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Abstract: Tuberculosis (TB) is an infectious bacterial disease caused by Mycobacterium tubercu-
losis (Mtb), which most commonly affects the lungs. In healthy people, an infection with Mtb often
causes no symptoms, remaining controlled as a non-contagious latent tuberculosis infection. World
Health Organization estimates that one third of the world population is already infected by this
bacillus. From those, a 10% will probably develop an active disease the next decade. Nowadays,
over 1 million people die annually because of an active TB.
The mechanisms that maintain a latent infection for a few years or that make it evolving towards an
active disease are not fully understood, yet. In a previous work, the dynamics of TB lesions during
an active disease in mice was described by an Agent-Based Model (ABM). This model accounted
for the growth, coalescence and proliferation of lesions, showing that the most important mecha-
nism for lesions growth during the active disease was coalescence. In a later work, the dynamics of
lesions during a latent infection in minipigs was tackled by implementing a revised version of the
previous ABM into a computational model of the bronchial tree. The model was fed with Computed
Tomography scan data from latent infection in minipigs. In this case, the model showed that the
proliferation of lesions through the bronchial tree was essential for maintaining the latent infection.
In this Master thesis we propose a first approach on the evolution of a latent tuberculosis infection
into an active disease. The parameter space will be explored trying to elucidate which is the role of
each mechanism on the trigger for the disease.

I. INTRODUCTION

A. Tuberculosis

Tuberculosis (TB) is a infectious disease that on 2014
killed nearly 1.5 millions of humans [1]. The same year,
9.6 million people developed TB. TB is caused by the
bacillus Mycobacterium tuberculosis (Mtb). In fact,
World Health Organization [1] estimates that one third
of worldwide population is already infected with Mtb,
and that a 10% of these infected people will develop an
active TB disease in a few years.

Natural history

TB infection starts when Mtb arrives at a pulmonary
alveolus and it is phagocyted by an alveolar macrophage.
These bacilli can resist the bactericidal mechanisms
induced by the macrophage and multiply inside the
phagosome [2]. Finally, they cause macrophage necrosis
and thereby enter the extracellular milieu, where they
are phagocyted by another macrophage which also fails
to control the bacillary growth and is likewise destroyed.
This cycle ideally ends once the specific immune response
appears and the TB lesion is controlled and calcified.
According to the Dynamic Hypothesis [3], there is a
certain probability that few bacilli escape from the
lesion and start a new infection in other alveolus. This is
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known as the endogenous reinfection process, and takes
place through the bronchial tree (figure 1).
If the host is immunocompetent, in most of the cases
lesions growth is controlled and they are finally encapsu-
lated. This host is said to be infected but not ill because
it does not show symptoms and can not transmit the
disease. According to the Dynamic Hypothesis, there
is a certain probability that the endogenous reinfection
affects the pulmonary upper lobe. In this location, a
process of liquefaction occurs in the intragranulomatous

FIG. 1: Latent tuberculosis infection and the generation of
active TB according to the Dynamic Hypothesis. Once the
initial lesion has been generated (1), bronchial (blue arrows)
and systemic (red arrows) dissemination generate new sec-
ondary granulomas (2). This process is stopped once the
specific immunity has been established, which starts a con-
stant drainage of non-replicating bacilli towards the bronchial
tree (solid arrows) to which the inspired aerosols (dotted ar-
rows) can return, thereby generating new granulomas (3, 4).
This process implies finding different generations of granulo-
mas simultaneously. In this dynamic process, if one of these
reinfections takes place in the upper lobes, it will have the
opportunity to induce a cavitary lesion (5). Adapted from [3]
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necrosis (or caseum) triggered by the macrophages, the
bacilli, or both, which favors the extracellular growth of
bacilli. This process finally results in bronchial erosion
and drainage of the liquefied material, which leads to
the formation of a cavity in the lung. This factor is
not that crucial in immunosuppressed hosts, where
the reactivation that occurs in different locations and
cavitation is less frequent due to the lack of a sufficiently
strong inflammatory response.
The success on the control of the lesion depends
on a correct equilibrium between the inflammatory
response, which promotes the growth of the lesion
and the immune response, which controls and stops
its growth. If one of these two responses have an in-
correct behavior the infection can evolve towards disease.

B. Previous work

This research is the continuation of a previous project
[4]. A computational model was built in order to simulate
the evolution of TB lesions through a minipig bronchial
tree fed with experimental data. We are now going to
summarize the previous work done: how the experimen-
tal data were obtained and the two models that were
joined (Bubble model and bronchial tree model).

Experimental data

Pig’s anatomy and physiology have many features in
common with humans. In particular, pigs lungs and im-
mune system are very similar to the humans, so the evo-
lution of TB in these animals should be similar to the
dynamics in humans. In an experiment carried out at
Centre de Recerca en Sanitat Animal by Unitat Tuber-
culosi Experimental, minipigs, a breed of pig developed
and used for medical research, were used as an animal
model for carrying out an experiment with three vaccine
candidates.
For this study 24 minipigs were infected with a strain
of Mtb and, after 12 weeks of infection, they were eu-
thanized. During this 12 weeks of infection 18 minipigs
received treatment to compare the efficiency of the dif-
ferent vaccines candidates. After being euthanized their
lungs were analyzed with a Computer Tomography Scan
(CT) in order to determine size, position and density of
TB lesions. These data were used to fed the mathemati-
cal model. All experimental data obtained are analyzed
on [4].

