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Abstract 

The transmembrane glycoprotein CD26 or dipeptidyl peptidase IV (DPPIV) is a 

multifunctional protein. In immune system, CD26 plays a role in T-cell function and is 

also involved in thymic maturation and emigration patterns. In preclinical studies, 

treatment with DPPIV inhibitors reduces insulitis and delays or even reverses the new -

onset of type 1 diabetes (T1D) in non-obese diabetic (NOD) mice. However, the 

specific mechanisms involved in these effects remain unknown. The aim of the present 

study was to investigate how DPPIV inhibition modifies the expression of genes in the 

thymus of NOD mice by microarray analysis. Changes in the gene expression of β-cell 

autoantigens and Aire in thymic epithelial cells (TECs) were also evaluated by using 

qRT-PCR. A DPPIV inhibitor, MK626, was orally administered in the diet for 4 and 6 

weeks starting at 6-8 weeks of age. Thymic glands from treated and control mice were 

obtained for each study checkpoint. Thymus transcriptome analysis revealed that 58 

genes were significantly over-expressed in MK626-treated mice after 6 weeks of 

treatment. Changes in gene expression in the thymus were confined mainly to the 

immune system, including innate immunity, chemotaxis, antigen presentation and 

immunoregulation. Most of the genes are implicated in central tolerance mechanisms 

through several pathways. No differences were observed in the expression of Aire and 

β-cell autoantigens in TECs. In the current study, we demonstrate that treatment with 

the DPPIV inhibitor MK626 in NOD mice alters the expression of the immune 

response-related genes in the thymus, especially those related to immunological central 

tolerance, and may contribute to the prevention of T1D. 
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 32 

1. Introduction 33 

Type 1 diabetes (T1D) is a chronic autoimmune disease caused by the selective 34 

destruction of pancreatic β cells (Atkinson and Eisenbarth, 2001). The breakdown of 35 

immune self-tolerance homeostasis to pancreatic islet β cells is now recognized as the 36 

essential cause for the development of the diabetogenic autoimmune response (Geenen, 37 

2012). Therefore, the reestablishment of autoimmune tolerance state toward self-38 

antigens (Ags) is one of the primary objectives for the prevention of autoimmune 39 

diseases, including T1D. During the last decade, immunotherapeutic innovative 40 

strategies have focused on maintaining and restoring self-tolerance to pancreatic β cells 41 

in T1D (Staeva et al., 2013). 42 

CD26, also known as dipeptidyl peptidase IV (CD26/DPPIV), is a 43 

multifunctional cell surface glycoprotein expressed on a variety of cell types, including 44 

immune cells. This protein is a proteolytic enzyme, receptor and co-stimulatory protein 45 

and is involved in adhesion and apoptosis (Boonacker, 2003). CD26/DPPIV’s 46 

proteolytic activity is capable of cleaving N-terminal dipeptides from polypeptides with 47 

either proline or alanine residues in the penultimate position, modulating the activity of 48 

biologically relevant peptides such as cytokines, chemokines and incretins, among 49 

others. In addition, several studies have highlighted the important role of CD26/DPPIV 50 

in T cell activation and its involvement in immune responses (Morimoto and 51 

Schlossman, 1998). CD26/DPPIV interacts with molecules such as adenosin deaminase 52 

and CD45 and is able to modulate the co-stimulation and proliferation of activated T 53 

cells (Ohnuma et al., 2008).  54 

Inhibition of CD26/DPPIV suppresses antigen-stimulated T cell proliferation 55 

and cytokine production, thus suggesting a potential application for DPPIV inhibitors as 56 
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immunomodulatory drugs in autoimmune diseases (Biton et al., 2011). The effect of 57 

treatment with a CD26/DPPIV inhibitor on the immune system has been recently 58 

evaluated in several animal models of inflammatory human diseases (Steinbrecher et al., 59 

2011). In relation to T1D, treatment with CD26/DPPIV inhibitors has been shown to 60 

delay the onset of the disease as well as even to reverse new-onset diabetes in non-obese 61 

diabetic (NOD) mice, in both cases with an associated reduction in the islet lymphocyte 62 

infiltration (Ding et al., 2014; Jelsing et al., 2012; Tian et al., 2010) although the exact 63 

mechanism is unknown. Treatment with a CD26/DPPIV inhibitor was also described to 64 

modify T lymphocyte subsets with an increase in the percentage of regulatory T cells 65 

(Tregs) in the peripheral and thymic compartments (Tian et al., 2010). Moreover, in the 66 

NOD model, treatment with the CD26/DPPIV inhibitor sitagliptin has been reported to 67 

preserve islet transplants through a pathway involving modulation of CD4+ T cell 68 

migration (Kim et al., 2009). We recently demonstrated that treatment with the 69 

CD26/DPPIV inhibitor MK626 decreases the incidence of type 1 diabetes (T1D) by 70 

31% and reduces insulitis in the pre-diabetic NOD mouse model. No differences were 71 

observed in the percentage of T cell subsets from peripheral and central compartments 72 

between treated and control mice. However, MK626 treatment significantly increased 73 

the expression of CD26 in CD8+ T effector memory (TEM) T cells as well as their 74 

proliferative capacity and cytokine secretion. In vitro assays suggested an 75 

immunosuppressive role for CD8+ TEM cell subset that may be involved in the protection 76 

against autoimmunity to β pancreatic islets associated to CD26/DPPIV inhibitor 77 

treatment (Alonso et al., 2015). 78 

There is now evidence that a failure in thymus-dependent central tolerance to 79 

pancreatic β cells plays a primary role in T1D pathogenesis (Geenen, 2012). The 80 

thymus is the organ responsible for the establishment of immunological central 81 
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tolerance by the deletion of self-reactive T cells through positive and negative selection 82 

mechanisms. Defects in the negative selection of self-reactive T cells in the NOD 83 

thymus have been reported (Kishimoto and Sprent, 2001). On the other hand, medullary 84 

thymic epithelial cells (mTEC) can express a broad range of tissue-restricted Ags 85 

(TRAs) (Derbinski et al., 2001; Fornari et al., 2010; Gillard and Farr 2006; Kyewski et 86 

al., 2002; Oliveira et al., 2013; Sospedra et al., 1998; Tykocinski et al., 2010), also 87 

known as “promiscuous gene expression”, that imposes T cell tolerance and protects 88 

from autoimmune disease (Sospedra et al., 1998). 89 

In the thymus, CD26/DPPIV has been shown to play a role in the differentiation 90 

and maturation of thymocytes, whose impairment has remarkable effects on lymphocyte 91 

subsets and thymic architecture (Klemman et al., 2009). Moreover, CD26/DPPIV has 92 

been proposed as a mediator of intrathymic lymphocyte migration and may play a role 93 

in thymic deletion of emerging clones (Ruiz et al., 1996) thus implying a possible role 94 

for CD26/DPPIV in the establishment of central tolerance.  95 

To our knowledge, this is the first report that describes the effect of treatment 96 

with a CD26/DPPIV inhibitor on the thymus transcriptome in the NOD mice and 97 

hypothesizes its possible involvement in the modification of the expression of genes 98 

related to central tolerance mechanisms. Here, we investigated the impact of treatment 99 

with the CD26/DPPIV inhibitor MK626 on the thymic gene expression profile of pre-100 

diabetic NOD mice by DNA microarray technique, with particular emphasis on those 101 

genes involved in the immune response. We also evaluated the effects of MK626 102 

treatment on islet autoantigens and Aire gene expression in thymic epithelial cells by 103 

qRT-PCR. 104 

105 
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 106 

2. Materials and methods  107 

2.1. Mice  108 

Wild-type NOD mice were obtained from our colony established with mice from the 109 

