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Abstract
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among the members of the panel. The paper emphasizes the idea that common factors cap-
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1 Introduction

The estimation of production functions that relate the output of a firm, region or country to different

combinations of factors of production – usually physical capital and labor – has devoted lot of

interest in empirical economics – see Aschauer (1989), Munnell (1990), García-Milá and McGuire

(1992), Holtz-Eakin (1994), Baltagi and Pinnoi (1995), and García-Miláet al. (1996) for the

US, Merriman (1990) for Japan, Berndt and Hansson (1992) for Sweden, Dalamagas (1995) for

Greece, Evans and Karras (1994) for a sample of industrialized countries, Otto and Voss (1996) for

Australia, and Wylie (1996) for Canada. These studies estimate production functions including not

only physical capital and labor as inputs, but also human and public capitals as productive factors.

Early studies of production function estimation employ time series data, focusing on an indi-

vidual region or country. For example, for the case of the aggregated Spanish economy, Serrano

(1997) finds no evidence of cointegration, whereas Sosvilla-Rivero and Alonso (2005) achieve the

converse conclusion. The contradictory results indicate that the empirical evidence from the time

series analysis is mixed, being one plausible explanation the low power of the univariate unit root

and cointegration tests. Fortunately, recent analyses show that the power of unit root and cointe-

gration test statistics can be improved when both the time series and cross-section dimensions are

combined in a panel data framework – see, for example, Serrano (1996), Bajo and Díaz (2005) and

Márquezet al. (2011).

One critical problem with the panel data studies for the Spanish regions mentioned above is the

assumption of cross-section independence. This is an unrealistic and far too restrictive assumption

from an empirical point of view, especially since regions are so closely related to each other. If

the independence assumption is violated then we might expect to have, on the one hand, biased

and inconsistent estimates of the parameters and, on the other hand, spurious statistical inference –

see Andrews (2005). More specifically, in the case of non-stationary panel data, the unaccounted

cross-section dependence might lead to conclude that panel data is actually stationary when in fact

it might be non-stationary – see Banerjeeet al. (2005). Similarly, the panel data cointegration test

statistics might indicate than there are more cointegrating relations than there exist – see Carrion-
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i-Silvestre and Surdeanu (2011).

Cross-section dependence is more a recurrent than a rare characteristic that is present in macro-

economic time series of different units. There are diverse sources of cross-section dependence that

can be expected to affect the units of a panel data set. For instance, cross-section dependence is

usually caused by the presence of common shocks (oil price shocks or financial crises) or the ex-

istence of local productivity spillover effects. Further, the economic literature on output stochastic

convergence implies the existence of a long-run relation (cointegration relation) among the differ-

ent economies, so that the use of macroeconomic variables such as the output or production should

account for the presence of this long-run relation across the units – the so-called cross-cointegration

concept, as defined in Banerjeeet al. (2005). This implies that cross-section dependence is more

the rule than the exception. Bai and Ng (2002, 2004) recognize early on this problem and lay down

the foundation of the theoretical panel framework with common factors. The use of common factor

models is particularly useful to capture the presence of cross-section that is pervasive (strong) –

i.e., the sort of cross-section dependence that affects all units of the panel data.

As pointed out in Banerjeeet al. (2010), the empirical work on the estimation of production

functions in panel data using the common factor technique is relatively limited. Two examples

related to our study are Costantini and Destefanis (2009) and Banerjee and Carrion-i-Silvestre

(2011). Costantini and Destefanis (2009) analyze the production function for the Italian regions

and find that the regional value added, physical capital and human capital augmented labor are

cointegrated. They also find that ignoring the cross-section dependence biases upward the esti-

mates for the returns to scale. In this paper, we reexamine the cointegration relation among the

output, physical capital, human capital, public capital and labor for the 17 Spanish regions ob-

served over the period 1964-2011.

It is usually assumed that the application of non-stationary panel data techniques will enhance

the statistical inference about the stochastic properties of the variables, especially ifT is small.

Practitioners have started to apply panel data unit root tests with the hope that taking into account

both the time and cross-section dimensions of the panel data will lead to improvements of the
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statistical inference – see Breitung and Pesaran (2008) and Banerjee and Wagner (2009) for recent

overviews of the literature. However, this desirable situation might not be achieved if features like

cross-section dependence is not considered. Westerlund and Breitung (2013) stress the importance

of several issues that can be found when applying panel data unit root tests that, if not accounted

for, can ruin the statistical inference.

To the best of our knowledge, none of the existing studies for the Spanish economy take into

consideration the (strong) cross-section dependence among the members of the panel when esti-

mating production functions. This paper is based on the estimation of a Cobb and Douglas (1928)

production function and gives a novel empirical evidence for the Spanish regional case. Further,

we consider the presence of structural instabilities due to the existence of structural breaks. In this

regard, the cointegrating relations are estimated allowing for the presence of one structural break,

which defines a flexible framework where output elasticities, marginal products to private and pub-

lic capitals and returns to education can change through time. Finally, it is worth mentioning that

the panel cointegration estimation techniques that we apply are designed to capture the presence

of pervasive dependence among the units of the panel. However, it is possible that the units are

also affected by local dependence, which implies that the dependence is not spread widely as the

cross-section dimension of the panel increases. This situation gives rise to the so-called weak de-

pendence, being the spatial dependence a particular case of weak dependence. The analysis that

is conducted in this paper also covers the issue of spatial dependence, a form of weak dependence

that is typically found when working with regional data.

The structure of this paper is as follows. Section 2 presents the model for panel data and

the data used in this study. The results of the panel data cointegration analysis are presented in

Section 3, where the estimation of the production function is reported using different estimation

procedures. Finally, the paper concludes with Section 4.
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2 Model specification

The model specification is given by the modified Cobb-Douglas production function used in Bajo

and Díaz (2005):

Yi;t = Ai;t F (Ki;t ;Gi;t ;Hi;t ;Li;t) ; (1)

where i = 1; : : : ;N represents the cross-section dimension andt = 1; : : : ;T represents the time-

series dimension. The variableYi;t is the output that depends on private capital(Ki;t), public capital

(Gi;t), human capital(Hi;t) and labor(Li;t). The variableAi;t reflects total factor productivity (TFP),

which is the part of the output not explained by the observable inputs. The production function can

be expressed in per worker terms:

Yi;t=Li;t = Ai;t=Li;t f (Ki;t=Li;t ;Gi;t=Li;t ;Hi;t=Li;t) : (2)

TFP represents the unobservable part of the production function and usually reflects the tech-

nological progress of the respective country or region. If technology is defined as the cumulation

of the innovations and progress efforts made by economic agents, we should expect the TFP to be a

non-stationary stochastic process. However, since the TFP cannot be measured directly, empirical

researchers estimate it as the residual of the estimated production function. Although intuitive,

this approach causes serious econometric and interpretation problems. First, if not appropriately

accounted for, the potential stochastic trend of the TFP would imply that the estimation of the pro-

duction function is, in fact, a spurious regression. Therefore, panel data cointegration test statistics

would lead to the conclusion that the variables involved in the production function are not cointe-

grated. Second, the issue that part of the technology that is available is common to all economies

implies a source of cross-section dependence, which needs to be accounted for in order to obtain

meaningful conclusions of the panel cointegration test statistics. As it can be seen, the specification

of a common factor model can capture this unobservable variable that is difficult to approximate.

