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Abstract: In this work we analyse the emergence of synchronization in a population of mo-
bile Integrate-and-Fire oscillators with limited vision. By proposing novel interaction rules among
oscillators we bridge phenomenology detected in a variety of previous models. In particular, we
explore the effect that the effective asymmetry of interactions have on the non monotonic behaviour
observed in the synchronization time of the population as a function of their velocities. We recover
non linear features with the same origin as [1] but considering only geometrical interactions, and we
study the scaling properties of the model as well as predict the values of the parameters where the
different dynamical regimes take place.

I. INTRODUCTION

Synchronization is an emerging phenomenon in sys-
tems composed by dynamically interacting elementary
units lacking any leader or hierarchy [4, 5]. This kind of
collective behaviour appear in nature in a huge variety of
contexts such as biology, ecology, climatology and sociol-
ogy among others [6, 7]. For example, synchrony occurs
in very different situations like metabolic processes in
our cells or collective human actions based on collabora-
tion. The versatility of this concept and the tools that
the field of complex networks has given motivated nu-
merous works addressed to characterize and predict this
phenomenon. Reciprocally, synchronization in popula-
tions of units with oscillatory behaviour has been one
of the more successful attempts to characterize the dy-
namical properties of time-dependant complex networks,
which have been studied primarily from a static point of
view.

The effects of changing interaction patterns on syn-
chronization features has attracted attention from fields
as diverse as chemotaxis [8], mobile ad hoc networks [9]
and its implementation in wireless sensor networks [11]
or genetics [10]. With this scope, a general framework
of mobile oscillators performing random walks in a two
dimensional space and interacting with the rest accord-
ing some rules has been proposed [12]. The evolution of
these systems has been approximated by linear dynamics.
One paradigmatic example are the Kuramoto oscillators
[13, 14], whose evolution after a short transient time is
well described by a set of solvable linear equations.

In this work we consider another framework of dynam-
ical interacting system, the so called Integrate and Fire
Oscillators (IFO), in which the internal phases evolve
continuously in time and there are instantaneous interac-
tions between the units taking place in other time scale.
There are several works addressed to characterize the
emergence of synchronization in IFO populations consid-
ering different interaction rules. Mobility of the oscilla-
tors has been shown to be a necessary condition to reach
synchronization in that models in which the network of
interactions lies bellow the static percolation transition

[15, 16]. Under these conditions, in some cases non-
linearity is observed in the emergence of synchronization
through mobility (increase the velocity does not always
favour synchronization), and hence a rich variety of mod-
els has been proposed.

Although the emergence of global synchronization is
usually considered as a positive phenomenon on interac-
tive dynamical systems, there are some examples, as it
happens in the neuronal dynamics of the brain, where
global synchronization is not a desired state [18]. There-
fore, this non-linearity feature attracted interest since the
prevention or favouring of synchronization by managing
the dynamical properties of the system can be an useful
tool in some contexts [19]. Actually, IFO have been used
to model neural systems but other examples such as in
the field of economics can be found [17].

The main objective of this work is to bridge the phe-
nomenology observed for different interaction patterns
in IFO populations an generally characterize the non
monotonic behaviour in the emergence of synchroniza-
tion through mobility. Our hypothesis is, given dis-
tinct models with different interaction rules display the
same non monotonic behaviour in the emergence of syn-
chronization, we can generalize the necessary conditions
that must be satisfied for the occurrence of non-linearity.
Furthermore, we want to show that the synchronization
mechanisms proposed for modelling the evolution of these
systems for a particular interaction rule [1] are general-
izable, and that we can quantitatively characterize the
non-trivial emergence of synchronization.