Jackson Laboratory (Bar Harbor, ME, USA). Only females were used for this study. 110 

Mice were kept under specific pathogen-free conditions and monitored daily for 111 

diabetes onset. At the end of the study, mice were sacrificed by cervical dislocation. 112 

This study was carried out in strict accordance with the recommendations in the Guide 113 

for the Care and Use of Laboratory Animals of the Generalitat de Catalunya, Catalan 114 

Government. The protocol was approved by the Committee on the Ethics of Animal 115 

Experiments of the Germans Trias i Pujol Research Institute (Permit number: DAAM 116 

5928). 117 

 118 

2.2. Treatment with MK626 119 

Female NOD/Ltj mice were placed on either a normal chow diet (Research Diets, Inc, 120 

New Brunswick, NJ) or the same diet containing the CD26/DPPIV inhibitor MK626 121 

(21 mg/kg of diet), kindly donated by Dr. James Mu (Merck Research Laboratories, 122 

New Jersey, USA), for 4 and 6 weeks starting at 6-8 weeks of age (pre-diabetic stage). 123 

The CD26/DPPIV inhibitor used in this study, MK626, was a des-fluoroanalog of 124 

sitagliptin (Kim et al., 2005). The treatment protocol is based on previous studies 125 

published in the literature using DPPIV inhibitors in experimental diabetes (Jelsing J et 126 

al., 2012; Kim D et al, 2005; Tian L et al., 2010), and data reported by Merck Research 127 

Laboratories. Also, the chosen concentration of the drug was the one able to maximize 128 

plasma DPPIV inhibition in order to get full effect. Mice were monitored daily for urine 129 

glucose using Glucocard strips during the whole study (Menarini, Barcelona, Spain). 130 
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Thymic glands from NOD mice were obtained after 4 weeks (at approximately 10-12 131 

weeks of age, n=5) and 6 weeks (at approximately 12-14 weeks of age, n=5) of 132 

treatment with MK626. Thymic glands were also obtained from a NOD mouse control 133 

group for each time point (n=10). Samples were snap-frozen in an isopentane/cold 134 

acetone bath and were kept at -80 ⁰C until RNA extraction.  135 

 136 

2.3. Microarray experiments 137 

RNA was obtained from the thymi of pre-diabetic treated mice at 4 and 6 weeks of 138 

treatment, using RNeasy Micro (QIAGEN, Hilden, Germany). Thymic glands were also 139 

obtained from a NOD mouse control group for each time point. RNA quality (2100 140 

Bioanalyzer, Agilent Technologies Inc., Santa Clara, CA) was optimal for microarray 141 

experiments (RIN between 6 and 8). cDNA was synthesized with 50-100 ng of total 142 

RNA using the WT expression kit (Ambion, Applied Biosystems, CA, USA), 143 

fragmented and labeled with the Terminal labeling kit (Affymetrix, Inc. Santa Clara, 144 

CA), purified (GeneChip® Sample Cleanup Module, Affymetrix), fragmented and 145 

checked to verify its integrity. Mouse Gene1.1 ST 16 array plates (28.853 genes) were 146 

hybridized and scanned by an Affymetrix G3000 Gene Array Scanner. 147 

 148 

2.4. Statistical analyses of microarrays 149 

Raw expression values obtained from CEL files were pre-processed using the Robust 150 

Multiarray Averaging method (Irizarry et al., 2003). These normalized values were 151 

used for all subsequent analyses. Experimental data have been uploaded into 152 

ArrayExpress for the European Bioinformatics Institute (EBI, 153 

www.ebi.ac.uk/aerep/login; E-MTAB-2082). Data were subjected to non-specific 154 

filtering to remove low signal and low variability genes. Conservative (low) thresholds 155 
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were used to reduce possible false negative results. The selection of differentially 156 

expressed genes was based on a linear model analysis with empirical Bayes 157 

modification for the variance estimates, as previously described (Smyth, 2004). This 158 

method is similar to using a ‘t-test’ with an improved estimate of the variance. To 159 

account for the multiple testing probability effects arising when many tests (one per 160 

gene) are performed simultaneously, p-values were adjusted to obtain strong control 161 

over the false discovery rate using the Benjamini-Hochberg method (Benjamini and 162 

Hochberg, 1995). Genes were considered differentially expressed based on the 163 

following criteria: genes with an adjusted p-value <0.05 and a logarithmic fold change 164 

(log2FC) ≥ 0.8 were considered up-regulated, whereas genes with log2FC ≤ -0.8 were 165 

considered down-regulated.  166 

Genes were classified into functional categories on the basis of Gene Ontology 167 

(GO) nomenclature (www.geneontology.org) and other annotations provided by NCBI 168 

Entrez (www.ncbi.nml.nih.gov/gene) database and data from general literature. The 169 

Ingenuity Pathway Analysis (IPA) (Ingenuity Systems ®) (www.ingenuity.com) was 170 

used to identify the canonical pathways from the IPA library that were most significant 171 

to the data sets. Data from the IPA are expressed as a p-value < 0.05 calculated by using 172 

the right-tailed Fisher’s Exact Test. The Fisher test is used to compare the number of 173 

user-specified molecules of interest that participate in a given function, relative to the 174 

total number of occurrences of these molecules in all functional annotations in 175 

Ingenuity’s knowledge base. 176 

 177 

2.5. Quantitative RT-PCR 178 

Total RNA from each sample was reverse-transcribed with a High Capacity cDNA 179 

Reverse Transcription Kit (Applied Biosystems). cDNA synthesis reactions were 180 
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carried out using random hexamers (0.5 µg/µl, BioTools, Valle de Tobalina, Madrid, 181 

Spain) and reverse transcriptase Moloney-murine-Leukaemia-virus (M-MLV) (200 182 

U/µl, Promega, Madison, WI). qRT-PCR assays were performed under Taqman 183 

universal assay on a LightCycler® 480 (Roche, Mannheim, Germany) using the 184 

following TaqMan assays: Plunc (Mm00465064_m1), Ear1 (Mm03059811_g1), Reg3g 185 

(Mm01181783_g1), Ccl11 (Mm00441238_m1), Nov (Mm00456855_m1), Muc1 186 

(Mm00449604_m1), Ccl6 (Mm01302419_m1), Sprra1 (Mm00845122_s1), Gfra2 187 

(Mm00433584_m1), Clec7a (Mm01183349_m1), C3ar1 (Mm01184110_m1), Lgmn 188 

(Mm01325250_m1), Ccl21 (Mm03646971_gH), Ccl3 (Mm00441259_g1), Ccl9 189 

(Mm00441260_m1), Cd4 (Mm00442754_m1), Epcam (Mm00493214_m1), Rag2 190 

(Mm01270938_m1), Dpp4 (Mm00494549_m1) and Cd3d (Mm00442746_m1). 191 

Relative quantification was performed by normalizing the expression for each gene of 192 

interest to that of the housekeeping gene Gapdh (Mm99999915_g1), as described in the 193 

