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Summary. Non-equilibrium physics has traditionally dealt mostly with inanimate 
matter. Yet, in the last decades there has been increasing interest in understanding 
living systems from this perspective. One example is using the framework and tools 
of non-equilibrium statistical mechanics and nonlinear physics to study how living 
organisms composed of many differentiated cells develop from a single initial cell. 
The dynamic process of multicellular organism development is out of equilibrium, in 
that it consumes and dissipates energy. It also involves the formation of many 
precise and complex structures. Herein we review some of the paradigms being 
used that focus on how these multicellular structures initially emerge at the 
molecular level. [Contrib Sci 11(2): 215-223 (2015)]
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A historical overview

An example of the beauty and complexity of Nature is the 
development of multicellular organisms. Animals and plants 
develop from a single cell, which through division gives rise 
to all the cells of the organism. During development, these 
cells become distinct in an organized and precise manner 
to robustly form complex structures such as organs. How 
does this occur? What are the principles behind it? Many 
physicists are now engaged in investigations of multicellular 

organism development, with the aim of understanding 
how it proceeds and finding its fundamental principles [2]. 
Resolving these questions is expected to help shed light on 
more applied challenges ranging from biomedical issues, 
such as embryonic malformations and cancer, to agricultural 
issues, such as the optimization of crop growth. However, 
the quest for underlying principles is still in its own early 
developmental stage, and an immense universe of knowledge 
lies ahead. In the following, we consider some of the ideas 
and insights that appeared early on and that have influenced 
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current research.
Over 70 years ago, Conrad H. Waddington used the 

metaphor that during development cells roll down through 
valleys that bifurcate [25], having to choose what to become 
at each bifurcation. This metaphor for cell differentiation is 
now commonly used, with a free energy landscape of which 
Waddington’s valleys are the minima.

Alan Turing, very well known for his contributions to 
computer science, proposed, in a seminal work published in 
1952, that patterns arising during development might be the 
natural output of chemical reactions between molecules that 
diffuse with different diffusion coefficients across space [23]. 
That chemical systems can form spatiotemporal patterns, 
in which the concentrations of molecules are organized in 
space and time, was proven later in well-controlled chemical 
and physical assays. However, these were not linked to 
multicellular organism development, but instead drove 
intense research in the field of nonlinear dynamics. The 
relevance of this mechanism, known as Turing’s instability, 
in the context of development is now appreciated but still 
debated [15,18,19].

In 1970, the Nobel Laureate Francis Crick proposed that 
the diffusion of molecules could create gradients across 
developing tissues [4]. These gradients could convey to the 
cells the positional information that Lewis Wolpert had already 
proposed [26], guiding them in their further development. 
This is the morphogen gradient paradigm, which has 
dominated research on patterning in developmental biology. 
The finding that numerous molecules form gradients during 
development and that the gradients themselves are relevant 
for the development of different tissues has led to many 
other complex questions: How does the gradient form? How 
is it sensed? And what information from the gradient does 
the cell use?

Stuart Kauffmann showed that the interactions between 
genes strongly restrict the possible cell types [14]. In this case, 
cell types are understood as the attractors of the dynamics of 
genetic interactions. At present, deciphering the large gene 
regulatory and signaling networks and their dynamics in a 
developing cell is an intense field of research.

These conceptual frameworks, i.e., bifurcations to 
produce changes of cell types, self-organization out of 
equilibrium and cell types as attractors, were mathematically 
formulated and developed. However, in the last decades of 
the 20th century, the use of mathematical formulations to 
understand development became unpopular because they 
failed at describing and predicting patterns. The result was 
a split between developmental biologists and physicists/

mathematicians [16]. More recently, however, knowledge of 
which biological molecules participate in development, the 
ability to manipulate them, and their spatial and temporal 
resolution, have increased dramatically. At the same time, 
important progress has been made in non-equilibrium 
statistical mechanics, dissipative systems, complex systems, 
nonlinear dynamics, and networks, accompanied by an 
extraordinary increase in computational power. As a result, 
interdisciplinary research involving both physicists and 
biologists has become more common and the advantages to 
this approach are now acknowledged [20]. Thus, we are in an 
exceptional position to embrace the challenge to understand 
development and the principles behind it.