II. INTEGRATE AND FIRE OSCILLATORS
MODEL

The basic model that will be used in this work con-
sists in a population of N moving oscillators in a square
of length L with either finite or periodic boundary con-
ditions. All move with a fixed velocity modulus V
and are initially given random orientations θi ∈ [0, 2π],
i = 1, ..., N . We associate to each oscillator an internal
phase φi ∈ (0, 1) which increases uniformly in time until
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a maximum of 1 is reached. At this point, the oscillator
is reoriented in a random direction, its phase is reset to
0 and a firing event occurs. Upon such an event at time
t, the firing oscillator influences other oscillators (which
we call its neighbours) updating their phases by a factor
ε:

φi(t) = 1⇒

 φi(t
+) = 0

θi(t
+) ∈ U [0, 2π]

φneigh(t+) = (1 + ε)φneigh(t)

A firing event may push a neighbour phase to reach
the maximum and hence another firing event occurs. The
whole succession of fires takes place in frozen time, which
is restarted when no more phases can possibly be up-
dated.

We consider that the system is synchronized when a
succession of N firing events takes place, or equivalently
when all the oscillators have exactly the same internal
phase. We characterize the time that the system needs to
reach the synchronization state with a discrete time Tsync

defined as the number of cycles completed by a given
reference oscillator. Notice that Tsync describes entirely
the dynamics of the model because the synchronized state
cannot be altered once reached, being an attractor.

For this general model, one can choose different inter-
action rules that define how the affected neighbours by
a firing oscillator are chosen. This interaction structure
plays a fundamental role in the dynamics of IFO systems
[4]. Is worth to note that we are attending extreme situ-
ations with minimal interaction rules, where mobility is
a necessary condition for the emergence of synchroniza-
tion because the network of interactions are bellow the
static percolation transition. Moreover, different choices
for the boundary conditions can be set, although our ex-
periments show little variation of the relevant aspects of
each considered model (see Appendix VIII B).

In [1], what we call a topological model, in which each
oscillator influences only its nearest neighbour during a
firing event, is considered. Periodic boundary conditions
are taken. In the cited paper the reorientations are per-
formed by the influenced oscillators instead of the firing
ones. This difference is not relevant in the scope of this
work as we discuss in Appendix VIII A, so we consider
reorientations of the firing oscillators for the sake of clar-
ity in comparing the different models. The results of [1]
show that motion is effectively a necessary condition for
reaching synchronization and that there is a surprising
non monotonic dependence of Tsync with the velocity V
of the oscillators. Specifically, three dynamical regimes
are observed: For small velocities, synchronization arises
mainly due to the synchronization and recursive merg-
ing of well defined local clusters of oscillators, which is
a slow process leading to large values of Tsync; For fast
velocities, no local coherent structure can be found and
all oscillators interact randomly with each-other, lead-
ing to a global emergence of synchronization in a rapid
and effective way. These two regimes are well known and
studied in depth in previous works [4]. The novelty of

this model, however, is that a new regime is observed
for intermediate velocities where the interplay of the two
synchronization mechanisms leads to frustration, and the
system is not able to reach the synchronized state.

The local or global nature of the emergence of synchro-
nization can be characterized by the mixing parameter χ
which is the averaged fraction of distinct neighbours in-
fluenced by an oscillator per unit of time:

χ =

∑N
i=1 ni

N2Tsync
. (1)

where ni is the number of different oscillators influenced
by oscillator i during the synchronization process. High
values of χ indicate fast changes of neighbours or equiv-
alently global connectivity and vice versa.

This non monotonic behaviour in the emergence of syn-
chronization is not observed if we consider instead a geo-
metrical model like the one proposed in [3]. In this case,
each oscillator influences all the oscillators lying closer
than a certain interaction range distance R. Periodic
boundary conditions are taken in this model as well. The
results show that Tsync decreases monotonously with the
velocity, so we only observe the two earlier synchroniza-
tion regimes without the intermediate regime. Therefore,
the faster are the changes of neighbours (or equivalently
the higher is the mixing), the faster the system globally
synchronizes.

In both models, the motion of the oscillators allows
the emergence of the synchronized state. However, the
differences of the interaction rules lead to important dif-
ferences in the underlying time-dependant structure of
interactions in each model, and hence we observe dis-
tinct relationships between dynamics and the emergence
of global phenomena such as synchronization.