2-∆Ct method (Livak and Schmittgen, 2001), and was referred as arbitrary units. 194 

 195 

2.6. Enzyme-linked immunosorbent assays 196 

Protein lysates were obtained from the thymi of pre-diabetic mice at 6 weeks of 197 

treatment with MK626. Frozen tissues were crushed with a mortar and pestle in liquid 198 

nitrogen and homogenized in phosphate buffered saline with protease inhibitor cocktail 199 

(Thermo Scientific, MA, USA) using a 21G needle and syringe at 4 ºC. Homogenates 200 

were centrifuged at 5000 × g for 5 min, and supernatants were collected and stored at -201 

80 °C until use. Protein concentration of the lysates was determined using the 202 

Bicinchoninic acid (BCA) assay (Thermo Scientific) and the assessment of PLUNC, 203 

CCL21 (Abbexa Ltd., Cambridge, UK) and REG3G (Cusabio, Hubei, China) was 204 

performed by the corresponding ELISAs. The amount of protein of interest was 205 
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normalized to the amount of total protein for each sample, and results were expressed 206 

as pg of protein of interest/mg of total protein. 207 

 208 

2.7. Isolation of thymic epithelial cells (TECs) and gene expression analysis by qRT-209 

PCR  210 

For the analysis of expression of β-cell autoantigens and Aire in TECs, 5 treated under 211 

the aforementioned MK626 administration for 6 weeks and 5 control female NOD/LtJ 212 

mice were used. Thymic glands of NOD mice, with or without MK626 treatment, were 213 

obtained. Extraction and digestion of the individual thymus were performed according 214 

to Seach N. et al. (Seach et al., 2012). Thymic cellular suspension was passed through 215 

70-µm nylon mesh filter before staining and sorting. The staining was performed using 216 

anti-EpCAM-PE (0.1 µg/ml, BDbioscience) and anti-CD45-APC (2 µg/ml, 217 

BDbioscience) and then the cellular suspension was sorted selecting CD45 negative 218 

cells and EpCAM positive cells. Collected cells from the sorting were washed twice 219 

with a phosphate buffer and then the pelleted cells were snap frozen in liquid nitrogen. 220 

RNA extraction was performed using the RNAeasyKit (QIAGEN, Hilden, Germany) 221 

according to manufacturer’s instructions. cDNA was obtained by retrotranscription with 222 

the enzyme MMLV according to manufacturer’s instructions (Promega) and using 223 

Oligo-dT primers. qRT-PCR assays were performed using TaqMan universal assay 224 

conditions and using the following TaqMan assays: Gad1 (Mm04207432_g1), Gad2 225 

(Mm00484623_m1), Ins1 (Mm01950294_s1), Ins2 (Mm00731595_gH), and Aire 226 

(Mm00477461_m1). Relative quantification was performed by normalizing the 227 

expression for each gene of interest to that of the housekeeping gene Gapdh 228 

(Mm99999915_g1), as described in the 2-∆Ct method (Livak and Schmittgen, 2001). 229 

 230 
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2.8. Statistical analysis  231 

The analyses of the array data were described in the corresponding subsection. 232 

Statistics was performed using the Prism 5.0 software (Graph-Pad software Inc., San 233 

Diego, CA). Median values between treated and control group were compared using a 234 

non-parametric Mann-Whitney test. A p-value < 0.05 was considered significant. 235 

 236 

3. Results and Discussion  237 

3.1. Effects of CD26/DPPIV inhibition in thymic gene expression profile  238 

A microarray analysis was performed on the thymi of 5 treated and 5 control 239 

NOD mice for each checkpoint (4 and 6 weeks of treatment). One of the samples from 240 

treated group was discarded because quality control post-hybridization was not optimal 241 

for microarray experiments. A total of 58 genes out of the 28,853 mouse genes 242 

represented on the gene chip were differentially expressed in treated mice after 6 weeks 243 

of treatment with MK626 using an adjusted p-value < 0.05. Strikingly, all of these 58 244 

differentially expressed genes were up-regulated. In contrast, after 4 weeks of treatment, 245 

no significant differences in thymic gene expression were found between groups. The 246 

heatmap analysis is represented in Figure 1. 247 

 248 

3.2. Validation of the microarray results by qRT–PCR and ELISA 249 
 250 

Validation by qRT-PCR of the most selected targets confirmed the microarray 251 

findings (Fig. 2). Only minor discrepancies were found: The difference observed in two 252 

over-expressed genes in MK626-treated mice, Sprr1a and Gfra2, do not reach statistical 253 

significance and Ear1 gene showed an inverse tendency with respect the microarray 254 

results, although without significant differences.  255 
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As a control, we also validated the gene expression of some alternative thymus-256 

related gene such as Rag2, Cd4, Cd3d, Epcam and Dpp4 genes by qRT-PCR. Although 257 

microarray data did not show statistical difference between treated and controls for the 258 

expression of the aforementioned genes, qRT-PCR technique showed a significant 259 

increased expression of Epcam (p<0.01), Dpp4 (p<0.01) and Cd3d (p<0.05) in MK626-260 

treated mice (Fig. 2). Moreover, Cd4 and Rag2 gene expression tended to increase in 261 

the treated mice, although the difference was not statistically significant.  262 

 Additionally, the validation of gene expression microarray results was also 263 

achieved at protein level. Quantification of the protein levels of some over-expressed 264 

genes (Plunc, Reg3g and Ccl21) was performed in the thymi of MK626-treated mice by 265 

ELISA technique. Results showed that PLUNC, REG3G and CCL21 protein levels tend 266 

to be increased in treated mice compared to control mice, although the difference was 267 

not statistically significant (Fig.3).  268 

 269 

3.3. Analysis of differentially expressed genes  270 

The differentially expressed genes mainly belonged to categories linked to the 271 

immune system, inflammation and other biological cellular processes according to gene 272 

ontology (GO) categories and data provided by NCBI Entrez database and by the 273 

literature. Genes selected by functional categories are displayed in Table 1. Within the 274 

immune system, the most over-represented categories included innate immunity, 275 

chemotaxis, immunoregulation and antigen presentation.  276 

The Ingenuity Pathway analysis (IPA) identified 5 canonical pathways (Table 2). 277 

Altered pathways in the thymi from treated mice were primarily related to the immune 278 

system. Moreover, IPA analysis also indicated that the most over-expressed genes 279 

encode molecules belonging to inflammatory and immune responses, including those 280 
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linked to immune cell trafficking (Table 3). Gene interactions involved in immune and 281 

inflammation responses (Fig. 4) are represented by the interaction network analysis. 282 

