(DEACM)-OtBu (4, 1 g, 1.56 

mmol) in toluene (50 mL). The mixture was stirred overnight at 70ºC under an argon 

atmosphere and protected from light. After that, the solvent was evaporated under vacuum and 
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the resulting crude was purified via column chromatography (silica gel, 0-1% MeOH in DCM) 

to give 0.82 g (80% yield) of a dark orange solid; mp 91-94 ºC. TLC: Rf (2% MeOH in DCM) 

0.71. 
1
H NMR (400 MHz, CDCl3) δ (ppm): 7.76 (2H, d, J=7.2 Hz), 7.60 (2H, dm J= 7.2 Hz), 

7.40 (2H, t, J= 7.6 Hz), 7.31 (3H, q, J= 6.0 Hz), 7.03 (1H, s), 6.66 (1H, d, J= 2.4 Hz), 6.63 (1H, 

dd, J= 9.2 Hz, J= 2.4 Hz), 5.74 (1H, d, J= 8.0 Hz), 5.20 (2H, m), 4.58 (1H, m), 4.39 (2H, m), 

4.23 (1H, t, J= 7.2 Hz), 3.41 (4H, q, J= 7.2 Hz), 3.05 (2H, m), 1.47 (9H, s), 1.20 (6H, t, J=7.2 

Hz). 
13

C NMR (100 MHz, CDCl3) δ (ppm): 197.0, 170.3, 169.3, 159.1, 155.9, 151.0, 143.8, 

141.3, 141.1, 127.7, 127.1, 125.2, 124.5, 121.0, 120.0, 110.3, 108.2, 97.5, 83.1, 67.3, 61.6, 53.4, 

50.9, 47.1, 44.9, 36.8, 27.9, 12.4. HR ESI-MS, positive mode: m/z 657.2623 (calcd mass for 

C37H41N2O7S [M+H]
+
: 657.2634). Analytical RP-HPLC (30 to 100% B in 30 min; A: 0.1 % 

formic acid in H2O, B: 0.1% formic acid in ACN; Rt = 25.5 min). 

Fmoc-Asp(DEAdcCE)-O
t
Bu (7) 

Silver nitrate (580 mg, 3.42 mmol) was added to a solution of Fmoc-Asp(DEATCE)-OtBu (5, 

920 mg, 1.37 mmol), malononitrile (453 mg, 6.85 mmol) and triethylamine (670 µL, 4..79 

mmol) in dry ACN (80 mL) under an argon atmosphere. The reaction mixture was stirred for 3 

h in the dark at room temperature and then concentrated under reduced pressure. The crude was 

purified by column chromatography (silica gel, 0-0.6% MeOH in DCM) to give 780 mg (81 % 

yield) of a dark orange solid; mp 110-113 ºC. TLC: Rf (2% MeOH in DCM) 0.65 
1
H NMR (400 

MHz, CDCl3) δ (ppm): 7.75 (2H, m), 7.57-7.53 (2H, m), 7.45-7.27 (5H, m), 6.70 (1H, m), 6.64 

(1H, m), 6.57-6.52 (1H, m), 6.07 (1H, m), 5.73 (1H, br t), 4.56 (1H, m), 4.35 (2H, m), 4.18 (1H, 

m), 3.46-3.36 (4H, m), 3.02 (2H, m), 1.60 (3H, m), 1.49 (5H, s), 1.40 (4H, s), 1.21 (6H, m). 
13

C 

NMR (100 MHz, CDCl3) δ (ppm): 171.9, 170.0, 169.4, 169.2, 155.9, 155.8, 155.3, 151.8, 151.6, 

151.5, 151.3, 143.8, 143.7, 141.2, 127.4, 127.0, 125.1, 119.9, 114.6, 113.8, 110.7, 110.6, 106.5, 

104.8, 104.4, 97.5, 82.9, 68.3, 67.2, 55.4, 55.3, 50.9, 47.1, 44.9, 36.9, 29.7, 27.9, 27.8, 21.0, 

12.4. HR ESI-MS, positive mode: m/z 703.3114 (calcd mass for C41H43N4O7 [M+H]
+
: 

703.3132). Analytical RP-HPLC (30 to 100% B in 30 min; A: 0.1 % formic acid in H2O, B: 

0.1% formic acid in ACN; Rt = 25.7 and 25.8 min). 

