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Abstract
Couplings between protein sub-structures are a common property of protein dynamics.

Some of these couplings are especially interesting since they relate to function and its regu-

lation. In this article we have studied the case of cavity couplings because cavities can host

functional sites, allosteric sites, and are the locus of interactions with the cell milieu. We

have divided this problem into two parts. In the first part, we have explored the presence of

cavity couplings in the natural dynamics of 75 proteins, using 20 ns molecular dynamics

simulations. For each of these proteins, we have obtained two trajectories around their na-

tive state. After applying a stringent filtering procedure, we found significant cavity correla-

tions in 60% of the proteins. We analyze and discuss the structure origins of these

correlations, including neighbourhood, cavity distance, etc. In the second part of our study,

we have used longer simulations (�100ns) from the MoDEL project, to obtain a broader

view of cavity couplings, particularly about their dependence on time. Using moving window

computations we explored the fluctuations of cavity couplings along time, finding that these

couplings could fluctuate substantially during the trajectory, reaching in several cases corre-

lations above 0.25/0.5. In summary, we describe the structural origin and the variations with

time of cavity couplings. We complete our work with a brief discussion of the biological impli-

cations of these results.

Introduction
The identification and characterization of couplings between different elements of the protein
structure (residues, secondary structure elements, binding sites, etc) is a subject of particular
interest in molecular dynamics studies[1–7], given their role in protein dynamics, function and
regulation. For example, Fenwick et al.[6] have recently shown how the study of information
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transfer through correlated backbone motions increases our understanding of overall structure
fluctuations in beta sheets. From a functional point of view, an interesting case is that of alloste-
ric couplings which provide[8–13] a protein-level, function regulation mechanism by which
modifications (ligand binding, residue mutation, or covalent modification) at one protein site
affect the binding ability of the functional site.

Here we have focused on the couplings between cavities during the native state dynamics,
studying their presence, fluctuations and structural basis. We have chosen cavities because of
their functional interest: they frequently coincide with the functional site of the protein[14],
they can host allosteric effector sites[15–18], and their modifications by sequence mutations
are at the basis of some diseases, e.g. they explain the formation of hemoglobin polymers in the
case of sickle cell anemia[19].

Our work is based on the use of molecular dynamics (MD) simulations and data, and is di-
vided into two main parts. In the first one, we have generated two independent, 20 ns trajecto-
ries for a set of of 75 proteins, containing between 6 (cow ubiquitin) and 43 (human annexin
V) cavities. In this set we have studied cavity couplings in short, stable simulations around the
native state. In the second part, we have used an independent set of 41 proteins for which MD
simulations of length equal to, or longer than, 100 ns were available from the MoDEL project
[20]. This set has allowed us to characterize the behaviour of cavity couplings in longer dynam-
ics. For the first part, we have found a total of 297 significant couplings distributed over 45 pro-
teins (60% of the protein dataset). We study and explain the structure origin of these couplings;
subsequently, we explore their dependence on sequence changes. We find that (i) some are
conserved between orthologs, and (ii) in the case of human lysozyme, two couplings in the na-
tive protein are conserved in some of its mutants. For the second part, we found that cavity cor-
relations fluctuated along the simulation, reaching values between 0.25 and 0.5 with some
frequency. Finally, we put our results in a biological context and briefly speculate on how they
suggest a simple mechanism for the appearance of allostery along evolution.

Materials and Methods

1. Protein datasets
1.1 Set of 75 proteins with MD simulations generated for this work. This dataset (which

we call D75) was obtained following a protocol designed to ensure structure quality, and the
presence, for each human protein chosen, of at least one ortholog from a different species. We
describe below the protocol followed.

First, we used InParanoid[21,22] to obtain a list of ortholog pairs between human and other
species, restricted to those cases for which an X-ray structure was available for both species.
The sequences used for this comparison were extracted from SwissProt (v. 52.5) [23,24], re-
moving cases for which the orthology relationship was unclear. Second, we excluded NMR and
modelled structures, structures with bound nucleic acids or polysaccharides, mutants and cases
with model fragments, as well as structures with resolution lower than 2.5Å. When several
PDB[25] files were available for the same species we kept the version with better structural
quality parameters (resolution and R-factor). Additionally, at this stage we checked the se-
quence identity between the PDB[25] and SwissProt/UniProt[23,24] versions of the protein, to
avoid identification errors. Third, for each ortholog pair, and to ensure that the PDB structures
chosen for each species corresponded to the same protein region, we performed a structural
alignment using MAMMOTH [26]. At the end of this pipeline, we obtained a total of 83 pro-
teins (36 from human and 47 from 11 different species). Note that quality analysis of the MD
simulations (using coordinate rmsd vs. time plots plus manual analysis) reduced this number
to 75 proteins (see next section below). From a structural point of view, it must be noted that
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63 of the proteins chosen were single-domain or corresponded to single-domain parts from
larger polypeptides, 12 had more than one domain. The 75 proteins were distributed over the
three most populated CATH[27] classes (Mainly Alpha, Mainly Beta, and Alpha Beta) and
sampled 12 CATH architectures (S1 Table).

To validate our results in the ubiquitin case, we retrieved from the PDB four versions of ubi-
quitin's structure that also comprise its solution dynamics[28–31]. The latter is represented by
an ensemble of 128, 116, 301 and 144 models, for the 1XQQ, 2K39, 2LJ5 and 2NR2 versions of
ubiquitin, respectively.

1.2 Set of 41 proteins with MD simulations retrieved from the MODEL project. To
characterize cavity couplings in more extended dynamics, we used a set of 41 proteins (that we
call D41) from the MoDEL project[20]. Of these, 36 had simulation lengths of 100 ns (S2
Table), and 5 had simulation lengths around one microsecond (1ubq, 1000 ns; 2gb1, 1000 ns;
1kte, 998 ns; 1opc, 791 ns; 1cqy, 769 ns). From a structural point of view, all the proteins but
two were single-domain, or corresponded to single-domain parts from larger polypeptides (S2
Table). They were all distributed over the three most populated CATH[27] classes (Mainly
Alpha, Mainly Beta, and Alpha Beta) except one, which belonged to the unfrequent Few Sec-
ondary Structures class. The CATH architectures sampled were 12; one protein had no
assigned architecture.