Remarkably, a number of genes that were differentially affected by 283 

CD26/DPPIV inhibition are involved in processes related to differentiation or the 284 

activation of T cells and/or are implicated in the maintenance of immune tolerance. The 285 

discussion section of the present study will focus on those genes implicated in 286 

immunological central tolerance. 287 

 288 

CD26/DPPIV inhibition increases the expression of innate immunity genes in the 289 

thymus of NOD mice. 290 

Treatment with the CD26/DPPIV inhibitor MK626 was associated with higher 291 

expression of genes involved in the innate immunity, such as pattern recognition 292 

receptors (Clec7a, Clec9a, Reg3g) and other anti-bacterial genes (Muc1, Plunc, Lbp, 293 

Csf1r, EARs). Plunc was the most induced gene in our microarray analysis, and 294 

although the exact biological function of this gene is not clearly defined, it may play a 295 

role in innate immunity in the upper respiratory tract (Bartlett et al., 2011). In the 296 

murine thymus, the expression of Plunc gene in the medullary compartment has been 297 

reported (LeClair et al., 2001).  298 

The role of innate immunity in preventing autoimmunity against pancreatic β 299 

cells in T1D is gaining importance. It has been described that a combination of toll–like 300 

receptor 2 (TLR2) tolerization and CD26/DPPIV inhibition can reverse early-onset 301 

diabetes in NOD mice (Kim et al., 2012). In addition, recent studies have reported a key 302 

role of CLEC7a (Dectin-1) protein, which belongs to the C-type lectin-domain 303 

superfamily of pattern recognition receptors, in the establishment of immune tolerance 304 

and in preventing autoimmune diseases, such as T1D. It has been recently demonstrated 305 
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that treatment with zymosan, a fungal wall cell component, protects NOD from T1D. 306 

Zymosan interacts with TLR2 and CLEC7a to induce suppressor cytokines (IL-10, 307 

TGF-β) by antigen presenting cells (APCs), thus promoting the activation and 308 

expansion of Tregs (Dillon et al., 2006; Karumuthil-Melethil et al., 2008). It is 309 

noteworthy that in the present study, Clec7a gene was found to be over-expressed in the 310 

thymi of treated mice. 311 

Another up-regulated gene expression in MK626-treated mice was Muc1. This 312 

gene encodes a transmembrane glycoprotein expressed on the surface of most types of 313 

epithelial cells that plays an essential role in the protection of mucosal barriers 314 

(Mockensturm-Gardner et al., 1996). In the immune system, MUC1 protein (or mucin) 315 

is expressed on the surface of dendritic cells (DCs), monocytes and activated T cells. 316 

MUC1 was shown to inhibit T cell proliferative response inducing an anergy-like state. 317 

MUC1 also acts in lymphocyte trafficking due to its adhesion and/or anti-adhesion 318 

properties (Agrawal and Longenecker, 2005). In addition, the promiscuous expression 319 

of MUC1 by mTECs has been described to confer a state of immune tolerance (Acres et 320 

al., 2000; Cloosen et al., 2007). More recently, there has been a report of increased 321 

expression of MUC1 on Tregs after CD3 stimulation and that CD3/MUC1 co-322 

stimulation leads to Treg expansion (Konowalchuk and Agrawal, 2001). Hence, MUC1 323 

may have implications for immune tolerance through its involvement in the modulation 324 

of T cell responses and Tregs proliferation. 325 

Data obtained in the present study suggest a possible role of CD26/DPPIV 326 

inhibition in the innate immune response and support the hypothesis that innate 327 

immunity has a protective role in T1D. The targeting of CD26/DPPIV by MK626 328 

increases transcripts of genes related to innate immunity and may improve 329 
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immunological central tolerance through the impairment of T cell responses and the 330 

enhancement of Tregs expansion. 331 

 332 

Chemotaxis genes were over-expressed in the thymus by MK626 treatment. 333 

The microarray data revealed elevated expression of genes encoding some 334 

chemokines in treated NOD mice (Table 1). This group represented one of most over-335 

expressed categories affected by CD26/DPPIV inhibition. Several chemokines 336 

expressed in the thymus have been described as substrates of the peptidase activity of 337 

CD26/DPPIV, which either inactivates or alters the chemotactic activity of these 338 

chemokines. In the microarray analysis, the expression levels of genes encoding several 339 

DPPIV-processed chemokines, such as CCL11 and CCL3, were increased in MK626-340 

treated mice. However, genes that encode other chemokines not targeted by 341 

CD26/DPPIV activity, such as CCL21, CCL9, CCL6 and CXCL16, were also over-342 

expressed, suggesting that these differential effects in gene expression of these 343 

chemokines may be independent of CD26/DPPIV enzymatic activity.  344 

The migration of developing thymocytes within the thymus is crucial for T cell 345 

repertoire selection and requires complex interactions between thymocytes and the 346 

surrounding microenvironment (Ruiz et al., 1996). It is well known that chemokines are 347 

key elements in intrathymic organization and the migration of thymocytes during their 348 

maturation, thus contributing to the sorting of positively and negatively selected 349 

thymocytes (Annunziato et al., 2001). Therefore, the up-regulation of the Ccl21 gene 350 

expression represents one of the most important differential effects caused by 351 

CD26/DPPIV inhibition in this category due to its effects on thymocyte migration 352 

processes. The chemokine CCL21 is chemotactic agent for thymocytes and naïve T 353 

cells and binds to chemokine receptor 7 (CCR7). CCR7 and its ligands, CCL21 and 354 
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CCL19, play an important role in lymphoid cell trafficking and the structural 355 

organization of lymphoid tissues, and they contribute to both immunity and tolerance 356 

(Förster et al., 2008). Several studies have demonstrated the role of the CCR7 axis in 357 

thymic compartmentalization by coordinating migratory events during T cell 358 

development (Ueno et al., 2004). In the thymus, the chemotactic interaction between 359 

CCR7 expressed by positively selected CD4+ and CD8+ thymocytes and CCL21 360 

produced by mTECs is essential for the migration of these thymocytes from the cortex 361 

to the medulla. This thymocyte migration process mediated by the CCR7 axis 362 

contributes to the negative selection of self-reactive thymocytes and is crucial in the 363 

establishment of a self-tolerant T cell repertoire (Nitta et al., 2009). A deficiency of 364 

CCR7 or its ligands increases the risk for the development of autoimmune diseases, 365 

including T1D (Misslitz et al., 2007). The present microarray analysis revealed that 366 

gene expression levels of Ccr7 and Ccl19 were also up-regulated in treated NOD mice, 367 

but the differences were not statistically significant. 368 

 The Ccl11 gene was also significantly over-expressed in treated NOD mice. This 369 

chemokine, also known as eotaxin, is constitutively expressed in the thymus 370 

(Rothenberg et al., 1995) and is cleaved by CD26/DPPIV proteolytic enzyme (Struyf et 371 

al., 1999) affecting its biological activity. CCL11 displays a chemotactic selective 372 

activity for eosinophils, and it has been reported that the inhibition of CD26/DPPIV 373 

induces an in vivo recruitment of human eosinophils (Forssmann et al., 2008). 374 

