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ABSTRACT

Background: Cancer-derived exosomes are involved in metastasis. YKT6 is a 
SNARE protein that participates in the regulation of exosome production and release, 
but its role in non-small cell lung cancer (NSCLC) has not been examined.

Materials and Methods: Ultracentrifugation-purified exosomes from the A549 
cell line were studied by CRYO-TEM, nanoparticle tracking analysis and western blot 
(TSG101 marker). YKT6 was inhibited using a DsiRNA and selected pre-microRNAs. 
MicroRNAs targeting YKT6 were validated by Renilla/Luciferase assay and western 
blot. YKT6 expression and its prognostic impact were analyzed in 98 tissue specimens 
from resected NSCLC patients.

Results: Membranous nanosized vesicles (mode size: 128nm) with TSG101 
protein were purified from A549 cells. YKT6 inhibition reduced exosome release 
by 80.9%. We validated miR-134 and miR-135b as miRNAs targeting YKT6, and 
transfection with the pre-miRNAs also produced a significant reduction in exosome 
release. The analysis of YKT6 in tumor samples showed that patients with high levels 
had shorter disease-free and overall survival.

Conclusions: YKT6 is a key molecule in the regulation of exosome release in lung 
cancer cells and is in turn precisely regulated by miR-134 and miR-135b. Moreover, 
YKT6 levels impact prognosis of resected NSCLC patients.

INTRODUCTION

Exosomes are small vesicles (40-100nm) released 
by cells are crucial to normal and pathological intercellular 
communication [1]. They can contain functional proteins 
and nucleic acids, including non-coding RNAs [2]. 
In cancer cells, exosomes can take part in different 
functions, including proximal and distal regulation [3]. 

Cancer cells are able to modulate the microenvironment 
through the release of exosomes, which participate in the 
modification of the surrounding stroma [4]. Moreover, 
cancer-derived exosomes can protect tumor cells by 
inhibiting the recognition of cancer cells by the immune 
system [5]. Interestingly, through exosomes, cancer cells 
can transfer mutant genes such as K-RAS, which can 
promote malignization of the recipient cells [6]. In this 
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line, evidence suggests that tumor-derived exosomes can 
participate in the formation of the premetastatic niche [7].

Exosome biogenesis starts with the formation 
of intraluminal vesicles in endosomal compartments. 
This results in a multivesicular body that needs to be 
transported and fused with the plasma membrane to 
release the exosomes [1, 8]. Exosome production and 
release is precisely regulated by several proteins, including 
Rab [9–11] and SNARE (Soluble N-ethylmaleimide-
Sensitive-Factor Attachment Receptor) family proteins 
[4]. Increasing evidence suggests that tumor cells release 
an excessive amount of exosomes, which may influence 
tumor initiation, growth, progression, metastasis, and 
drug resistance [3]. EPI64, which specifically activates 
Rab27a, has been related to the regulation of exosome 
release in the lung cancer cell line A549 [12]. The study 
of proteins involved in exosome production and secretion 
is a promising source of biomarkers in cancer.

YKT6 is a SNARE protein involved in the 
mechanisms of cell membrane fusion, associated with 
vesicular transit [13], and it has been identified as a key 
protein for release of WNT3A-containing exosomes 
in HEK293 cells [14]. In breast cancer cells, YKT6 
overexpression was associated with an aggressive 
phenotype in vitro, and with the ability of breast epithelia 
to metastasize when injected intravenously into mice [15]. 
Interestingly, in breast cancer patient samples, YKT6 was 
upregulated in p53-mutated tumors that were resistant to 
docetaxel, while the in vitro silencing of YKT6 in breast 
cancer cells enhanced docetaxel-induced apoptosis [16]. 
However, the possible role of YKT6 as a prognostic 
marker has not been examined in other tumors, including 
non-small-cell lung cancer (NSCLC), where prognosis is 
dismal, with 5-year survival rates of 19-50% in surgically 
resected patients [17].

