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ABSTRACT 

The interior of the living cell is highly concentrated and structured with molecules 

having different shapes and sizes. However, almost all experimental biochemical data 

have been obtained working in dilute solutions that do not reflect in vivo conditions. In 

this paper, we study in vitro the effect of macromolecular crowding on the reaction rates 

of the oxidation of 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) by 

hydrogen peroxide (H2O2) catalyzed by Horseradish Peroxidase (HRP), by adding 

Dextrans of various molecular weights to the reaction solutions as crowding agents. The 

results indicate that the volume occupied by the crowding agent, regardless its size, 

plays an important role in the rate of this reaction. Both Michaelis-Menten parameters, 

���� and ��, decrease when the Dextran concentration in the sample increases, which 

might be due to a crowding-induced effect in the catalytic constant, ����, of this 

enzymatic reaction. Thus, our results suggest that there is an activation control of the 

enzymatic reaction in this particular system. In our opinion, this work could facilitate 

the understanding of biomolecules behavior in vivo and be useful for biotechnology in 

vitro applications, since HRP is widely used in the development of biosensors.  
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INTRODUCTION 

The cell cytosol is an aqueous medium that is crowded with macromolecules and 

solutes, which occupy up to 40% of its total volume [1]. Therefore, biochemical 

reactions in vivo progress in solutions containing high concentrations of 

macromolecules. However, studies of biochemical processes in vitro have usually been 

performed in dilute solutions (typically concentrations of macromolecules less than 1 

mg/mL). In the cellular environment, the rate of diffusion is reduced [2-8], and can even 

be anomalous at short time. In addition, the macromolecular crowding agent promotes 

processes such as protein folding, self-association and protein binding [9-22]. Hence, 

the presence of large concentrations of inert solutes can affect the enzymatic activity. 

However, quite a few studies have explored the effects of crowding on enzyme 

catalysis, even in vitro. The first study on enzymatic reactions in macromolecular 

crowded media was carried out by Laurent in 1971 [23]. He studied several reactions in 

polymer media as an initial attempt to describe how the environment affects the 

intracellular enzyme function, and in all cases studied, the presence of the macrolecules 

produced a moderate decrease in the apparent Michaelis-Menten (MM) constant, ��. 

Some years later, Minton and Wilf [9] studied the effect of macromolecular crowding 

on the various kinetic steps in the enzymatic processes of glyceraldehyde-3-phosphate 

dehydrogenase. They predicted that the rate of an enzymatic reaction will decrease 

when there is an increase in the concentration or size of the crowding agent. In other 

words, the excluded volume produces a decrease of both the MM constant, ��, and the 

catalytic constant, ����, when the enzymatic reaction follows the Michaelis-Menten 

mechanism. Nevertheless, most subsequent studies reported that a high concentration of 

neutral polymers only had a moderate influence on enzyme reactions. Briefly, a slight 

decrease in �� is frequently found, regardless of the properties of the crowding agent 
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[9, 23-30]. However, the effect of the crowding agent on ���� is diverse: in some cases, 

���� increases [24, 28-32], whereas in other cases it decreases [9, 26-27, 32]. In a 

previous work, we studied the crowding effect of Dextrans of various molecular weights 

on the reaction rates of the hydrolysis of N-succinyl-L-phenyl-Ala-p-nitroanilide 

catalyzed by alpha-chymotrypsin [34]. Our results pointed out that the volume occupied 

by the crowding agent, independent of its size, had an important role in the rate of this 

reaction. A ���� decay and a �� increase were obtained when the Dextran 

concentration in the sample was increased. The rise of �� could be attributed to a 

slower diffusion of the protein due to the presence of crowding, whereas the decrease in 

���� could be explained by the effect of mixed inhibition by product, which is 

enhanced in crowded media.  

Although considering the results revealed by the previous studies, the range of 

experimental conditions covered is not wide enough to fully understand the 

phenomenology of enzymatic kinetics in crowded media. In order to understand better 

the effect of macromolecular crowding brought on the enzyme kinetic, we have chosen 

a reaction catalyzed by Horseradish Peroxidase (HRP). HRP is a protein widely used in 

the field of biosensors due to its high specificity for hydrogen peroxide (H2O2) and we 

consider that our results could be interesting in this field, too. Therefore, within this 

paper, we studied the way in which the kinetics of the oxidation of 2,2’-azino-bis(3-

ethylbenzothiazoline-6-sulfonate) (ABTS) by H2O2 catalyzed by HRP is affected by the 

presence of crowding agents of several concentrations and sizes. Thus, we have 

investigated the effect of the excluded volume in this enzymatic reaction due to the 

presence of crowders. We chose this reaction as a model process, because it is a well-

known reaction [35] and there is only a minimal change in the excluded volume due to 

the small size of the substrates and products. Macromolecular crowding was mimicked 
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using Dextrans from 5 to 150 kDa. Some advantages of using HRP protein in this 

research have been identified: on the one hand, the absence of known interactions with 

