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Abstract
Most otariids have colony-specific foraging areas during the breeding season, when they

behave as central place foragers. However, they may disperse over broad areas after the

breeding season and individuals from different colonies may share foraging grounds at that

time. Here, stable isotope ratios in the skull bone of adult Galapagos sea lions (Zalophus
wollebaeki) were used to assess the long-term fidelity of both sexes to foraging grounds

across the different regions of the Galapagos archipelago. Results indicated that the stable

isotope ratios (δ13C and δ15N) of sea lion bone significantly differed among regions of the

archipelago, without any significant difference between sexes and with a non significant

interaction between sex and region. Moreover, standard ellipses, estimated by Bayesian

inference and used as a measure of the isotopic resource use area at the population level,

overlapped widely for the sea lions from the southern and central regions, whereas the over-

lap of the ellipses for sea lions from the central and western regions was small and non-

existing for those from the western and southern regions. These results suggest that males

and females from the same region within the archipelago use similar foraging grounds and

have similar diets. Furthermore, they indicate that the exchange of adults between regions

is limited, thus revealing a certain degree of foraging philopatry at a regional scale within the

archipelago. The constraints imposed on males by an expanded reproductive season (~ 6

months), resulting from the weak reproductive synchrony among females, and those

imposed on females by a very long lactation period (at least one year but up to three years),

may explain the limited mobility of adult Galapagos sea lions of both sexes across the

archipelago.
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Introduction
All otariid species are colonial breeders that may reach locally high population densities at
breeding sites [1]. Females of colonially breeding species with dependent offspring often forage
in the vicinity of rookeries and behave as central place-foragers [2, 3]. According to the optimal
foraging theory, central-place foragers are more likely to accept patches close to the central
place, even when they provide a relatively low net rate of energy gain [4, 5]. This is because of
the increasing traveling costs to foraging grounds with distance, which must be compensated
by increased energy gain to be rewarding [6, 7]. In this scenario, fidelity to foraging areas at the
colony level may be the proximate cause of separation of foraging areas by nearby colonies,
provided that individual consumers consistently detect features of local foraging areas such as
changes in sea temperature or local productivity across successive trips [8, 9]. Telemetry studies
revealed that many central-place forager seabird species have strong fidelity to foraging areas
among individuals from the same breeding site [10, 11] and colony-specific foraging areas have
also been documented for different central-place forager otariids such as Antarctic fur seals
(Arctocephalus gazella) [12, 13], South American sea lions (Otaria flavescens) [14, 15] and
northern fur seals (Callorhinus ursinus) [16, 17].

After the breeding season, otariids may disperse over broad areas and individuals from dif-
ferent rookeries may potentially share the same feeding grounds at that time. Unfortunately,
information about the patterns of habitat use of most otariids after the breeding season is
scarce because satellite tags usually last for only a few months [18]. Stable isotope analysis con-
stitutes an alternative approach to study patterns of habitat use and diet at several spatial-time
scales [18], and offers valuable insights into the behavior of otariids after the breeding season
(e.g. [19, 20]).

The tissue isotopic composition of consumers in marine systems is ultimately set by the iso-
topic composition of the assimilated food. Since these inputs can show spatial isotopic gradi-
ents, consumer isotopic data can be used to study, amongst other things, their spatial variation
in their trophic habits [18]. While nitrogen isotope ratios increase in a predictable way along
trophic chains, allowing comparisons of consumer trophic position [21, 22], carbon isotope
ratios mirror baseline ecosystem signatures and provide information on foraging strategies and
feeding locations [18, 23]. The time period over which stable isotopes reveal useful information
on feeding habits depends on the biochemical turnover rate of the tissue, because stable isotope
turnover rates in tissues vary as a function of the tissue metabolic rate [24]. As a consequence,
tissues with high turnover rates provide information on the diet assimilated from recent feed-
ing bouts, while tissues with lower turnover rates provide information on diet assimilated from
more remote feeding bouts [24].