In a later work [2], an interesting addition to the
moving IFO model was added by implementing another
notion of geometric interaction that we call the robots
model : Each oscillator has a limited cone of vision of
radius R and angle α oriented in the direction of its mo-
tion. When an oscillator reaches maximum phase and
fires, influences all oscillators that have the firing oscilla-
tor located inside their cone. Additionally, in this model
no reorientations are performed during the firing events
and the boundary conditions are finite: When an oscil-
lator reaches a boundary, it reorients itself in a random
orientation chosen from the range [−π2 ,

π
2 ] with respect

the boundary normal. In addition, in frozen time there is
only a single update for oscillator. The effects of bound-
ary conditions and number of allowed updates are shown
to not cause significant differences in the emergence of
synchronization through mobility as we discuss in Ap-
pendix VIII B. Most strikingly, this model displays again
a non monotonic behaviour in the emergence of the syn-
chronization through mobility. The results are similar to
the ones obtained in the topological model and one can
again identify the same three dynamical regimes, so that
there is also a region where synchronization is prevented.
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Philosophically, this model lies among the two earlier
studied models, yet it displays the non monotonic be-
haviour using exclusively geometric interactions, which
are interesting from the technological point of view since
the election of the neighbours is instantaneous, there is no
need of comparing the positions of the oscillators around
you. This has even allowed the realization of experi-
ments with robots as can be seen in [2]. Moreover, as
we discussed in the Introduction, there are interest in
detecting which properties can prevent the emergence of
synchronization by tuning the dynamical changes on the
networks. Therefore, the recovering of a non monotonic
behaviour is an important feature of this model and in-
dicates that the mechanisms behind the no-sync zone de-
tected in [1] are by no means particular to the topological
model.

Inspired by [1], here we defend that the non monotonic
behaviour emerges as a result of what we call an effec-
tive asymmetry of the interaction pattern, as seen by the
fact that the geometrical model is unable to recover this
non monotonic behaviour [3]. The effective asymmetry
is the consequence of the interplay among two effects:
The non-reciprocity (in frozen time, the interactions be-
tween oscillators are not reciprocal) and the persistence
(in static conditions, each oscillator interact only with a
particular subgroup of neighbours).

In the following sections we thus interpolate between
the topological and the robots model and justify that
the interaction pattern must satisfy effective asymmetry
for the existence of the non monotonic behaviour. Given
that the robots model can have interesting applications,
we conclude our work by studying in detail this model
and its dependences with the relevant parameters ε and
R for the representative case of α = π that correctly
captures the main properties of the model. Furthermore,
we perform a quantitative analysis allowing us to predict
the position of the non-sync zone using similar arguments
as in [1] and thus validating the importance of effective
asymmetry for the emergence of non-trivial synchroniza-
tion behaviours in populations of moving oscillators.

The work is organized as follows: In section III we
consider the topological model but introducing the no-
tion of the cone of vision in order to study the effects of
persistence on a non-reciprocal notion of interaction. In
section IV we consider the geometrical model introduc-
ing again the notion of the cone in order to study the
effects of reciprocity. In sections V and VI we analyse in
depth the robots model and we quantitatively character-
ize the non monotonic behaviour observed. In Appendix
VIII A and VIII B we discuss the effects of secondary fea-
tures of the model that don’t cause significant changes in
the emergence of synchronization through mobility. In
Appendix VIII C and VIII D we study the properties of
the two time estimators used in section VI to quanti-
tatively characterize the synchronization mechanisms of
the robots model.

III. PERSISTENCE BREAKING.
TOPOLOGICAL CONE OF VISION.

Consider again the topological model but including the
notion of the cone of vision, that is select for each oscil-
lator its nearest neighbour inside an infinit cone of angle
α oriented along the motion direction. Notice that for
α = 2π this model is exactly the topological one. The
interactions of this model are non-reciprocal because the
direction of the fires depends on the instant spatial dis-
tribution of oscillators.