Fmoc-Asp(DEAdcCE)-O
t
Bu (8) 
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Silver nitrate (323 mg, 1.90 mmol) was added to a solution of Fmoc-Asp(DEATCM)-OtBu (6, 

500 mg, 0.76 mmol), malononitrile (352 mg, 5.33 mmol) and triethylamine (370 µL, 2.67 

mmol) in dry ACN (40 mL) under an argon atmosphere. The reaction mixture was stirred for 3 

h in the dark at room temperature and then concentrated under reduced pressure. The crude was 

purified by column chromatography (silica gel,0-0.8% MeOH in DCM) to give 337 mg (65 % 

yield) of a dark orange solid; mp 108-110 ºC. TLC: Rf (2% MeOH in DCM) 0.74. 
1
H NMR 

(400 MHz, CDCl3) δ (ppm): 7.75 (2H, d, J= 7.5 Hz), 7.58 (2H, d, J= 7.4 Hz), 7.39 (2H, t, J= 7.4 

Hz), 7.30 (3H, m), 6.73 (1H, s), 6.62 (1H, dd, J= 9 Hz, J=2.4 Hz), 6.55 (1H, d, J= 2.4 Hz), 5.75 

(1H, d, J= 7.6 Hz), 5.23 (2H, q, J= 15 Hz), 4.57 (1H, m), 4.37 (2H, m), 4.20 (1H, t, J= 7.1 Hz), 

3.41 (4H, q, J= 7.2 Hz), 3.05 (2H, m), 1.47 (9H, s), 1.21 (6H, t, J= 7.2 Hz). 
13

C NMR (100 

MHz, CDCl3) δ (ppm): 171.6,  170.2, 169.3, 155.9, 155.0, 151.7, 145.2, 143.7, 141.3, 127.7, 

127.1, 125.1, 125.0, 120.0, 114.4, 113.7, 110.6, 107.0, 106.5, 97.4, 83.1, 67.2, 61.7, 55.9, 51.0, 

47.1, 44.9, 36.9, 27.9, 12.4. HR ESI-MS, positive mode: m/z 689.2977 (calcd mass for 

C40H41N4O7 [M+H]
+
: 689.2975). Analytical RP-HPLC (30 to 100% B in 30 min; A: 0.1 % 

formic acid in H2O, B: 0.1% formic acid in ACN; Rt = 24.5 min). 

Fmoc-Asp(DEAdcCE)-OH (9) 

A solution of HCl in 1,4-dioxane (20 mL, 100 mmol) was added to a Fmoc-Asp(DEAdcCE)-

OtBu (7, 600 mg, 0.85 mmol). The reaction mixture was stirred in the dark at 50ºC during 15 h 

and then concentrated under reduced pressure. The compound was used directly in the assembly 

of the caged peptide. 
1
H NMR (400 MHz, CDCl3) δ (ppm): 7.75 (2H, d, J= 7.2 Hz), 7.57-7.53 

(2H, m), 7.38 (3H, t, J=7.6 Hz), 7.30-7.27 (2H, m), 6.66-6.64 (2H, m), 6.56-6.53 (1H, m), 6.12-

6.05 (1H, m), 5.82 (1H, m), 4.75-4.70 (1H, m), 4.41-4.35 (2H, m), 4.19 (1H, m), 3.66-3.62 (4H, 

m), 3.11 (2H, m), 1.59 (3H, m), 1.22 (6H, m). 
13

C NMR (100 MHz, CDCl3) δ (ppm): 172.1, 

169.6, 169.1, 155.8, 155.7, 155.2, 151.7, 151.5, 143.5, 143.4, 141.1, 127.6, 126.9, 124.9, 119.8, 

115.6, 113.5, 110.7, 106.3, 104.1, 103.9, 97.4, 72.0, 71.0, 67.2, 61.5, 54.8, 49.9, 46.8, 44.8, 

42.7, 36.7, 29.5, 21.0, 12.6. HR ESI-MS, positive mode: m/z 647.2518 (calcd mass for 