We take advantage of the recent developments in the field of non-stationary panel data analysis

5



and decompose the TFP into an unobserved common factor componentF 0t λ i – whereFt is a(r�1)-

vector of unobserved common factors,λ i is a(r�1)-vector of loadings – and an idiosyncratic error

componentei;t . The common factor approach captures the effect of common shocks that affect the

countries or regions, making it a desirable way to model strong cross-section dependence. Taking

into account these considerations and following Costantini and Destefanis (2009) and Banerjeeet

al. (2010), the TFP is modeled through the common factor specification given by:

Ai;t=Li;t = eµ i+F 0t λ i+ei;t : (3)

Assuming a Cobb-Douglas function forF (Ki;t ;Gi;t ;Hi;t ;Li;t) = Kα
i;tG

β

i;tH
δ
i;tL

γ

i;t in Equation (1), we

havef (Ki;t=Li;t ;Gi;t=Li;t ;Hi;t=Li;t ;Li;t)= (Ki;t=Li;t)
α (Gi;t=Li;t)

β (Hi;t=Li;t)
δ L(α+β+δ+γ�1)

i;t , and tak-

ing the natural logarithm of the variables from Equations (2) and (3), we obtain the model:

yi;t = ai;t+(α+β +δ + γ�1) l i;t+αki;t+βgi;t+δhi;t (4)

ai;t = µ i+F 0t λ i+ei;t ; (5)

whereyi;t = ln(Yi;t=Li;t), ai;t = ln(Ai;t=Li;t), l i;t = lnLi;t , ki;t = ln(Ki;t=Li;t), gi;t = ln(Gi;t=Li;t) and

hi;t = ln(Hi;t=Li;t). Note that the model can be written in a single-equation form as:

yi;t = µ i+ζ l i;t+αki;t+βgi;t+δhi;t+F 0t λ i+ei;t ; (6)

with ζ = (α+β +δ + γ�1). Following the existing contributions in the literature,gi;t is defined

considering the productive public capital1 andhi;t is measured as the average number of schooling

years – see Serrano (1996).

The data employed in our study contains annual observations for theN = 17 Spanish regions

(Autonomous Communities) observed over theT = 48 year period from 1964 to 2011.2 The di-

1Productive public capital includes road and highways, ports, airports, railroads, water and sewer systems, public
electric and gas utilities, and telecommunications.

2The Spanish regions are: Andalucía, Aragón, Asturias, Baleares, Canarias, Cantabria, Castilla y León, Castilla-
La Mancha, Catalunya, Comunidad Valenciana, Extremadura, Galicia, Madrid, Murcia, Navarra, País Vasco and La
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mensions of this panel data setup are similar to the ones that we can find in regional economic

analysis, in general, where the statistical information is more scarce compared to the country basis

studies. However, in this paper we use some panel data techniques that have shown good perfor-

mance when applied to panel data setups with these dimensions – see, for instance, the simulation

results in Pesaran (2007) and Kapetanioset al. (2011) for the test statistics that they propose.

The outputYi;t – measured by Gross Value Added – the stock of private capitalKi;t and the

stock of productive public capitalGi;t are measured at 2008 constant prices, and are obtained

from the BD.MORES database (December 2015) of the Spanish Ministry of Finance and Public

Administrations.3 The variableHi;t is the stock of human capital, measured as an average years

of schooling, from the Stock de Capital Humano database, IVIE, and Serrano (1996). Finally,Li;t

is labor, measured as the employed population of regioni in the yeart, which is obtained from

the Stock de Capital Humano database, IVIE. The visual inspection of the variables that are used

in this paper reveals, first, a clear trending pattern and, second, the comovement (cross-section

dependence) that seems to be present in their evolution – see Figure 1.

3 Empirical results

We start the empirical analysis by checking whether cross-section dependence exists among the

variables of our model. Note that while it is convenient to think of cross-section independence as

the ideal case, in real world this is not likely to hold in most situations. It should be natural to

assume that the regions of Spain are dependent of each other. We employ the weak cross-section

dependence (WCD) statistic of Pesaran (2004, 2015) to test for the presence of cross-section de-

pendence. Although initially Pesaran (2004) proposed the WCD statistic to test the null hypothesis

of cross-section independence, Pesaran (2015) shows that the implicit null hypothesis of the WCD

statistic is that the cross-sectional exponent of the vector of variablesyt = (y1;t ;y2;t ; : : : ;yNT)
0 is

Rioja.
3At the moment of writing this paper (February 2016), December 2015 is the last update of the BD.Mores data

base.
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αBKP< (2� ε)=4 asN ! ∞ , such thatT = κNε , for some 0� ε � 1, and a finiteκ > 0 – for

expositional purposes, we consider the vector of the logarithm of labor productivityyt . Bailey et

al. (2015) interpretαBKP as the parameter that quantifies the degree of cross-sectional dependence,

and is defined as the exponent ofN that gives the maximum number ofyi;t units that are pair-wise

correlated. The values ofαBKP in the range[0;1=2) correspond to different degrees of weak cross-

sectional dependence. In this case, the average of the pair-wise correlation coefficients tends to

zero very fast. Values ofαBKP in the range[1=2;3=4) can be interpreted as an indicator of moder-

ate degrees of cross-section dependence. Values ofαBKP in the range[3=4;1) point to the presence

of quite strong cross-section dependence, for which the average of the pair-wise correlation coef-

ficients tends to zero rather slowly. Finally, the average of the pair-wise correlation coefficients

tends to a constant only ifαBKP= 1. Consequently, the use of common factor models to capture

strong dependence will be adequate ifαBKP is close or equal to unity – i.e.,αBKP2 [3=4;1].

The values of the WCD test statistic reported in Table 1 indicate that we can easily reject

the null hypothesis of weak cross-section dependence in favor of strong cross-section dependence

for all variables – under the null hypothesis the WCD statistic converges to a standard normal

distribution. As pointed out in Pesaran (2015) and Baileyet al. (2016), the large values of the

WCD tests can be an indication that strong dependence is present, which can be captured by the

means of an approximate common factor model. This conclusion is reinforced if we compute the

αBKP degree of cross-section dependence, which takes high values in all cases – Table 1 shows that

αBKP is larger than 0.9 in all cases. Therefore, the presence of cross-section dependence has to be

taken into account when performing the panel data order of integration and cointegration analyses

below.