2. Molecular dynamics simulations
For each protein in D75 we produced two MD trajectories (or simulation replicas) performed
using AMBER 9 [32] with explicit solvent and standard equilibration, thermalization and sim-
ulation protocols at room temperature and pressure as described in MoDEL [20]. The starting
point was the known experimental structure (see S1 Table for the corresponding PDB codes)
removing any bound ligand. The system was then relaxed, solvated, neutralized, thermalized
and pre-equilibrated using standard procedures [20]. Subsequently, we applied an equilibration
step to the resulting systems, which were allowed to relax for 0.5 ns with parm99-AMBER
(P99-T3P) force field [33]. These equilibrated structures were then used as starting points for
20 ns production trajectories, performed at constant pressure (1 atm) and temperature (300 K)
using standard coupling schemes [20] (the same in all cases). Replicas were obtained by consid-
ering another snapshot from the equilibration after assigning a different set of random veloci-
ties. For aldolase the simulations were extended to 100 ns to perform an additional test; for
ubiquitin (PDB code: 1UBQ) one simulation was extended to 100 ns, to compare our results
with experimental data.

The analyses of D75 simulations were done using one snapshot collected every 200 ps; that
is, 100 snapshots for 20 ns simulations, and 500 snapshots for 100 ns simulations. The cavities
studied have different sizes and happen in different environments; accordingly their fluctua-
tions will have different time scales, i.e. there is no single time interval that would allow us to
retrieve all the couplings. The 200ps value was chosen on the basis of our previous work[34],
where for an analogous problem (involving correlations between SURFNET cavities) we were
able to find a substantial number of couplings. For D41 trajectories, we had two sampling
steps: for the 100 ns trajectories, we collected one snapshot every 200ps; for ~1 microsecond
simulations, we collected one snapshot every 2000ps. That is, in both cases we worked with 500
snapshots, but they represented different timescales, depending on the overall
simulation length.

Crmsd values were plotted over time, for all the simulations. These plots were used as a
guide for subsequent visual inspection, to eliminate those cases with an undesired behaviour,
like appearance of unphysical structures, or presence of large structural deviations from the
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native that could degrade the cavity definitions. When applied, elimination affected both repli-
cas of the protein, as well all its orthologs, even if these had a normal behaviour. Only two pro-
teins were removed at this stage: calmodulin (physically unrealistic behaviour) and focal
adhesion kinase (fluctuations in the hanging N-terminal affected cavity definition along the dy-
namics). The final dataset was constituted by 75 proteins (34 from human and 41 from 10 dif-
ferent species, grouped in 27 ortholog pairs and 7 triplets).

3. Cavity computations
We followed our previous protocol[17] (see below), in which cavities are computed with the
program SURFNET[35]. Apart from SURFNET there are different ways of identifying protein
cavities: Pass[36]; Fpocket[37]/MDpocket[38]; etc. We decided to use SURFNET because it is
broadly used and cited in structure/function studies and its cavities cover a large range of sizes.
In addition, SURFNET has been used in many cases to support or define the structure/function
analysis of MD trajectories[34,39–42]. In this sense, it is worth noting that Pesce et al.[43] find
an excellent agreement between SURFNET cavities and the observation of bound Xe and
butyl-isocyanide molecules in their study of myoglobin and truncated hemoglobins. Note that
in the case of the extended 100 ns ubiquitin simulation, we eliminated the highly flexible
C-terminal end (residues 71–76) because it may lead to the appearance of spurious cavities.

In our protocol for cavity computations, for each protein we first obtained a list of its cavi-
ties and of their contouring (or lining) atoms, running SURFNET[35] with default parameters
on the relaxed PDB protein structure (see S1 Table). Second, from the set of contouring atoms
of each cavity we removed those atoms that can introduce artefacts in root-mean square com-
putations (see below) because of their arbitrary definition: CG1 and CG2 from Val, CD1 and
CD2 from Leu, O1 and O2 from Asp, OD1 and OD2 from Glu, NH1 and NH2 from Arg, CD1,
CD2, CE1 and CE2 from Phe, and CD1, CD2, CE1 and CE2 from Tyr. The resulting atom list
was characteristic of the cavity and was used in all the remaining computations (particularly
crmsd) involving that cavity. Finally, from the set of cavities, we eliminated those with less than
30 atoms and/or less than 5 different residues.

Equivalent cavities between orthologs were defined as those with a maximum coincidence
in their contouring atoms after structure alignment with MAMMOTH [26]. In accordance
with Panjkovic and Daura[18], who used a different approach, we found that a substantial
number of conserved cavities between orthologs.

4. Shape descriptors for cavities
Before starting to look for cavity couplings, we need to see how individual cavities fluctuate
along the dynamics. We can do this in many ways, for example by looking at the variation in
cavity volume, or accessible surface, or atom or residue locations/distances, etc. We decided to
focus on a shape descriptor, because shape is an important component in protein-substrate rec-
ognition[44,45] and protein-protein interactions[46].

Following our recent work[17], we characterized cavity shape variations (relative to the ex-
perimental structure) along the dynamics using coordinate root-mean-square deviations
(crmsd). Crmsd is a widely used shape descriptor that has been utilized to characterize func-
tional site (FS) structure changes in MD simulations[34,47–49], in structure/function analyses
[50,51], in comparative modeling studies[52], etc. In addition, it provides a direct measure of
the size of the conformational space explored by the structures or sub-structures studied[53].

Crmsd was computed after least-squares superposition of the structures compared, using
the standard Kabsch algorithm[54], which eliminates the translation between structures and
superposes them applying the optimal rotational transformation between them. Crmsd is then
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obtained using: [(1/N).∑jdj
2]1/2, where N is the number of superimposed atom pairs, the subin-

dex j varies between 1 and N, and dj is the distance between the j-th snapshot atom and its
equivalent in the relaxed PDB structure. To characterize the fluctuations of a given cavity along
the dynamics, the crmsd computation was performed for each snapshot, superposing the cavi-
ty's conformation in that snapshot to its conformation in the relaxed PDB structure, which was
always used as a reference. This gave a list of 100 crmsd values for each cavity (Fig. 1) that is at
the basis of subsequent computations.

The same procedure was applied to compute the Ca-trace crmsd, although in this case all
the Ca atoms of the protein were used for the alignment.