Moreover, a recent report described an increase in the secretion of eosinophil-associated 375 

RNAases (EARs) from mouse eosinophils due to eotaxin (Shamri et al., 2012). EARs 376 

from intracellular granules are eosinophil ribonucleases and represent the major source 377 

of eosinophilic secretory effector protein participating in allergic diseases and host 378 

immunity (Rosenberg et al., 2001). It is of note that the gene expression levels of 379 
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several EAR genes (Ear1, Ear10, Ear11) were increased in the present microarray 380 

study. Therefore, the elevated expression of Ccl11 and Ear genes in the thymus may 381 

reflect an increased number of eosinophils due to CD26/DPPIV inhibition. Notably, 382 

eosinophils have been shown to be recruited in the thymus during MHC class I-383 

restricted T cell selection, implying an immunomodulatory role for these cells (Throsby 384 

et al., 2000). In addition, it is known that self-reactive T cells are depleted by apoptosis 385 

during intrathymic selection. The clearance of millions of these apoptotic thymocytes is 386 

important for thymic development and is achieved by thymus resident macrophages and 387 

DCs (Esashi et al., 2003). However, recent data suggest a direct contribution of 388 

eosinophils and neutrophils, which are recruited to the sites of extensive apoptosis to 389 

maximize the efficiency of apoptotic cell removal (Kim et al., 2010). Moreover, it has 390 

been demonstrated that the rapid removal of apoptotic cells is crucial for preventing 391 

inflammatory and autoimmune responses (Sarang et al., 2013).  392 

Expression levels of other genes encoding chemokines were also significantly 393 

increased in our treated mice. These chemokines included CCL3 (MIP-1α), CCL6 394 

(C10/MRP-1) and CCL9 (MIP-1γ/MRP-2), which have also been shown to have 395 

chemotactic activity, primarily for monocyte-macrophages (CCL3, CCL6, CCL19), as 396 

well as for eosinophils (CCL3, CCL6) and neutrophils (CCL3, CCL9) (Coelho et al., 397 

2007; Maurer and von Stebut, 2004). Thus, these chemokines may also be involved in 398 

apoptotic cell clearance. 399 

Taken together, our data suggest that CD26/DPPIV inhibition by MK626 400 

treatment may have a key role in thymocyte trafficking through the modification of the 401 

expression profile of thymic microenvironmental chemokines contributing to the 402 

enhancement of negative selection. These data support the results obtained in the IPA 403 

analysis in which 20 molecules were found to be involved in immune cell trafficking 404 
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(Table 3). Alternately, MK626 treatment may enhance the clearance of apoptotic cells 405 

generated during thymocyte selection through the recruitment of eosinophils. 406 

 407 

Targeting CD26/DPPIV induces the expression of antigen presentation- and 408 

immunoregulation-related genes in the thymus of treated mice. 409 

As shown in Table 1, treated NOD mice showed a higher expression of genes 410 

involved in antigen presentation and the regulation of immune responses, notably 411 

Fcgr2b and Lilrb4 genes.  412 

 The protein encoded by Fcgr2b (Fc receptor, IgG, low affinity IIb) gene belongs 413 

to the family of low affinity receptors for the Fc portion of immunoglobulin gamma 414 

complex. These receptors are involved in a variety of effector and regulatory functions 415 

such as the phagocytosis of immune-complexes from the circulation and the modulation 416 

of antibody production by B cells. In contrast to other members of this family, FcγRIIB 417 

acts as a negative regulator of the immune response, limiting T cell activation by 418 

inhibiting both antigen processing and DC activation (Desai et al., 2007) as well as by 419 

suppressing the activation of autoreactive B cells (Nimmerjahn and Ravetch, 2007). A 420 

deficiency in the inhibitory FcγRIIB leads to imbalanced immune responses that result 421 

in the development of autoimmune diseases (Nimmerjahn and Ravetch, 2006). 422 

Therefore, FcγRIIB potentially may contribute to the maintenance of tolerance and 423 

protection from autoimmune diseases.  424 

Another significantly over-expressed gene was Lilrb4. The encoded protein, also 425 

known as immunoglobulin-like transcript 3 (ILT-3), is a member of the leukocyte Ig-426 

like receptor family (LIR), which is selectively expressed by APCs such as DCs, where 427 

it binds to MHC class I molecules and transduces a negative signal that inhibits 428 

stimulation of the immune response (Kim-Chulze et al., 2006). It is known that 429 
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inhibitory activity of Tregs is determinant in the prevention of autoimmune disorders. A 430 

distinct population of these lymphocytes with a CD8+ CD28- phenotype has been 431 

characterized and is referred to as T suppressor cells (Chang et al., 2002). These 432 

lymphocytes are FOXP3+ and MHC class I-restricted, and they tolerize APCs by 433 

inducing the up-regulation of inhibitory receptors, such as LILRB4/ILT-3 and 434 

LILRB/ILT-4, as well as by inhibiting CD40 signaling in APCs. These tolerogenic 435 

LILRB4/ILT-3 DCs induce an anergic state in CD4+ T cells, resulting in the loss of their 436 

proliferative and differentiation capacity and the transformation of these cells into 437 

Tregs, which continue the cascade of suppression by tolerizing other DCs (Kim-Chulze 438 

et al., 2006; Manavalan et al., 2003). Therefore, the up-regulation of LILRB4/ILT-3 439 

appears to be a general characteristic of tolerogenic DCs and may be important for 440 

induction of antigen-specific tolerance. 441 

Notably, the IPA analysis identified an altered pathway implicated in 442 

immunoregulation: IL-10 signaling. IL-10 is an anti-inflammatory and 443 

immunoregulatory cytokine. It is expressed by many immune cell types of both the 444 

adaptive and innate immune systems, supporting its crucial role as a regulator of 445 

immune responses. The main producers of IL-10 are Tregs, and this cytokine enhances 446 

the differentiation of these IL-10-secreting Tregs cells, thus providing a positive 447 

regulatory feedback (Saraiva and O’Garra, 2010). In addition, IL-10 can be induced by 448 

CLEC7a (dectin-1) stimuli. Remarkably, the Clec7a gene expression was up-regulated 449 

in the present microarray analysis. A potent effect for IL-10 in preventing autoimmunity 450 

has been described, although its role in the development of diabetes is controversial. In 451 

NOD mice, some studies have demonstrated that IL-10 is important in establishing 452 

immune tolerance, whereas others have demonstrated accelerated diabetogenic 453 

autoimmune responses (Saraiva and O’Garra, 2010; Tai et al., 2011).  In our present 454 
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study, the lack of IL-10 gene over-expression in the thymi of treated mice can be 455 

attributed to the low sensitivity of the arrays used to detect cytokines (Park and Stegall, 456 

2007). 457 

Thus, CD26/DPPIV inhibition may exert a potent immunosuppressive activity 458 

on T cells by inducing tolerogenic DCs through the over-expression of inhibitory 459 

receptors, such as FcγRIIB and LILRB4/ILT-3. Remarkably, these encoded proteins are 460 

not cleaved by CD26/DPPIV, and these results support the hypothesis that the 461 

proteolytic activity of DDPIV is not essential for its co-stimulatory function in T cell 462 

response (Boonacker et al., 2002).  463 

 464 

MK626 treatment increases the expression of genes related to other cell functions  465 