3.1 Panel data order of integration analysis

Given the presence of cross-section dependence among the units of the panels, we proceed with

the computation of the Bai and Ng (2004), Moon and Perron (2004) and Pesaran (2007) panel data

unit root test statistics and the panel stationarity test in Bai and Ng (2005), using a linear time trend
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as the deterministic component in all cases. One feature that share these proposals is that they are

valid when the units of the panel are affected by the presence of strong cross-section dependence,

which is captured through the specification of an approximate common factor model. Thus, they

cover one of the issues raised in Westerlund and Breitung (2013). However, the way in which

the common factors appear in the model make these approaches to differ among them – see the

discussion below. Finally, it is worth mentioning that these proposals also differ depending on the

procedure that is used to estimate the deterministic specification, something that has been shown

to be relevant by Westerlund and Breitung (2013). In this regard, Westerlund and Breitung (2013)

evidence that using OLS detrending can reduce the empirical power of the panel unit root tests,

whereas the use of, for instance, Maximum Likelihood (ML) estimates under the null hypothesis

of unit root can give good results. All test statistics that we apply here are based on the use of

OLS detrending, with the exception of the Bai and Ng (2004) proposal, which are based on ML

detrending. Therefore, our analysis covers also another important issue raised in Westerlund and

Breitung (2013).

The approximations that we apply here differ depending on the procedure that is used to esti-

mate the common factors. Whereas Bai and Ng (2004) and Moon and Perron (2004) estimate the

common factors using principal components analysis, the approximation in Pesaran (2007) uses

the cross-section averages of the observable variables to proxy the common factors. It is worth

mentioning that the approach of Bai and Ng (2004) nests the ones in Moon and Perron (2004)

and Pesaran (2007). As noted by Bai and Ng (2010), the proposals in Moon and Perron (2004)

and Pesaran (2007) control the presence of cross-section dependence allowing for common factors,

although the common factors and idiosyncratic shocks are restricted to have the same order of inte-

gration. Therefore, it is not possible to cover situations in which one component (e.g., the common

factors) is I(0) and the other component (for example, the idiosyncratic shocks) is I(1), and vice

versa. In practical terms, the test statistics in Moon and Perron (2004) and Pesaran (2007) turn out

to be statistical procedures to make inference only on the idiosyncratic shocks, where the dynamics

of both the idiosyncratic and the common components are restricted to be the same. These features
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have to be taken into account when interpreting the outcomes of the different statistical procedures.

Let us first focus on the results obtained using Pesaran’s (2007) statistics. Table 1 presents the

CIPS test statistic – the truncated version of the statistic produces identical results – which leads to

conclude that, except foryi;t andhi;t , the idiosyncratic component of the variables that we consider

in the paper is I(1).4 The evidence drawn from the computation of the panel data unit root test

statistics in Moon and Perron (2004) reveals that the null hypothesis of unit root in the idiosyncratic

component is only rejected at the 5% level of significance foryi;t – regardless of the test statistic

that is used – and forhi;t when thetb statistic is used – throughout the paper, the estimated number

of common factors(r̂) is obtained using the panelICp2 information criterion in Bai and Ng (2002)

with a maximum of four common factors. However, we cannot conclude anything about the order

of integration of the common factors from the application of these statistics. A more informative

picture is obtained from Bai and Ng’s (2004) approach, provided that separate inference can be

conducted on the idiosyncratic and the common factor components of the observable variables.

Table 1 summarizes the results from the application of the approach in Bai and Ng (2004), re-

porting the panel augmented Dickey-Fuller (ADF) statistic for the idiosyncratic component
�
ADFτ

ê

�
of each variable and the MQ test statistics on the estimated common factors.5 Except foryi;t , the

ADFτ
ê test statistic does not reject the null hypothesis of panel unit root at the 5% level of sig-

nificance for the idiosyncratic component. The MQ test statistics find that there is, at least, one

I(1) non-stationary common factor affecting the variables under consideration – i.e., ˆr1� 1. These

elements indicate that there is strong evidence that the five variables that are used in the estimation

of the production function are I(1) non-stationary processes.

We complement the analysis of the stochastic properties following the proposal in Bai and Ng

(2005), who test the null hypothesis of I(0) against the alternative hypothesis of I(1) considering

the common factor model described in Bai and Ng (2004). The confirmatory analysis is carried

4The order of the autoregressive correction has been selected for each individual using the BIC information criterion
with a maximum of five lags. This strategy has led us to compute the critical values as described in Pesaran (2007),
but where this automatic selection of the order of the autoregressive correction has been used. The critical value at the
5% level of significance forN= 17 andT = 48 is -2.81 for both the untruncated and truncated CIPS test statistics.

5Following Ng and Perron (2001), the maximum number of lags that are used to compute the ADF statistic is set
atT1=3.
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out computing the stationarity KPSS test statistic on the idiosyncratic and the common factor

components. In all cases, the KPSS statistic of the estimated common factors for each variable

reveals that there is, at least, one I(1) common factor affecting each variable, which reinforces the

conclusions above – in order to save space, we do not report the values of these statistics, but they

are available upon request. As shown in Bai and Ng (2005), the presence of I(1) non-stationary

common factors prevents the computation of a pooled panel stationarity test for the idiosyncratic

disturbance terms – pooling the individual KPSS test statistics would require all common factors

to be I(0). Notwithstanding, the main conclusion that can be drawn is that the results that have

been obtained using the stationarity test statistics in Bai and Ng (2005) are in accordance with the

ones based on the panel data unit root test statistics.

To sum up, after analyzing the results from several types of panel data unit root and stationarity

statistics, we can conclude that the variables can be characterized as I(1) stochastic processes, so

that we can proceed with the panel data cointegration analysis.

3.2 Testing for panel data cointegration

This section tests the presence of panel cointegration using different proposals in the literature that

consider the presence of cross-section dependence and structural breaks. Proceeding in this way,

the analysis aims at obtaining robust conclusions about the existence of a long-run relationship

among the variables involved in the production function that has been specified.

3.2.1 Panel cointegration without structural breaks

Let us first focus on the Banerjee and Carrion-i-Silvestre (2015) approach where the common

factors are estimated using principal components. The panelICp2 information criterion selects two

common factors which are characterized as I(1) stochastic processes – see Table 2. The panel ADF

statistic computed using the idiosyncratic disturbance terms (Zc test statistic) leads to the rejection

of the null hypothesis of spurious regression so we conclude that, once the presence of common

factors is accounted for, there is a long-run relation among the variables that define the production
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function. This implies that the observable economic variables do not cointegrate alone – i.e., they

take part of a cointegration relation that includes the presence of global stochastic trends. This

result is in line with the theoretical arguments that claim that the TFP is an I(1) stochastic process.

Table 2 reports the panel Durbin-Hausman (DH) cointegration test statistics of Westerlund

(2008). Both theDHg andDHp panel data statistics do not reject the null hypothesis of no cointe-

gration at the 5% level of significance, although these statistics are designed under the assumption

that the common factors have to be I(0). The later has been shown to be a problematic assumption,

provided the evidence of I(1) common factors as mentioned above. The results from theCADFCP

panel cointegration statistic in Banerjee and Carrion-i-Silvestre (2011) appear in Table 2, where

the common factors are approximated by the cross-section averages of the observable variables as

in Pesaran (2006).6 As it can be seen, theCADFCP statistic leads to reject the null hypothesis of

no cointegration at the 5% level of significance, which reinforces the conclusions that have been

obtained so far.