Patterning the embryo

A crucial step in understanding how multicellular organisms 
develop is to unravel how cells become distinct in a 
coordinated and organized manner. In the language of 
developmental biology, this can be rephrased as how a cell 
attains a specific fate into which it ultimately differentiates. 
Two main mechanisms have been proposed for coordinated 
cell differentiation in tissues. One mechanism is through 
positional information, proposed by Lewis Wolpert as 
mentioned above [26]: the fate of a cell is a readout of its 
spatial localization from a reference system (Fig. 1A). Cells read 
the information of where they are located and differentiate 
accordingly. Gradients of molecules, previously referred to 
as morphogens (we retain this term here for convenience), 
have been proposed to confer such positional information. 
The origin of the reference system is the source where the 
morphogen is produced. The amount or concentration of the 
morphogen decays as the distance from the source increases 
and thereby conveys positional information to the cell. This 
information can be conferred to cells through molecules 
that become activated at distinct thresholds of morphogen 
concentrations (Fig. 1A). There are multiple proteins that 
have been shown to be distributed along gradients in different 
developing embryos and that seem to convey positional 
information. Specifically, if the gradient is altered, the fate 
of the cells changes accordingly (Fig. 1B). This is the case, 
for instance, for the protein Bicoid, which forms a gradient 
along the anterior-posterior axis of the embryo during the 
very early stages of insect development, including that of the 
fruit fly Drosophila [10]. The region where Bicoid is at high 
concentration becomes the head of the fly. 

The other proposed mechanism is that cells become 
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distinct only because of coupling. This is an example of 
self-organization in which a structure or order emerges 
spontaneously because of the interactions between 
elements. Coupled dynamics enable the emergence of 
robust proportions and periodic distributions of cell types. 
In contrast with the positional information mechanism, 
coupling does not drive a specific cell type in a given spatial 
position. In a developing organism this self-organization can 
happen in different ways. The first one corresponds to the 
dynamics Alan Turing studied [23]. When chemicals initially 
distributed homogeneously throughout a given space react 
and diffuse, they form heterogeneous distributions. Because 
the reactants diffuse with different diffusion coefficients, tiny 
small random fluctuations in the reactant concentrations 
become amplified, such that the homogeneous state 
becomes destabilized. This happens for a wide range of 
diffusion coefficients and reaction kinetics. It is an example 

of a non-equilibrium pattern formation process, in which the 
balance between antagonistic processes, such as driving and 
dissipation, results in the formation of non-homogeneous 
structures [5]. Thus, for instance, periodic stationary 
distributions of the molecules can emerge. Cells produce 
proteins, which react and diffuse in the extracellular space. 
Accordingly, when a periodic pattern of protein distributions 
emerges from these dynamics, some cells end up producing 
or sensing large amounts of proteins while others do not. 
Therefore, cells become distinct (Fig. 1C,D). A change in 
the spatial interactions, as in the diffusion coefficient, 
results in relevant changes of the molecular pattern being 
formed. Accordingly, the pattern, if periodic and stationary, 
can change its periodicity (Fig. 1D). Empirical evidence that 
such a mechanism can drive the formation of the digits in 
vertebrates has recently been provided [21]. The digits form 
from an initial rather two-dimensional round palette. In this 
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Fig. 1. Pattern formation mechanisms that rely on diffusion along an extracellular medium. (A–B) Morphogen gradient mechanism. The leftmost, green cell 
generates a molecule that acts as a morphogen. The molecule diffuses to the right and generates a gradient, as shown in the curve above the cells. The 
amount of morphogen sensed by each cell conveys positional information to it. There are two thresholds, one at concentration 1 and another at concentration 
10, and cells differentiate depending on whether the concentration is above or below these thresholds. In A there is extensive diffusion, as indicated by the 
larger curvy arrow. In B, there is less diffusion, altering the gradient and the position of cell types accordingly. (C–D) Turing pattern mechanism. Two or more 
chemicals that diffuse and react are needed to establish a pattern. In C the pattern for certain values of the parameters is shown. In D, when diffusion is 
modified so is the pattern and the corresponding cell fates. (Note that the term “morphogen” is no longer used with the mechanism shown in C and D. We 
use the term here because it was introduced by Turing precisely in this context).