5. Correlations between cavities
5.1 Identification of significant correlations in whole trajectories. The first half of this

work was carried using D75. It was devoted to explore the presence of cavity couplings in the
dynamics of proteins near the native state, using 20 ns simulations. Couplings were obtained
using the protocol described in this section (see below and Fig. 1). It is important to note that
they are computed for a set of snapshots; they are not a property that can be independently
measured for every single snapshot like, for example, an interatomic distance. For a given

Fig 1. Characterization of cavity couplings. In this work cavity couplings correspond to pairs of cavities that are correlated along the dynamics. The
correlations are mutual information-based and, when statistically significant, are considered to indicate the existence of a cavity coupling (see Materials and
Methods). The upper half of the figure illustrates how cavity correlations were computed using the cavities' crmsd values at the different snapshots: crmsd1Ci
refers to the crmsd value obtained between the set of atoms defining the i-th native cavity Ci and the first snapshot of the trajectory, crmsd2Ci for the second
snapshot, etc; crmsd1Cj values have an analogous meaning for cavity Cj. The lower half of the figure shows how we computed the correlation between
cavities and the Ca trace (used to understand the origins of cavity couplings, see text) along the dynamics: crmsd1Ci, crmsd2Ci, etc, have the samemeaning
as before, and crmsd1Ca,. . ., crmsd100Ca refer to the values of the Ca-trace crmsd for the 100 MD snapshots. For both the upper and lower figure halves, in
the end we obtained a list of 100 crmsd pairs, which were subsequently used to compute the mutual information-based correlation between them.

doi:10.1371/journal.pone.0119978.g001
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protein, the a priori number of cavity couplings is high (e.g. if the protein has 10 cavities, there
are 45 possible couplings); of these, some may be weak or spurious. For the set of D75 simula-
tions, we decided to focus on those couplings that were more prominent relative to the back-
ground noise, and that we call Cavity pairs with Significant Correlations (CSCs). These were
obtained using the following three-step protocol.

First, for every cavity found in a protein we computed the crmsd between its conformation
in the native structure and its conformation for each of the 100 snapshots of the MD simula-
tion, thus obtaining a set of 100 crmsd values per cavity (Fig. 1). Then, for every possible pair
of cavities from the same protein, we computed the mutual information-based correlation
[55,56] between the crmsd set of each cavity in the pair, and also computed its corresponding
p-value, which is the probability of observing the value of the correlation by chance (from the
probability distribution under independence conditions, obtained after computer-generating
105 random samples). This step was repeated for the two MD simulation replicas available per
protein. This correlation computation is analogous to the approach used for the identification
of standard dynamical cross-correlations (Hünenberger et al., JMB, 1996), although instead of
coordinate fluctuations we obtain cavity fluctuations, and also provide their p-values.

Second, we adjusted the p-values (FDR-adjusted p-values; see "False discovery rate (FDR)"
section below) [57] to take into account the fact that the number of possible cavity-cavity corre-
lations may be substantial. We then discarded any cavity pair having a correlation with an
FDR-adjusted p-value higher than 0.05; this meant that an expected 5% of the remaining cavity
pairs had correlations due to chance fluctuations.

Third, we applied a more stringent, and qualitatively different, filter by imposing that any
surviving cavity pair must be observed in both simulation replicas to be considered a CSC. This
step is really stringent and reduces the expected proportion of spurious correlations below 5%,
although we do not know the size of the reduction (this would require an unfeasibly high num-
ber of MD simulations to establish). This last step was not applied to the cases for which only
one trajectory was produced, e.g. in the case of ubiquitin, for which a single 100 ns simulation
was used for the comparison with experimental data.

Other options are available for unveiling couplings[58,59], although they are more aimed at
finding allosteric couplings, rather than the general ones considered in this work.

Identifying conserved correlations between orthologs. Given a pair of orthologs, we looked
for conserved correlations between species. A correlation between a pair of cavities was defined
as conserved when each cavity in the human pair matched a cavity in the other specie's pair,
after aligning the structure of both orthologs with MAMMOTH [26].

5.2 Fluctuations of cavity correlations in long MD trajectories. In the second half of our
work, carried using D41, we explored the presence of couplings along trajectories larger (simul.
time�100 ns) than those obtained for D75 (simul.time = 20 ns). In this new context, we did
not apply the previous protocol as it had been designed for the analysis of simulations as a
whole, not to address the time-dependence of couplings. In long simulations, the protein is
more likely to populate different regions of the conformational space of the protein, where the
cavity couplings may vary (Fig. 2). To represent this scenario, we decided to slide a window
along the trajectory and, at each position of the window, compute the correlation for each cavi-
ty pair, using all the snapshots comprised within the window (Fig. 3). In this case we used
c3net, the fast R implementation of the mutual information correlation[60].

With this approach, we could obtain a general idea of the fluctuations of correlations in a
trajectory. To this end we defined an arbitrary threshold of 0.5; then, for each cavity pair (Ci,
Cj), we computed the fraction of simulation time, fij, for which the correlation was above this
value. Finally, for each protein we built a histogram with the fij values for all cavity pairs in the
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protein (Fig. 4). We repeated this computation using a threshold of 0.25 instead of 0.5, to ex-
plore how the trends varied.

For the computations in this section, window size was set to 20 ns, to allow a simple projec-
tion of the results in the first half of the work (obtained for 20 ns trajectories). However, similar
results were obtained using other window sizes (S1 Fig.).

6. Explaining cavity couplings in terms of global structure changes
To see whether CSCs were related to overall structure changes along the MD trajectory, we
computed the correlation between cavity and Ca crmsds (Fig. 1). Cavity crmsd (see above) re-
flects cavity structure/shape changes, while Ca crmsd (see above) reflects overall structure
changes. Significant values of the correlation were taken as suggestive of a relationship between
cavity and global structural changes.

7. False discovery rate (FDR)
When many statistical tests are used in a specific problem, e.g. when looking for candidate
genes in microarray experiments, standard p-values are replaced by adjusted p-values, in
which the effect of the number of tests is taken into account. There are different ways to pro-
duce these adjusted p-values, here we have used the approach proposed by Reiner et al. [57]

Fig 2. Conformational space and cavity couplings. The figure illustrates the fact that during its native
dynamics, a protein may populate regions of the conformational space where a given cavity pair may have
different correlations. When the protein visits the region encircled in pink (simulation time�t1), the cavity pair
(Ci, Cj) has higher correlation than the pair (Ck, Cm). The situation is reversed when the protein visits the
region encircled in green (simulation time�t2), where the pair (Ck, Cm) has the highest correlation.

doi:10.1371/journal.pone.0119978.g002
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which is based on the control of the false discovery rate, that is, on controlling the rate of
false identifications.

8. Lysozyme simulations
To extend some of our analyses we ran an additional set of MD simulations for lysozyme. The
MD protocol followed was the one described in the above section "2. Molecular dynamics sim-
ulations"; the analyses of the MD trajectories, like CSC computations, etc, were done according
to what is described in the correspondingMaterials and Methods sections.