The panel data test statistics that have been computed indicate that in general the variables

involved in the production function define a cointegrating relationship. The evidence drawn by

the panel statistics in Westerlund (2008) depends on the assumption that the common factors are

I(0), a requirement that is not met in our case. All test proposed in Banerjee and Carrion-i-Silvestre

(2011, 2015) are able to reject the null hypothesis of no cointegration with overwhelming evidence.

3.2.2 Panel cointegration with a structural break

In order to account for the presence of parameter instabilities, we have proceeded to compute the

panel data cointegration tests designed in Banerjee and Carrion-i-Silvestre (2015) considering the

effect of one structural break. Two different model specifications have been essayed depending on

whether the structural break only affects the level of the model – Model 1 in Banerjee and Carrion-

6The order of the autoregressive correction has been selected for each individual using the BIC information cri-
terion with a maximum of five lags. This strategy has led us to compute the critical values as described in Banerjee
and Carrion-i-Silvestre (2011), but where this automatic selection of the order of the autoregressive correction has
been used. The critical value at the 5% and 10% levels of significance forN = 17 andT = 48 are -2.33 and -2.23,
respectively, for both the untruncated and truncated test statistics.

12



i-Silvestre (2015) – or both the level and the slope parameters of the model – Model 4 in Banerjee

and Carrion-i-Silvestre (2015). To be specific, Model 4 implies the estimation of the extended

version of the specification given in (6):

yi;t = µ i;0+αki;t+βgi;t+δhi;t+ζ l i;t

+
�
µ i;1+α1ki;t+β 1gi;t+δ 1hi;t+ζ 1l i;t

�
DUt+F 0t λ i+ei;t ; (7)

whereDUt is a dummy variable defined asDUt = 1 if t > Tb, and 0 otherwise, withTb the break

date – Model 1 imposesα1 = β 1 = δ 1 = ζ 1 = 0 in (7). The computation of the panel data coin-

tegration statistic using Models 1 and 4 reveals that the null hypothesis of no cointegration is

strongly rejected – see Table 2. The procedure detects the presence of one or two non-stationary

I(1) common factors, depending on the model specification. As it can be seen, the consideration

of parameter instabilities in the model does not change the conclusion that has been obtained so

far, i.e., that there exists a cointegration relationship among the variables that define the production

function that has been specified.

3.3 Estimation of the production function

The estimation of the panel production function is conducted in two stages. First, the analysis

focuses on the production function that assumes constant parameters, covering the issues of strong

and weak cross-section dependence. Second, the study concentrates on the specification that con-

siders the effect of one structural break. This increases the flexibility of the model specification

and permits the computation of elasticities and other related measures that change through time.

3.3.1 Estimation of the production function without structural breaks

There are few theoretical proposals in the literature that allow the estimation of panel cointegrating

relations with common factors that capture pervasive cross-section dependence. First, we apply

the continuously-updated and fully-modified (CupFM) and the continuously-updated and bias-
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corrected (CupBC) estimators proposed in Baiet al. (2009), which rely on the use of principal

components to jointly estimate the cointegrating vector, the factor loadings and the common fac-

tors of the model specification in an iterative fashion. Both estimation procedures render consistent

and efficient estimates of the cointegrating vector regardless of whether we have I(0) and/or I(1)

common factors, but they differ in terms of when the endogeneity correction is applied – in prin-

ciple, CupFM should have better properties, since it applies the endogeneity correction in each

iteration, while the CupBC does so once convergence is achieved. Second, we also use the pooled

common correlated effects (CCEP) estimator in Kapetanioset al. (2011), which produces a con-

sistent estimator of the cointegrating vector – in this case, the common factors are proxied by the

use of cross-section averages of the observable variables of the model.

Although both approaches lead to consistent estimates of the parameters if the assumptions in

which they rely on are met, the proposal of Baiet al. (2009) uses an efficient estimation procedure,

which takes into account the possibility that there might be endogenous regressors. On the con-

trary, the estimator in Kapetanioset al. (2011) assumes that the stochastic regressors are weakly

exogenous, a situation that might not hold in our case – note that the definition of the variables

in per worker terms implies that the employment appears both on the left (in the denominator of

the dependent variable) and the right of the model equation, which casts doubts on the exogeneity

assumption of the regressors. This suggests that more stress have to be given to the estimates of

the parameters that consider endogenous regressors.7

Table 3 reports the estimation of the Cobb-Douglas production function in Equation (6).8 As

it can be seen, there are important differences among the parameter estimates depending on the

estimation technique that is used. The parameters obtained using the CCE estimation procedure

are in general smaller than the ones provided by the Cup-based estimation techniques. Note that

none of the CCE parameter estimates are statistically significant at the 5% level of significance

– the parameters for the private capital and the labor are statistically significant at the 10% level.

7We thank Chihwa Kao and Takashi Yamagata for providing the Gauss code.
8As suggested in Baiet al. (2009), the computations of the CupFM and CupBC estimators base on the use of the

Fejer kernel with a bandwidth of 10 lags.
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Although this might be surprising at first sight, it should be borne in mind that the CCE assumes

that the stochastic regressors are exogenous, an assumption that might be undermining the analysis.

Consequently, in what follows we will rely on the efficient parameter estimates that deliver the

Cup-based estimation techniques.

The estimated coefficients represent the elasticity of output with respect to physical capital,

public capital and human capital – the elasticity of output with respect to labor(γ) can be recovered

recalling thatζ = (α+β +δ + γ�1) in Equation (6). Panel A of Table 3 presents the estimation

of the parameters for the specification that does not include structural breaks. First, note that all

Cup-based estimates are statistically significant. The coefficient ofki;t indicates that the elasticity

of output with respect to the physical capital is 0.5 (CupBC) and 0.54 (CupFM), values that are

in the middle of the range of values that are commonly found in the empirical literature for the

Spanish regions.9 The coefficient ofgi;t shows that the elasticity of output with respect to the

productive public capital is 0.082 (CupBC) and 0.095 (CupFM),10 whereas the elasticity of output

with respect to the human capital is 0.136 (CupFM) and 0.209 (CupBC).11

Although these values are, in words of Boscáet al. (2011), reasonable for the Spanish economy,

before proceeding with further analyses we should check whether the approximated common factor

model captures the cross-section dependence that is present among the regions. This requirement

is needed in order to ensure that the estimation of the parameters is efficient.

Spatial dependence So far, we assumed that the cross-section dependence among the Spanish

regions is captured through the specification of a model of unobserved common factors. The use

of a common factor model aims at capturing the existence of strong dependence among the units

of a panel data set, a feature that appears when the dependence affect all units in the panel and its

9For example, the values obtained by Serrano (1996) range from 0.38 to 0.45, those obtained by Bajo and Díaz
(2005) range from 0.59 to 0.68 while that obtained by Márquezet al. (2011) is 0.31. Note that specification of the
variables, the model, the data and estimation techniques differ from one study to another.