Bone tissue, due to its relatively slow turnover, constitutes a long-term integrator (~5 years)
of isotope ratios and a moderator of sporadic isotopic fluctuations, which makes it useful for
comparing the foraging habits and feeding regimes among individuals over a long period of
time [25–27]. However, the use of bone tissue samples from individuals belonging to scientific
collections can have the disadvantage of working with a limited sample size, impossible to
increase especially in the case of threatened and protected species. Furthermore, stable isotope
analysis from bone tissue is affected by some drawbacks common to other stable isotope analy-
ses. For instance, they provides less detailed information on dietary composition than stomach
content or scat analysis and cannot be used to determine the depth of the foraging habitat,
such as time-depth recorders do, or replace data (i.e. migratory routes and geographical posi-
tion) obtained by satellite telemetry. Accordingly, caution is needed when interpreting stable
isotope data and all the results derived from isotopic analyses should be considered as an
approximation due to the multiple assumptions and limitations involved.
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The Galapagos sea lion (Zalophus wollebaeki) is an endemic otariid species that breeds on
almost all islands of the archipelago, with the highest density of individuals at the central and
southern islands. This species, maybe in adaptation to or because of the relatively low produc-
tivity of the marine environment, is the smallest of all sexually dimorphic sea lions, with adult
males having a maximum weight of about 158 kg and a standard length of 205 cm and with
adult females of a maximum weight of about 95 kg and a length of 176 cm [28]. Its overall pop-
ulation, currently estimated around 16,000 individuals [29], has suffered a drastic reduction
over the last 30 years [30, 31] that lead the IUCN to classify it as endangered [32]. This general-
ist species feeds on a wide variety of both benthic and pelagic prey, whose abundance varies
both temporally and geographically [33, 34].

Using pup fur isotopic values as proxies of the habitat use of their mothers, female Galapa-
gos sea lion were shown to exploit foraging grounds closer to their rookeries during the first
months of the pupping season [35]. The studied breeding sites of the Galapagos sea lion are
separated by distances ranging from 52 to 238 km [35]. The maximum recorded distance trav-
elled by a Galapagos sea lion in a foraging trip is 42 km [36–38], which suggest that female
Galapagos sea lions from distant rookeries are unlikely to use the same foraging grounds. How-
ever, the constraints on the overall duration and distance travelled by females while foraging
due of pup rearing do not apply to males which might scatter and forage all over the archipel-
ago once the breeding season is over [39]. Furthermore, females may disperse and move to the
most productive foraging grounds in the western part of the archipelago as pups grow and
their swimming skills improve [40]. Thus, the use of distinct foraging grounds by females dur-
ing the pupping season may not apply to males or even to females in other periods of the year.

Here, we use stable carbon and nitrogen isotopes of bone tissue from adult Galapagos sea
lions to assess the long-term fidelity of both sexes to foraging grounds across the Galapagos
archipelago. We hypothesize that differences in isotopic contents could reflect either large-
scale oceanographic contrasts in productivity in Galapagos, or the high and persistent speciali-
zation of Galapagos sea lion population to trophic resources that are locally abundant in certain
parts of the archipelago. This information is useful to identify management units within the
Galapagos archipelago.

Materials and Methods

Ethics Statement
Ethical approval was not required for this study because it was conducted on Galapagos sea
lion skulls coming from scientific collection. All necessary permits were obtained for the
described study, which complied with all relevant regulations. The sampling and exporting of
all skull bone samples of Galapagos sea lions were authorized by the Galapagos National Park
Service under the permit No 184/2013 PNG.

Study Area and Sample Collection
The regional biogeography of the Galapagos archipelago proposed by Harris [41] and Rutten-
berg et al. [42] was considered to identify potential spatial foraging segregation for the Galapa-
gos sea lion. Accordingly, bone samples were collected from adult Galapagos sea lions of both
sexes found dead in breeding sites of five islands (Fernandina, San Cristóbal, Española, Santa
Cruz and Santiago; Fig 1), corresponding to three contrasting hydrogeographic regions of the
Archipelago in terms of both sea temperature and productivity [43]: West, dominated by the
Cromwell Current with the coldest sea surface temperatures and higher productivity; South,
dominated by the Humboldt Current where sea surface temperatures are cool but warmer than
the West; and Central, a mixed region where sea surface temperatures are similar or slightly
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warmer than the South (Fig 1). Both primary productivity and marine species diversity
decrease from the western to the southern regions of the Galapagos archipelago [44].