In Fig.1 we show the Tsync dependence on the velocity
V of the oscillators for different angles of interaction α.
Notice that in the fast velocity regime the synchroniza-
tion state is reached quickly for every angle. This is due
we are under fast switching conditions regardless of α:
Each oscillator needs short time to interact with the rest
of oscillators, so the connectivity is global and the syn-
chronization emerges quickly because the whole system
is synchronizing at once. It’s worth noting that in this
regime the global nature of the interactions are due to the
mobility of the oscillators so the influence of the angle is
negligible and no information about persistence can be
obtained in this regime. This statement is supported by
the mixing dependence on V shown in Fig.2: In the fast
regime, χ is high and doesn’t depend on α.

For small angles (α < π) there are long range interac-
tions (the first oscillator inside the cone can be located far
away from the firing one) and hence, as we are reorient-
ing the firing oscillators, we are breaking the persistence
and we can have almost fast switching conditions due
long range interactions regardless of mobility although
not as effective as the mobility-induced fast-switching
regime due to geometric constraints. Therefore, in Fig.1,
for small angles, we observe quick synchronization for
all velocity and hence monotonic behaviour is obtained.
Supporting this argument, in Fig.2 we observe that, in
the slow regime, χ is significantly greater than 0 for small
angles as consequence of the long range interactions.

By increasing the angle α we observe in Fig.1 a
transition from a monotonic behaviour towards a non-
monotonic behaviour where the non-sync region is ob-
tained. For large α, the range of the interactions decrease
so the oscillators interact only with their immediate sur-
roundings in the slow regime, enforcing the persistence.
In Fig.2 we observe that, for large angles, χ is signifi-
cantly greater than 0 only in the fast regime. Therefore,
it seems clear that persistence is a necessary condition
to obtain non monotonic behaviour in the emergence of
synchronization.
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FIG. 1: Topological Cone of Vision. Tsync vs V for dif-
ferent α with: L=200, N=20 and ε=0.1. We observe quick
synchronization for small angles due to fast switching condi-
tions through mobility for large V and through long range
interactions for small V . We also observe a transition to non
monotonic behaviour by increasing α. This is due for large α
persistence is satisfied. Here and in the following figures, error
bars correspond to one standard deviation and are only shown
for those points which, during the simulations, its calculation
has not diverged.

IV. TUNING RECIPROCITY. GEOMETRICAL
CONE OF VISION.

Now we want to study the effects of reciprocity. Con-
sider the geometrical model but with the notion of the
cone of vision, that is select for each oscillator all the
neighbours inside a cone of radius R and angle α ori-
ented along the motion direction. For α = 2π, the in-
teractions are totally reciprocal. By decreasing α we are
introducing non-reciprocity in the interaction pattern.

Here we fix the average number of neighbours k̄ to 1
in order to compare with the previous results:

k̄ =
αR2(N − 1)

2L2
= 1. (2)

In Fig.3 we show the Tsync dependence on the mobil-
ity. Again, in the fast regime we have fast switching and
hence quick synchronization through mobility regardless
of the angle. For small angles, fast switching conditions
are satisfied even in the slow regime through long range
interactions as in the case of the topological cone.

Moreover, we observe a monotonic behaviour for every
angle (even for the small ones in which the interactions
are non-reciprocal). This is because there are reorien-
tations. The direction of the interactions are randomly
fixed with the direction of the motion and don’t depend
on the spatial distribution of oscillators. By decreasing

10
-4

10
-3

10
-2

 0.001  0.01  0.1  1  10  100

χ

V

α=2π

α=1.53π

α=1.36π

α=π

α=0.64π

α=0.44π

FIG. 2: Topological Cone of Vision. χ vs V for dif-
ferent α with: L = 200, N = 20 and ε=0.1. For large V ,
we observe high χ regardless of α. So the influence of α is
negligible and fast switching conditions are always satisfied
through mobility. For small V , we have higher values of χ by
decreasing α and hence we increment the ratio of neighbour
changes and fast switching conditions can be satisfied even for
low velocities through long range interactions, in detriment of
the persistence.