For human lysozyme, we ran MD simulations for its native structure (PDB code: 1REX;
chosen because of its high resolution, 1.38Å, and low observed R-merge: 6.9%)[61] and 47 mu-
tants (see list in S3 Table) that cover a wide range of sequence modifications and physico-
chemical/structural effects[62–71]. We ran 2x20 ns simulations per lysozyme.

9. Overlap between correlated cavities and allosteric couplings
To check whether our CSCs overlapped with allosteric couplings, and to which extent, we ex-
plored the literature and the Allosteric Database[72] (ASD, version 2.0). The information re-
trieved shows that experimental data were available for nine proteins: aldolase[73,74], annexin
V[75–78], transferrin[79–82], retinol-binding protein[83–86] (RBP), purine nucleoside

Fig 3. Cavity couplings along time.Correlations between cavities, computed as explained in Fig. 1A, provide a measure of their coupling. To explore how
this correlation varies over time, we have used a moving window; at each position of the window we have obtained the value of the correlation and
represented it, as a function of time.

doi:10.1371/journal.pone.0119978.g003
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phosphorylase[87,88] (PNP), heat shock protein HSP90[89], cyclophilin A[90–92], interleu-
kin-1alpha[93,94], and Awd nucleotide diphosphate kinase[95]. When comparing
functional site (FS)/allosteric site (AS) annotations with our CSC data, we found several
cases where the regions linked by both couplings overlapped: one cavity in the CSC would in-
volve a number of FS residues and the other cavity would involve a number of AS residues (see
below).

Results/Discussion
The main goal of this study is to describe and characterize the presence of spontaneous cou-
plings between cavities in proteins. To this end, we have divided our work in two parts: (i) anal-
ysis of a set of 2x20 ns MD simulations of 75 proteins (from 11 species, including human, see
S1 Table) performed for this article; and (ii) analysis of a set of 41 MD simulations retrieved
from the MoDEL project (S2 Table; duration�100 ns). In the first part of the work, we restrict-
ed our study to 20 ns dynamics because when looking for the structure effects underlying cor-
relations, the results obtained are easier to interpret. In the second part, we focused on�100 ns
simulations to give a complementary view of couplings and their robustness along
protein dynamics.

Fig 4. Persistence along time of the cavity correlations in a protein. The figure illustrates how we turned
the correlation vs. time plots in Fig. 3 into a simpler representation allowing to summarize in a single plot the
data for all the cavity pairs in a protein. The small graphs in the upper part of the figure represent the variation
of cavity correlation with time for each of the cavity pairs in a protein: 1–2, 1–3, 1–4, 2–3, etc. For each of
them we computed the fraction of time (fij, for pair Ci-Cj) for which the correlation was above a given threshold.
Two different values of the threshold, 0.25 and 0.5, were tried in our analyses. Finally, we represented the
distribution of these fij values using a standard frequency histogram.

doi:10.1371/journal.pone.0119978.g004
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1. Presence of cavity couplings in 20 ns dynamics around the native
state

1.1 Identification of significant correlations between pairs of cavities. Using a stringent
filtering procedure, which included statistical significance testing and conservation between
simulation replicas, we found a total of 297 cavity pairs with significant correlations (CSCs;
Fig. 5). These CSCs were distributed over 45 out of the 75 proteins studied. Human annexin
and gankyrin were those with the largest number of CSCs (30 each).

We checked if the number of CSCs varies with protein size, but no clear relationship ap-
peared (Fig. 6A). We then explored how these CSCs were distributed relative to two possible
sources of cavity correlation (Table 1): neighbourhood (effect of atom sharing) and global
structure dynamics (identified by computing the correlation of cavity crmsd with Ca trace
crmsd).

Effect of atom sharing. Cavities sharing some of their contouring atoms (Fig. 5B), what we
will call from now on neighbour cavities, may naturally appear as correlated along the dynam-
ics. Quantitatively we followed a strict definition of neighbourhood: two cavities with at least
one lining atom in common were considered neighbours. Of our 297 CSCs, 160 involved
neighbour cavities and 137 non-neighbour ones. We checked whether neighbourhood contrib-
uted substantially to the average correlation coefficient between cavities. To this end we divided
our CSC dataset in two: pairs constituted by neighbour and non-neighbour cavities, respective-
ly. In general, the former had larger correlation coefficients (Fig. 6B, p-value of the Kolmogorov
test = 1.8x10-8), although there was a clear overlap in the correlation range. This was confirmed
when plotting correlation value vs. percentage of shared atoms (Fig. 6C), which showed that

Fig 5. Example of cavity pairs with significant correlations (CSCs). (A) Human calpain; and (B) Human retinol-binding protein. We show the correlated
cavities using a sphere representation and blue and red colours, respectively, for each cavity in the CSC; in grey we represent the protein backbone.

doi:10.1371/journal.pone.0119978.g005
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the expected monotonically growing trend was relatively mild, and that correlations for CSCs
that involve cavities with no common atoms are important (points sitting on the y-axis). In
other words, coupling of cavities happens in the absence of common atoms and can affect
structurally distant cavities.

Fig 6. General properties of cavity pairs with significant correlations (CSCs). (A) Relationship between protein size and number of correlations. We see
no clear trend indicating that larger proteins tend to host more correlations. (B) Comparison between neighbour (they share at least one lining atom) and non-
neighbour (no lining atom is shared) cavities: range and frequency distribution. (C) Dependency of the size of correlation on the percentage of atoms shared
(normalized to the mean size cavity for each CSC). We see a slight monotonically increasing trend, indicating that the more atoms shared, the higher
the correlation.

doi:10.1371/journal.pone.0119978.g006

Table 1. Distribution of the cavity pairs with significant correlations (CSCs) relative to their properties: correlation with the Ca trace and the degree
of neighbourhood between the correlated cavities.

CSCs Neighbours No neighbours Total

No Cavity Corr. with Ca 74 (11) 73 (3) 147 (14)

One Cavity Corr. with Ca 48 (11) 39 (0) 87 (11)

Two Cavities Corr. with Ca 38 (2) 25 (1) 63 (3)

Total 160 (24) 137 (4) 297 (28)

In parentheses we show the figures for the CSCs conserved between orthologs: 14 pairs, that correspond to a total of 28 CSC cases.

doi:10.1371/journal.pone.0119978.t001
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Apart from the neighbour analysis, but related to it, we have explored how the number of
CSCs depends on the distance between cavities (Fig. 7). To this end, and for each CSCs we
computed the average location of the lining atoms of each cavity, and obtained the distance be-
tween these virtual points. While this analysis is limited by the fact that cavity shape is irregu-
lar, we can see that CSCs tend to be more frequent at shorter distances, an effect that becomes
more clear when we normalize the data for the distance-dependent volume effect.