All bone samples (West region: 7 males and 9 females; Central region: 11 males and 16
females; South region: 15 males and 16 females; Table 1) were obtained from the skulls of the

Fig 1. Map of the Galapagos archipelago showing the islands where sea lion skulls were collected and the chlorophyll levels. Chlorophyll values are
the cumulative average values of chlorophyll-a concentration (mg/m3) from 1 September 1997 to 31 August 2001 derived from SeaWiFS Project (http://
oceancolor.gsfc.nasa.gov). The hydrogeographic regions, in agreement with Ruttenberg et al.[42], are denote by the names in brackets.

doi:10.1371/journal.pone.0147857.g001
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scientific collection of the Charles Darwin Research Station at Santa Cruz Island (Galapagos).
Skulls selected for sampling were restricted to Galapagos sea lions that were died from 2000 to
2001 to minimize any confounding effects due to long-term changes in the stable isotope base-
line (Table 1). Furthermore, although the exact age of a sampled individual was unknown to
us, only skulls of physically mature adult specimens were considered to avoid any possible age-
related bias [45]. Sex was determined based on external morphology (e.g. presence of baculum
bone in males) during sample collection and eventually assessed using other secondary sexual
characteristics of the skull [46]. The bone sample from the skull of each individual that was
used for the isotopic analysis consisted of a small fragment of turbinate bone taken throughout
its entire thickness from the nasal cavity. This bone type was selected because it is relatively
easy to crush and its sampling does not damage the skull for any subsequent studies. All skull
bone samples were cleaned with distiller water to remove impurities and stored dry until
analysis.

Stable Isotope Analyses
Following initial sampling, cleaning and preparation, the skull bone fragments from each indi-
vidual were dried at 6°C and grounded into a fine powder using a mortar and pestle. Lipids
were removed from each sample using a chloroform-methanol (2:1) solution [47] because lip-
ids are depleted in 13C compared with other molecules and variability in lipid content of sam-
ples may result in undesirable variability in δ13C values [23]. Nevertheless, given that the
chemical lipid extraction may lead to unpredictable changes in δ15N values due inter alia to the
inadvertent removal of amino acids [48, 49], we extracted lipids for carbon isotope analysis
and used a non-extracted subsample for nitrogen determination. Furthermore, as bone samples
contain a high concentration of inorganic carbon that may add undesirable variability to δ13C
[50], the subsamples used for carbon isotope analysis were also previously treated by soaking
in 0.5 N hydrochloric acid (HCl) for 24 h to decarbonise them [51].

Approximately 1 mg of each powdered and processed sample of bone was weighed into tin
capsules (3.3 × 5 mm) and analyzed by elemental analysis isotope ratio mass spectrometry
(EA-IRMS), using a model FlashEA 1112 elemental analyzer (ThermoFisher Scientific, Milan,
Italy) coupled with a Delta C isotope ratio mass spectrometer (ThermoFinnigan, Bremen, Ger-
many). Analyses were performed at the Scientific-Technical Services of the University of Barce-
lona, Spain.

Stable isotope abundances, expressed in delta (δ) notation, where the relative variations in
stable isotope ratios are expressed in per mil (‰) deviations from predefined international
standards, were calculated as:

djX ¼ ðjX=iXÞsample

ðjX=iXÞstandard

" #
� 1

where jX is the heavier isotope (13C or 15N), and iX is the lighter isotope (12C or 14N) in the ana-
lytical sample and in the international measurement standard [52]; reference standards were
the Vienna Pee Dee Belemnite (VPDB) calcium carbonate for δ13C and atmospheric nitrogen
(air) for δ15N. Secondary isotopic reference materials of known 13C/12C ratios, as given by the
International Atomic Energy Agency (IAEA, Vienna, Austria), were used for calibration at a
precision of 0.05‰. These include polyethylene (IAEA CH7, δ

13C = –32.1‰), L-glutamic acid
(IAEA USGS40, δ

13C = -26.4‰) and sucrose (IAEA CH6, δ
13C = –10.4‰). For nitrogen, sec-

ondary isotopic reference materials of known 15N/14N ratios, namely (NH4)2SO4 (IAEA N1,
δ15N = +0.4‰ and IAEA N2, δ

15N = +20.3‰), L-glutamic acid (IAEA USGS40, δ
15N = -4.5‰)

and KNO3 (IAEA NO3, δ
15N = +4.7‰), were used to a precision of 0.2‰. All these secondary
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Table 1. Skulls of Galapagos sea lions investigated in the present study.