Minipig bronchial tree model

The design of a 3D model of the minipig bronchial tree re-
quired anatomical information about lungs. Data about
the size and shape of the minipigs’ lungs were obtained
from the reported experiments. The size of each pair of
lungs was determined using the maximum coordinates
obtained with CT measurements. The corresponding

images were used for setting the shape of one specific
pair of lungs. Regarding minipigs bronchial tree, there is
still very few information, but minipig anatomy is sim-
ilar to humans. Then, we considered that its bronchial
tree could be modeled as a human bronchial tree having
into account that their size and surfaces are different.
Therefore, we built a bronchial tree inside the computed
surface using a set of rules that were developed for sim-
ulating a human bronchial tree [5], with the appropriate
re-dimensioning [4]. 21 bronchial trees were successfully
simulated and the results were analyzed concluding that
they were reasonable [4].

Bubble model

Bubble model is a mathematical model that aims to de-
scribe the evolution of the TB lesions from an initial
infection. It was initially designed for studying an ac-
tive TB disease in mice [6]. It is an Agent-Based Model
(ABM), where each lesion is an autonomous unit that
can perform some actions.
Each lesion is modeled as a sphere with a certain radius
(ri, in mm, variable), spatial coordinates (~xi, in mm,
constant) and age (ai, in days, variable). The rules that
drive a lesions’ dynamics are:

• Growth: the lesion grows due to cells accumulation.
The inflammatory response is the one that causes the
exponential growth of the lesion and the immune one
stops the lesion growth and promotes its calcification.
As lesions growth was supposed to be related with its
surface we modeled it as a logistic in surface:

dr

dt
= vr

(
1−

(
r

rmax

)2
)

(1)

• Coalescence: when two lesions get close enough
(max {r1, r2} > ‖ ~x1 − ~x2‖), both lesions merge into
one. The volume is assumed to be conserved. Then:

rnew = 3

√
r31 + r32 rmax,new = 3

√
r3max,1 + r3max,2 (2)

ωi =

(
ri
rnew

)3

i = 1, 2 (3)

anew = ω1a1 + ω2a2 ~xnew = ω1 ~x1 + ω2 ~x2 (4)

• Endogenous reinfection: The probability that a
macrophage escapes from an alveoli and arrives into
another one forming a new lesion depends on two facts:
the size of the mother lesion (more bacilli, more proba-
bility) and its age (the greater the calcification, the
lower the probability). Therefore, we modeled the
probability of a macrophage to escape and form a new
lesion (Pi) as:

Pi(t) = ρRi(t)ξi(t) (5)
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Where ρ is a constant to be fitted, Ri(t) models the
dependence on lesion’s size and ξi(t) models the de-
pendence on lesion’s age. Ri(t) assumes a linear rela-
tionship with ri(t):

Ri(t) =
ri(t)

rmin
(6)

As there is lack of dynamic information about the
calcification process, simple model was assumed taking
into account that most of new lesions are generated
in the period 14 days < ai < 28 days: Where ri(t) is
the lesion’s radius at time t and rmin is the minimum
radius of the lesions, r(tmin) = rmin.

ξi(t) =

{
2− ai(t)

14 if 14 days < ai(t) < 28 days

0 otherwise
(7)

The alveolus where the new lesion appear depends on
the distance trough the bronchial tree between the one
from which the macrophage escapes (mother lesion)
and the alveolus where the new lesion is formed (daugh-
ter lesion). In fact, we modeled the probability to go
from alveoli i to alveli j as:

Pi→j =
e−βdij∑
k e
−βdik

(8)

Where β is a parameter that determines the mean dis-
tance where the new lesions will appear (d̄ ∝ β−1), and
dik is the distance though the bronchial tree between i
and k alveoli.

C. Objectives

In the previous work, the bubble model was success-
fully implemented into the virtual bronchial tree. After
a careful calibration, experimental results of the control
group (non-treated infected minipigs) were correctly re-
produced.
The objectives of this project are:

• To explore the effect of different configurations of the
initial infection

• To perform a sensitivity analysis and examine depen-
dence between parameters.

• To delimit ranges of involved parameters for a latent
infection and for an active disease

• To reveal the mechanisms that may cause a latent in-
fection to divert towards an active TB disease.

II. THE MODEL

A. Model’s update

Although the previous model correctly reproduced ex-
perimental results, some parts were modified in this

project in order to better account for the underlying
physical and biological processes:

• Modify the endogenous reinfection probability in or-
der that the lesions can generate new lesions at ai >
28 days.

• Introduce differences in new lesions spreading accord-
ing to the differences in breathing amplitude.

This is a first necessary step towards a potential mecha-
nistic model of TB lesions dynamics in human lungs.