C37H35N4O7 [M+H]
+
: 647.2506). Analytical RP-HPLC (30 to 100% B in 30 min; A: 0.1 % 

formic acid in H2O, B: 0.1% formic acid in ACN; Rt = 23.5 min). 
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Fmoc-Asp(DEAdcCE)-OH (10) 

A solution of HCl in 1,4-dioxane (5 mL, 25 mmol) was added to a Fmoc-Asp(DEAdcCM)-

OtBu (8, 30mg, 0.04 mmol). The reaction mixture was stirred in the dark at 50ºC during 15 h 

and then concentrated under reduced pressure. The compound was used directly in the assembly 

of the caged peptide. 
1
H NMR (400 MHz, CDCl3) δ (ppm): 7.75 (2H, d, J= 7.2 Hz), 7.58 (2H, 

m), 7.39 (2H, t, J= 7.2 Hz), 7.30 (3H, m), 6.70-6.61 (3H, m), 5.88 (1H, m), 5.29 (2H, m), 4.76 

(1H, m), 4.40 (2H, m), 4.21 (1H, m), 3.65 (4H, q, J= 7.2 Hz), 3.18 (2H, m), 1.21 (6H, m). 
13

C 

NMR (100 MHz, CDCl3) δ (ppm): 172.4, 172.17, 170.1, 156.1, 155.0, 151.7, 146.0, 143.8, 

141.4, 127.9, 127.3, 125.2, 125.0, 120.1, 115.8, 113.6, 111.2, 107.1, 105.7, 97.7, 72.4, 71.3, 

67.5, 61.8, 55.3, 50.3, 47.2, 45.3, 43.0, 36.9, 12.6. HR ESI-MS, positive mode: m/z 633.2334 

(calcd mass for C36H33N4O7 [M+H]
+
: 633.2349). Analytical RP-HPLC (30 to 100% B in 30 

min; A: 0.1 % formic acid in H2O, B: 0.1% formic acid in ACN; Rt = 22.7 min). 

Synthesis DEAdcCE-caged RGD peptide (18)  

Solid-phase peptide syntheses were performed manually in a polypropylene syringe fitted with a 

polyethylene disc. Standard Fmoc/tBu chemistry was used with 2-chlorotrityl chloride resin (f = 

1.5 mmol/g, 100-200 mesh). The following protecting groups were used for the protection of 

trifunctional amino acids: Boc (N

-tert-butoxycarbonyl, Lys), Pbf (N

G
-2,2,4,6,7-

pentamethyldihydrobenzofuran-5-sulfonyl, Arg) and 
t
Bu (O-tert-butyl, Asp). Fmoc-

Asp(DEAdcCE)-OH (9) or Fmoc-Asp(DEAdcCM)-OH (10) were used for the synthesis of 

caged peptides, and Fmoc-Lys(Boc-AEEA)-OH (Boc-AEEA = N

-(2-(2-(2-(tert-

butyloxycarbonyl)aminoethoxy)ethoxy)acetyl) was used as spacer. First, the resin was washed 

with neutral DCM (2 x 5 min and 1 x 30 min) and the loading was reduced to ca 1 mmol/g by 

incorporation of Fmoc-Gly-OH (0.7 mol equiv.) in the presence of DIPEA (5 mol equiv.) in 

anhydrous DCM for 40 min. After capping with MeOH (1 x 10 min), the following Fmoc-

protected amino acids (3 mol equiv.) were incorporated with DIPC (3 mol equiv.) and HOAt (3 

mol equiv.) in anhydrous DMF for 2 h. The coupling efficiency was assessed by the ninhydrin 

test. Fmoc protecting groups were removed with 20% piperidine in DMF (2 x 10 min) in each 

synthesis cycle except when using DEAdcCE or DEAdcCM protection for Asp, which required 
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the use of an acidic additive (0.5 equiv. HOBt relative to piperidine). After removal of the final 

N-terminal Fmoc group, linear peptides were released from the support by treatment with 