Sample location Female Males

Region Island Sample ID Dead year δ15N (‰) δ13C (‰) C/N (%) Sample ID Dead year δ15N (‰) δ13C (‰) C/N (%)

West Fernandina 233 2001 13.2 -12.9 3.2 2409 2001 12.6 -12.5 3.3

West Fernandina 2387 2001 12.0 -12.5 3.1 2416 2001 14.4 -12.7 3.1

West Fernandina 2397 2001 15.2 -14.2 3.3 2278 2001 13.3 -12.7 3.2

West Fernandina 2407 2001 12.2 -13.3 3.1 2311 2001 12.6 -12.4 3.2

West Fernandina 2411 2001 12.9 -12.6 3.2 2313 2001 12.8 -12.6 3.2

West Fernandina 2414 2001 13.8 -13.3 3.2 2428 2001 11.8 -13.5 3.2

West Fernandina 2417 2001 12.2 -12.9 3.1 2484 2001 12.7 -12.8 3.2

West Fernandina 2427 2001 12.1 -12.6 3.2

West Fernandina 2393 2001 13.5 -13.2 3.0

Mean ± SD 13.0 ± 1.0 -13.0 ± 0.5 12.8 ± 0.7 -12.7± 0.4

Central Santiago 164 2001 13.4 -13.1 3.1 54 2001 13.5 -13.1 3.0

Central Santiago 165 2001 12.1 -12.9 3.2 2497 2001 12.7 -13.6 3.2

Central Santiago 168 2001 14.9 -12.2 3.1

Central Santa Cruz 2336 2000 11.8 -13.6 3.1 2445 2000 12.2 -13.7 3.2

Central Santa Cruz 2338 2000 11.2 -13.4 3.2 2448 2000 13.0 -13.9 3.3

Central Santa Cruz 2288 2000 12.2 -13.9 3.1 2460 2000 11.7 -13.5 3.2

Central Santa Cruz 2304 2000 11.4 -13.3 3.3 2486 2000 14.6 -13.7 3.5

Central Santa Cruz 2316 2000 13.0 -13.4 3.4 2297 2000 11.8 -13.4 3.1

Central Santa Cruz 2464 2000 12.4 -13.4 3.3 2449 2000 11.6 -13.5 3.2

Central Santa Cruz 2469 2000 12.2 -13.3 3.0 2462 2000 11.8 -13.6 3.4

Central Santa Cruz 2470 2000 12.8 -13.7 3.1 2385 2001 11.4 -13.7 3.1

Central Santa Cruz 2337 2001 12.6 -13.2 3.2 2455 2001 14.9 -13.5 3.4

Central Santa cruz 2343 2001 13.1 -14.2 3.1

Central Santa Cruz 2395 2001 11.4 -13.6 3.1

Central Santa Cruz 2434 2001 12.8 -13.5 3.2

Central Santa Cruz 2352 2001 11.6 -13.5 3.2

Mean ± SD 12.4± 0.9 -13.4± 0.4 12.7± 1.2 -13.6± 0.2

South San Cristóbal 2451 2000 12.3 -13-5 3.1 2465 2000 12.5 -13.3 3.1

South San Cristóbal 2289 2001 13.0 -14.1 3.2 2404 2001 12.3 -13.3 3.1

South San Cristóbal 2324 2001 11.4 -13.5 3.1 2420 2001 11.3 -13.3 3.2

South San Cristóbal 2390 2001 11.8 -13.7 3.2 2421 2001 11.7 -13.8 3.0

South San Cristóbal 2396 2001 11.9 -13.7 3.2 2480 2001 11.7 -13.5 3.1

South San Cristóbal 2413 2001 12.3 -13.6 3.3 2485 2001 12.3 -13.6 3.2

South San Cristóbal 2468 2001 11.6 -13.6 3.4 2481 2001 12.2 -13.9 3.1

South Española 2281 2000 11.6 -13.7 3.2 1684 2000 11.5 -13.7 3.2

South Española 2447 2000 11.9 -13.6 3.2 1686 2000 11.8 -13.6 3.2

South Española 2471 2000 11.7 -13.8 3.1 2326 2000 11.7 -13.9 3.3

South Española 2488 2000 12.9 -14.1 3.6 2452 2000 11.4 -13.5 3.2

South Española 2410 2001 11.3 -13.8 3.2 2454 2000 11.9 -13.7 3.2

South Española 2389 2001 13.6 -13.1 3.1 2399 2001 12.0 -13.4 3.0

South Española 2415 2001 13.2 -12.8 3.3 2406 2001 13.8 -13.7 3.1

South Española 2426 2001 12.4 -14.1 3.1 2394 2001 11.6 -13.0 3.1