Endogenous reinfection

The previous model [4] was good enough to reproduce the
experimental results, but it was too restrictive. In fact,
the probability that a new lesion is formed after the 28th
day is no zero strictly and it must be extended trough all
time, since the probability that an infected macrophage
escapes and forms a new lesion is always non zero. Due
to the good results obtained with the previous model we
looked for a similar model with a small non-zero prob-
ability for ai > 28 days. It is modeled as a decreasing
exponential:

ξnew(t, n, α) = e−α(t−tmin)
n

(9)

Where α and n are positive constants that must be
fitted by imposing two conditions:
-The area under the initial curve (ξ(t)) and the new one
(ξnew(t)) must be conserved:

∫ +∞

0

ξ(t)dt =

∫ +∞

0

ξnew(t, n, α)dt (10)

α(n) =

(
Γ(1/n)

7n

)n
(11)

-The difference between both curves must be minimized:
Defining the difference between both curves as:

Error(n) =

∫ 28

14

dt [ξ(t)− ξnew(t, n, α(n))]
2

(12)

We have to solve:∫ 28

14

dt
d

dn
[ξ(t)− ξnew(t, n, α(n))]

2
= 0 (13)

It was solved numerically using extended Simpsons rule
for the integral with h = 10−6 and Newton’s method
for the iterative process. On the Newton’s method we
used centered difference with ∆n = 10−6 to compute
its derivative. We obtained n = 1.63483 ± 0.00001 and
α = 0.034638± 0.000001 day−n.
The previous model and the updated one are shown in
Figure 2. The new one shows a tail that provide a non-
zero probability for ai > 28 days, but for ai > 35 days is
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FIG. 2: Old and new endogenous reinfection probability.
In red the age dependence (ξ (ai (t))) and in blue the total
probability Pit). The old age dependence (red dashed line)
was linear between 14 and 28 and the new one is the ex-
ponential ξ (ai (t)) = e−α(ai−tmin)n with α = 0.034638 and
n = 1.63483.

nearly zero.

β variable profile

In humans, active disease usually appears on the upper
lobes. Although the model was developed for minipigs,
we used it to test an hypothesis regarding this evidence.
The breathing amplitude is not the same on every part of
the lung. In fact, in humans we know that on the lower
part of the lung the breathing amplitude is three times
bigger than on the upper lobe [7].
Breathing amplitude determines the distance where new
lesions may appear due to the endogenous reinfection
process. At zones where the breathing amplitude is high
the new lesions appear further and at zones where the
breathing amplitude is low they appear closer.
Breathing amplitude is related with gravity and how the
lungs are placed in the body. In humans the lungs are lo-
cated vertically, so it is reasonable to say that the breath-
ing amplitude is related with the vertical coordinate (Z).
In our model the parameter that determines where new
lesions appear is β (figure 3). Then, β was modeled to
depend on Z coordinate as an arc-tangent profile (figure
4) that depends on four parameters:

β(z) =
β1 + β2

2
+
β1 − β2

2
tan−1

{
πf

β2 − β1
(z − z0)

}
(14)

Where β1 = βmin is the minimum value of β(z) at
the lower part of the lung (limz→+∞ β(z) = βmin); β2 =
βmax is the maximum value of β(z), at the upper part
of the lung (limz→−∞ β(z) = βmax); z0 is the transition

point where β(z0) = βmin+βmax

2 and f is the absolute
slope value at z = z0, β′(z0) = −f .
As said, we know that the breathing amplitude in the

FIG. 3: Mean distance where new lesions appear depending
on β. All distances are measured through the bronchial tree.

lower lobe is three times the breathing amplitude on the
upper lobe. We assume that the mean distance where le-
sions appear is proportional to the breathing amplitude.
Then, we want to find:

Breathing amplitude (upper lobe)

Breathing amplitude (lower lobe)
=
d(βmin)

d(βmax)
=

1

3
(15)

We impose that the mean value of β must be the
one adjusted for the experimental case in minipigs
(see II.B). Then, imposing that βmin = 0.08 − ∆β
and βmax = 0.08 + ∆β we can find that in order to
verify equation 15 ∆β = 0.03948. We approximate
βmin = 0.04 mm−1 and βmax = 0.12 mm−1.
z0 is adjusted to be at ∼ 1/3 of the lung. Then, we

FIG. 4: β profile along the z axis of the bronchial tree. β
follows an arc tangent function as seen in equation 14 that
depends on four parameters: βmin, βmax, z0 and f. β is a
decreasing function that models the breathing amplitude of
the lungs, the breathing amplitude is inversely proportional
to β.
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fit z0 = 25mm. f is fitted to see a proper transition
between the upper lobe and the lower lobe breathing
amplitude, f = 0.005 mm−2

B. Model’s setup

Input parameters

Our model depends on a set of input parameters, which
determine the outcome of the simulations. Some of these
parameters were given by the experimental data and
other ones were adjusted to fit the experimental results,
as described below:
Time of simulation, Tmax: time when the simulation
ends and the lesions are analyzed as if there were a CT.
It was set as Tmax = 84 days, like the experiment.
Number of initial lesions and distribution: we can choose
one of the distributions that the model accepts as inputs
giving the mean number of initial lesions and, in some
cases, the deviation.
Mean maximum radius, rmax: is the mean maximum
radius that the non-merged lesions may achieve by a lo-
gistic growth. The maximum radius of a lesion follows
a Gaussian distribution of mean value rmax and stan-
dard deviation σrmax