218

Multicellular organism development

CONTRIBUTIONS to SCIENCE 11:215-223 (2015)www.cat-science.cat

palette a stripe-like pattern emerges that divides it into two 
intercalating regions: interdigital and digital regions. In this 
specific case the reaction-diffusion mechanism does not 
act in isolation but it is coupled to a positional information 
mechanism. 

Another way that could drive the differentiation of 
cells in a self-organized manner but does not require the 
transport of a molecule is through direct cell-to-cell contact. 
In this case, cells interact through molecules present on the 
cell membrane that, upon binding, send signals to the cell 
nucleus. An example of this is lateral inhibition with feedback 
[3]. In this case, the signal a cell receives arises from protein 
ligands in adjacent cells and it decreases the amount of 
ligand in the cell. Thus, a cell that has more ligand than its 
neighboring cells, even if the difference is very small, will 
reduce their amount of ligand and, at the same time, increase 
its own ligand production by preventing inhibition by those 
neighbors. Ultimately, the cell with an initially very small 
excess of ligand will end up with a relatively large amount of 
that ligand, while ligand in neighboring cells will be almost 
completely eliminated. This type of interaction underlies the 
specification of neurons, for instance. 

In the 1970s, Meinhardt and Gierer proposed a theory 
for biological pattern formation based on two elements: 
(1) self-activation and (2) long-range inhibition [9]. Turing-
like reaction-diffusion dynamics and lateral inhibition with 
feedback can both be understood in terms of these two 
elements. Moreover, self-activation evidences a key aspect 
in the dynamics of coupled elements that drive patterning: 
nonlinearities. All these self-organizing interacting dynamics 
drive the emergence of robust proportions and periodic 
distributions of cell types. In this mechanism based on 
coupling, the cell types arise in a coordinated manner but, 
unlike in the positional information mechanism, it does not 
enable the robust specification of a cell type in a given spatial 
position. Nevertheless, if spatial asymmetric cues are added 
to interacting dynamics, then spatial precision can arise as 
well.

It is worth noting that how the pattern will be modified 
when the elements driving it are altered can be predicted 
by constructing mathematical and computational models 
of the dynamics. The resulting predictions can then be used 
to test whether assumptions regarding the mechanism of 
patterning are correct, by comparing the predicted results 
with the empirically derived data. This task is nowadays 
common routinely done but it has not always been so easily 
possible. Now we can propose which specific molecules are 
acting and, in several cases, we can experimentally see how 

their distribution changes over time and space with detailed 
resolution. Manipulations of the interactions and reactions 
and how the molecular distribution changes accordingly can 
now be done and the results measured. 

The mechanisms described herein assume that, in 
terms of their patterning, cells can be described by only a 
few relevant molecules. The role of cell dynamics and the 
particular mechanical forces that are active are not taken into 
account. This simplification is valid in some circumstances, 
especially when the dynamics that control the molecular 
concentrations are much faster than those of the cell. Many 
efforts are being done on the role of mechanical forces in 
shaping developing multicellular organisms, which are not 
reviewed herein. A challenge that remains is to determine 
how mechanical forces and the dynamics of the molecular 
components that direct cell signaling or impinge on gene 
regulation are coupled to each other.