Several genes regulating biological processes, such as cell adhesion, cell 466 

migration and cell proliferation, were more highly expressed in treated mice.   467 

The interactions between thymocytes and the microenvironment are essential for 468 

the intrathymic migration of thymocytes. Interestingly, the impairment of thymocyte 469 

migration through the thymic microenvironment has been reported in NOD mice (Cotta-470 

de-Almedia et al., 2004).  The enzymatic activities of metalloproteinases are involved in 471 

thymocyte-stroma interactions by remodeling of the extracellular matrix (ECM). A role 472 

for metalloproteinases in thymic T cell development has been recently demonstrated 473 

using Adam8-deficient mice (Gossens et al., 2010). ADAM8 is a member of the 474 

Disintegrin and Metalloproteinase (ADAM) family of proteins. A variety of biological 475 

processes involving cell-cell and cell-matrix interactions have been implicated. In the 476 

thymus, ADAM8 is expressed by TECs, principally by mTECs, and is involved in 477 

intrathymic T cell migration through the aforementioned remodeling of the ECM. 478 

Interestingly, data from the present microarray experiments revealed increased 479 
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transcripts of Adam8 gene in treated mice and strongly support the contention that 480 

CD26/DPPIV inhibition may enhance the migration of positively selected thymocytes 481 

to the medulla, which is essential for the establishment of central tolerance.  482 

 483 

3.4. Role of MK626 treatment in altering the expression of β-cell autoantigens and Aire 484 

in the thymi of NOD mice. 485 

To determine the potential mechanisms by which the CD26/DPPIV inhibition is 486 

involved in T1D prevention, we next investigated whether MK626 treatment alters the 487 

expression of genes encoding islet autoantigens, such as Gad1, Gad2, Ins1 and Ins2 as 488 

well as the autoimmune regulator Aire, in purified TECs obtained at 6 weeks using 489 

qRT-PCR.  490 

 491 

MK626 treatment does not alter β-cell autoantigens and Aire expression in TECs 492 

As shown in Figure 5, no differences were observed in the gene expression of 493 

Gad1 (glutamic acid decarboxylase), Ins2 (proinsulin) and Aire (transcription factor 494 

autoimmune regulator) in TECs between MK626-treated and control mice. Gad2 and 495 

Ins1 showed a very low expression in either treated and control animal. These findings 496 

are consistent with data reported in the literature. INS2 is the major isoform recognized 497 

by T cells in NOD mouse and is expressed in both β cells and the thymus, while the 498 

expression of Ins1 in the thymi has been debated (Thébault-Baumont et al., 2003).  499 

The thymus is involved in the establishment of tolerance to peripheral Ags. The 500 

expression of a broad repertoire of TRAs within the thymus has been termed 501 

promiscuous gene expression (Sospedra et al., 1998). Data suggests that this expression 502 

of TRAs by TECs, mainly mTECs, play a role in thymic central tolerance through 503 

clonal deletion of self-reactive thymocytes (Derbinski et al., 2001; Kyewski et al., 504 

2002). In T1D, insulin represents one of the principal targets in the development of 505 
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diabetogenic autoimmunity and their presentation in the thymus promotes the deletion 506 

of self-reactive thymocytes (Kent et al., 2005; Nakayama et al., 2005). Aire is 507 

responsible for mediating central tolerance of peripheral self-Ags because it induces the 508 

expression of many of these TRAs by TECs, which are processed and then presented on 509 

surface to MHC/HLA (Mathis and Benoist, 2009; Rizzi et al., 2006). It has been 510 

reported that the expression of Aire and TRAs by TECs in NOD model is much lower 511 

than normal (Balb/c) TECs (Chen et al., 2008) and its expression varies with age and 512 

with the onset of T1D (Fornari et al., 2010; Oliveira et al., 2013). So, recent data 513 

suggest that thymic down-regulation of Aire in young NOD mice (pre-diabetic 514 

checkpoint) precedes the onset of T1D (Fornari et al., 2010), whereas Aire expression 515 

during the perinatal period is important to prevent autoimmunity in this model (Guerau-516 

de-Arellano et al., 2009).  517 

Taken together, we found that gene expression of islet autoantigens and the 518 

autoimmune regulator Aire is not influenced by CD26/DPPIV inhibitor treatment, 519 

unless in the late preclinical stage of the disease in NOD mice. Although further studies 520 

with more amount of thymic tissue analysed are required to confirm our findings, it 521 

maybe also needed to investigate whether MK626 affects the expression of these genes 522 

in a much earlier phase of the pre-diabetic state, including the perinatal period. 523 

524 
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 525 

4. Conclusion 526 

In a previous study, our group found that the CD26/DPPIV inhibitor MK626 527 

decreased the incidence of T1D and reduced islet lymphocyte infiltration in pre-diabetic 528 

NOD mice. Moreover, in peripheral compartment, MK626 increases CD26 expression 529 

in the CD8+ TEM T cells. Indeed, in vitro assays revealed an immunosuppressive role for 530 

CD8+ TEM cell subset that may be involved in the protection against autoimmunity to β-531 

cells. In the current study, we demonstrate for the first time that the expression of 532 

immune-related genes, especially those potentially involved in central tolerance, is 533 

modified in the thymus of MK626-treated mice. Our data from microarray analysis 534 

suggest that targeting CD26/DPPIV may affect immunological central tolerance 535 

mechanisms through several possible pathways, including the following: 1) contributing 536 

to the migration of thymocytes to the thymic medulla, thus enhancing negative 537 

selection; 2) increasing the efficiency of clearance of apoptotic cell generated during 538 

positive and negative thymic selection; 3) limiting T cell activation and responses; 4) 539 

inducing tolerogenic DCs; and 5) enhancing natural Tregs generation and function. 540 

Altogether, the inhibition of CD26/DPPIV may enhance the efficiency of deleting self-541 

reactive thymocytes and modulate T cell responses and, consequently, may reduce the 542 

diabetogenic autoimmune response. However, the effects of DPPIV inhibition regarding 543 

T1D prevention do not seem to involve modifications of Aire and β-cell autoantigens 544 

expression. 545 

Our results provide more insight into the understanding of the mechanisms 546 

through which targeting CD26/DPPIV prevents and even reverses T1D in NOD mice. 547 

However, further functional studies are needed to confirm the present findings. 548 

 549 
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 887 
 888 
Table 1.Functional categorization of transcripts that were differentially expressed 889 
in treated NODmice  890 
 891 

Function Gene Locus  
 ID 

Protein name Log2 

FC 
adj 
p-value 

al/prol*  Other functions 

Innate 
immunity 

Plunc 18843 BPI fold containing family A, 
member 1 

4.8334 0.0108 No* Inflammatory response  

 Reg3g 19695 Regenerating islet  
derived protein 3γ· 

2.8724 0.0174 No Inflammatory response  

 Ear11 93726 Eosinophil-associated, 
ribonuclease A family, member 
11 

1.9618 0.0298 No Inflammatory response; 
Chemotaxis 

 Ear10 93725 Eosinophil-associated, 
ribonuclease A family, member 
10 

1.5329 0.0174 No Inflammatory response  

 Ear1 13586 Eosinophil-associated, 
ribonuclease A family, member1/ 
Eosinophil cationic protein 1 