= 0.2 rmax. It is measured in mm.
When we want to reproduce the experiment it is fitted
to minimize an objective function and to accomplish, in
mean, a number of desired lesions.
Natality, ρ: a parameter that is proportional to the prob-
ability of trigger an endogenous reinfection process. It
has no units. When we want to reproduce the experi-
ment it is adjusted to accomplish, in mean, a number of
desired lesions.
Growth velocity, v: growth velocity of the lesions dur-
ing the exponential part of the logistic function, it is
measured in days−1. It is adjusted to reach the 95% of
the maximum radius of the lesion at around ai=28 days,
r(28) ≈ 0.95 · rmax [4]. This yields to a default value of
v = 0.3 days−1.
Calcification parameter 1, α: it is one of the two pa-
rameters used to model the growth of the coat around
the lesion due to calcification process that prevent the
lesions from escaping. It is measured in days−n and,
as explained in section II.A, its default value is α =
0.034638 days−n.
Calcification parameter 2, n: it is one of the two param-
eters used to model the growth of the coat around the
lesion due to calcification process that prevent the lesions
from escaping. It has no units and, as explained on II.A,
its default value is n = 1.63483.
β (constant model): determines the mean distance where
the new lesions appear. It is inversely proportional to the
mean value where they appear. It is measured in mm−1.
If all traveling distances were likely probable the mean
distance would be the inverse of β. When we want to
reproduce the experiment it is adjusted to minimize an
objective function.

βmin (variable model): minimum value for the β param-
eter, it is the value that it has on the lower part of the
lung where the mean distance where new lesions appear
is bigger. It is measured in mm−1, its default value is set
to βmin = 0.04 mm−1.
βmax (variable model): maximum value for the β pa-
rameter, it is the value that it has on the upper part of
the lung where the mean distance where new lesions ap-
pear closer. It is measured in mm−1, its default value is
set to βmax = 0.12 mm−1.
z0 (variable model): transition point where β =
βmin+βmax

2 . It is measured in mm and by default it is
set to z0 = 25 mm.
f (variable model): slope of the β(z) function at the
transition point, z = z0. It determines how fast the β
passes from its minimum value, βmin to its maximum
value βmax. It is measured in mm−2, its default values
is set to f = 0.005 mm−2.

Initial infection

From experimental data we could see the visible lesions
(diameter higher than 0.9 mm) after the 84 days of in-
fection. We know that the initial infection was caused by
103 Colony-forming units injected trough the respiratory
track but we do not know how many initial lesions were
produced by these bacilli.
In order to determine which one of the observed lesions
was the original one, we studied all the lesions and we
compared them with the available data about the natu-
ral history. Nevertheless, we could not determine, which
the initial lesions were [4].
The previous model had been calibrated assuming an ini-
tial single lesion at the mass center (mc) of the observed
lesions. Then, we designed a set of virtual experiments
to explore other possibilities, as detailed in Table I.We
evaluated the error between each simulation and the ex-
perimental results as:

Error {fsim} =∑
x,y,z

1
nsep

∑nsep

i=1 [fsim(i)− fexp(i)]2∑
x,y,z

1
nsep

∑nsep

i=1 [fcm(i)− fexp(i)]2
(16)

Where f is the frequency of lesions observed on each bin.
Unfortunately, none of these initial configurations satis-
fied our expectations (table I), so we established a new
protocol for the initial infection.
We assumed that each minipig initial lesion(s) is one (or
more) of the final lesions observed on it. We associate
each observed lesion with a bronchial terminal. Then, we
move backwards through the bronchial tree up to gener-
ation 5 (ThresGen), assigning the corresponding branch
of this generation to each lesion. Typically all lesions of
a minipig are assigned to a single 5th generation branch
or to a couple of them. In the later case, a probabil-
ity weight is assigned to each of the branches according
to the volume of the associated lesions. At each simu-
lation run initial lesion(s) will be randomly thrown from
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these branches (taking into account the weight probabil-
ity when appropriate) into possible associated terminal
branches.
We had not any information about the number of lesions
that formed the initial infection. Then, we incorporated
to our model the possibility of having different number
of initial lesions. The number of lesions considered for
each minipig was tested as follows:
Delta: all minipigs have the same number of initial le-
sions, N.
Gaussian: each minipig can have a different number of
initial lesions. The number of lesions follows a truncated
Gaussian distribution with mean M and standard devia-
tion S.
Poisson distribution: each minipig can have a different
number of initial lesions. The number of lesions follows
a Poisson distribution:

P (k|k > 0) = e−λ
λk−1

(k − 1)!
(17)