Nonlinear responses

We have discussed how molecular gradients can confer 
positional information, in which each cell type is dictated by 
a threshold, cell-type-dependent, morphogen concentration. 
In Fig. 1A, cell type “blue” is induced above a morphogen 
concentration of 10 (arbitrary units), whereas cell type 
“white” is induced above a morphogen concentration of 1. 
Yet, is this type of threshold response possible in biological 
systems? It is, thanks to ultrasensitivity. As opposed to a 
gradual or linear response, in which the relative changes 
in input (signal) and output (response) are equal, an 
ultrasensitive response is that in which a small relative change 
in the signal generates a very large (relative) response. Since 
a cellular response usually saturates (i.e., when the input 
signal is large enough, the response no longer changes), an 
ultrasensitive response in cells can translate to a threshold or 
“all-or-nothing” response (Fig. 2A). 

But how is this ultrasensitivity achieved by cells? A variety 
of mechanisms have been elucidated through mathematics 
and then experimentally demonstrated [27]. A few of them 
are summarized in Fig. 2 and reviewed in [27]. “Zero-order 
ultrasensitivity” was the first of these mechanisms to be 
proposed, in 1981 [11]. In this mechanism, an enzyme 
covalently modifies a protein (covalent modification is a 
common regulatory mechanism in which a molecule such 
as a phosphate or methyl group is bound to a protein by an 
enzyme), and an opposing enzyme restores the protein to 
its unmodified state. When both enzymes are working at 
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saturation, a small change in the amount of one of them can 
produce a large change in the proportion of the modified 
and unmodified proteins, thus enabling an ultrasensitive 
response (Fig. 2B).

Another, very common mechanism is multistep signaling, 
in which an element representing the signal, or proportional 
to the signal intensity, acts on two or more elements that 
independently affect the strength of the response. An 
example is a signal that acts on two different steps of the 
modification of a protein that will ultimately turn it into its 
active form. The multiplied effect elicits an ultrasensitive 
behavior. Mathematically, the repeated effect of the signal is 
represented as multiplicative terms that can raise it up to the 
power of the number of points at which the signal affects the 
system independently (Fig. 2D).

Direct or indirect self-activation, also known as positive 
feedback, can drive ultrasensitive responses as well. Positive 
feedback occurs, for instance, when a protein binds to its 
own DNA promoter to boost its own transcription (auto-
activation), or when a protein inhibits the production of its 
inhibitor (mutual inhibition) (Fig. 2F).

Bistability

A positive feedback loop can also enable bistability, i.e., two 
different responses to the same input (mathematically, the 
equation that represents the system has two stable solutions 
instead of one). In other words, genetically identical cells 
exposed to the same environmental conditions can be in 
two different states and hence become two distinct cell 
types. An example of bistability in development occurs in 
the vulval development of the hermaphroditic nematode 
worm Caenorhabditis elegans [10,12]. Before this egg-laying 
organ is formed, two adjacent cells, which can be labeled 1 
and 2, for instance, become distinct from each other based 
on their position in the embryo. One becomes an anchor 
cell (AC) and the other a ventral uterine (VU) cell. Each cell 
has a 50% probability of becoming an AC. Hence, under the 
same conditions two states can arise, with 50% probability 
each: (AC,VU) or (VU,AC), in which the first term within 
the parentheses denotes the type acquired by cell 1, and 
the second term refers to cell 2. In this case, the bistability 
of these two states arises through a positive feedback 
that involves the above-described lateral inhibition with 
feedback. Nonlinearities are essential for this bistability. 
Figure 3 provides an example of this case and shows how 
a mathematical model of the interactions can help us to 