Dextrans (crowding agents); and on the other hand, the protein size (hydrodynamic 

radius, rh = 3.0 nm), which is intermediate between those of the selected crowding 

agents. Within this paper, we examine in what manner this known enzymatic reaction is 

affected by the presence of Dextrans of different sizes at distinct concentrations. In 

particular, we analyzed the effect of macromolecular crowding on the values of 

����  and �� parameters of this reaction. 

 

RESULTS AND DISCUSSION  

In order to carry out a study to understand the effect of macromolecular crowding on 

biological reaction, it is important that such a reaction to be accompanied by a minimal 

change in the excluded volume. Therefore, the substrates and the products must be tiny 

compared with the size of the protein and of the crowding agents. Hence, the effect of 

these molecules (i.e. substrates and products) on the excluded volume could be 

neglected. As a result, the effect of macromolecular crowding on the reaction can be 

interpreted mainly in terms of the presence of crowding agents. This represents one of 

the reasons for which we chose a well-known peroxidase-catalyzed reaction [36], 

namely the one electron oxidation of ABTS in the corresponding radical-cation, 

ABTS
•+
, catalyzed by HRP, shown in equation 3 

  

  (3) 
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Another reason is that this reaction can be easily monitored by UV-

spectroscopy. Since 70s, ABTS has been proposed to serve as a chromogen for H2O2 

assay using HRP, because it has a well-defined absorption maximum at 340 nm (ε340 = 

36,000 M
-1
 cm

-1
) [37]. The radical-cation ABTS

•+ 
has an absorption maximum at 414 

nm (ε414 = 36,000 M-1
 cm

-1
); it also absorbs at 340 nm (ε340 = 5400 M-1

 cm
-1
). The 

ABTS method allows the easy quantification of the initial rates of the enzymatic 

reaction. Most of the commercially-available peroxidase assays are now using this 

method [38]. As we investigate within this study the effect of macromolecular crowding 

on enzymatic reactivity, we need a well-behaved reaction of which kinetics can be 

interpreted with confidence. The oxidation of ABTS by H2O2 is such a process. The 

values of Michaelis-Menten parameters, ���� and �� reported in diluted solution and 

the values that we obtained using similar conditions are comparable [39].   

Regarding the enzymatic system chosen, we have investigated the effect brought 

by different concentrations and sizes of the crowding agent (Dextran). In all the cases, 

we observed a typical initial rise and a subsequent plateau in the absorbance/time plot of 

the released ABTS
•+
. An example of the kinetic curves obtained is shown in Figure 1. 

The initial velocity (v0) was obtained by fitting the initial slope of these curves. The 

fitted values show a significant decrease of the initial velocity of the reaction with the 

increase of Dextran concentration. The dependence of v0 on the substrate concentration 

for different Dextran concentrations and dimensions is illustrated in Figure 2. Each 

figure corresponds to a given Dextran concentration and shows the variation of v0 with 

the concentration of ABTS. The Dextran concentration value given in mg/mL is 

proportional to the volume occupied by this crowding agent. Figure 2 reveals the 

dependence of v0-substrate concentration curves on the concentration of Dextran. For 

the same occupied volume, the v0-substrate concentration curves are similar irrespective 
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of the obstacles dimension considered. Thus, the value of v0 does not change with the 

size of Dextrans, but varies with their concentration, i.e. with the excluded volume. 

Based on this similarity, for each Dextran concentration, the curves corresponding to 

the distinct Dextran sizes considered can be grouped into a single average v0-substrate 

concentration curve (Figure 3). 

The absent dependence of the initial velocity on obstacle dimension is in 

accordance with the results of our previous work [34]. In addition, these results are also 

in agreement with Minton et al. [2, 8-12], as these authors predicted that the excluded 

volume plays an important role in the enzymatic reactions that take place in 

macromolecular crowded media. We have found that, at least in two cases: the 

hydrolysis of N-succinyl-L-phenyl-Ala-p-nitroanilide catalyzed by alpha-chymotrypsin 

[34] and the oxidation of ABTS by H2O2 catalyzed by HRP, the total volume excluded 

by the crowding agents brings a greater impact on the velocity of the reaction than the 

size of these agents.  