AcOH/TFE/DCM 1:1:8 (v/v/v) (3 x 30 min). The collected filtrates were evaporated in vacuo, 

and several co-evaporations with toluene (4 x 25 mL) were carried out to remove completely 

acetic acid. The resulting residue was dissolved in the minimum amount of DCM and poured 

onto cold diethyl ether to precipitate the fully protected linear peptide. The crude was triturated 

and washed three times with ether. Cyclization was carried out in DMF (ca 1 mL/ mg crude 

peptide) at pH 8-9 (adjusted with DIPEA) by using PyBOP (1 mol equiv.). After it was stirred 

for 18 h at room temperature, the reaction mixture was evaporated in vacuo and diethyl ether 

was used to precipitate the peptides. Finally, side-chain deprotection was performed with 

TFA/TIS/H2O 95:2.5:2.5 for 2 h at room temperature. After evaporation under reduced pressure, 

the crude peptide was triturated and washed three times with cold diethyl ether. After 

purification by semipreparative HPLC (gradient from 0 to 100% B in 30 min, A: 0.1 % TFA in 

H2O; B: 0.1% TFA in ACN flow rate: 3 mL/min), the trifluoroacetate salt of the peptide was 

obtained. 

c(RGD(DEAdcCE)fK) (18). Overall yield (synthesis + purification): 22 mg, 5%. 

Characterization: Analytical RP-HPLC (0 to 100% B in 30 min; A: 0.1 % formic acid in H2O, 

B: 0.1% formic acid in ACN): Rt = 12.7 min; HR ESI MS, positive mode: m/z 1040.5302 (calcd 

mass for C51H70N13O11 [M+H]
+
: 1040.5318), m/z 520.7698 (calcd mass for C51H71N13O11 

[M+2H]
2+

: 520.7698).  

Synthesis of ruthenocenoyl-peptide conjugates (20 and 21)  

Ruthenocene-c(RGD(DEAdcCE)fK) conjugate (20). To a solution of ruthenocene carboxylic 

acid (0.35 mg, 1.3 mol equiv.) and HATU (0.51 mg, 1.05 mol equiv.) in anhydrous DMF (0.2 

mL), DIPEA (2 µL, 10 mol equiv.) was added. After stirring for 5 min at room temperature, the 

reaction mixture was added to peptide 18 (1.0 mg, 0.91 µmol) previously dissolved in 

anhydrous DMF (0.2 mL) and DIPEA (1 µL, 5 mol equiv.). After stirring for 2 h at room 

temperature and protected from light, the solvent was evaporated in vacuo and the conjugate 

was purified by semipreparative HPLC (gradient from 50 to 100% B in 30 min, flow rate: 3 
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mL/min, Rt = 9.5 min). Overall yield (synthesis + purification): 0.57 mg of a orange solid, 46%. 

Characterization: Rt= 16.4 min (analytical gradient: 0 to 100 % in 30 min; A: 0.1 % formic acid 

in H2O, B: 0.1% formic acid in ACN); HR ESI MS, positive mode: m/z 1298.4928 (calcd mass 

for C62H78N13O12Ru [M+H]
+
: 1298.4936). 

-Ruthenocene-c(RGDfK) conjugate (21). To a solution of ruthenocene carboxylic acid (0.48 

mg, 1.3 mol equiv.) and HATU (0.72 mg, 1.05 mol equiv.) in anhydrous DMF (0.2 mL), 

DIPEA (2.4 µL, 10 mol equiv.) was added. After stirring for 5 min at room temperature, the 

reaction mixture was added to peptide 19 (1 mg, 1.33 µmol) previously dissolved in anhydrous 

DMF (0.2 mL) and DIPEA (1.2 µL, 5 mol equiv.). After stirring for 2 h at room temperature, 

the solvent was evaporated in vacuo and the conjugate was purified by semipreparative HPLC 

(gradient from 0 to 100% B in 30 min, flow rate: 3 mL/min, Rt = 14.9 min). Overall yield 

(synthesis + purification): 0.42 mg of a white solid, 30%. Characterization: Rt= 12.2 min 

(analytical gradient: 0 to 100 % in 30 min; A: 0.1 % formic acid in H2O, B: 0.1% formic acid in 

ACN); HR ESI MS, positive mode: m/z 1007.3561 (calcd mass for C44H61N10O11Ru [M+H]
+
: 

1007.3565). 
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