Outcome variables

The outcome variables for each simulation we computed
were:
Number of lesions: number of observable (di ≥ 0.9 mm)
lesions.
Mean diameter: mean diameter of the observable lesions,
measured in mm.
Diameter standard deviation: standard deviation of the
observable lesions, measured in mm.
Lesions volume: sum of the volume of all the observable
lesions (the lesions are considered as spheres), measured
in mm3.
Occupied volume: volume occupied for all the lesions in-
side the lung. It is computed using a MATLAB function
called boundary, it is measured in mm3.
Geometric center: geometric center of all the observable
lesions, it is computed for all three spatial coordinates,
measured in mm.
Dispersion: mean square distance between the lesions
and their mass center, measured in mm.
Illness Indicator: variable that indicates the state of each
minipig. We considered that a minipig has a latent in-
fection if the maximum diameter of the observed lesions

Initial infection X-Error Y-Error Z-Error Total-Error
Coordinate center 0.812 2.055 1.000 1.277

Biggest lesion 2.423 2.826 1.477 2.241
Two biggest lesions 1.335 1.810 1.470 1.534
30% bigger lesions 0.944 2.004 1.232 1.383

Densest lesion 1.822 2.675 2.048 2.173
Two densest lesions 1.222 1.945 1.468 1.538
30% densest lesions 0.933 1.955 1.225 1.361
Density > 150HU 0.897 1.754 1.376 1.333
One random lesion 0.605 1.437 0.220 0.747
Two random lesions 0.630 1.091 1.839 1.179

TABLE I: Error for the different initial lesions configuration
computed as equation 16.

is lower than 20 mm (II=0). A minipig has an active in-
fection if the maximum diameter observed is higher than
20 mm but lower than 120 mm (II=1), and we consider
that a minipig is dead if it has lesions larger than the
lung dimensions 120 mm (II=2).
Time till illness: time that the minipig least to pass from
a latent infection into an active one, measured in days.
Coalescences: number of merging processes occurred dur-
ing the simulation.
Lesions in contact: number of lesions that are in touch
with other lesions but that are not close enough to merge.
Number of sick lesions: number of lesions with diameter
higher than 20 mm.
Coordinates of the sick lesions: mean coordinates of the
lesions with a diameter higher than 20 mm, measured for
the three spatial coordinates in mm.
Diameter histogram: histogram of the diameter observed
on all the minpigs.
Positions histogram: histogram of the positions of the
observable lesions.

Fitting rmax, ρ and β

In order to fit rmax, ρ and β we need three objective
functions:

• Mean number of final lesions.

• Minimization of the error with the diameter histogram.

• Minimization of the error with the histogram of the
lesions positions.

After some runs with different sets of parameters we
saw that for low values of rmax the coalescence process
is marginal

(
1
N

∑
iNf,i < 1

)
. Then, the bronchial tree

structure is not relevant for the mean number of lesions
nor for the diameter distribution.
The dependence on the number of lesions (Nobj) can be
considered as:

Nobj = Ni · f (rmax, ρ) (18)

Where Ni is the mean number of initial lesions. To
check this approximation we performed simulations with
rmax = 0.5 : 0.05 : 1 mm, ρ = 0.05 : 0.01 : 0.15 and
Ni = 1 : 1 : 5 and 1000 simulations for each of the cases.
We obtained that the approximation was reasonably
good because the mean error was 1.1%, the maximum
error was 2.6% for (rmax, ρ) = (0.7 mm, 0.05) and the
minimum error was 0.3% for (rmax, ρ) = (1 mm, 0.15).
We also checked that we could not observe any correla-
tion between the error and Ni, rmax and ρ.
In order to find f(rmax, ρ) we performed simulations with
rmax = 0.5 : 0.05 : 1 mm and ρ = 0.05 : 0.01 : 0.15 with
10000 run per each set. Then we fitted a function f with
the form:

f (rmax, ρ) = aij · ρi · rmaxj i, j = 1 : 5 (19)

The resulting surface obtained with Matlab fit function,
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FIG. 5: Fitted surface for the number of observed lesions
as a function of rmax and ρ for one initial lesion. The
black points correspond to points obtained with 1000 sim-
ulations for different sets of ρ and rmax. The colored sur-
face is the fitted surface (equation 19), with a00 = 123,
a10 = −1710, a01 = −719 mm−1, a20 = 390, a11 =
8540 mm−1, a02 = 1650 mm−2, a30 = 14500, a21 =
−13200 mm−1, a12 = −13900 mm−2, a03 = −1900 mm−3,
a40 = −492000, a31 = 218000 mm−1, a22 = −9800 mm−2,
a13 = 11700 mm−3, a04 = 1060 mm−4, a50 = 1360000, a41 =
−216000 mm−1, a32 = −76600 mm−2, a23 = 10300 mm−3,
a14 = −4030 mm−4 and a05 = −223 mm−5. The error is
R − square = 0.9999 and RMSE = 0.2064. In red the
points that correspond to the one lesion fitting for the dif-
ferent groups of minipigs (A,B,C,D) can be observed, table
II.

is shown in Figure 5. The fitting error was: R−square =
0.9999 and RMSE = 0.2064.
Then, imposing a number of observed lesions, Nobj , and
a number of initial lesions, Ni, we can obtain a relation-
ship between rmax and ρ such as: ρ = f(rmax).
After performing some simulations we observed that the
histogram of diameter distribution is not affected by vari-
ations of β, it only depends on rmax and ρ. Then, min-
imizing the error between the experimental histograms
and the ones obtained from simulations and using the re-
lationship obtained before (ρ = f(rmax)) we can obtain
a set of (rmax, ρ) that fulfills both conditions (number of
observed lesions and minimization of the diameter his-
togram error). We defined the error between diameter
histograms as:

Error {Dexp, Dsim} =
1

nsep − 1

nsep∑
i=1

(Dexp(i)−Dsim(i))
2

(20)
Where Dexp(i) is the number of lesions measured on the
i bin of the experimental data and Dsim(i) is the mean
number of lesions measured on the i bin for all the sim-
ulations.
We tried different sets of (rmax, ρ) with rmax inside the
measured experimentally radius. We could observe that
Error {Dexp, Dsim(rmax)} had a parabolic shape near

the minimum, then obtained this parabola and found its
minimum. We computed the values of (ρ, rmax) that ful-
filled the desired number of lesions and that minimized
the diameters histogram.
With this methodology we could adjust the results of
the different experimental groups (A,B,C,D), which are
shown on figure 5 and on table II.
ρ and rmax were fitted using the first two constrains.
Then, we fitted β by minimizing the error with the his-
togram of lesions positions. The objective function to
minimize was defined as:

Error(β) =
∑
x,y,z

1

nsep

nsep∑
i=1

(fsim(i)− fexp(i))2 (21)

Where fexp(i) is the number of lesions measured on the i
bin of the experimental data and fsim is the mean num-
ber of lesions measured for all the simulations.
Simulations between β = 0.01 mm−1 and β =
0.20 mm−1 were done and the minimum error was ob-
served at around β = 0.08 mm−1. In fact, it was
observed that for β ∈ [0.07, 0.09] mm−1 Error(β) ≈
constant.

III. RESULTS

A. Simulation scheduling

Firstly, we carried out a study of the variability of our
model because we aimed to know how many simulations
should we perform to obtain, on average, reliable results.
Then, we designed a simulation series on the param-
eters space with: ρ = 0.125, rmax = 0.68mm and
β = 0.08mm−1.
It can be observed that the error of the mean of a given
outcome, defined as:

Error(N) = 100

∑NT

i=1

(
mi(N)− 1

NT

∑NT

i=1mi(N)
)2

∑NT

i=1mi(N)
(22)

is inversely proportional to the square root of the

number of simulations
(
Error(N) = A√

N

)
. mi(N) is

Ni param
Group

A B C D

1
rmax 0.68 mm 0.76 mm 0.78 mm 0.79 mm
ρ 0.13 0.15 0.13 0.11

2
rmax 0.67 mm 0.76 mm 0.76 mm 0.79 mm
ρ 0.09 0.12 0.10 0.08

5
rmax 0.66 mm 0.74 mm 0.75 mm 0.78 mm
ρ 0.06 0.08 0.06 0.05

TABLE II: Fittings for the different groups of minipigs. Fit-
tings for the pair rmax and ρ that minimize the objective
function (equation 20) for a given number of initial lesions
(Ni), the other parameters were set to their default value.
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the given outcome’s mean value of a random sample
of N simulations. Performing 5000 runs (i.e., 25000
simulations, since each run consisted of simulating
the 5 control minipigs) we can compute the error of
the mean of this outcome averaging over NT = 10000
random samples of length N and compute the error
for N = 1, 2, 3, 5, 8, 13, 22, 36, 60, 100. We can evaluate
the value of the constant A using a linear regression
technique. In table III we can observe the value of
A for the different outcomes of the code, how many
simulations are needed to have a mean deviation of the
mean of around 5% and 1% and the estimated precision
for 500 runs (2500 simulations). Ideally, we should
perform a large number of runs to have an accurate
estimation for the mean, but we must take also into
account the computational cost. Therefore, we decided
the number of simulations to be done trying to have a
good enough precision and a reasonable computation
time depending on the virtual experiment.

B. Parameter’s space exploration

With the parameters adjusted to reproduce the experi-
mental data, we could not observe minipigs with an active
disease. Then, we designed a set of virtual experiments
aimed to determine which are the parameters that may
cause the development of an active disease. To do so,
we performed a lot of simulations with different sets of
parameters and we determined that the two parameters
that mostly contributed to the ill lesions formation were
rmax and β.
In order to observe the different zones with respect to la-
tent infection or active disease, we performed several se-
ries of runs with different sets of parameters: rmax = 1 :
1 : 10 mm, β = 0.01 : 0.01 : 0.15 mm−1 and ρ = 0.045.
Other parameters were set to their default values. 1000
runs for each set were performed with the model of β
constant along all the bronchial tree. On figure 6 we

A
Number of simulations

Error(%)
E=10% E=5% E=1%

Number of Lesions 62.2 39 155 3872 1.2%
Mean diameter 10.3 1 4 106 0.2%
Diameters STD 29.4 9 35 886 0.6%

Volume of lesions 66.3 44 176 4400 1.3%
Occupied volume 92.1 85 354 8489 1.8%

Dispersion 59.6 36 142 3558 1.2%
Coalescences 118.2 140 560 13964 2.4%

Lesions in contact 225.6 506 2025 50637 4.5%

TABLE III: Error of the mean for the different outcomes.
The value of A constant for each mean value can be seen as
well as the number of simulations needed to achieve a certain
error (10%, 5% and 1%) for the different outcomes. In the
last column we can observe the error in % for 500 runs (2500
simulations). The error was computed using equation 22.