South Española 2443 2001 11.7 -13.3 3.1

Mean ± SD 12.2± 0.7 -13.6± 0.4 12.0± 0.6 -13.5± 0.3

δ13C: stable carbon isotope values;δ15N: stable nitrogen isotope values; C/N: carbon to nitrogen mass ratios;Bold isotopic values: mean ± SD for each

sex within each region;Dead year: year of collection; Sample size: only one sample from each skull was analyzed; Age: all specimens are adult physically

mature sea lions of unknown age.

doi:10.1371/journal.pone.0147857.t001
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isotopic reference materials were employed to recalibrate the system and compensate for any
measurement drift over time once every 12 samples analyzed.

Data Analyses
We quantified the carbon to nitrogen (C/N) mass ratio of each analyzed sample as a control for
the data quality (e.g. adequate lipid extraction) of the bone collagen [18]. Furthermore, before
all other statistical analyses, we verified the normality of the data by means of the Lilliefors test,
and its homoscedasticity by means of the Levene test. Separate two-way ANOVAs (since δ13C
and δ15N were uncorrelated) were used to assess the differences in the average δ13C and δ15N
values depending on gender and region and their interactions, and the Scheffe test was used for
the post-hoc comparisons.

SIBER (Stable Isotope Bayesian Ellipses in R) [53] was used to define the isotopic niche
space among Galapagos sea lions from the three different regions as a measure of their isotopic
resource use area at the population level. This method is a Bayesian version of Layman metrics
[54] that unlike of the Euclidean methods (e.g. convex hulls), can incorporate uncertainties
such as sampling biases and small sample sizes into niche metrics [53]. Based on Markov-
Chain Monte Carlo (MCMC) simulation, this approach assigns measures of uncertainty to
construct parameters of ellipses in a way similar to a bootstrap. We used standard ellipse areas
corrected for small sample size (SEAC) to represent the Galapagos sea lions from the three dif-
ferent regions in the isotopic space and estimated the width of their isotopic niche using the
Bayesian standard ellipse areas (SEAB). The latter captures all the same properties as SEAc, but
it is unbiased with respect to sample size and exhibits more uncertainty with smaller sample
size [53]. Furthermore, we calculated the magnitude of the isotopic overlap among sea lions
from the three different regions based on 100,000 posterior draws of the SEAC parameters [53].

Data are always shown as mean ± standard deviation (SD), unless otherwise stated, and the
significance level considered for all tests was 0.05 [55]. All statistical analyses were carried out
in free software R 3.0.2 [56] and all codes for SIBER analyses were contained in the library
SIAR (Stable Isotope Analysis in R) [57].