α we increase the range of interactions and if we reori-
ent the firing oscillators, the interactions take place in
all directions even for small angles α, so that there are
not spatial correlations between consecutive fires and the
underlying network of interactions evolves locally in a
isotropic way. Therefore, while decreasing α we are also
breaking persistence and the effective asymmetry is not
satisfied.

Notice that in the fast velocity regime, the global syn-
chronization mechanism is more effective for large angles.
We do not properly understand this phenomenon which
could be studied in future work.

V. RESTORING PERSISTENCE BY STOPPING
REORIENTATIONS. THE ROBOTS MODEL

In the former section we tried to study the effects of in-
troducing non-reciprocity in the interactions but at the
same time we broke the persistence due the reorienta-
tions.

Is therefore necessary to study another model which
clearly should be the robots model, where no reorienta-
tions are performed. In this case we fix the direction of
the interactions randomly with the motion, which per-
sists unalterable during a succession of fires only finished
when the oscillator reach the borders. This ensures per-
sistence regardless of the angle. For large angles the in-
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FIG. 3: Geometrical Cone of Vision. Tsync vs V for
different α with: L = 200, N = 20, ε = 0.1 and k̄ = 1.
The behaviour in the emergence of synchronization is always
monotonic regardless of α. This is due the interactions are
in any case effectively asymmetric due to the reorientations:
If we decrease α we increment the non-reciprocity and decre-
ment the persistence and vice versa.

teractions are still reciprocal and, again, by decreasing α
we are reinforcing the non-reciprocity. So for small angles
this interaction pattern is effectively asymmetric. We fix
again k̄ = 1 in order to compare with the other models.

Confirming our hypothesis, in Fig.4 we observe how
the non monotonic behaviour in the emergence of sync is
recovered by decreasing α.

With all, we conclude that enforcing the effective
asymmetry of the interactions leads to non monotonic
behaviour in the emergence of synchronization through
mobility. The next step is to test whether the synchro-
nization mechanisms for the different dynamic regimes
proposed in [1] are generalizable to any model displaying
non monotonic behaviour or not.

Other interesting observation of this results is that the
synchronization mechanism in the slow regime is more
effective for smaller angles. In the following section we
characterize this mechanism but we still don’t have a
proper explanation for this phenomenon.

VI. LOCALIZING THE GEOMETRICAL PEAK.
TUNING SYNCHRONIZATION THROUGH

MOBILITY AND LIMITED VISION.

The aim of this section is the understanding and mod-
elling of synchronization in the slow velocity regime in or-
der to give a quantitative explanation to the appearance
of the peak for the robots model. The synchronization
in the fast regime is due the fast switching (global sync).
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FIG. 4: Robots Model. Tsync vs V for different α with:
L = 200, N = 20, ε=0.1 and k̄=1. We observe non mono-
tonic behaviour for small α. This is due the interactions are
effectively asymmetric given non-reciprocity is satisfied and
there are no reorientations so that persistence is also satis-
fied.

Our hypothesis is that there is a different mechanism of
synchronization for slow velocities analogous to the one
proposed for the topological model (local sync).

Following the same procedure as in [1] (see [20]), we
want to compare the time-scale that governs the changes
of the connected component configurations in the net-
work of interactions (the normalized neighbour time
τneigh/N) with the characteristic synchronization time of
the most common configurations taking place (the local
synchronization time τsync). We want to determine a
regime of velocities where this two time estimators are
comparable, and see if this regime coincides with the lo-
cal sync region as it happens for the topological model.
In such case, we justify the existence of a local synchro-
nization mechanism.

We focus on the case α = π. This is a significant
case that correctly captures the general behaviour of the
robots model.