In order to better understand in what way the excluded volume affects the 

hydrolysis reaction of HRP in crowded media, the values of �� and ���� were 

calculated by fitting the curves in Figure 3 using equation 2. Table 1 shows the values 

obtained for these parameters as a function of the excluded volume. Our results indicate 

that both, the value of ����and �� decay as increasing the obstacle concentration in the 

sample.   

Firstly we analyzed the �� behavior. We found (Table 1) that the values of �� 

for the oxidation of ABTS by H2O2 catalyzed by HRP decreased with the rise of 

Dextran concentration, in other words, �� diminished with the obstacle excluded 

volume. This result contrast with that reported in our previous work [34]. Within the 
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study of hydrolysis of N-succinyl-L-phenyl-Ala-p-nitroanilide catalyzed by alpha-

chymotrypsin in crowding media, an increase of �� with the concentration of Dextran 

was found. As was explained in detail by Pastor et al. [34] and previously reported by 

Gellerich et al. [24] and Wenner and Bloomfield [25], this behavior corresponded to a 

diffusion controlled enzymatic process for the case of alpha-chymotripsin. However, 

our actual results are in agreement with the major part of the results presented in other 

studies on crowding effects in enzymatic reactions [9, 24-31]. Majority of these studies 

report a slight decrease of �� with respect to dilute solution. The decrease of �� with 

crowding could be ascribed to an increase in the ratio of activity coefficients between 

the native enzyme and the enzyme-substrate complex, or to an increase in chemical 

activity of the small molecules of substrate in highly non ideal crowded solution [27-

29]. The Michaelis-Menten constant depends on the activity coefficients of the free 

substrate in solution, so it can be expected to be sensitive to solution composition. In 

addition, substrate binding also requires the dehydration of both the active site and the 

substrate, and consequently may be dependent on water activity, which affects the ���� 

value. Therefore, in cases in which the value of �� decays with the rise of obstacle 

concentration, the catalytic constant (����) exhibits a greater role, as it can be affected 

by the environmental surroundings.  

Secondly we analyzed the behavior of ����. We found (Table 1) a continuous 

diminishing of the values of this parameter while the concentration of Dextran 

increases. According to the enzymatic mechanism described in equation 1, ���� is 

defined as ���� 
 ������
�, with ���� 
 ��. Therefore, its decrease could be 

interpreted in terms of crowding-induced variations of the catalytic rate constant or of 

the effective enzyme concentration. This result is in agreement with the major part of 

previous studies [9, 27-29, 33] and also with the fact that in this work we found a 
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decrease of �� values when the concentration of Dextran increases.  A drop in ���� is 

usually explained as a result of conformational changes of the enzyme active site that 

are produced by crowding-induced modifications of its surroundings [9, 27-29, 31], 

which affects the ���� value. However, we cannot estimate ���� from ���� , since it is 

known that the effective enzyme concentration increases with the excluded volume in crowded 

media [2, 8-12]. With regard to our results, we can say that, for the investigated reaction 

catalyzed by HRP in in vitro crowded media, the catalytic constant (����) exhibits a 

greater role and it might be affected by the changes in the environmental surroundings 

due to the presence of crowding agents.  

In conclusion, we have studied the kinetics of the oxidation of ABTS by H2O2 catalyzed 

by HRP as a model enzymatic reaction occurring in different in vitro crowded media, 

produced by Dextran of various concentrations and dimensions. Our results reveal that 

the volume occupied by the crowding agent has a significant impact on the rate of this 

reaction. We obtained a ���� and �� decay along with the growth of obstacle 

concentration. Concerning this reaction, the data presented suggest an activation control 

of the enzymatic reaction in the studied system, meaning that the catalytic constant 

(����) brings a significant contribution as it can be affected by the environmental 

surroundings. This contribution could be due to an increase in the ratio of activity 

coefficients between the nature enzyme and the enzyme-substrate complex due to 

presence of crowding agents, or an increase in chemical activity of water in highly 

crowded solution, or a crowding-induced conformational change in the enzyme active 

site, or could be the sum of all these factors. In our opinion, this must be taken into 

account when studying enzyme-catalyzed reactions that occur within the crowded 

physiological environment of the cell and also in biotechnology applications like 

biosensors development. 
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MATERIALS AND METHODS  