FIG. 6: Parameter space exploration to find the trigger of
active disease. The illness appearance depends mainly on
two parameters rmax (inflammatory response) and β (breath-
ing amplitude). We quantified its dependence by performing
simulations with different sets of parameters (rmax,β) with
rmax = 1 : 1 : 10 mm, β = 0.01 : 0.01 : 0.15 mm−1 and
ρ = 0.045. For each set 1000 simulations were done. The
color of each square is proportional to the % of observed ac-
tive disease’s cases, see color bar at the figure’s right.

can observe the obtained results. What we can conclude
from them is that high inflammatory response is needed
to cause a TB disease (high rmax) and that places with
low breathing amplitude (high β) contribute to the ill-
ness appearance. In fact, what we observed was that a
minimum rmax is needed to cause disease (rmax ≈ 5mm)
but it is not enough to cause illness by itself. Then, when
the inflammatory response is not high enough to cause
disease the trigger is the coalescence process that is fa-
vored by a low breathing amplitude (high β).

C. Sensitivity analyses

After the parameter space exploration we analyzed the
effect of each input parameter on the outcome variables
by means of a sensitivity analysis.
In fact, after analyzing figure 6 we designed two sensi-
tivity analyzes. First, in the called latent infection zone
where the probability to observe a minipig that developed
an active TB (big lesions) is zero because the inflamma-
tory response is not enough. This first set of parameters
is necessary to observe the relative importance of param-
eters in the range of the experimental data. Secondly, a
sensitivity analysis in the zone where the probability of
a minipig to develop an active TB is about 50% (also
called ”‘transition zone”’). This second set is necessary
to observe the input parameters that determine the trig-
ger of an active TB.
Latent set: ρ = 0.125, rmax = 0.68 mm and β =
0.08 mm−1.
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Outcome Value
INPUT PARAMETER

Tmax rmax ρ v β
+10% -10% +10% -10% +10% -10% +10% -10% +10% -10%

L
A

T
E

N
T

Mean number of lesions 28,6 +50% -41% +13% -16% +25% -20% +25% -20% -4% +2%
Mean diameter (mm) 1,37 +2% +1% +8% -7% +1% 0% +1% 0% +1% -1%
Mean volume lesions (mm3) 45,9 +62% -41% +40% -32% +27% -21% +28% -21% 0% 0%
Mean occupied volume (cm3) 18,0 +42% -42% +12% -17% +23% -21% +24% -21% -24% 28%
Mean square dispersion (mm2) 367 +7% -12% +2% +6% +6% -8% +3% -7% -16% 18%
Mean number of coalescence 5,1 +103% -53% +20% -17% +53% -34% +40% -27% +22% -18%

T
R

N
S
IT

IO
N

Mean number of lesions 6,7 +13% -11% -11% +13% +8% -10% +18% -19% -14% +14%
Mean diameter (mm) 14,0 +2% -9% +15% -13% +2% -1% +5% -3% +5% -4%
Mean volume lesions (cm3) 14,0 +29% -28% +33% -27% +18% -17% +42% -32% -4% +2%
Mean occupied volume (cm3) 20,2 +25% -25% +11% -10% +15% -16% +37% -31% -18% +22%
Mean square dispersion (mm2) 318 +9% -8% +1% +1% +1% +1% +1% +1% +1% +1%
Mean number of coalescence 7,1 +42% -32% +8% -8% +26% -23% +58% -40% +2% -5%
% of ill minipigs 60% +17% -21% +30% -42% +15% -17% +28% -33% +5% -8%

TABLE IV: Sensitivity analysis results. The effect of the increase or decrease (±10%) in different input parameters (Tmax, rmax,
ρ, v and β) for two different sets of parameters (latent and transition zone) is shown. The value obtained for the simulations
with the default parameters is also shown.

Transition set: ρ = 0.045, rmax = 6.50 mm and β =
0.08 mm−1.
The sensitivity analysis was performed doing simulations
with different set of parameters. For each simulation set,
one of the input parameters was increased or decreased
a 10% and we analyzed the output. We performed it
for all the input parameters of the model. The results
were analyzed by determining the variation (in %) of the
outcome variables and by performing an analysis of vari-
ance (ANOVA) between the outcomes obtained from the
simulation without changing any parameter and the one
with a modified parameter. Table IV shows the varia-
tions of the mean in % of the latent sensitivity analysis.
From the ANOVA test (not shown) and variation results
we obtained that, for the latent infection, the number of
lesions increases with time, with inflammatory response,
with growth velocity and with natality. The breath-
ing amplitude does not affect it. The mean diameter
is mainly driven by the inflammatory response, but the
coalescence process is not important. The lesions volume
is, as expected, proportional to the mean diameter and
the number of lesions. The occupied volume, dispersion
and number of coalescences are increased when the num-
ber of lesions increases. The breathing amplitude affects
the occupied volume, dispersion and coalescence process
frequency. It does not affect the number of lesions or the
mean diameter.
For the transition case, we obtained that when time in-
creases, as seen on the latent case, the number of lesions,
lesions volume, occupied volume, dispersion and number
of coalescences also increase. In contrast to the latent
infection case, the lesions diameter is also increased with
the time because now the coalescence process is very im-
portant. The rmax effect is also very similar to the la-
tent case excluding that it does not cause an increase
in lesions. The reason is that bigger lesions coalescence
is more probable and when the lesions merge the total
number of lesions is reduced. It can also be seen that an