Cavity correlation and global structure effect. To check if CSCs are related to the global dy-
namics of the protein [17] we explored how global structure changes correlated with cavity
structure changes, as measured by crmsd (Fig. 1, andMaterials and Methods, section 6). For
150 CSCs (Table 1) at least one of the cavities in the pair showed structure fluctuations corre-
lating with Ca-trace fluctuations; the value of the correlation was larger for bigger than for
smaller cavities (Fig. 8; R2 = 0.33, p-value = 2.2x10-6). This trend is to be expected, as the larger
the cavity the larger its contribution to global protein fluctuations. Finally, we identified
(Table 1) 63 CSCs for which both cavities had crmsd correlating with Ca fluctuations. This re-
sult indicates that global structure fluctuations can contribute to originate the observed CSCs.

Apart from the previous contributions to cavity couplings, pathways of residue-residue con-
tacts could also play a role, particularly for non-neighbour cavities, as in the case of allosteric
couplings [9]; this would be in accordance with the fact that CSCs tend to be more frequent at
shorter than at longer distances (Fig. 7). Also in the case of surface cavities, their couplings
could be modulated by the network of water molecules constituting the hydration shell, in a
similar way as has been described for myoglobin[96], where water networks modulate
functional properties.

Fig 7. Dependence of the number of CSCs on the distance between cavities.We show two curves: in black the one corresponding to the raw number of
counts (scale in the left Y-axis); in grey, we show this value normalized to eliminate the volume effect (dividing each count by the square of the distance; scale
in the right Y-axis). We can see that CSCs tend to happen more frequently for close than for distant cavities.

doi:10.1371/journal.pone.0119978.g007
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In summary, 60% of the proteins displayed CSCs in their dynamics, showing that for the
proteins in our dataset it is not rare to find couplings between cavities when they fluctuate
around their native structure. The most frequent cause of proteins with missing CSCs is the
stringency of our filtering procedure, particularly of the last step. Before applying it, the num-
ber of statistically significant cavity couplings was of 1343 for one replica and 1430 for the
other. These values corresponded to 84% and 85.3%, respectively, of proteins with at least one
significant coupling. After applying the last step of our protocol, we observed a drop from
~85% to 60% in the number of selected cavity couplings; the stringency of this step suggests
that 60% is a lower threshold. Data from our recent work[34] in glutathione S-transferase and
ectodysplasin-A support this result by showing that cavity couplings can be found in different
alternative splicing isoforms of the same protein. Interestingly, Bowman and Geissler[97] have
recently found that this is also the case for cryptic allosteric sites. In their study these authors
have used massive MD simulations to assess the frequency of these sites in three different pro-
teins (beta-lactamase, interleukin-2, and RNase H), finding that they are ubiquitous during the
equilibrium dynamics of proteins. Considering together our data and those from Bowman and
Geissler[97] a picture arises in which couplings between protein sites could be a frequent phe-
nomenon during the equilibrium dynamics of proteins.

Additional evidence for the presence of these couplings can be obtained from four experi-
mental studies aimed at describing the structural ensemble of ubiquitin's native state [28–31]
(seeMaterials and Methods). We found that CSCs were present in the four experimental ver-
sions of ubiquitin; they were also present in a 100 ns extended ubiquitin simulation, performed
with comparison purposes. Note that in this case we used the more stringent Pearson correla-
tion coefficient, to identify cavity couplings. In addition, the number of CSCs for the

Fig 8. The relationship between the cavity-Ca trace correlation and fraction of cavity atoms relative to
the total number of protein atoms.We can see a weak trend indicating that the bigger the cavity, the larger
the correlation with Ca-trace crmsd. This is understandable, as larger cavities include among their lining
atoms more Ca, or Ca-related, atoms than smaller ones.

doi:10.1371/journal.pone.0119978.g008
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simulation, 21, was within the range of values observed for the experimental models (1XQQ:
12; 2K39: 26; 2LJ5: 22; 2NR2: 25). We then compared the CSCs observed in the experimental
dynamics with those observed in the simulation, to see if they were equivalent. To establish a
baseline, we first cross-compared the experimental data, finding that CSC conservation varied
between 3 (for the pair 1XQQ-2LJ5) and 9 (for the pairs 2K39-2LJ5 and 2LJ5-2NR2). Note that
no absolute coincidence was expected, given the large size of the conformational space, even in
the native state. The results of comparing the CSCs from ubiquitin's simulation and those of
experimental origin gave conservation numbers (3, 5, 4 and 6) within the baseline range (be-
tween 3 and 9). In summary, the coincidence in presence, number and type of CSCs between
experiment and simulation supports the common existence of CSCs.

1.2 Robustness of CSCs to sequence changes. In the previous section we have seen that
CSCs are present in 60% of the proteins in our dataset, and we know that these proteins may
have different folds (Fig. 5; S1 Table). A question that naturally arises is whether there are con-
served CSCs between similar structures or how robust are CSCs to sequence changes preserv-
ing protein structure. This question is interesting from a fundamental point of view as it relates
sequence changes to protein structure/dynamic properties, and also because some couplings
could have a functional role. In this section we describe how CSCs vary between proteins that
differ in one or a few amino acids, and how they vary between orthologs, where sequence
changes may be larger.

In the first case, we used a set of 47 human lysozyme mutants with known X-ray structure
(seeMaterials and Methods and S3 Table). We applied our protocol for identifying CSCs (Ma-
terials and Methods section "5.1 Identification of significant correlations in whole trajectories")
to both the native and the mutants: we ran 2x20 ns MD simulations per protein, and checked
cavity coupling conservation in the mutants relative to the human protein. We found that the
native lysozyme had two CSCs (Fig. 9): one involving lysozyme's functional cavity and an

Fig 9. View of the two CSCs found in the native human lysozyme (PDB code: 1REX). The coupled cavities are shown in blue and red, to distinguish
them. (A) The blue cavity includes the protein's functional site, pointing in this case to a possible functional relevance; (B) two minor cavities that are
also coupled.

doi:10.1371/journal.pone.0119978.g009
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adjacent cavity and the second involving two smaller cavities. The first coupling was conserved
in 11 mutants (23%), and the second in 4 mutants (8%), indicating that in lysozyme CSCs may
survive single sequence mutations.