On one hand, let’s consider the neighbour time τneigh
as the average time an oscillator remains inside the cone
of vision of another oscillator. We calculated both ana-
lytically and computationally this estimator. In the sim-
ulations we computed the neighbour time as the average
number of consecutive interactions between two oscilla-
tors. This is the most natural way to compute τneigh
given the definition of Tsync. The analytical calculation
of this estimator for the case α = π is shown in Appendix
VIII C and we obtained the following expression:

τneigh =
3R

πV
. (3)
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The dependences on V and R are correctly captured as
we verified by comparing with the computational results.

Consider the normalizationN of the neighbour time es-
timator τneigh/N . It is an estimator of the time-scale gov-
erning the connectivity changes of the network (if τneigh
is the time an oscillator needs to change its neighbour, on
average, every τneigh/N there is a change in the network
of interactions).

On the other hand, we calculated computationally the
local synchronization time estimator τsync: We consider
random static networks connected with the cone of vision
and we compute the average time that the non-isolated
oscillators need to synchronize with its static neighbours.
In Appendix VIII D we discuss the properties of this es-
timator.

Finally, to compare τsync with τneigh/N as a function
of V , N and R, let’s consider the control parameter

η =
τsync

τneigh/N
=
πV Nτsync

3R
. (4)

In Fig.5 we show that the slow velocity regime of effec-
tive synchronization is characterized by η ∼ 1 for every
value of the relevant system parameters ε and k̄. There-
fore, in the slow regime the two considered estimators
are comparable, so that oscillators locally synchronize
in small connected components before they break, and
hence there is an effective local mechanism that give rise
to synchronized clusters before global synchronization is
reached.

Moreover, if R < V the oscillators should mostly
change their neighbour in every consecutive interaction
and fast switching through mobility must work. Confirm-
ing this idea, the beginning of the fast velocity regime of
effective synchronization for each case is characterized by
such η that R = V (η = π

3Nτsync).

VII. CONCLUSIONS AND FUTURE WORK

The main result of this work is that the idea intro-
duced in [1] for the topological model, which points to
effective asymmetry as the necessary condition to obtain
non monotonic behaviour in the emergence of synchro-
nization through mobility, is generalizable to models with
geometric interaction rules. This generalization has been
done in the following way: In section III we have shown
that, for a non-reciprocal interaction rule, if we allow long
range interactions in detriment of persistence, we lose the
non monotonic behaviour in the emergence of synchro-
nization; In section IV we have shown that we can’t ob-
tain non monotonic behaviour with the geometrical cone
with reorientations because if we enforce non-reciprocity
by decreasing the angle we also break the persistence and
vice versa; Finally, in section V, we have shown that for
the robots model, in which we stop reorientations, we can
reinforce the non-reciprocity of interactions by decreasing
α without breaking persistence and hence satisfy effective
asymmetry and obtain non monotonic behaviour.
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FIG. 5: Robots Model. Collapse of the peaks through η for
different ε and k̄ with: α = π, N = 20 and L = 200. The rea-
son for the collapse is that the slow regime of synchronization
can be characterized with η ∼ 1. The beginning of the fast
regime of effective synchronization can be characterized with
R = V (vertical colour lines in upper figure), or equivalently
with η = πNτsync/3.

Moreover, given that we obtained a non monotonic be-
haviour for the robots model analogous to the topological
one, in section VI we checked whether the synchroniza-
tion mechanisms proposed for the topological model can
be also generalized or not. We found that for the robots
model there is also a local synchronization mechanism for
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the slow regime. Furthermore, we have shown a way to
characterize this slow regime of synchronization through
the control parameter η (see expression (4) and Fig.5).
This control parameter allows us to work in any of the
three dynamical regimes whatever the relevant param-
eters of the system may be, in particular allows us to
prevent synchronization.

With all, the principal aim of this work has been the
generalization of the results presented in [1] by introduc-
ing significant changes in the interaction rules in IFO
populations. Obviously, other significant changes could
be introduced. Nevertheless, the generalization done for
the robots model has interesting applications since this
model has clear interest from the technological point of
view.