1.4553 0.0159 No Inflammatory response  

 Clec7a 56644 C-type lectin domain family 7, 
member A /Dectin-1  

1.3757 0.0298 No Inflammatory response; 
Immunoregulation; 
Phagocytosis; Cell adhesion; 
Signaling 

 Muc1 17829 Mucin -1  1.2602 0.0174 No  Inflammatory response; Cell 
adhesion; Cell growth;  
Signaling; Apoptosis 

 Lbp 16803 Lipopolysaccharide binding 
protein 

1.2689 0.0478 No Inflammatory response;  
Phagocytosis; Chemotaxis; Cell 
motility; Cell migration; 
Signaling 

 Ifitm1 68713 Interferon-induced 
transmembrane protein 1 

1.1397 0.049 Yes Cell adhesion; Cell migration; 
Cell proliferation 

 Clec9a 232414 C-type lectin domain family 9 
member A  

0.8924 0.0439 No Antigen presentation; 
Immunoregulation 

 Csf1r 12978 Macrophage colony-stimulating 
factor 1 receptor 

0.864 0.0437 Yes Inflammatory response; Cell 
proliferation; Cell migration; 
Cell motility; Cell adhesion; 
Signaling 

Chemotaxis Ccl11 20292 Chemokine (C-C motif) ligand 
11/Eotaxin 

1.6042 0.0174 Yes   Cytokine activity; Inflammatory 
response; Cell migration; Cell 
motility; Cell growth; Cell 
proliferation; Signaling 

 Ccl6 20305 C-C motif chemokine 6 1.4969 0.0177 No Cytokine activity; Inflammatory 
response; Cell migration; Cell 
motility 

 Ccl27 20301 Chemokine ligand 27 1.618 0.0177 Yes Cytokine activity  

 C3ar1 12267 C3a anaphylatoxin chemotactic 
receptor 

1.559 0.0298 No Inflammatory response; Antigen 
presentation; Phagocytosis; Cell 
migration; Cell motility; 
Signaling 

 Ccl21 18829 Chemokine ligand 21a 1.1009 0.0298 No Cytokine activity; Inflammatory 
response; Immunoregulation; 
Cell migration;  
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 Ccl3 20302 C-C motif chemokine 3, MIP1α 1.1966 0.0298 Yes Cytokine activity; Inflammatory 
response; Cell migration; Cell 
motility; Signaling; Apoptosis 

 Ccl9 20308 C-C motif chemokine 9, MIP1γ 1.1829 0.0311 No Cytokine activity; Inflammatory 
response 

 Cxcl16 66102 C-X-C motif chemokine 16 0.9195 0.0437 No Cytokine activity; Innate 
immunity; Antigen presentation; 
Cell migration; Cell motility; 
Cell growth  

Immuno 
regulation  

Fcgr2b 14130 Low affinity Ig gamma Fc region 
receptor IIB 

0.9484 0.0339 No Inflammatory response; Antigen 
presentation; Phagocytosis; Cell 
proliferation; Signaling; 
Apoptosis  

 Lilrb4 14728 Leukocyte Ig-like  
receptor subfamily B member 4 

0.9461 0.0341 No Antigen presentation; Signaling 

Antigen  
presentation  

Lgmn 19141 Legumin 0.9826 0.0298 Yes Cell growth; Apoptosis  

Inflammation  Scgb3a1 68662 Secretoglobin family  
3A member 1 

4.4231 0.0241 No Cytokine activity; Cell 
proliferation  

 Sgb1a1 22287 Uteroglobin 4.2748 0.0241 No Cytokine activity; 
Immunoregulation; Cell 
proliferation; Signaling 

 Retnla 57262 Resistin-like alpha 2.2577 0.0341 No  

 Fstl1 14314 Follistatin related  
protein 

1.1499 0.0298 No  Innate immunity; Autoantigen; 
Cell proliferation 

Cell adhesion Itga8 241226 Integrin alpha 8 1.7714 0.0177 Yes Metanephric and Nervous 
system development, 
Extracellular matrix 
organization; Signaling 

 Postn 50706 Periostin 1.3371 0.0174 No  Inflammatory response; 
Extracellular matrix organization 

 Mfap4 76293 Microfibril-associated 
glycoprotein 4 

1.1654 0.0311 Yes Extracellular matrix 
organization; Signaling 

 Adam8 11501 Disintegrin and 
metalloproteinase domain-
containing protein 8 

1.1554 0.033 No Inflammatory response; Innate 
immunity; Chemotaxis; Cell 
migration; Cell motility; 
Signaling; Apoptosis; 
Extracellular matrix organization 

 Col6a2 12834 Collagen alpha-2 (IV) chain  1.1455 0.0298 No Extracellular matrix organization 

 Tgfbi 21810 Transforming growth factor-
beta-induced protein ig-h3 

1.0326 0.0341 Yes Signaling; Extracellular matrix 
organization 

Cell 
proliferation 
/Growth 

Nov 18133 Nephroblastoma overexpressed 
gene/Protein NOV homolog 

1.6978 0.0174 No Cell growth  

 Tppp3 67971 Tubulin polymerization 
promoting protein family 
member 3 

1.42 0.0298 Yes  

 Smpd3 58994 sphingomyelinphosphodiesterase 
3 

1.1967 0.0174 No Signaling; Apoptosis 

 Atf3 11910 Activating transcription factor 
3/Cyclic AMP-dependent 
transcription factor 3  

0.8808 0.0298 No Inflammatory response; 
Transcription factor; Apoptosis 
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 892 

Apoptotic 
process 

Timp1 21857 Metalloproteinase inhibitor 1 1.4433 0.0341 No Erythrocyte maturation; Cell 
proliferation 

 Clca2 80797 Chloride channel calcium 
activated 2 

1.324 0.0413 No  
 

Nervous 
system   

 

Gabrp 216643 Gamma-aminobutyric acid 
(GABA) A receptor, pi 

1.9095 0.0298 No   

 Efhd1 98363 EF-hand domain-containing 
protein D1 

1.3264 0.0341 No  

 Gas7 14457 Growth arrest specific protein  7 1.1794 0.0435 Yes Cytoskeleton  

 Duoxa 1 213696 Dual oxidase maturation factor 1  1.12 0.0298 Yes Cell adhesion 

 Gfra2 14589 Glial cell line derived 
neurotrophic factor family 
receptor alpha2 

1.0545 0.0298 No Signal transduction  

 Mtap1b 17755 Microtubule-associated protein 
1B 

0.9402 0.0413 No Cytoskeleton  

Miscellaneous  

Ion binding  

        