Chemicals 

Peroxidase (E.C. 1.11.1.7; from horseradish, 1310 Umg
-1
), which was used without 

further purification, diammonium salt of ABTS, and 33% aqueous hydrogen peroxide  

were purchased from Sigma-Aldrich Chemical (Milwaukee, WI, USA). Dextran (from 

Leuconostoc mesenteroides) of molecular weight of 5, 50 and 150 kDa was purchased 

from Fluka (Buchs, Switzerland). The polydispersities of the Dextrans were less than 

2.0, as reported by the manufacturer. All other chemicals were of analytical or 

spectroscopic reagent grade. Concentrations of ABTS (ε340 = 36,000 M-1
 cm

-1
) and 

H2O2 (ε240 = 39.4 M-1
 cm

-1
) in stock solutions were determined by ultraviolet-visible 

(UV-VIS) measurements.  

Oxidation of ABTS 

All reactions were carried out at room temperature in phosphate buffer (0.1 M, pH = 

7.4). The reaction mixture contained a fixed concentration of 10 nM of HRP and 10µM 

of H2O2, the concentration of ABTS varied between 0 and 23 µM, and the concentration 

of Dextran varied between 0 and 200 mg/mL. The reaction was initiated by the addition 

of HRP to a sample mixture of ABTS and H2O2 and Dextran in phosphate buffer, using 

a syringe to favor mixing. The reaction progress was followed by monitoring the release 

of ABTS radical-cation (ABTS
•+
) (absorbance at 414 nm) with a UV spectrophotometer 

(UV-1603 Shimadzu). At the beginning of the reaction, the product absorbance 

increased linearly with time, and the velocity of the reaction was constant at short 

periods of time (Figure 1). Thus, the initial velocity, v0, was chosen as an experimental 

parameter, and it was calculated in all experiments as the slope of the linear fitting of 
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the first 10s of the absorbance/time data. To reduce the standard error of v0, experiments 

were repeated from 3 to 5 times under identical conditions. This enzymatic reaction can 

be considered a single enzyme-substrate reaction and can be studied using the 

Michaelis-Menten equation following the irreversible reaction scheme that was first 

proposed by Henri [36]   

                                                                               (1)                                           

 where k1, k-1, and k2 are rate constants. The difficulty of following an enzymatic 

reaction was largely solved when Michaelis and Menten showed that, under certain 

conditions, e.g. an excess of substrate, enzyme activity could be studied by measuring 

the initial rate of product formation. Since then, enzyme kinetic parameters have usually 

been determined using an expression for the velocity of product formation that is known 

as the Michaelis–Menten equation  

� 

������
�

�����
�
                                                                      (2) 

where vmax is the maximum velocity defined as ���� 
 ������
�  and, for the classical 

enzymatic mechanism depicted in equation 1, �� 
 ���� � ��� ��⁄  is the Michaelis-

Menten constant and ���� 
 ��. 
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Table 1. Kinetic constants of the oxidation of ABTS by peroxide hydroxide catalyzed 

by HRP for different concentrations of Dextran (in mg/mL). The value of the fitting 

parameter r
2
 is also given. 

[Dextran] 

(mg/mL) 
�� ! (µµµµM/s) "� (µµµµM) r

2 

0 0.023 ± 0.003 32 ± 7 0.9946 

25 0.016 ± 0.001 29 ± 6 0.9965 

50 0.012 ± 0.001 26 ± 2 0.9978 

100 0.006 ± 0.001 22 ± 9 0.9967 
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FIGURE 1. Example of kinetic curves for different concentrations of ABTS (6, 10, 13, 

16, 20 and 23
 µM, respectively) in samples with 25 mg/mL of 50 kDa Dextran, 10 µM 

of H2O2 and 10 nM of HRP. 

FIGURE 2. Michaelis-Menten plot that relates the reaction rate v0 to the substrate 

concentration for the oxidation of ABTS by H2O2 catalyzed by HRP in Dextran 

crowded media with different Dextran concentration: (A) 25 mg/mL; (B) 50 mg/mL; 

and (C) 100 mg/mL. In each figure, the curves corresponding to three Dextran sizes are 

plotted: Mw = 5 kDa (open circle); Mw = 50 kDa (solid up-triangle); Mw = 150 kDa 

(open down-triangle) and average value (solid square). 

FIGURE 3.  Michaelis-Menten plot that relates the reaction rate v0 to the substrate 

concentration for the oxidation of ABTS by H2O2 catalyzed by HRP. The curves 

corresponding to four Dextran concentrations are plotted: 0 mg/mL (solid circle), 25 

mg/mL (open circle), 50 mg/mL (solid up-triangle) and 100 mg/mL (open down-

triangle).  
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