Results
Table 1 shows the stable isotope (δ13C and δ15N) values and the carbon to nitrogen (C/N) mass
ratios of the Galapagos sea lions from the different islands and regions of the Galapagos archi-
pelago. The C/N mass ratio of all samples ranged from 3.0 to 3.6 (Table 1), well within the theo-
retical range that characterizes unaltered bone collagen protein [58]. The stable isotope values of
sea lion bone significantly differed among regions (Two-way ANOVA; δ13C: F2,68 = 19.603,
p< 0.001; δ15N: F2,68 = 4.832, p = 0.011), and there was no significant differences between sexes
(Two-way ANOVA; δ13C: F1,68 = 0.635, p = 0.428; δ15N: F1,68 = 0.085, p = 0.771). Further, the
interaction between sex and region was not statistically different for either δ13C (F2,68 = 2.610,
p = 0.081) or δ15N (F2,68 = 0.262, p = 0.771). Post-hoc tests revealed statically significant differ-
ences between sea lions from the western and southern regions for both δ13C and δ15N (Fig 2).
The average δ13C of the sea lions from the southern region was not different from that of the sea
lions from the central region and the average δ15N of the sea lions from the central region was
not different from that of the sea lions from the other two regions (Table 1 and Fig 2).

The Bayesian ellipse of sea lions from the south (SEAB mean = 0.87‰2, 95% credibility
interval of 0.58 to 1.19‰2) and west (SEAB mean = 1.59‰2, 95% credibility interval of 0.88 to
2.43‰2) regions did not overlap (Fig 3), hence confirming different resource use patterns for
these two groups of sea lions. On the other hand, the Bayesian ellipse of sea lions from the cen-
tral region (SEAB mean = 1.51‰2, 95% credibility interval of 0.99 to 2.11‰2) overlapped with
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those of sea lions from the other two regions (Fig 3). The overlap area (0.57‰2) of the Bayesian
ellipses from the central and south regions represented the 47.0% of the ellipse surface of the for-
mer and the 88.5% of the ellipse surface of the latter. Conversely, the overlap area (0.24‰2) of
the Bayesian ellipses of sea lions from the central and west regions represented only the 19.7%
of the ellipse surface of the former and the 19.5% of the ellipse surface of the latter (Fig 3).

Discussion
The results reported here suggest a certain degree of foraging philopatry at a regional scale
within the archipelago for both sexes of the Galapagos sea lions, as far as a west-south gradient
in the stable isotope baseline exists in the archipelago. Changes in the stable isotope ratios of

Fig 2. Mean (±SD)values of δ13C (A) and δ15N (B) for bone from the skulls of male and female sea lions collected in three different regions of the
Galapagos archipelago. Regions with different superscript (lower-case letters) are statistically different in their mean values according to the Scheffe's post
hoc test. Vertical bars show standard deviation.

doi:10.1371/journal.pone.0147857.g002
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sea lion prey within the archipelago have not been specifically investigated to our knowledge,
but available information (Table 2) shows a weak west-south decrease in both the δ13C and
δ15N values of jacks (Carangidae) and sardines (Clupeidae). Furthermore, stable isotope ratios
in suckling pups of the Galapagos sea lions revealed a similar geographic pattern [35], which
agrees with the pattern reported here for adults.

Regional differences in the isotope baseline within the Galapagos Islands are certainly small
but the consistent pattern across fishes and sea lion pups and adults reinforces their biological
significance and the gradient observed in the δ15N and δ13C values is consistent with the pri-
mary productivity pattern in the archipelago (Fig 1). The oceanic areas adjacent to the Galapa-
gos Islands experience open ocean conditions and are characterized by relatively low δ15N
variability and values at the base of the food web [61]. Conversely, upwelling results into higher
δ15N values [62], because 15N is recycled more quickly, and higher δ13C values, because of the
high consumption of 12C by phytoplankton due to a high primary productivity [63, 64]. Hence,

Fig 3. Area of the isotopic niche of Galapagos sea lions in the three different regions of the archipelago. Ellipse areas (solid lines)calculated with
SEAC using the bivariated isotopic values (solid circles) of males and females from each region(West, Central and South).

doi:10.1371/journal.pone.0147857.g003

Table 2. Stable isotope values (mean ± SD) of the potential Galapagos sea lion prey from the three different regions of the archipelago.