In the second case, we checked if CSCs were conserved between the orthologs in our dataset.
In this case the sequence changes were generally more drastic than for the lysozyme mutants
(sequence identity range: from 39%, Gankyrin human-yeast pair, to 98%, ubiquitin-conjugat-
ing enzyme UBC9 human-mouse pair). We found (Table 2, Fig. 10) 14 cases for which the
human CSC had an equivalent in a non-human ortholog, i.e. a total of 28 CSCs; the remaining
CSCs, ~91% of all those identified, were protein-specific. The lower number of conserved CSCs
may result from a combination of several factors: some will be physically/biologically relevant,
and some may be spurious (technical origin). Among the former, we may cite the appearance
of differences, after ortholog divergence, in the delicate residue-residue contact networks cou-
pling remote structural elements. This possibility, advanced by Livesay et al.[58] in the case of
allosterism, could explain why there are so few conserved couplings formed by non-neighbour
cavities in D75: the human/yeast gankyrin pair (Fig. 10A-B) and the human/chicken annexin
pair (Fig. 10C-D). In front of these two cases, the higher number of CSCs involving neighbour
cavities, 12, is probably due to the better conservation of neighbourhood between orthologs
(Fig. 11; Pearson's correlation = 0.59, p-value = 1x10-3). However, while conservation of struc-
ture features is usually related to sequence identity, we found no relationship between the size

Table 2. Lists of cavity pairs with significant correlations (CSCs) conserved between orthologs.

HUMAN SPECIES

PDB correlation %shared PDB correlation %shared organism

1hup 1rdo r. rattus

2–26 0.52 1.4 3–15 0.63 7.6

16–28 0.77 16.7 18–21 0.71 25

1iu1 1gyu m. musculus

5–9 0.87 27 4–7 0.74 30.9

1kpb 6rhn o.cuniculus

3–4 0.46 4.4 5–6 0.41 10.1

3–21 0.57 9.7 5–21 0.71 11.6

6–11 0.70 34 9–11 0.79 26

7–11 0.66 24 10–11 0.68 22

2ald 1zah o.cuniculus

6–12 0.59 15.9 3–13 0.66 9.9

2cpl 1dyw c.elegans

16–31 0.88 35 17–24 0.71 24.4

1j7d 1jbb s.cerevisiae

6–11 0.87 30.3 7–29 0.63 16

5–6 0.77 4 3–7 0.62 20

1uoh 1ixv s.cerevisiae

24–26 0.55 0 23–5 0.54 0

1tbt 1v9e b. taurus

1–4 0.68 10.6 1–2 0.49 3.9

14–36 0.92 17.2 23–18 0.84 11.8

1anx 1yii g. gallus

32–33 0.52 0 13–11 0.53 0

doi:10.1371/journal.pone.0119978.t002
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of the correlation coefficient associated to CSCs and three global measures of protein diver-
gence: percentage of sequence identity (Fig. 12A; Pearson's correlation = 0.009, p-value = 0.75),
crmsd between protein structures (Fig. 12B; Pearson's correlation = 0.06, p-value = 0.42) and
Kimura's distance[98] (S2 Fig.; Pearson's correlation = -0.16, p-value = 0.58), a measure of se-
quence divergence used in evolutionary studies. In fact, the ortholog pair with the lowest se-
quence identity (39.3%) had a relatively good correlation for the CSC in both ortholog pairs,
0.55 and 0.54, for human and yeast, respectively.

Only CSCs for which both cavities in the pair have an equivalent in both species are listed.
We also provide the percentage of shared atoms between cavities, within each species (for a
given CSC, 0% means that no atom is shared between the two cavities defining a CSCs; 100%
means that all of them are shared, this would correspond to equal cavities, a non-existent case).
The first three columns correspond to human CSCs data, the next three correspond to the
ortholog's CSCs, and the last column gives the ortholog's species.

In summary, for both the native-mutant comparisons in lysozyme and those between ortho-
logs, we find that not all CSCs are conserved between structures with the same fold. However,
we could not see a clear trend relating sequence changes and CSC survival/loss. This suggested
that an additional factor could explain the pattern of presence/absence of couplings. In the
next section we use longer simulations to address this problem.

Fig 10. Conservation of cavity couplings between orthologs. In the figure we show two cases, where coupled cavities share no atom, that is, are non-
neighbours. (A) and (B) correspond to human and yeast gankyrin orthologs, respectively; (C) and (D) correspond to in human and chicken annexin orthologs.

doi:10.1371/journal.pone.0119978.g010
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Fig 11. Neighbourhood conservation in conserved couplings.We can see that there is a relationship
between the number of neighbouring atoms in human and in the other species, indicating that these two
values tend to be conserved between species.

doi:10.1371/journal.pone.0119978.g011

Fig 12. Relationship between correlation size and protein divergence. (A) sequence level, and (B) structure level. For each of the 14 pairs of couplings
conserved between species, we computed the average between the human and the other species correlation (an average of two values). Then, we plotted
the resulting 14 values as a function of protein sequence identity (A) and of crmsd (B). In none of these two cases we saw a relationship, suggesting that
other factors may determine correlation conservation.

doi:10.1371/journal.pone.0119978.g012
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2. Variation of cavity correlations along protein dynamics
2.1 The case of aldolase. Previously, we have seen that for the 2x20 ns simulations, 60% of

the proteins in D75 display CSCs. Interestingly, we have also seen that there was a large num-
ber of simulation-specific cavity couplings discarded because they did not appear as statistically
significant in both simulations, thus failing to meet the last condition of our filtering procedure.
Some of these couplings could be spurious and therefore correctly rejected. Others, however,
may have failed to pass this filtering step because the way in which a protein travels through
the conformational space may induce fluctuations in the cavity correlations (Fig. 2). To explore
this possibility, we looked for the presence of fluctuations in cavity correlations over time, ex-
tending one of our simulations from 20 ns to 100 ns. Then, we used a 20 ns moving window
along the trajectory (Fig. 3), computed the cavity correlations at each window location, and
represented them as a function of time.

We concentrated on a few CSCs, related to experimentally substantiated inter-site cou-
plings. To this end we first identified the allosteric proteins in our dataset (Table 3) and kept
only those having CSCs that overlapped with the functional (FS) and the allosteric (AS) sites.
We imposed an additional condition: that the allosteric coupling had to be present in both the
human protein and its ortholog. At this stage we were left with two proteins, aldolase and
HSP90, and arbitrarily chose aldolase. For human aldolase there is a known functional cou-
pling between two aldolase regions[73] and several CSCs (Fig. 13A) overlapped with them.