MicroRNAs (miRNAs) are small non-coding RNAs 
which negatively regulate translation by binding to their 
3’UTR mRNA target [18]. miRNAs are involved in the 
regulation of different biological processes, such as cell 
proliferation, differentiation and apoptosis [18]. Although 
several miRNAs have been predicted to target YKT6, to 
the best of our knowledge, none has yet been validated.

In order to further clarify the role of YKT6 and its 
regulating miRNAs in the release of exosomes in NSCLC, 
we have studied YKT6 inhibition in vitro and examined its 
effect on exosome release. In addition, we have examined 
the impact of YKT6 expression in tumor samples on 
outcome of resected NSCLC patients.

RESULTS

Exosome purification and YKT6 inhibition in the 
A549 cell line

To verify that exosomes were correctly purified, we 
studied the exosome product obtained from supernatant 

of the A549 cell line by three methods: cryo-TEM, 
nanoparticle tracking analysis (NTA), and western 
blot using the exosomal marker TSG101. Cryo-TEM 
identified membranous nano-sized vesicles (Figure 1A). 
NTA showed a uniform population of nanoparticles from 
exosome isolations with a mode of 128nm (130.6 +/- 
3.5nm) (Figure 1B). Finally, western blot showed clear 
expression of TSG101 in our samples (Figure 1C).

Both the mRNA and the protein of YKT6 were 
detected in the A549 cell line and YKT6 inhibition using 
a DsiRNA resulted in a 78.8% reduction of YKT6 protein 
levels in comparison with control cells (p=0.023) (Figure 
1D). We then studied whether YKT6 inhibition decreases 
exosome release. Interestingly, cells with YKT6 inhibited 
released 80.9% fewer exosomes than control cells 
(p=0.013), as measured by western blot with the exosomal 
marker TSG101 (Figure 1E).

miRNA regulation of YKT6 and exosome release

Using TargetScan and miRò databases, six miRNAs 
were selected as potential miRNAs targeting YKT6: 
miR-34a, miR-141, miR-134, miR-135a, miR-135b and 
miR-370. To validate that these miRNAs target YKT6, 
we performed a Renilla/Luciferase assay. The Renilla/
Luciferase assay showed no significant differences 
between cells transfected with pre-miR-204, which is 
not predicted to target YKT6, and pre-miRNA negative 
control. However, in comparison with control, Renilla 
luciferase activity was 34.75%, 56.01%, 20.85% and 
50.61% lower with pre-miR-34a (p=0.019), pre-miR-134 
(p=0.022), pre-miR-135a (p=0.02) and pre-miR-135b 
(p=0.002), respectively. No significant differences were 
detected in cells transfected with pre-miR-370 or pre-
miR-141 (Figure 2A).

Since the greatest decrease in Renilla luciferase 
activity was associated with miR-134 and miR-135b, 
these two miRNAs were selected for further study. We 
evaluated by western blot if changes in miR-134 and 
miR-135b levels correlated with changes in YKT6 protein 
levels. After transfection with pre-miRNAs, a reduction of 
51.45% and 45.53% of YKT6 protein levels was observed 
for miR-134 (p=0.011) and miR-135b (p=0.022) (Figure 
2B).

Finally, we evaluated whether these miRNAs could 
impact exosome release. Western blot analysis showed that 
in comparison with control, exosome release decreased by 
43.92% in cells transfected with pre-miR-134 (p=0.032) 
and by 53.43% in cells transfected with miR-135b 
(p=0.008) (Figure 2C).

YKT6, miR-134 and miR-135b expression in 
patient samples

All 98 patients included in the study had 
pathologically confirmed stage I-III NSCLC. The majority 
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were males, and 87% had Eastern Cooperative Oncology 
Group (ECOG) performance status (PS) 1. Only 33.7% 
received adjuvant therapy. The main characteristics of the 
patients are described in Table 1.

RealTime-PCR analysis showed that YKT6 was 
expressed at lower levels in tumor than in normal tissue 
(p<0.0001) (Figure 3A). In contrast, both miR-134 
(p<0.0397) and miR-135b (p<0.001) were expressed at 
higher levels in tumor than in normal tissue (Figure 3B-3C). 
When we performed a correlation analysis between miR-
134 and miR-135b expression and YKT6 expression, we 
could not identify a significant correlation between YKT6 
and the two miRNAs in tumor tissue. However, in the paired 
normal tissue, we observed a significant inverse correlation 
between miR-135b and YKT6 (r=-0.368, p=0.045).