10The estimate of Bajo and Díaz (2005) is 0.09, and the one by Márquezet al. (2011) is 0.10. Note that the estimated
values fall inside the “reasonable estimates” [0.05, 0.1] interval that define Boscáet al. (2011) for the Spanish economy
– these authors argue that this interval is in accordance with the accounting information of the Spanish Economy.

11These estimates are similar than those of Serrano (1996), who obtained a value of 0.216, and of Bajo and Díaz
(2005), who obtained a value of 0.14.
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effect does not vanish as more units are added. The econometric techniques that have been applied

consider this form of strong dependence when estimating the parameters of the model in order

to get consistent and efficient estimates. However, it is possible that the Spanish regions reflect

forms of local dependence that are spatial in nature – i.e., that the regions might be affected by the

presence of weak dependence. Spatial dependence assumes that the structure of the cross-section

dependence is related to location and distance among units, being popular specifications the spatial

autoregressive model, the spatial moving average model and the spatial error component model.

These structures define particular cases of weak cross-section dependence situations, where the

dependence exists only among adjacent observations. Therefore, it makes sense to consider the

tools developed by the spatial econometrics as a way to model the weak dependence that might

be affecting the Spanish regions – see Chudiket al. (2011) and Banerjee and Carrion-i-Silvestre

(2011) for the discussion about the distinction between weak and strong dependence.

The spatial dependence in econometric studies is carried out by defining a weight matrix,W,

which indicates whether any pair of regions share a common border. If regioni and j share a com-

mon border, thenW(i; j) = 1 and zero otherwise. The testing for spatial dependence is typically

done by maximum likelihood technique or generalized method of moments (Pesaran and Tosetti,

2011). We follow Hollyet al. (2010) and Pesaran and Tosetti (2011), and for each idiosyncratic

disturbance term, we specify the following spatial error model:

ẽ�i;t = ρ

N

∑
j=1

wi; j ẽ
�
j;t+vi;t ; (8)

whereρ is the spatial autoregressive parameter,wi; j is the(i; j) element of the spatial weight matrix

W andvi;t � iid
�
0;σ2

v

�
. We then calculate the log likelihood function:

L=�
�

NT
2

�
ln(σ2

v)+T ln jIN�ρWj� 1
2σ2

v

T

∑
t=1
(ẽ�t �ρWẽ�t )

0 (ẽ�t �ρWẽ�t ) ; (9)

whereẽ�t =
�

ẽ�1;t ; ẽ
�
2;t ; :::; ẽ

�
N;t

�0
denotes the idiosyncratic disturbance terms that are estimated using
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either the CupFM or CupBC estimators. Since Baleares and Canarias are islands, they have no

neighbors and we eliminate their data for this analysis, leaving a panel data set ofN = 15 regions

andT = 48 years.

The results of the ML estimation ofρ in Equation (8) are presented in Table 3, which reveal that

the estimation ofρ is positive and statistically significant, regardless of the estimation technique

that is used. The detection of spatial autocorrelation among the disturbance terms leads us to

conclude that, besides the existence of strong cross-section dependence, there is weak cross-section

dependence among the idiosyncratic errors. Consequently, the estimation of the parameters would

not be fully efficient, since the idiosyncratic errors are correlated. In order to address this issue,

we have estimated the production function in Equation (6) using the spatial filtered variables.

If y defines the(T�N)-matrix of the logarithm of the output per worker andW the (N�N)-

matrix of weights, the spatial filtered(T�N)-matrix y� is computed asy� = y�ρyW0 – the same

transformation is applied to thek, g, h andl (T�N)-matrices.12

The estimation results using the spatial filtered variables are collected in Table 3, where the

CupFM or CupBC-based spatial autoregressive parameter is used depending on the case. The es-

timated parameters that are obtained using the spatial filtered variables are statistically significant,

with values that are similar to the ones estimated with the original variables – the elasticities for

the private and human capitals are slightly smaller, whereas the elasticity of the public capital and

the parameter of the labor are slightly bigger. Consequently and although the presence of uncorre-

lated idiosyncratic errors violates one of the assumptions in Baiet al. (2009), these results might

indicate that the weak cross-section dependence does not affect the estimation procedures used in

the previous section in an important way.

Finally, it would be interesting to look at the effect that the estimated common component has

on each region – the common component for each regioni is defined byF 0t λ i in Equation (5),i =

1; : : : ;N. Unfortunately, give an economic interpretation to this component is not straightforward,

since the estimated common factors and loadings are identified up to a rotation of the true unknown

12TheW matrix has been normalized so that the sum of the elements of each row equals one. To avoid the exclusion
of the islands, we have assigned zeros on the corresponding rows and columns ofW.
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common factors and loadings – see Baiet al. (2009), Proposition 5. Figure 2 provides the estimated

common component for each region (upper-left picture), and the mean and standard deviation

(upper-right picture) of the common component – the CupBC-based estimates are almost identical.

As it can be seen, the effect that the common component has on each region is heterogeneous, with

an average effect that does not follows a monotonic pattern – the mean of the common component

experiences a high increase up to mid 70s, but then decreases to evolve around zero from early 80s

on. One interesting feature is that the standard deviation tends to decrease along the period that

has been analyzed, which shows that the strong dependence component that has been affecting

the Spanish regions has become more homogeneous from late 80s on. This might be related to

the analysis of economic convergence across regions, where the common component would be

capturing the convergence process that have experienced the Spanish regions – theσ -convergence

definition in Barro and Sala-i-Martin (1992).

Marginal product of the private and public capitals and returns to education From an eco-

nomic point of view, the estimation of the production function that has been conducted allows us

to compute the marginal products of the inputs. The marginal product of the private and public

capitals can be obtained as

MPK;t = εY;K
Yt

Kt
; MPG;t = εY;G

Yt

Gt
; (10)

whereεY;K andεY;G denote the elasticity of output to private and public capitals. In the case of

human capital, the literature has also investigated the impact of an additional year of education on

output, i.e., the return to education. This is captured through the estimation of the semi-elasticity

of output with respect to human capital, which is given by – see López-Bazo and Moreno (2004):

RH;t =
∂ lnYt

∂Ht
= εY;H

1
Ht
; (11)
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whereεY;H denotes the elasticity of output to human capital. In what follows, we use the elasticities

estimates that are obtained using the spatial filtered variables – results available upon request show

that similar values are obtained if we use the estimates that only accounts for the strong cross-

section dependence.