In accordance with our expectations, when we extended one of the 20 ns aldolase simula-
tions to 100 ns, we identified two statistically significant couplings (involving AS and FS resi-
dues; Fig. 13B and 13C) that did not coincide with the one observed for the 20 ns simulations
(Fig. 13A). When using the moving window on the 100 ns trajectory we found noticeable fluc-
tuations in the cavity correlations (Fig. 14): a correlation could go from 0 to nearly 0.75 and
back to 0. This result clarifies the picture of cavity correlations obtained from the 2x20 ns simu-
lations, indicating the importance of taking into account the variation of couplings along the
simulation. We address this issue in the next section.

Table 3. Overlap between cavity pairs with significant correlations (CSCs) and known allosteric couplings.

Protein FS residues AS residues human
CSCs

species
CSCs

ALDOLASE D33,S35,S38,K107,K146,R148 E187,E189K229,S271,R303,
L356

C72,C338 YES YES

ANNEXIN M28,G30,G32,K70,E72,L73 E78,G183,K186,G188,E228 W185 YES NO

TRANSFERRIN R140,K203,K293 E80,Y82,H246,K293 NO ——

RBP L35 L63-D68,G92-K99 YES NO

PNP F199,E200,V216,M218,N242 V244,V259 —— —— ——

HSP 90 D83,N51,G137,F138 K194,L220,Q287,P295 YES YES

CYCLOPHILIN H54,R55,F60,M61,Q63,N102 Q111,F113,W121,L122,H126 C51,H53,H69,K150,T151,
K154

—— ——

INTERLEUKIN-
1beta

N87-K101 W118 NO NO

NDK —— —— —— NO

The residue numbers of the functional (FS) and allosteric (AS) site residues were obtained from the literature (see main body of the article). In the fourth

and fifth columns we mention whether there was any CSC with a cavity overlapping the FS and the other the AS: YES (at least one CSC existed), NO (no

overlapping CSC was found), dashed line (——, functional information was lacking and the comparison could not be performed).

doi:10.1371/journal.pone.0119978.t003
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2.2 Fluctuations of cavity correlations along MD simulations. To see how the results for
aldolase extended to other proteins we required simulations longer than the 20 ns we had gen-
erated. For this reason, we used a set of 41 simulations�100 ns available from the MoDEL
project[20] (we call this set D41, see S2 Table). In this case, and bearing in mind the results for
aldolase, we approached cavity correlations from a different angle. Rather than considering sta-
tistical significance at a single point in time (as in the analysis of the 2x20 ns simulations), we
focused on their fluctuations along the dynamics. For this reason, we included all possible cavi-
ty pairs in our analysis, since their correlation could vary substantially. Technically, we fol-
lowed a simple procedure: for each cavity pair we computed the fraction of the simulation
length for which the correlation between cavities was above 0.5. High values of this fraction
mean that during a large part of the dynamics, the correlation between the cavities in this pair
was above 0.5; low values mean the contrary. This approach allowed us to simultaneously plot
the data for all the cavity pairs of a protein (representing them with a single line, see Fig. 4),
and for all D41 proteins at the same time. The correlation threshold value, 0.5, was chosen be-
cause it is halfway between the two values defining the mutual information correlation range
(0: absence of correlation; 1: complete correlation). Also, because it is near the lowest correla-
tion value giving significant p-values in the 2x20 ns simulations (Fig. 6B-6C). However, we re-
produced all the computations with 0.25 as a correlation threshold, to explore the effect of a
more permissive value, as the aldolase case (Fig. 14) shows that many cavity pairs can have low

Fig 13. Human aldolase simulations. (A) 20 ns results, showing in magenta sticks and yellow spheres the
protein binding and allosteric sites, respectively. In blue and red we show the coupled cavities including the
binding and allosteric sites, respectively. In (B) and (C) we follow the same colour code, except that the data
were obtained from a 100 ns simulation (obtained after extending one of the 20 ns replicas). (B) and (C)
illustrate the two couplings found in this simulation.

doi:10.1371/journal.pone.0119978.g013

Cavity Couplings during Protein Dynamics

PLOS ONE | DOI:10.1371/journal.pone.0119978 March 27, 2015 19 / 28



correlation values along the dynamics. (Note: we had also checked the effect of the moving
window size, sampling 10, 20, 30, 40, 50, with no effect; see S1 Fig.).

We saw the same behaviour for essentially all proteins in D41 (Fig. 15A): a rapid decay in
the fraction of cavity pairs as a function of the time spent in higher-than-0.5-correlation re-
gions. More qualitatively: during a native dynamics the correlation of most of the cavity pairs
will always, or almost always, be under 0.5. Only a few will deviate from this trend, their num-
ber becoming smaller with the time their correlation is above 0.5. This general behaviour is
comparable for all the proteins, although the decay speed varies between them (Fig. 15A).
When we repeated this analysis with the more permissive correlation threshold of 0.25, we
found a similar result. Here, however, the average decay was slower (Fig. 15C). Indeed, it is not
unusual for a protein to have cavity pairs with correlations above 0.25 during a third of the tra-
jectory, something expected from the aldolase result (Fig. 14).

The fast decay observed in Fig. 15A explains why imposing coupling conservation between
replicas is such a tough filter in the identification of CSCs: it is unlikely that a coupling has
high correlation values at the same time point in two independent simulations.

Another point of interest is whether our results can change depending on the length of the
simulation or, whether the results in Fig. 15A and 15C have converged. To test whether this
was the case, we represented in grey the 36 proteins with 100 ns simulations, and in black the 5
proteins with simulation lengths around the microsecond. The resulting plots (Fig. 15B and
15D, for 0.5 and 0.25 correlation thresholds, respectively) indicate that 100 ns and near-micro-
second simulations gave a comparable picture of the behaviour of cavity couplings along
simulation time.