In all the results, the density of oscillators has been
fixed (N = 20 and L = 200) because the features of the
different models are shown to be correctly reflected and
the simulation times are not excessively high. One inter-
esting future work could be the study of the emergence
of synchronization if we consider large populations of os-
cillators and check if the results presented here are still
valid.

Other secondary phenomena could be also studied in
future work. For example, we have neither given an ex-
planation to the effects of the angle in the fast switching
regime through high velocity for the geometrical cone of
vision (see section IV), nor to the better effectiveness of
the slow regime sync mechanism for smaller angles in the
robots model (see section V).

VIII. APPENDIX

A. Reorient who Fires or who Receives

In the cases of the topological and the geometrical cone
with reorientations, we reoriented the firing oscillators in
every firing event. In the model presented in [1] the reori-
entations are performed on the neighbours of the firing
oscillator (the oscillators who receive). This difference
has shown to be negligible in the behaviour of the emer-
gence of synchronization: The dependence of Tsync on V
is exactly the same but we observe slightly lower values
of Tsync if we reorient the oscillator who receives. That is,
the monotonic or non monotonic behaviour is obtained in
the same way but the height of the peak in non monotonic
behaviour conditions are slightly lower if we reorient who
receives. The mixing dependences on velocity are similar
as well.

B. Boundary Conditions and number of allowed
Updates

Periodic and finite boundary conditions are shown to
not modify the behaviour in the emergence of synchro-
nization through mobility for any of the models consid-

FIG. 6: Appendix C. Representation of the integral variables:
Φ is the inicial angular coordinate of oscillator O2; angles
θ1, θ2, θ3, θ4 are the extremes of integration and β is an
instrumental variable in the calculation.

ered. However, with periodic boundary conditions some
secondary effects have been detected. In particular, for
the robots model with reorientations and periodic bound-
ary conditions, we observe an anomalous behaviour: We
observe an increment of Tsync by decreasing α with k̄
fixed and low velocity. This is due for R > L/2 (or
equivalently θ < 8/N), the oscillators can have the same
neighbour with two opposite orientations and this favours
the synchronization process.

In the robots model we only allow one update per os-
cillator in every succession of firing events in frozen time.
This has been done in order to compare to the results of
[2]. This variation of the model causes an homogeneous
increment of Tsync for all V . Nevertheless, the behaviour
of the emergence of synchronization through mobility is
exactly the same, with the only difference that in general
the system needs more time to synchronize.

C. Analytical calculation of the Neighbour Time.

In this Appendix we perform the analytical calculation
of the estimator τneigh for α = π, although the procedure
can be generalized for an arbitrary α.

Consider the representation of Fig.6: The oscillator
with the cone O1 is located in the origin oriented with
velocity v1 = V î and the oscillator O2 is located in some
point of the semicircle (at distance R and angle Φ ∈
[−π2 ,

π
2 ] from O1). Given both oscillators have the same

modulus velocity V , the positions considered for O2 are
the only ones from which this oscillator can enter inside
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FIG. 7: Appendix C. Simulated values of τneigh vs R/V with
α = π. We observe the collapse of the estimator as we expect
from expression (24). The discrepancy with the analytic re-
sults is due in the simulations the notion of the time is discrete
and in the analytic method the time is continuous.

the cone. Let γ be the random orientation of O2 and
v2 = V (cos(γ)̂i+ sin(γ)ĵ) its velocity. Hence the relative
velocity v is

v = v2 − v1 = V ((cos(γ)− 1)̂i+ sin(γ)ĵ). (5)

Consider the horizontal relative distance x(t) and the
vertical relative distance y(t) where t is the time:

h
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FIG. 8: Appendix D. τsync, S, D vs k̄ respectively with
α = π, L = 200 and ε = 0.02 (we vary the parameter R). We
observe a non monotonic dependence of τsync because, for low
k̄, we are increasing the average size of the connected com-
ponents S and the number of links D by increasing k̄, and,
for high k̄, we keep increasing the number of links D but the
size of the components S remains constant by increasing k̄,
because the whole network is connected which favours syn-
chronization. Vertical lines indicate the position of the peak
and the transition between the two regimes.
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x(t) = R cos(Φ) + tV (cos(γ)− 1), (6)

y(t) = R sin(Φ) + tV sin(γ). (7)