Table 4 collects the marginal products and return to human capital for the CupFM and CupBC

estimates considering a representative region, computed using the cross-section average of the

Spanish regions – for instance, for the output,Yt =N�1∑N
i=1Yi;t . Regardless of the estimator, it can

be seen that these measures decrease during the period that is studied. It is worth noticing that the

marginal product of the public capital is always above the marginal product of the private capital,

although a convergence process has taken place. The large gap between the marginal products, es-

pecially from the beginning of the period up to mid 90s, would indicate that the public capital was

under-provided, relative to the endowment of private capital – see Bajo and Díaz (2005). The dra-

matic decrease of the marginal product of the public capital can be due to the infrastructure scarcity

that suffered the Spanish economy during the 60s and 70s – see the discussion below. The average

values of the marginal products for the 1964-2011 period are 0.164 (CupFM) and 0.149 (CupBC)

for the private capital, and 0.329 (CupFM) and 0.298 (CupBC) for the public capital, values that

are in accordance with previous analyses of the Spanish regional case – Bajo and Díaz (2005) esti-

mated marginal products of 0.156 and 0.231 for the private and public capitals, respectively, for the

1965-1995 period. The estimated returns to education that have been obtained – 0.018 (CupFM)

and 0.027 (CupBC) on average for the 1964-2011 period – are considerably smaller than others

reported in the literature for the Spanish economy. In this regard, López-Bazo and Moreno (2004)

using a shorter time period and an approximation based on the estimation of cost functions, report

values for the returns to education that go from 0.131 (for the year 1980) to 0.069 (for the year

1995). Similar results are obtained in Serrano (1996), although his approach does not base on a

long-run equilibrium relationship. Notwithstanding, our estimates are in accordance with existing

evidence at international level – for instance, De La Fuente and Doménech (2006) estimate the

returns to education at 0.03 using a sample of OECD countries for the period 1960-1990.
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Table 5 presents the marginal products and returns to education computed using the time aver-

age for each region. In this case,Yt Kt , Gt andHt in Equations (10) and (11) are replaced byYi Ki ,

Gi andHi , with, for instance, for the outputYi = ∑2011
t=1964Yi;t , i = 1; : : : ;N. The marginal product

of the public capital is larger than the private capital one in all regions, which reflects the under-

provision of public infrastructures, relative to the endowment of private capital. As for the returns

to education, the CupFM-based estimates (around 0.016) are smaller than the CupBC-based ones

(around 0.024), and both of them clearly below the estimates reported in López-Bazo and Moreno

(2004) – 0.093 for the average for Spain. These discrepancies might be due to the use of a differ-

ent time period, although it might be the case that the specification of a model that includes more

determinants of the output would be reducing the estimation bias in which other analyses might be

incurring.

Finally, we should highlight the negative and highly significant coefficient forl i;t , which implies

that the constant returns to scale hypothesis of the observable inputs cannot be accepted. In this

regard, the negative sign ofζ̂ indicates diminishing returns to scale on the observable productive

factors that have been considered in the model.

3.3.2 Estimation of the production function with a structural break

This section extends the previous analysis to accommodate one structural break using the general

specification given by Model 4 in Equation (7), where the structural break can affect all parameters

of the model. The estimation of the common break date(Tb) is conducted through the minimization

of the sum of squared residuals of (7) over all possible break dates – following the convention in

the literature, the admissibleTb is defined in the close set given byTb 2 [0:15T;0:85T].

Panel B of Table 3 presents the parameter estimates for the specification that allows for one

structural break, which has been estimated at 1998. Before proceeding with the analysis, it is worth

noticing that the estimation of the spatial autoregressive model for the idiosyncratic residuals that

has been described in Section 3.3.1 indicates that the spatial autoregressive parameterρ is not

statistically significant, regardless of the specification used. In this case, the approximate common
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factor model captures the cross-section dependence that exists among the Spanish regions in a

satisfactory way. This robustness analysis reinforces the validity of the optimal estimates of the

production function that accommodates the presence of one structural break.

As it can be seen, there are some elasticities that experience a change in its value after the

euro was launched, although results and the economic interpretation depend on the estimation

procedure that is used. Let us first focus now on the CupFM-based estimates reported in Table 3.

The elasticities of the private and public capitals are positive and statistically significant – note that

the elasticity of the public capital falls inside the [0.05, 0.10] reasonable interval suggested in Boscá

et al. (2011) – whereas the negative and statistically significant coefficient for the labor suggest

the existence of diminishing returns to scale. Interestingly, the elasticity of the human capital is

not statistically significant. Except for the labor, the structural break affects all coefficients. The

private and public capital elasticities decrease after the structural break has taken place, although

the overall magnitudes continue to be positive. During the second subperiod the estimated elasticity

for the human capital is positive and statistically significant.

Table 3 presents the estimation results of the restricted model specification, where the variables

for which the parameters that are not statistically significant at the 5% level have been removed

from the model. Similar results are obtained for the estimated parameters, although now the elas-

ticity of the public capital after 1998 is negative (with a small value of 0:077�0:081= �0:004).

As above, the elasticity of the human capital is positive and statistically significant. The eco-

nomic implications of these results are quite interesting and in accordance with some previous

analyses for the Spanish economy. In this regard, Boscáet al. (2011) and De La Fuente (2010)

stress the idea that the reason behind the high values of the public capital elasticity might be the

infrastructure scarcity that is found in developing economies. Early stages of economic develop-

ment require a level of infrastructures that will impact productivity in a positive way, but once

economic development is achieved, the effects of the infrastructures would be smaller becoming

either non-significant or negative in some cases – see Holtz-Eakin (1994) and Holtz-Eakin and

Schwartz (1995) for the US regions. This defines the so-called “saturation effect” of infrastruc-

21



tures. Consequently, the fact that high public capital elasticity values are found for the Spanish

regions might be due to infrastructure scarcity during the 60s and 70s. Notwithstanding, invest-

ment efforts of local, regional and national governments during the 80s have reduced (economic

and social) infrastructure scarcity – see Boscáet al. (2011). This agrees with Maset al. (1996)

infrastructures saturation effect analysis, who reestimate a production function with different sub-

samples of increasing length (recursive estimation) and found that the recursive estimate of public

capital elasticity was experiencing a monotonic decrease – going from 0.1404 for the 1964-1973

subsample to 0.0771 when the whole period (1964-1991) was used. Note that this can also be inter-

preted as evidence of structural breaks affecting the model specification, something that is covered

by the framework that has been used in this section. The estimate of public capital elasticity in Mas

et al. (1996) for the 1964-1991 period (0.0771) is quite similar to the estimate that is obtained in

this paper for the 1964-1998 period (0.077). The fact that this elasticity is -0.004 for the 1999-2011

subperiod evidences the saturation effect of the infrastructures for the Spanish regions.

The picture is slightly different for the CupBC-based estimates. As above, the coefficient of the

labor is not affected by the structural break, whereas the elasticity of the human capital –δ in (6) –

is statistically significant at the 10% level – it is significant at the 5% level if we consider the sign

and use the right tail of the distribution when performing the statistical inference. Similarly, the

coefficient that captures the effect of the structural break on the public capital –β 1 in (6) – is sig-

nificant at the 5% level if we consider the sign and use the left tail of the distribution when carrying

out the statistical inference. Taking into account these features, we have proceeded to estimate the

restricted model that excludes the effect of the structural break on the labor. The CupBC-based

estimates are statistically significant,13 with sign and magnitude that are similar to the CupFM-

based ones. As with the CupFM-based estimates, the elasticities of the private and public capitals

decrease after the structural break. The novelty now is that the elasticity of the human capital is

significant throughout the whole period, but it experiences an important increase after the struc-

13The coefficient of the human capita is statistically significant at the 5.9% level of significance if we base on a
two-tailed inference analysis, although is significant at the 5% level if we consider the sign and use the right tail of the
distribution.
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tural break, reaching a values that is comparable to the CupFM-based estimate. Interestingly, the

elasticity of the public capital is still positive after the structural break, although it shows a small

value (0:061�0:059= 0:002). Strictly speaking, this contradicts the economic interpretation that

has been obtained using the CupFM-based estimates (-0.004 for the 1999-2011 period), although

in both cases the qualitative conclusion is coherent, i.e., the elasticity of the output with respect to

the stock of infrastructure is really small, pointing to the presence of a saturation effect.