understand and visualize this process. 
Fluctuations

As we have seen, cells have mechanisms to process signals 
coming from neighboring cells and from their surroundings 
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Fig. 2. Mechanisms that generate ultrasensitivity. (A) A signal-response 
function showing ultrasensitivity and an all-or-nothing response, as shown 
in panels B, D, E, F. (B) Zero-order ultrasensitivity. As explained in the 
text, the purple enzyme, corresponding to signal S, enhances the covalent 
modification of the red protein, while the yellow enzyme mediates its de-
modification. The modified protein amount corresponds to the response R. 
(C) Molecular titration. Free molecule A (corresponding to or activating a 
response R) can be sequestered by B, which is present in very large amounts. 
Molecule A exhibits an ultrasensitive response to changes in its production. 
There are free A molecules only when their production level surpasses the 
sequestering effect. At this threshold, the amount of A suddenly increases. 
This behavior is not like that shown in A, because its response does not 
saturate. (D) Multistep signaling. The signal S, or some element proportional 
to it, aids in two different steps of the modification of a protein that will 
ultimately assume its active form, which then enacts response R. Its effect is 
multiplied and can elicit an ultrasensitive response. (E) Cooperative binding. 
A receptor, in green, has several binding sites for the same ligand, the 
amount of which corresponds to signal strength S. If full occupancy of the 
receptor’s binding sites is needed to elicit a response R, or if each occupied 
site increases the chance that a new ligand will bind (thicker arrows indicate 
larger amounts of bound ligand), ultrasensitivity arises. (F) Positive feedback 
loop. A signal S (here a blue enzyme) activates a protein (in red). This 
active protein elicits response R, but it can also bind to DNA and enhance 
the production of its own unmodified form. This increases the amount of 
substrate upon which the signal can act, multiplying its effect and making 
the response ultrasensitive. These mechansims are reviewed in [27].
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that can yield precise results. However, these signals cannot 
be sensed with perfect precision due to the physical laws 
that govern molecular dynamics [2]. These signals, and the 
proteins that process them, consist of discrete molecules 
that jiggle around, embedded in the thermal bath of the 
cytoplasm. This aqueous medium is crowded with many 
moving molecules such as proteins. Some molecules move 
stochastically without a preferred direction, because of 
thermal forces coming from collisions with water molecules. 
Others, such as molecular motors, move directionally using 
electrochemical forces. Several of these electrochemical 
reactions have associated energies (such as the energy 
required for some reactions to start, or the energy required 
to break specific chemical bonds) comparable to the thermal 
energy of the medium. Therefore the stochastic “jiggling” 
of molecules can spontaneously activate reactions or break 
chemical bonds. 

These fluctuations also affect the production and 
degradation of different proteins in the cell, which stochas-
tically vary in time. This could not be directly observed 
until the very recent advances in the spatial and temporal 
resolution of fluorescence microscopy techniques. Before 

that (but also only recently), temporal fluctuations in the 
amount of specific molecules could only be inferred from the 
heterogeneous amounts found among genetically identical 
cells in the same environment. Even though fluctuations are 
a common object of study in non-equilibrium and statistical 
physics, our direct knowledge of the motion and fluctuations 
of particles embedded in the crowded medium of a cell is still 
incipient. Yet, with the advent of nanotechnologies we are 
entering a new era in which it will be possible to characterize 
the motions of and fluctuations in cellular components.

Fluctuations and cell decisions

Because fluctuations are ubiquitous in the cell, they must 
somehow be relevant to an understanding of all cellular 
processes, including those in the previously mentioned examples 
of morphogen diffusion, cellular sensing of these molecules, 
and the related signaling processes. The exquisite precision and 
regularity of developmental processes indicates that cells can 
cope with this variability, or perhaps even profit from it.

One obvious way of avoiding the effect of fluctuations 

Fig. 3. Bistability. (A) Lateral inhibition with feedback. The ligand in cell 1 inhibits the ligand in neighboring cell 2 and vice versa, establishing positive feedback. 
Inhibition is represented by the blunt arrows. There is a 50% probability for the (AC,VU) outcome and 50% for the (VU,CA) outcome, determined by which 
cell achieves a high or low amount of ligand. (B) The equation that governs the temporal evolution of a ligand in cell i  (1 or 2). /idl dt  is the time derivative 
of concentration 

il  and represents its changes over time. The production term ( )jg l decreases nonlinearly when jl  (the ligand in the other cell) increases. (C) 
Phase diagram of this two-cell system. Each point corresponds to a unique pair of 