YKT6 mRNA expression, patient outcome, and 
exosome release

Only YKT6 expression was associated with 
clinical outcome. According to the optimal cutoff 

determined by MaxStat (80th percentile), patients were 
classified in two groups: high (n=78) and low (n=20) 
YKT6 levels. Mean disease-free survival (DFS) was 
42.1 months (95%CI, 34.5-49.7) for patients with high 
YKT6 expression and 59.5 months (95%CI, 47.9-71.1) 
for those with low expression (p=0.0199) (Figure 4A). 
Mean overall survival (OS) was 54.07 months (95%CI, 
46.3-61.8) for patients with high YKT6 expression, 
compared to 69.3 months (95% CI, 62.2-76.4) for 
those with low expression (p=0.0137) (Figure 4B). No 
association was found between YKT6 expression levels 
in tumor and any clinicopathological or molecular 
characteristics.

Since high levels of YKT6 may lead to increased 
release of exosomes and hence poorer prognosis, in an 
exploratory analysis, we studied the plasma exosome 
levels of six patients of our cohort with available 
samples. The patients were classified according to their 
tumor YKT6 levels as high (n=3) or low (n=3). Patients 
with high YKT6 levels had more exosomes in plasma 
than those with low levels (Figure 5).

Figure 1: Exosome characterization, and YKT6 inhibition and effect on exosome release. A. Electronic microscopic image 
of exosomes identified by Cryo-TEM; B. Results of nanoparticle tracking analysis of exosomes; C. Western Blot using TSG101 marker 
in exosome depleted media used as negative control and 24h and 48h supernatant from A549 cell line cultured with exosome depleted 
media; D. Western blots of A549 cells transfected with control or YKT6 DsiRNA and quantification to relative loading control α-tubulin; E. 
Western blot of exosomes isolated from A549 cells transfected with control or YKT6 DsiRNA and quantification of the exosomal marker 
TSG101. All experiments were performed in triplicate and data was shown as mean ± SEM. * p<0.05.



Oncotarget51518www.impactjournals.com/oncotarget

DISCUSSION

In the present study, we have studied exosome 
production and release in the A549 cell line and observed 
how the inhibition of the SNARE protein YKT6 produced 
a crucial downregulation in overall exosome levels. 
Moreover, we have examined the miRNA-mediated 
regulation of YKT6 and identified miRNAs able to inhibit 
YKT6 translation and thus indirectly modulate exosome 

release. Finally, we studied YKT6 expression in NSCLC 
patient samples and found that patients with high levels of 
YKT6 had shorter DFS and OS.

Cancer-derived exosomes are promising markers 
for diagnosis and prognosis in cancer patients. Exosome 
release has been shown to be a potential prognostic marker 
in some tumors, such as colorectal cancer, where the level 
of circulating exosomes correlates with poor prognosis 
and shorter survival [19]. In lung cancer, exosomal EGFR 

Figure 2: YKT6 inhibition by miRNAs and effect on exosome release. A. Renilla luciferase activity in A549 cells transfected 
with selected miRNAs and control. B. Western blots of A549 cells transfected with control, pre-miR-134 or pre-miR-135b and quantification 
of YKT6 signal relative to loading control α-tubulin. C. Western blot of exosomes isolated from A549 cells transfected with control, pre-
miR-134 or pre-miR-135b and quantification of the exosomal marker TSG101. All experiments were performed in triplicate and data was 
shown as mean ± SEM. * p<0.05; **p<0.01.
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protein levels have been postulated as a biomarker for lung 
cancer diagnosis [20]. Proteins involved in the regulation 
of exosome production and release in tumor cells, such as 
SNARE proteins, could be surrogate markers of exosome 
levels. SNARE proteins are key mediators in membrane 
fusion events in the secretory pathway [21, 22]. YKT6, 

a unique SNARE protein that is highly conserved from 
yeast to human [23], has been observed in cytosol, 
membrane and perinuclear locations in cells and has 
been implicated in multiple steps of vesicle transport in 
yeast. Taken together, these findings suggest that YKT6 
is a tightly regulated key protein in exosome release [23, 