increase in diameter is greater for the active case than
for the latent one. Again, ρ and v have a very simi-
lar behavior as both increase the endogenous reinfection
probability, what means an increase on most of the out-
come variables as in the latent case. In addition the
mean diameter is now also increased. The most relevant
parameter when comparing the latent and the transition
case is β. A decrease in it causes the lesions to be more
separated; then, the merging process is not as frequent
and the mean lesions diameter is reduced, as well as the
number of ill minipigs. An increase in β causes the oppo-
site effect. One thing that is a little bit surprising is that
the square dispersion is not affected by variations of β.
This is due to two effects that counter each other: on the
one hand, an increase in β reduces the distance where
new lesions appear and the dispersion is reduced; on the
other hand, closer lesions increase the number of coales-
cences and reduce the number of lesions, which increases
the mean dispersion.

D. Latent infection vs active disease

In order to compare the differences between the
minipigs that developed an active TB and the ones that
remained on a latent infection, we performed a large
number of simulations using the set of parameters in the
transition zone. On table V the differences between the
minipigs that developed an active disease and the ones
that did not is shown. The number of lesions in the
minipigs that developed the active disease is higher than
in the ones that did not (2,4 on average, an increase
of 35%). We can also observe that the mean diameter
is also higher but just a 8%, 1 mm. The deviation
on the minipigs that developed an active TB is higher
compared with the ones that did not, and the increase is
higher than this increase in mean diameter, what means
that the minipigs that developed an active TB had a
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Number Mean Diameters Lesions Occupied
of diameter deviation volume volume

lesions (mm) (mm) (cm3) (cm3)
Active

8,2 13,7 6,2 15,9 5,2
TB

Latent
5,8 12,6 3,2 7,0 2,8

TB

Mean 6,8 13,1 4,6 10,9 3,8

TABLE V: Differences between minipigs that developed an
active TB and the ones that did not.

wider distribution.
The main difference between the minipigs that developed
an active TB and the ones that did not is the number of
coalescence process. In fact, in table VI we can observe
that the minipigs without observed coalescence remained
in an a latent TB and for large number of coalescence
the minipig developed an active TB. The coalescence is
the main cause of an active TB when the inflammatory
response is not enough.
In order to observe the effect of the β variable model
we performed 1000 runs (5000 simulations) with the
variable β model. The set of parameters used to perform
these simulations was: ρ = 0.05, rmax = 6.5 mm,
βmin = 0.04 mm−1, βmax = 0.12 mm−1,
f = 0.005 mm−2 and z0 = −25 mm. We found
that in 46% of the cases the minipig developed an active
TB. Despite all the initial infections started on the
lower lobe (zini < −25 mm) most of the sick lesions
(74%) were seen on the upper lobe (zlesions > −25 mm).
This is in accord with usual clinical observation. The
maximum number of sick lesions observed was 6, but
mainly (in more than 50% of the cases) we only observed
1 sick lesion. It is observed that the growth of lesions
is caused by the coalescence process. Then, when the
breathing amplitude is small the coalescence is more
probable. This experiment is the evidence that we
needed to conclude that the breathing amplitude is a
very important factor to cause an active TB. Despite
the initial lesions are on the lower lobe, the probability
of causing an active TB on the lower lobe is small

and, if the infection arrives at the upper lobe (where
the breathing amplitude is smaller), the probability of
developing an active TB is high.

Number of coalescence
≤2 3 4 5 6 7-11 ≥12

% of ill 0 34 57 76 88 97 100
% of infected 100 66 43 24 12 3 0

TABLE VI: Number of coalescence effect on the illness rate.

IV. CONCLUSIONS

• The configuration of the initial infection (number of
lesions and location) can not be induced from CT data.
It strongly determines final location of lesions.

• The exploration of the rmax − β parameter space re-
vealed three zones with regards to the trigger of the dis-
ease. A small rmax (< 5 mm) ensures the maintenance
of a latent infection, while a high rmax (> 10 mm)
causes the development of the active disease. In the
transition zone (5 mm < rmax < 10 mm) the key for
triggering an active disease falls on β.

• The sensitivity analyses showed that, on the latent
zone, lesions’ individual growth parameters are rele-
vant, while breathing amplitude only determines the
spatial dispersion. There is a lack of coalescence. On
the transition zone, a small breathing amplitude clearly
increases coalescence, which becomes a determining
mechanism for lesions to growth.

• According to the model, the mechanism that would
cause a latent infection to divert towards an active dis-
ease are a high inflammatory response (rmax ↑) or a
moderate inflammatory response together with a small
breathing amplitude (β ↓). This is in accord with usual
clinical observations.
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