1 2l l−  values. The evolution of either one is fully determined and shown 
by the blue arrows of the vector field. The red and blue dashed lines are called nullclines and correspond to the points at which the time derivative, i.e., the 
rate of change, for the ligand at one of the cells (blue for cell 1 and red for 2) is zero. At the points where the nullclines cross both derivatives have the values 
of zero, so the system, if unperturbed, will not move away from them. Because of the nonlinearity of the nullclines, there are three of these points; if they 
were not nonlinear, there would only be one such point. Of these, the black points are stable states: when the system is at one of them, it will return to it 
after a small perturbation (this state is therefore also called an attractor). Indeed, all trajectories starting in the purple half of the portrait (called the basin 
of attraction) will evolve towards the (AC,VU) stable state at the bottom left (one such trajectory is shown in black). Similarly, the green area is the basin of 
attraction for the (VU,AC) stable state. The orange point represents a state with intermediate values of ligand for both cells, as shown in gray, that is not stable. 
A small perturbation from this state can lead the system away from it and to one of the stable solutions. The scenario in B was obtained from simulations 
performed by Juan Camilo Luna-Escalante (Dept. of Condensed Matter Physics, University of Barcelona). The data are used with permission.
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is by producing large amounts of molecules to minimize 
their effects. This is not always worthwhile, or possible. 
For instance, when a cell receives a fluctuating signal that 
it cannot control, how can it cope with the fluctuations? 
One way to buffer fluctuations is to respond to the amount 
of signaling molecules received only during an interval of 
time [2]. This corresponds to an integration over time of 
the number of molecules, the result of which is much less 
variable than the number of molecules at any given time. 
Therefore, the input to which the cell responds is not the 
highly fluctuating number of molecules but the much more 
constant total number of molecules received per unit time. 
This time integration is performed, for instance, by bacteria 
to sense the level of nutrients in their environment [2]. It 
also is the mechanism proposed for developing embryos, in 
the cellular response to morphogen gradients [6]. In cases 
in which cells respond too rapidly compared to the time 
interval that would be required for integration to filter out 

fluctuations, the additional interactions of neighboring 
cells may reinforce the correct cell decision and increase its 
robustness [13].

There are several examples of biological systems that 
profit from fluctuations [7]. Most of them are in unicellular 
rather than multicellular developing organisms, but their 
existence can suggest that fluctuations may also be used 
during development. For instance, fluctuations enable 
wide-ranging heterogeneity between genetically identical 
cells in the same environment. This heterogeneity can be 
beneficial when the environment changes rapidly and the 
cellular response is heterogeneous. If this heterogeneous 
population of cells comprises different cell types that respond 
differently, then when the environment changes some of the 
cell types may die while others will prevail. Because of this 
heterogeneous response to environmental change, the cell 
population persists, providing a benefit. This is known as bet-
hedging (the colony of cells hedges its bets instead of putting 
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Fig. 4. Stochastic switching. (A) A model of a bistable system. The black continuous line is the energy landscape of the system; the bottoms of the two wells 
are the stable states. The blue circle represents the system at one of these states, and the blue arrows the fluctuations, which can drive the system to higher 
energies. If the fluctuations are large enough, or the energy barrier ( )U∆  low enough, the system can jump to the leftmost well and switch states. (B) Time 
evolution of the amounts of a protein for a single cell in two different cases. There are two clearly defined states, a high concentration state at 270 protein 
copies and a low concentration state at 50 copies. The cells switch from one state to the other. Note that the transitions are very fast and that the system 
spends most of its time around one of the two stable states. (C) Evolution over time of the concentrations of a protein of interest in a cell culture, as shown in 
a histogram. When a subpopulation in one of the states from an originally bistable population is separated and left to evolve over time, stochastic switching 
allows the recovery of the two states. The cells in a population are shown on the right. Note how one cell may switch states more than one time. Panels 
B and C are simulations of a mutual inhibition system, simulated through the Gillespie algorithm, which allows exact simulations based on the theoretical 
description of discrete stochastic systems in the form of master equations.
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“all of its eggs in one basket”) and has been described in 
different types of bacteria [24]. Fluctuations in the number 
of molecules can drive large heterogeneities among cells 
in different ways. One is through positive feedback, which 
can drive the molecule to be present at either high or low 
concentrations. These two concentration states can be 
understood, at least conceptually, as free energy minima and 
are separated by an energy barrier [1]. Dissipation drives the 
molecular concentration to reach one of these two states and 
remain there forever after. Which concentration is achieved 
depends on the initial state; that is, on which concentration 
was present initially. This scenario changes when we take into 
account that there are fluctuations. They provide the energy 
required to surpass the energy barrier that separates the 
states, allowing a switch from a low to a high concentration 
or vice versa (Fig. 4).