Table 1: Patient characteristics and univariate p-value for disease-free survival (DFS) and overall survival (OS) in 98 
patients with non-small-cell lung cancer

Characteristics Value N (%) DFS OS

Sex
Male 77 (78.6)

0.0741 0.0267
Female 21 (21.4)

Age, yrs

Mean (Range) 68 (33 - 83)

0.198 0.251<=65 43 (43.9)

>65 55 (56.1)

ECOG PS
0 9 (9.2)

0.6906 0.3695
1 89 (88.8)

Stage

I 58 (59.2)

0.0096 0.0866II 21 (21.4)

III 19 (19.4)

Histology

Adenocarcinoma 51 (52)

0.2393 0.2714Squamous cell 
carcinoma 39 (39.8)

Others 8 (8.2)

Type of surgery

Lobectomy/
Bilobectomy 84 (85.7)

0.873 0.5719Pneumonectomy 7 (7.1)

Atypical resection 7 (7.1)

Smoking history

Current smoker 33 (33.7)

0.6209 0.0819
Former Smoker 52 (53.1)

Never smoker 10 (10.2)

Unknown 3 (3.1)

Adjuvant treatment
Yes 33 (33.7)

0.6137 0.6564
No 65 (66.3)

Relapse
No 62 (63.3)

Yes 36 (36.7)

TP53 mutations

Yes 22 (22.4)

0.6207 0.9094No 73 (74.5)

Unknown 3 (3.1)

KRAS mutations

Yes 17 (17.3)

0.1826 0.1056No 79 (80.6)

Unknown 2 (2)

ECOG, Eastern Cooperative Oncology Group; PS, performance status
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Figure 3: YKT6, miR-134 and miR-135b in tissue samples from NSCLC patients. A. YKT6, B. miR-134, and C. miR-135 
expression in 98 tumor tissue (TT) and 38 normal tissue (NT) samples from patients with NSCLC.

Figure 4: YKT6 expression and patient outcome. A. Disease-free survival and B. overall survival in 98 NSCLC patients according 
to YKT6 mRNA expression levels.

Figure 5: Exosome quantification in plasma from NSCLC patients. Six patients from the studied cohort with available plasma 
samples at diagnosis were selected for exosome analysis. Three of them were classified as high and three as low according to YKT6 levels 
in their tumor tissue.
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24]. Here, we have shown that inhibition of YKT6 greatly 
affects exosome release in the lung cancer cell line A549. 
Moreover, we have identified two miRNAs that participate 
in the regulation of YKT6 levels: miR-134 and miR-135b. 
Furthermore, inhibition of YKT6 resulting from increasing 
miR-134 and miR-135b levels decreases overall exosome 
levels in the cells.

In NSCLC patient samples, YKT6 mRNA levels 
were downregulated in tumor compared to normal 
lung tissue, while miR-134 and miR-135b levels were 
upregulated in tumor compared to normal tissue, 
suggesting that the differences in YKT6 expression could 
be due to the differential expression of the regulatory 
miRNAs. However, an alternative explanation could be 
related to the hypoxic microenvironment produced by 
rapid tumor growth. Under hypoxic conditions, several 
genes, including YKT6, suffer changes in their expression 
levels. For example, YKT6 expression is significantly 
downregulated in hypoxic conditions (1% O2) in human 
renal proximal tubule epithelial cells [25].

To the best of our knowledge, no previous study has 
compared YKT6 expression in tumor and paired normal 
tissue, but the RAB family protein Rab27B, which is 
also involved in the regulation of exosome production 
and release, was downregulated in tumor samples from 
hepatocellular carcinoma [26]. In line with our results, 
miR-135b was upregulated in highly invasive NSCLC 
cells [27] and miR-134 was upregulated in lung tumors, 
though no correlation was found between miR-134 and 
clinicopathological characteristics or survival [28].