 Cyp2f2 13107 Cytochrome P450,  
family 2, subfamily f, 
polypeptide 2 

4.07 0,.0311  No  

 Cyp4a12b 13118 Cytochrome P450,  
family 4, subfamily a, 
polypeptide 12 

3.0037 0.0298 No  

 Cyp2a5 13087 Cytochrome P450,  
family 2, subfamily a, 
polypeptide 5 

2.3177 0.0159 No  

 Cyp2a4 13086 Cytochrome P450,  
family 2, subfamily a, 
polypeptide 4 

1.9005 0.0298 No  

 Mt2 17750 Metallothionein 2 1.4602 0.0405 No  

Olfaction  Olfr111 545205 Olfactory receptor 111 1.5254 0.0298 No  Signal transduction 

Keratinization Sprr2a1 20755 Small proline-rich  
protein 2A1 

1.5064 0.0298 No  

 Sprr1a 20753 Small proline-rich  
protein 1A/Cornifin-A 

1.1202 0.0298 No  

Protein  
transport  

Slc15a3 65221 Solute carrier family 15  0.89 0.0298 No  

Bio 
mineralization  

Aspn 66695 Asporin 1.1079 0.0298 Yes  

Blood 
coagulation  

F3 14066 Coagulation factor III /Tissue 
factor 

1.1209 0.0477 No  

Cytoskeleton Acta2 11475 Actin, aortic smooth muscle 1.3261 0.0413 No  

 Tagln 21345 Transgelin 0.9713 0.0311 No  

Histidine 
metabolism  

Hal 15109 Histidine ammonia lyase 1.11209 0.0298 Yes  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 34

Genes significantly up-regulated by targeting CD26/DPPIV are listed, with the mean 893 
difference between the groups (Fold Change; FC) and the false discovery rate estimated 894 
by the Benjamini-Hochberg method (adjusted p-value: < 0.05). *Al/prol is referenced to 895 
the presence in peptide of alanine and proline in the penultimate position.  896 
 897 

 898 

 899 

 900 

 901 

 902 

 903 
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 907 

 908 

 909 

 910 

 911 
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Table 2. Top over-represented pathways identified in treated NOD mice by Ingenuity 921 
Pathway Analysis (IPA)  922 

 923 

 924 

 925 

 926 

 927 

 928 

 929 
Immune Canonical Pathways among the “Top 20” biological canonical pathways 930 
resulting from IPA analysis. p-value calculated by the Ingenuity algorithm is given.  931 
 932 

 933 

 934 

 935 

 936 

 937 

 938 

 939 

 940 

 941 

 942 

 943 

 944 

 945 

 946 

 947 

 948 

Top IPA canonical pathways  (p-value) 

Agranulocyte adhesion and diapedesis (1.29E-07) 

Granulocyte adhesion and diapedesis (1.23E-06) 

Hepatic fibrosis/Hepatic stellate Cell Activation (1.58E-03) 

Communication between innate and adaptive immune cells (2.07E-02) 

IL- 10 signaling (2.4E-02)  
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Table 3. Top biological functions identified in treated NOD mice by Ingenuity Pathway 949 
Analysis (IPA) 950 
 951 
 952 

 953 
Numbers of molecules involved in each biological function are shown. Data are 954 
expressed as a p-value < 0.05.  955 
 956 
 957 

 958 

 959 

 960 

 961 

 962 

 963 

 964 

 965 

 966 

 967 

Disease and disorders    
Name P-value Molecules  
Inflammatory response 
Immunological disease  
Gastrointestinal disease  
Ophthalmic disease 
Respiratory disease  

3.49E-09 – 1.83E-02  
7.32E-08 – 1.73E-02  
9.48E-08 – 1.83E-02  
9.48E-08 – 7.38E-03  
5.27E-06 – 1.47E-02  

27 
21 
21 
11 
18 

Molecular and cellular functions    
Name P-value Molecules 
Cellular Movement  
Cell-To-Cell Signaling and Interaction  
Cellular Function and Maintenance 
Cellular Assembly and Organization  
Cellular Development 

5.31E-10 – 1.83E-02  
2.98E-08 – 1.83E-02  
2.19E-06 – 1.47E-02  
2.85E-05 – 1.83E-02 
6.68E-05 – 1.83E-02 

31 
24 
22 
17 
24 

Physiological System Development and Function   
Name P-value Molecules 
Immune Cell Trafficking  
Hematological System Development and 
Function  
Tissue Morphology  
Tissue Development 

6.08E-10 – 1.83E-02  
1.67E-08 – 1.83E-02  
 
1.67E-08 – 1.47E-02  
2.85E-05 – 1.83E-02  

20 
28 
 
27 
25 
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 968 

Figure 1. Heatmap of thymic gene expression profile from NOD mice. Rows 969 

correspond to differentially expressed genes, and columns represent each thymus 970 

sample from control (red columns) and treated (blue columns) NOD mice. Data were 971 

row-centered by subtracting the row-mean from each value so that under- and 972 

overexpression are indicated by negative (red) and positive (blue) values. C: Control 973 

group; T: Treated group.   974 

 975 

Figure 2. Validation of the gene expression profile. Relative expression levels measured 976 

by qRT-PCR of selected genes in control (C, n=5) and treated (T, n=5) groups. Results 977 

are expressed as mean + SEM. Non parametric Mann-Whitney test was used for the 978 

evaluation of statistical significance. Significance levels, *p < 0.05, **p < 0.01. 979 

 980 

Figure 3. Analysis of the gene expression profile at protein level. Levels of PLUNC, 981 

CCL21 and REG3G measured by ELISAs in control (C, n=5) and treated (T, n=5) 982 

groups. Results are expressed as pg of protein of interest/mg of total protein (mean + 983 

SEM). Non parametric Mann-Whitney test was used for the evaluation of statistical 984 

significance. 985 

 986 

Figure 4. Gene network generated by Ingenuity Pathway Analysis (IPA). IPA was 987 

applied to create an inter-related gene network. Gene interactions linked to the immune 988 

and inflammatory responses are represented. Interacting nodes are defined by either 989 

direct relationships (solid arrows) or indirect relationships (dashed arrows). The 990 

direction of the arrows shows the direction of the interaction. Green molecules indicate 991 

higher expression in treated NOD mice than in control mice at the gene level.  992 
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 993 

Figure 5. Gene expression levels of islet autoantigens and Aire in thymic epithelial cells 994 

(TECs) from MK626-treated and control mice. TECs obtained from treated and control 995 

group (≈ 12 weeks old) were purified after 6 weeks of treatment. Quantitative qRT- PCR 996 

results for Gad1, Ins2 and Aire genes in treated (black bars) and in control mice (white 997 

bars). Gene expression signals were normalized to Gapdh. Data are presented as the 998 

mean + SEM. Non parametric Mann-Whitney test test was used for the evaluation of 999 

statistical significance. 1000 

 1001 

 1002 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Highlights 

• Treatment with DPPIV inhibitors may contribute to the prevention of T1D. 

• Expression of immune –related genes is modified in the thymi of NOD mice by 

MK626. 

• MK626 treatment increases the expression of genes involved in central 

tolerance.  

• DPPIV inhibitor treatment does not alter β-cell autoantigens and Aire expression 

in TECs. 

 

 

 