An example of heterogeneous cell populations comes 
from experiments using mouse embryonic stem cells (ESC), 
which in culture express pluripotency factor NANOG in a 
highly stochastic manner [8]. NANOG allows ESCs to self-
renew and to maintain their pluripotency. When NANOG 
levels of individual ESCs in a culture are measured, the 
distribution of values is very broad. If cells with, for instance, 
low NANOG expression are selected, separated from the 
others, and allowed to divide over time, measurements show 
that the very broad distribution of NANOG concentrations 
is eventually recovered. Hence, some cells, despite initially 
being in the low NANOG concentration state, have clearly 
switched and now express very high concentrations of 
NANOG. Whether this stochastic switching corresponds 
to bistable or other type of dynamics is a current topic of 
research.

A role of fluctuations in multicellular development has 
been proposed for cells that need to establish a pattern that 
is not spatially ordered but, instead, only needs to preserve 
certain proportions of different types of cells, randomly spaced 
around the tissue. A stochastic decision mechanism has been 
proposed for processes such as the differentiation of different 
photoreceptors in the retina of humans and flies, or of olfactory 
cells in the mouse [17]. Mice have 1000 olfactory proteins, 
with only one expressed in any given cell to avoid sensory 
confusion. Hence, initially equivalent cells become distinct, 
reaching one of 1000 different states. This has been proposed 
to be accomplished by the activation of one olfactory protein 
type stochastically and subsequent inhibition of all the other 
remaining types of olfactory proteins. In addition, fluctuations 
of molecular components can be expected to trigger patterns 
arising from interacting self-organizing dynamics such as 

reaction-diffusion and lateral inhibition.
Our knowledge on the effect and role of fluctuations in 

developmental processes is still limited. However, research 
in physics over the last few decades has evidenced that 
nonlinear systems can take advantage of fluctuations 
[22]. Thus, it is to be expected that developing organisms, 
which exhibit highly nonlinear dynamics and are subject to 
fluctuations, profit from them as well. The concepts and tools 
to study this topic have already been developed by physicists 
and biologists, and the results should soon be available.

Conclusions

The development of multicellular organisms is subject to 
the physical laws that govern Nature. It is indeed because 
cells live out of equilibrium that they are able to create the 
myriad of rich and complex structures that form multicellular 
organisms. Insights have been gained into some of the 
molecular gene regulatory and signaling mechanisms used 
by cells in the spatially and temporally coordinated processes 
that allow them to become distinct in an organized and 
reproducible manner. These processes require nonlinear 
responses and dynamics. Previously, development was mostly 
understood as a succession of stationary states and many 
aspects were described through averages over many cells. 
However, we now have strong evidence that development 
is a highly dynamic process and that cellular dynamics are 
strongly stochastic. Although many technical limitations to 
advancing our knowledge remain, new data are expected 
that will reveal the highly complex and dynamic nature of 
developing organisms. As physicists, we expect to continue 
to work together with biologists to define the principles that 
govern multicellular organism development. 
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