Few studies have examined the impact of YKT6 
expression on outcome in cancer patients. Our finding 
that high YKT6 expression was associated with poor 
prognosis is in line with previous studies in breast cancer, 
where YKT6 was identified as a gene that may be linked 
to invasive phenotypes and to tumorigenesis in breast 
cancer cell lines [15]. Moreover, high YKT6 expression 
has also been postulated as a mechanism of docetaxel 
resistance in p53-mutated breast tumors [16]. High levels 
of YKT6 in the tumor may lead to increased release of 
exosomes, leading to a more aggressive phenotype and 
poorer prognosis, since it is known that cancer-derived 
exosomes are involved in the invasive phenotype and 
in the formation of the premetastatic niche [7]. Among 
a small subset of our patients, those with high YKT6 
levels had more exosomes in plasma than those with low 
levels. Although these preliminary results require further 
validation with a greater number of plasma samples, they 
provide the first indications that YKT6 levels in the tumor 
may act as a surrogate of exosome levels in plasma. Of 
note, other genes related to exosome release have also 
been previously related to cancer; for example, high 
Rab27B levels have been linked to poor prognosis in 
bladder [29], pancreatic [30] and colorectal cancer [31] 
and hepatocellular carcinoma [26].

In conclusion, the present study is a first step 
towards the identification of coding genes and miRNAs 
involved in the regulation of exosome release that can 
influence prognosis in NSCLC. We have shown that 
YKT6 downregulation is associated with a remarkable 
reduction in exosome release in an NSCLC cell line and 
that low YKT6 expression is associated with better clinical 
outcome in NSCLC patients. Moreover, we have identified 
several miRNAs that regulate YKT6 levels. The role of 
these miRNAs and YKT6 in exosome release and patient 
outcome warrants further investigation.

MATERIALS AND METHODS

Exosome purification

A549 cells were cultured in DMEM (Gibco) 
supplemented with + 10% exosome-depleted FBS 
(Life Technologies) and 5% penicillin-streptomycin. 
Exosome isolation was performed from 48h conditioned 
media (6ml) by sequential centrifugation method at 
4°C (300G 5’, 2,500G 20’, 10,000G 30’) followed by 
Ultracentrifugation 100,000G 2h, pellet washed with 
DPBS and ultracentrifuged again 100,000G 1h (Optima 
L-100 XP Ultracentrifuge with 70.1Ti Rotor and 
Policarbonate Tubes, Beackman Coulter).

Exosome characteritzation and quantification

PBS resuspended exosomes were studied by 
cryo transmission electron microscopy (cryo-TEM) in 
a Jeol JEM 2011 transmission electron microscope at 
the Microscope Facility of the Autonomous University 
of Barcelona. To study the size of the purified vesicles 
nanoparticle tracking analysis (NTA) on a NanoSight 
LM10 (Malvern Instruments Ltd, Malvern, UK) was used 
and analyzed with NTA 3.0 software (Malvern).

To quantify the overall exosome product, samples 
were resuspended in LDS Sample buffer with reducing 
agent (Invitrogen) and analyzed by Western blot using 
the exosome marker TSG101 [32]. The whole product 
of purified exosomes were separated by sodium dodecyl 
sulfate–polyacrylamide electrophoresis in Bolt 4-12% 
BisTris gels under reducing conditions and transferred 
to PVDF membranes with I-Blot (Life Technologies). 
Membranes were incubated with mouse monoclonal 
TSG101 antibody (ab83, Abcam). Antibody binding 
was revealed by incubation with antimouse IgG HRP 
conjugate secondary antibody (A 9044, Sigma-Aldrich). 
Chemiluminescence was detected using Novex ECL 
Chemiluminescent Substrate Reagent Kit and read in 
Chemidoc System (Bio-Rad). The protein density of the 
bands was quantified using Quantity One software.
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YKT6 inhibition

50nM of control DsiRNA (Negative Control DS 
NC1, Integrated DNA Technologies[IDT]) or YKT6 
DsiRNA (HSC.RNAI.N006555, IDT) were transfected on 
the A549 cells using lipofectamine 2000 (Invitrogen) as 
per manufacturer’s protocol. 48h after transfection cells 
were lysated for protein extraction and YKT6 protein 
levels were quantified by Western blot.