Figure 2 depicts the estimated common component –F 0t λ i in Equation (5) – for each region

(lower-left picture), and its mean and standard deviation (lower-right picture) – as above, we only

report the results for the CupFM-based estimates since the ones using the CupBC are similar. The

effect of the common component on the Spanish regions is quite heterogeneous during the 1964-

1998 subperiod, although after the structural break we observe a complete different pattern. On

average, the effect of the common component shows an increasing trend, although the evolution

is not smooth. Further, the effects of the common component turns out to be quite homogeneous

across regions after 1998. This feature is evidenced by the evolution of the standard deviation,

which shows a huge decrease during the 60s, then experiences a mild increase up to 1998 and,

finally, falls to values close to zero after the structural break. This suggests that the incorporation

of Spain to the EMU in 1999 has increased the homogeneity of the strong cross-section dependence

effects across the Spanish regions. As above, this can also be related to theσ -convergence process

that might have experienced the Spanish regions, which would be accelerated in the EMU era.

Marginal product of the private and public capitals and returns to education Table 4 sum-

marizes the results of computing the marginal products of private and public capitals, and the re-

turns to education considering a representative region, using the restricted specification of Model

4. The qualitative conclusion that arises is that the marginal products have decreased throughout

the period studied. Up to late 80s, the marginal product of public capital was above the private

capital one. However, after the incorporation of Spain at the European Economic Community in

1986, the marginal product of private capital has been placed above the public capital one. The
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structural break estimated in 1998 has implied a decrease of the marginal products, achieving small

or even negative values in the case of the public capital. The effects of the human capital on pro-

ductivity depend on the estimates that are used. If we focus on the CupFM estimates, returns to

education are significantly different from zero in the 1999-2011 subperiod, and show a decreasing

pattern (from 0.024 to 0.02). If we focus on the CupBC estimates, the effect of human capital on

productivity is statistically significant for the whole 1964-2011 period. During 1964-1998 subpe-

riod the returns to education decrease, reaching a value close to zero (from 0.013 to 0.006). The

European and Monetary Union launch has implied an increase of returns to education, although

they have experienced a mild decrease (from 0.023 to 0.019). These estimates are clearly lower

than the one obtained in López-Bazo and Moreno (2004) for the average of Spain – which is 0.093

for the 1980-1995 period – but in accordance with other values reported in the economic literature.

As mentioned above, de la Fuente and Doménech (2006) estimate the returns to education at 0.03

using a sample of OECD countries for the period 1960-1990.

Finally, Table 5 presents the marginal products and returns to education computed using the

time average for each region. For the first subperiod, the marginal product of public capital is

above the private capital one in 13 (CupFM) and 11 (CupBC) out of 17 Spanish regions, indicating

under-provision of public capital, relative to the endowment of private capital.14 During the 1999-

2011 subperiod, the marginal product of public capital is negative in all cases. In general, we

observe heterogeneity on the marginal products, when they are statistically significant. On the

contrary, returns to education are quite homogeneous across regions – around 2% in 1999-2011,

regardless of the estimator that is used.

4 Conclusions

This papers reexamines the evidence of cointegration among the output, physical capital, human

capital, public capital, and labor. We consider annual data for seventeen Spanish regions observed

14The exceptions are Aragón, Castilla-León, Castilla-La Mancha, Extremadura, Galicia and Madrid.
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over the period 1964-2011. The empirical analyses that focus on the estimation of Spanish pro-

duction functions usually assume cross-section independence, which is a restrictive assumption

especially at the regional level. Our empirical analysis shows that the variables involved in the

model can be characterized as I(1) non-stationary stochastic processes. Therefore, the application

of panel data cointegration techniques are required to obtain consistent estimates of the parameters

of interest. The paper takes advantage of the recently developed non-stationary panel data analysis

methodology that permits cross-section dependence across the units of the panel.

The results reveal evidence of panel data cointegration among the variables of the model up to

the presence of I(1) non-stationary common factors. Consequently, the observable economic vari-

ables alone do not generate an equilibrium relationship. Thus, we need to consider the otherwise

expected global stochastic trends that define the TFP. We estimate the Spanish regional production

function using Baiet al. (2009) and Kapetanioset al. (2011) panel data cointegration estimators,

considering the possibility of parameter instabilities – due to the existence of structural breaks –

and cross-section dependence. The results indicate that physical capital, human capital, public

capital (all in per capita terms) affect the Spanish productivity, although the sign and magnitude

depend on the period that is analyzed. Finally, the negative coefficient that has been obtained for

the labor indicates the existence of decreasing returns to scale on the observable inputs.
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Table 1: Cross-section independence and panel data unit root tests

Statistic yi;t ki;t gi;t hi;t l i;t
Pesaran (2015) WCD 19.738 32.927 35.090 12.896 37.197
Bailey et al. (2015) Exponent of CSD(αBKP) 0.990 1.004 1.004 0.906 1.004

s:e:(αBKP) 0.023 0.036 0.063 0.036 0.052
Pesaran (2007) CIPS -2.934 -2.549 -2.003 -2.952 -2.342
Moon and Perron (2004) ta -3.467 0.229 -1.217 -1.589 -1.519

(0.000) (0.590) (0.112) (0.056) (0.064)
tb -3.268 0.218 -1.190 -1.684 -1.537

(0.001) (0.586) (0.117) (0.046) (0.062)
Bai and Ng (2004) ADFτê -1.681 0.739 -0.615 1.592 0.438

(0.046) (0.770) (0.269) (0.944) (0.669)
r̂ 1 2 2 1 1
r̂1 1 2 2 1 1

MQτ
f -4.582 -13.103 -17.348 -1.915 -4.324

MQτ
c -2.639 -8.911 -10.140 1.444 -1.760

Note: p-values between parentheses. The estimation of the number of common factors (r) is obtained using the panel
ICp2 information criterion in Bai and Ng (2002) with a maximum of four common factors
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Table 2: Panel data cointegration analysis