Fig 14. Fluctuations over time of cavity pairs in aldolase. For a set of cavity pairs overlapping the functional and allosteric sites, we plot the fluctuations
over time, using the moving window approach described in theMaterials and Methods and illustrated in Fig. 3. Each colour line represents a cavity pair, as
explained in the legend. Time is represented by the snapshot number.

doi:10.1371/journal.pone.0119978.g014
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Finally, we explored to which extent neighbourhood affected the fluctuations of cavity cor-
relations over time. To this end we reproduced Fig. 15 but now separately plotting the results
for neighbour and non-neighbour cavity pairs. The results, represented in Fig. 16 for both cor-
relation thresholds, showed that pairs of neighbour cavities spent more time at correlations
above 0.5 than non-neighbour pairs. The same was true when using 0.25 as the correlation
threshold. This result is in accordance with the analyses of the 2x20 ns simulations pointing at
neighbourhood as a component of cavity correlations.

In summary, the data in this section extend and improve the view obtained from the 2x20
ns simulations. In particular, they tell us that, for our protein dataset, couplings vary along the
dynamics (Figs. 14, 15A and 15C). This behaviour depends on whether the cavity pairs involve
neighbour or non-neighbour cavities, with the former surpassing more frequently correlation
thresholds (e.g. 0.25 or 0.5) than the latter (Fig. 16). Finally, mention that this view of cavity
coupling holds regardless of whether we consider 100 ns or>100 ns dynamics (Fig. 15), indi-
cating a reasonable degree of convergence in our results. Note that both the data for this and
the previous section were mostly obtained for single-domain proteins (S1 and S2) Tables; they
must be considered with care in the case of multidomain proteins; in these proteins, cavity
pairs at the boundary between domains may display unexpected behaviours.

Fig 15. Summary representation of the persistence of cavity correlations along protein native dynamics. Each coloured line in (A) and (C) represents
the distribution of the fraction of simulation time spent by the cavity pairs of a protein above a given threshold (0.5 for (A) and 0.25 for (C)). The obtention of
this distribution is explained inMaterials and Methods and illustrated in Fig. 4 for a single protein. The distinguishing feature in (B) and (C) is that we plot in
grey all proteins with 100 ns trajectories, and in black the cases with simulation lengths above 100 ns.

doi:10.1371/journal.pone.0119978.g015
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3. Biological implications of the observed cavity couplings
The scenario arising from our previous sections indicates that many proteins may present cavi-
ty couplings. We do not know if these couplings are allosteric couplings. Different data indicate
that some of them may be comparable. First, it has been recently shown by Long and Brüsch-
weiler [99] that correlation coefficients, in their case between torsional angles, provide a good
measure of allosteric transmission between sites. Second, in our 2x20 ns study we observed 19
proteins with at least one CSC involving the main cavity (usual locus of the functional site
[14]), suggesting a regulatory role for these CSCs. Third, we found CSCs overlapping with allo-
steric couplings (Table 3) in some of the proteins of our dataset. And fourth, in the 100 ns sim-
ulation of aldolase we saw that cavity pairs overlapping with the functional and allosteric sites
had non-zero correlations (Fig. 14).

This parallelism between cavity couplings and allosteric ones suggests a possible mechanism
for the origin of allostery. At present it is still unclear how allostery appeared along protein evo-
lution[100,101]. Liang et al.[100] divide this process into two components: appearance of the

Fig 16. Effect of cavity neighbourhood on the fluctuations of cavity pair correlations.We divided into two the contribution of each protein to Fig. 15. (A)
Represents only the correlations between neighbouring cavities (sharing at least one of their lining atoms). (B) Represents the data for non-neighbouring
cavities. Again each colour line represents a protein. The two upper figures result from using a correlation threshold of 0.5; a value of 0.25 was used for (C)
and (D).

doi:10.1371/journal.pone.0119978.g016

Cavity Couplings during Protein Dynamics

PLOS ONE | DOI:10.1371/journal.pone.0119978 March 27, 2015 22 / 28



coupling between the main functional site and the allosteric site, followed by the creation of ef-
fector affinity in the allosteric site through a series of mutagenic events. After underlining how
unlikely is it for effector affinity to evolve, these authors propose that ligand binding and allo-
stery may have appeared simultaneously. Our results suggest a simpler alternative, in which
the need for allosteric coupling creation could be eliminated, since one of the several spontane-
ous couplings between the main cavity and a secondary cavity could act as a seed. Allostery ap-
pearance would only require the creation of effector-binding properties in this cavity.

Conclusion
We have explored and characterized the occurrence of cavity couplings in the dynamics of pro-
teins around the native structure. To this end we have used 2x20 ns MD simulations for 75 pro-
teins, and�100 ns MD simulations from the MoDEL project for 41 proteins. In the first case,
after applying a stringent filtering procedure we obtained a set of 297 CSCs distributed over
60% of the proteins in our dataset, and identified some of the structural factors contributing to
such couplings. This result was extended using the�100 ns simulations. We found that corre-
lations between cavities may vary with time (Fig. 14) and that the overall fluctuation pattern of
these correlations is comparable between proteins (Fig. 15). However, some proteins show less
persistent couplings than others, and cavity neighbourhood naturally also plays a role in bias-
ing correlations towards higher values (Fig. 16). The results are robust to variations in simula-
tion length (Fig. 15B and 15D), since they were similar for 100 ns simulations and five longer
simulations (S2 Table). Finally, we discuss some of the biological implications of our results.

Supporting Information
S1 Fig. The effect of using different moving window sizes on the results in Fig. 15. Five dif-
ferent sizes (10, 20, 30, 40, 50) were tried to reproduce the results in Fig. 15 for lysozyme (PDB
code: 153l). The results for n = 20 are those plotted in Fig. 15; we see no difference for the re-
sults obtained with the other window sizes.
(TIF)

S2 Fig. Relationship between correlation size and protein divergence. This figure is analo-
gous to Fig. 12, except that in this case we have used Kimura's distance as a measure of se-
quence divergence, instead of the percentage of sequence identity or crmsd. The procedure
followed here was the same as in Fig. 12. For each of the 14 pairs of couplings conserved be-
tween species, we computed the average between the human and the other species correlation
(an average of two values). Then, we plotted the resulting 14 values as a function of Kimura's
distance. We saw no relationship suggesting that Kimura's distance is related to
correlation conservation.
(TIF)

S1 Table. List of the proteins in the D75 set. In the first and second columns we provide the
PDB codes of the human protein and that of its ortholog, respectively. In the third column we
provide the protein name. In the fourth and fifth columns, we provide the CATH class and
architecture, respectively.
(DOCX)

S2 Table. List of the proteins in the D41 set. In the first column we provide the PDB code of
the protein. In the second column we provide the protein name. In the third and fourth col-
umns, we provide the CATH class and architecture, respectively. In the fifth column, we pro-
vide the simulation length (ns).
(DOCX)
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