Identification and validation of miRNAs 
targeting YKT6

TargetScan (www.targetscan.org) and miRò (http://
ferrolab.dmi.unict.it/index.html) databases were used to 
identify putative miRNAs targeting YKT6. To validate 
the potential miRNAs identified a Renilla/Luciferase 
assay was performed in A549 cells using a modified 
psiCHECK-2 vector with the 3’UTR region of YKT6. 
The 3’UTR region of YKT6 was amplified using primers 
with Sgf and PmeI restriction sites (underniled): Forward 
primer 5’-GCGATCGCCGGAAACAAAACTCATG
CT-3’; Reverse Primer 5′-GTTTAAACCCCTGAAG
CACAAAGAAAGC-3′. The PCR product was cloned 
into a TOPO TA vector using TOP10F′ Escherichia 
coli competent cells (Invitrogen). Positive clones were 
selected by Kanamycin resistance and verified by Sanger 
sequencing. The selected clones were then digested 
and cloned into psiCHECK-2 vector. The modified 
psiCHECK-2 vector was confirmed by sequencing.

To perform the Renilla/Luciferase assay cells were 
transfected with 500ng of the modified psiCHECK-2 
vector and 100nM of selected pre-miRNA/pre-miR 
miRNA Negative Control #2 (Invitrogen). Renilla 
luciferase and Firefly luciferase activity was measured 
24h after transfection with the Promega Dual Luciferase 
Reporter Assay System (Promega) in a luminometer Versa 
Max Microplate Reader.

The effect of the miRNAs shown to be significant 
in the Renilla/Luciferase assay were then confirmed by 
Western blot and selected for further study.

Western blot

Western Blot analysis was performed as previously 
described [33] using the following primary antibodies: 
YKT6 (H00010652-M03, Tebu-bio) and α-tubulin (T 
6074, Sigma-Aldrich).

Patient tissue samples

Between 2007 and 2013, tumor tissue samples were 
prospectively collected from 98 NSCLC patients who 
underwent complete surgical resection in our institution. 
In addition, paired normal tissue samples from 38 of these 
patients were also available. Samples were collected 
immediately after surgery, frozen at -80°C, and kept for 

further processing. Approval for the study was obtained 
from the institutional ethics committee of the Hospital 
Clinic of Barcelona, Spain. Written informed consent was 
obtained from each participant in accordance with the 
Declaration of Helsinki.

RNA extraction and mRNA and miRNA 
quantification

Total RNA was extracted using Trizol total RNA 
isolation reagent (Invitrogen) as per the manufacturer's 
protocol. Total RNA was reverse transcribed with High-
Capacity cDNA Reverse Transcription Kit (Applied 
Biosystems). cDNA obtained was used for quantitative 
real-time PCR in Step One Time PCR System for 
YKT6 (Hs01127135_m1) (Applied Biosystems). Cycle 
thresholds (Ct) for YKT6 were normalized to Ct for 
RNA18S (Hs99999901_s1), and relative quantification 
was calculated using 2-ΔΔCt.

miR-134 and miR-135b expression was assessed 
using TaqMan MicroRNA Assays (miR-134: 00459; 135b: 
000461) (Life Technologies) as per the manufacturer’s 
instructions. miRNA Ct were normalized with miR-191 
Ct.

Statistical methods

Comparison of continuous values was performed 
with Student’s t-test. DFS was calculated from the time 
of surgical treatment to the date of relapse or death from 
any cause and OS was calculated from the time of surgical 
treatment to the date of death from any cause. DFS and 
OS were calculated using the Kaplan-Meier method. 
Optimal cut-off points of YKT6 mRNA and miRNAs 
expression were assessed by means of maximally selected 
log-rank statistics using the Maxstat package (version 
2.8.1; R statistical package). All analyses were performed 
R version 2.13. Statistical significance was set at p≤0.05.
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