No structural breaks One structural break
Statistic ˆr r̂NP

1 r̂P
1 Model Zc r̂ r̂NP

1 r̂P
1 T̂b

Zc -3.767 2 2 2 1 -4.177 2 2 2 1998
DHp -0.401 2 4 -7.798 1 1 1 1978

(0.656)
DHg -0.093 2

(0.537)
CADFCP -2.394
Note: p-values between parentheses. The estimation of the number of common fac-
tors (r) is obtained using the panelICp2 information criterion in Bai and Ng (2002)
with a maximum of four common factors. For the no structural breaks model, the
5% critical value forZc statistic is -1.645. For theCADFCP statistic, the 5% critical
value is -2.33. In Model 1, presented by Banerjee and Carrion-i-Silvestre (2015),
the structural break only affects the level of the model. In Model 4, illustrated by
the same authors, the structural break affects both the level and the slope parame-
ters of the model. The 5% critical value for theZc statistic for both Models 1 and 4
specifications is -2.219 (see Table III in Banerjee and Carrion-i-Silvestre (2015)).
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Table 4: Marginal product of private and public capitals and returns to education for the average
of the Spanish regions

No breaks One structural break (Model 4r)
Private capital Public capital Human capital Private capital Public capital Human capital

Year CupFM CupBCCupFM CupBCCupFM CupBCCupFM CupBCCupFM CupBCCupFM CupBC
1964 0.187 0.170 0.576 0.521 0.029 0.045 0.244 0.234 0.427 0.338 0.000 0.013
1965 0.186 0.169 0.545 0.493 0.029 0.044 0.242 0.233 0.403 0.320 0.000 0.013
1966 0.184 0.168 0.515 0.465 0.029 0.044 0.240 0.231 0.381 0.302 0.000 0.013
1967 0.182 0.166 0.490 0.443 0.028 0.044 0.238 0.229 0.363 0.288 0.000 0.013
1968 0.184 0.167 0.491 0.444 0.028 0.043 0.239 0.230 0.363 0.288 0.000 0.013
1969 0.185 0.169 0.487 0.441 0.027 0.042 0.241 0.232 0.361 0.286 0.000 0.012
1970 0.185 0.169 0.481 0.434 0.026 0.041 0.241 0.232 0.356 0.282 0.000 0.012
1971 0.186 0.170 0.470 0.425 0.026 0.040 0.243 0.233 0.348 0.276 0.000 0.012
1972 0.190 0.173 0.474 0.429 0.025 0.039 0.248 0.238 0.351 0.278 0.000 0.012
1973 0.193 0.175 0.482 0.436 0.025 0.038 0.251 0.241 0.357 0.283 0.000 0.011
1974 0.188 0.172 0.473 0.428 0.024 0.037 0.246 0.236 0.350 0.278 0.000 0.011
1975 0.186 0.170 0.464 0.419 0.024 0.037 0.243 0.233 0.343 0.272 0.000 0.011
1976 0.182 0.166 0.453 0.409 0.023 0.036 0.237 0.228 0.335 0.266 0.000 0.011
1977 0.178 0.162 0.437 0.395 0.023 0.035 0.232 0.223 0.324 0.256 0.000 0.010
1978 0.172 0.157 0.427 0.386 0.022 0.034 0.225 0.216 0.316 0.251 0.000 0.010
1979 0.168 0.153 0.420 0.379 0.021 0.033 0.219 0.210 0.311 0.246 0.000 0.010
1980 0.163 0.148 0.408 0.369 0.021 0.032 0.212 0.204 0.302 0.240 0.000 0.009
1981 0.159 0.145 0.396 0.358 0.020 0.031 0.207 0.199 0.293 0.232 0.000 0.009
1982 0.156 0.142 0.377 0.341 0.019 0.030 0.204 0.196 0.279 0.221 0.000 0.009
1983 0.157 0.143 0.368 0.333 0.019 0.029 0.204 0.196 0.273 0.216 0.000 0.009
1984 0.159 0.145 0.363 0.328 0.018 0.028 0.208 0.200 0.269 0.213 0.000 0.008
1985 0.160 0.146 0.348 0.314 0.018 0.027 0.209 0.201 0.257 0.204 0.000 0.008
1986 0.157 0.143 0.325 0.293 0.017 0.026 0.205 0.197 0.240 0.190 0.000 0.008
1987 0.160 0.146 0.319 0.288 0.016 0.025 0.209 0.201 0.236 0.187 0.000 0.007
1988 0.163 0.149 0.313 0.283 0.016 0.024 0.213 0.205 0.232 0.183 0.000 0.007
1989 0.163 0.149 0.296 0.268 0.015 0.023 0.213 0.204 0.219 0.174 0.000 0.007
1990 0.162 0.148 0.278 0.252 0.015 0.023 0.212 0.204 0.206 0.163 0.000 0.007
1991 0.161 0.147 0.262 0.237 0.014 0.022 0.210 0.202 0.194 0.154 0.000 0.007
1992 0.159 0.145 0.248 0.224 0.014 0.022 0.207 0.199 0.184 0.146 0.000 0.006
1993 0.154 0.141 0.231 0.209 0.014 0.021 0.201 0.193 0.171 0.136 0.000 0.006
1994 0.155 0.141 0.223 0.202 0.013 0.021 0.202 0.194 0.165 0.131 0.000 0.006
1995 0.155 0.142 0.217 0.196 0.013 0.020 0.203 0.195 0.161 0.127 0.000 0.006
1996 0.155 0.141 0.213 0.193 0.013 0.019 0.202 0.194 0.158 0.125 0.000 0.006
1997 0.156 0.142 0.212 0.192 0.012 0.019 0.203 0.196 0.157 0.124 0.000 0.006
1998 0.157 0.143 0.210 0.190 0.012 0.019 0.205 0.197 0.156 0.123 0.000 0.006
1999 0.158 0.144 0.209 0.189 0.012 0.018 0.089 0.087 -0.008 0.004 0.024 0.023
2000 0.158 0.144 0.208 0.188 0.012 0.018 0.089 0.087 -0.008 0.004 0.023 0.023
2001 0.158 0.144 0.206 0.187 0.011 0.018 0.089 0.087 -0.008 0.004 0.023 0.022
2002 0.156 0.142 0.203 0.183 0.011 0.017 0.088 0.086 -0.008 0.004 0.023 0.022
2003 0.155 0.141 0.198 0.179 0.011 0.017 0.087 0.085 -0.008 0.004 0.022 0.021
2004 0.153 0.139 0.196 0.177 0.011 0.017 0.086 0.084 -0.008 0.004 0.022 0.021
2005 0.151 0.137 0.195 0.176 0.011 0.016 0.085 0.083 -0.008 0.004 0.021 0.021
2006 0.150 0.136 0.195 0.176 0.011 0.016 0.085 0.082 -0.007 0.004 0.021 0.020
2007 0.148 0.135 0.194 0.175 0.010 0.016 0.084 0.081 -0.007 0.004 0.021 0.020
2008 0.144 0.131 0.189 0.171 0.010 0.016 0.081 0.079 -0.007 0.004 0.021 0.020
2009 0.136 0.124 0.175 0.158 0.010 0.016 0.077 0.075 -0.007 0.003 0.021 0.020
2010 0.134 0.122 0.169 0.153 0.010 0.016 0.076 0.074 -0.007 0.003 0.020 0.020
2011 0.133 0.121 0.168 0.152 0.010 0.015 0.075 0.073 -0.006 0.003 0.020 0.019
Note: Model 4r denotes Model 4 restricted
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