Consider the variable

θ = tan−1(
sin(γ)

cos(γ)− 1
) (8)

which is the polar coordinate of the relative velocity. No-
tice that, with the notation introduced in Fig.6, O2 enter
inside the cone if θ ∈ (θ1(Φ), θ4(Φ)). Therefore, the inte-
gral we must solve to average τneigh is

τneigh =
1

π

∫ π
2

−π
2

dΦ
1

π

∫ θ4(Φ)

θ1(Φ)

dθT (θ,Φ) (9)

where T (θ,Φ) is the time that O2 needs to leave the cone.
Notice that if θ ∈ (θ1(Φ), θ2(Φ)), then T (θ,Φ) ≡ T1

satisfies

x(T1)2 + y(T1)2 = R2 (10)

and T1 > 0.
If θ ∈ (θ2(Φ), θ3(Φ)), then T (θ,Φ) ≡ T2 satisfies

x(T2) = 0. (11)

And finally if θ ∈ (θ3(Φ), θ4(Φ)), then T (θ,Φ) ≡ T3

satisfies

x(T3)2 + y(T3)2 = R2 (12)

and T3 > 0.
Therefore, the integral (9) becomes

τneigh =
1

π

∫ π
2

−π
2

dΦ
1

π

∫ θ2(Φ)

θ1(Φ)

dθT1+

1

π

∫ π
2

−π
2

dΦ
1

π

∫ θ3(Φ)

θ2(Φ)

dθT2 +
1

π

∫ π
2

−π
2

dΦ
1

π

∫ θ4(Φ)

θ3(Φ)

dθT3

(13)
Now we need to determine θ1, θ2, θ3 and θ4. Consider

β = tan−1(
1− sin(|Φ|)

cos(Φ)
). (14)

We have

θ1 = Φ +
π

2
, (15)

θ2 = π − β, (16)

θ3 = θ2 +
π

2
=

3π

2
− β, (17)

θ4 = Φ +
3π

2
. (18)

Moreover, from(8),

cos(γ)− 1 =
sin(γ)

tan(θ)
, (19)

sin(γ) =
−2 tan(θ)

tan2(θ) + 1
. (20)

Now substitute expressions (19) and (20) in (10), (11)
and (12) and isolate Ti discarding the null solutions. We
obtain

T1 =
R(sin(Φ) tan(θ) + cos(Φ))

V
, (21)

T2 =
R cos(Φ)(tan2(θ) + 1)

2V
, (22)

T3 =
R(sin(Φ)tan(θ) + cos(Φ))

V
, (23)

Finally substitute expressions (21), (22) and (23) in
the integral (13). The resulting integral is solvable ana-
lytically and we obtain the final expression

τneigh =
3R

πV
. (24)

Expression (24) correctly matches with the results for
this estimator in the simulations as can be seen in Fig.7.

D. Local Synchronization Time Estimator Analysis

The estimator τsync depend on the average number of
neighbours k̄. In Fig.8 we observe that the dependence
is not monotonic. For small k̄, the estimator increases by
increasing k̄ and for large k̄ the estimator decreases.

We studied the average size S and the average num-
ber of links D of the connected components appearing
in the static network connected with the cone of vision.
As can be seen in Fig.8, for small k̄, we increase the size
of the components S and the number of links D by in-
creasing k̄, so τsync becomes larger. For large k̄, the size
of the components S remains constant because a giant
connected component appears and we only increase the
number of links D by increasing k̄. This favours synchro-
nization of the connected component in this regime and
τsync decreases.

The transition between the two regimes (the peak in
the figure τsync vs k̄) depend on N (for larger populations
the size of the components is still growing for larger k̄).
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