Scientific name Family Habitat Region Sampling date n δ13C (‰) δ15N (‰) Source

Selar crumenophthalmus Carangidae Pelagic West 2008 5 -15.9 ± 0.3 11.9 ± 0.9 [59]

Selar crumenophthalmus Carangidae Pelagic South 2008 3 -16.5 ± 0.5 11.2 ± 0.6 [60]

Sardinops sagax Clupeidae Pelagic West 2008 8 -16.8 ± 0.7 9.7 ± 1.7 [59]

Opisthonema berlangai Clupeidae Pelagic Central 2008 2 -17.1 ± 0.1 9.6 ± 0.7 [60]

Opisthonema berlangai Clupeidae Pelagic South 2008 4 -17.4 ± 0.2 9.5 ± 0.5 [60]

doi:10.1371/journal.pone.0147857.t002
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differences in the stable isotope ratios of sea lions along the productivity gradient just reveal
foraging phylopatry.

A potentially confounding factor is the capacity of Galapagos sea lions to forage either pela-
gically or benthically [36, 37] which might obscure the regional differences in the δ13C values if
a strong pelagic-benthic gradient existed and the proportion of pelagic and benthic foragers
varied along the productivity gradient. Although other studies have shown that the Galapagos
sea lion have generalist diets whose species composition did not significantly differ between the
southern and western regions [35, 65], the possibility that foraging strategies vary along the
productivity gradient deserves further research.

Our results then would render support to the hypothesis that there is a long-term fidelity of
the Galapagos sea lions to foraging habitats close to their breeding grounds within large areas
of the archipelago, beyond what reported by satellite tracking at short time-scale [36, 37].
Although not always close to breeding sites, long-term foraging site fidelity has also been
observed in other otariid species, such as the Australian sea lion (Neophoca cinerea) [66], Aus-
tralian fur seal (Arctocephalus pusillus doriferus) [20] and Antarctic fur seal [67, 68]. Our con-
clusion is also supported both by the typically short distances that the Galapagos sea lion travel
(41.76 ± 20.27 km, range: 14.3 to 76 km) [36] during their foraging trips and by detected differ-
ences in isotopic contents in lactating Galapagos sea lion females from different regions during
gestation [35]. However, all conclusions stemming from scat analyses, diving behavior, satellite
telemetry or the isotopic analyses of tissues with high turnover rates could only convey infor-
mation on a short-term (days to a few months) basis. By being a long-term integrator (~5
years) that smoothes out the annual isotopic variability in highly dynamic oceanographic con-
ditions, the bone tissue used in the study can provide a substantial characterization of the con-
trasts in the trophic ecology of the Galapagos sea lion in different parts of the archipelago,
including for the first time information about adult males.

It should be noted, however, that stable isotope analysis from bone has also some limita-
tions. First, and as a direct consequence of a low isotopic turnover rate, the stable isotope ratios
reported here may be influenced in some individuals not only by the adult stage diet but also
by the diet at the juvenile/immature period. Since (i) ontogenetic foraging changes are com-
mon in otariids [45, 69] and (ii) they mainly disperse at young ages [70–72], it is likely that the
bone value in young adults is a mixture of various isotopic habitats and diets. A second draw-
back is that bone sampling is highly intrusive and hence samples are usually collected only
from dead stranded specimens or from scientific collections. That certainly limits sample size
and may result into insufficient power to capture the actual individual levels of variability
within the population. Here we have analyzed all the samples available at the Charles Darwin
Research Station, statistical models were validated by residual analyses and the final models
had a very good fit to the available data. Perhaps, a larger sample size would reveal differences
between the central and southern populations, but we are confident that the available data set
confirms, at least, limited exchange between the western part of the Galapagos Islands and the
remaining of the archipelago.

Otariids are income breeders and females alternate feeding trips to the sea with suckling
bouts on land during the long lactation period (approximately one year) when pups almost
exclusively feed on maternal milk [73]. Pups that remain unattended while their mothers are at
sea may die of starvation [74, 75]. Under the constraints of lactation, otariid females would be
expected to modify their foraging behavior (prey choice and time spent at sea) to shorten the
foraging trip durations while they are feeding pups more or less continuously and to meet their
energy requirements [76]. As a result of these trade-offs, otariid females are expected to forage
closer to the rookery, particularly during the early lactation [13, 77, 78], dispersing to more
productive and distant foraging grounds as pups improve their swimming skills and certainly
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after weaning. However, the lactation period of Galapagos sea lions is much longer than that of
most otariids since mothers generally wean their offspring after a long period lasting at least
one and usually two or even three years [79]. This behavior is according to the seasonal-pro-
ductivity hypothesis, which predicts an inverse correlation between latitude (a proxy for oce-
anic productivity) and lactation length in pinnipeds [80], and implies that new pups are born
while the older siblings of different cohorts are still being nursed [79]. In the case of the Galapa-
gos sea lion females, the need to minimize traveling costs and to feed regularly their several
pups can be considered a continuous pressure throughout each female’s life and may lead to
philopatric tendencies found in this study. The constraints related to the long duration of pup
dependency do not apply for Galapagos sea lion males that could scatter and forage anywhere
once the breeding season is over.

Contrary to what happens for most otariids, which aggregate into large colonies only during
a few weeks in late spring or early summer for mating immediately after that females give birth
[73, 81], for Galapagos sea lions the rutting period lasts for approximately six months [28, 38],
with certain variation depending on the island [39]. This is because of the weak reproductive
synchrony of females, which may give birth and come into estrus at any time from August to
January [28, 38]. Only the males of the Galapagos sea lion and those of the Australian sea lion
face similar challenging long breeding seasons [73] which make impossible to any male contin-
uously to defend a territory and monopolize and mate receptive females by remaining fasting
at the rookery during such a long time span [82]. Australian sea lion males respond to this chal-
lenging behavior as central place foragers and using the same foraging grounds year round
[66]. A similar situation is likely to be true for the Galapagos sea lion, at least during the six
months of their extended rutting period.

Thus, the constraints imposed by the long dependency of several pup cohorts on females
and by the long duration of the reproductive season on males may explain both the spatial for-
aging segregation and the philopatric tendencies of both sexes of the Galapagos sea lion [79,
83]. In this context, when resource availability is unpredictable, as in tropical marine environ-
ments with low seasonality, individuals foraging area fidelity can provide ecological benefits,
such as resources and predation risk knowledge [84].

The two constraints (long pup dependency and reproductive season) may also explain the
absence of long-term sexual segregation of the Galapagos sea lion foraging habits that could be
expected for sexually dimorphic species [45, 85, 86]. This is contrary to what is expected for a
sexually dimorphic air-breathing marine predator, where large-bodied males should be able to
travel longer distances from the rookeries and to exploit larger three-dimensional habitats than
females [87] and where such differences are expected to be consistent through time [20, 88]. It
should be noted, however, that sexual size dimorphism is much smaller in the Galapagos sea
lion than in other otariids and hence it is not so surprising that males and females exploit simi-
lar foraging habitats (depths and distances from the rookery) and consume prey at similar tro-
phic levels [39]. Furthermore, the relationships among body size, diving performance and
isotopic niche are not necessarily constant and individual traits other than size, such as energy
requirements or breeding constraints, as well as variations in population density and prey
availability play a fundamental role on determining resource partitioning between the two
sexes. For instance, the males of the highly sexually dimorphic South American sea lion can
certainly dive deeper and longer than females [14] and both sexes differ in their isotopic niche
during the early years of their adult live but share the same isotopic niche at an older age [45].
Furthermore, isotopic niches have historically converged as the population from northern Pat-
agonia recovered from commercial sealing and the per capita food availability changed [26].
On the other hand, males and females share the same isotopic niche for most of the year in
Uruguay and Brazil, but differences emerge immediately before the breeding season [89]. In
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any case, it should be kept in mind that the isotopic niche is just a proxy of the actual trophic
niche and the absence of differences in stable isotope ratios does not necessarily mean identical
trophic niches. Further research based on stomach content analysis is required to be sure that
male and female Galapagos sea lions do not differ in trophic niche.

In conclusion our results show that: i) spatial trophic segregation occurs in Galapagos sea
lions, ii) the males can also display foraging philopatry, iii) local trophic resources are essential
for the breeding success and positive growth of colonies in different islands of the archipelago,
iv) this apex predator could be used as an “ecosystem sentinel” since changes in the quality or
integrity of the foraging zones could be used as an indicator of environmental degradation and
of declines in the abundance or diversity of its trophic resources in Galapagos [90, 91], all of
which are key monitoring features of this Biosphere Reserve (UNESCO 1985) andWorld Nat-
ural Heritage Site (since 1978).
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