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Preface

This thesis is focused entirely on classical and thermodynamical aspects of black
hole physics. Several types of black holes, together with the phenomena intrinsic
to each one of them, have been investigated and are discussed in it. Some of the
research exposed in this thesis has been done in an arbitrary number of dimen-
sions and the rest in a specified number of dimensions (d = 4, 5, and 6). Different
techniques have been used in obtaining the results. While most of the analysis
is analytic (sometimes exact, sometimes through effective descriptions), numerical
methods have also been employed. Throughout the whole thesis special attention
is paid to the geometry and other properties of black hole horizons.

The thesis is presented in the form of a “Compilation of Articles” and is divided
in three parts. The first part is an introduction with essential background for the
publications. The second part is divided into four chapters:
• Black Branes in a Box: Hydrodynamics, Stability, and Criticality
• Black String Flow
• Bumpy Black Holes
• Exact Event Horizon of a Black Hole Merger

Each chapter contains a published article. The last part of the thesis contains the
conclusions and a summary in Spanish.

Marina Martínez Montero
Barcelona, July 2016
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1
Introduction

General relativity (GR) is an amazing theory of gravity. A hundred years ago,
when it was first proposed by Albert Einstein, it changed completely our way of
understanding the gravitational interaction. Thanks to GR, gravity is no longer
viewed as an instantaneous force, as it was in Newton’s theory, but as the curvature
of a dynamical spacetime. Einstein’s equations,

Rµν −
1
2Rgµν = 8πGTµν , (1.1)

show the interplay between geometric quantities such as the metric, the Ricci scalar
and the Ricci tensor, and the matter content, described by a stress-energy tensor.
Through these equations, matter curves spacetime and spacetime tells matter how
to move. The universal character of gravity here is automatic. All particles im-
mersed in a given spacetime follow geodesics through it in the absence of external
forces.

Apart from being beautiful and elegant, GR has been exhaustively tested. It
is important to stress here that much of these tests were predictions that previous
to GR were totally inconceivable. The first success of the theory was to explain
Mercury’s perihelion precession. This was followed by the observation of deflection
of light by the Sun (in the famous 1919 total Sun eclipse), the gravitational redshift
of light moving in a gravitational field (1959)1, the Shapiro time delay a signal
experiences when passing through a massive object (first measured in 1966) and
the orbital decay due to gravitational wave emission (first reported in 1978, Nobel
prize in 1993) among others. The most recent triumph, announced earlier this year,
has been the direct observation of gravitational waves by LIGO. Most of the GR
tests had been done within the solar system and hence were tests of its weak field
regime. The gravitational wave detected on September 14th, 2015 (GW150914)
was generated during the merger of two black holes of ∼ 30M� each, in the most
violent and strong gravitational field event ever observed.

GR predicts the existence of the most incredible objects ever conceived, black
holes. These are objects in which gravity is so strong that not even light can scape.
They are characterised by having an event horizon; this is the null surface limiting

1This experiment (not observation), by Pound and Rebka, was the first one done to test GR.
Notice it was performed more than 30 years after the theory was proposed.

1



2 Introduction

which points in spacetime are causally connected to infinity, that is, the surface of
no return.

Black holes lie at the core of the theory. The most popular black holes, Schwarz-
schild’s and Kerr’s, are in fact solutions to the vacuum Einstein’s equations (they
are purely curved spacetime). Then, in order to describe some black hole processes,
one needs nothing more than spacetime dynamics. For example, the description of
the inspiraling, merger and final relaxation/ringdown of a black hole fusion event
can be accomplished solely by considering the vacuum Einstein’s equations

Rµν = 0. (1.2)

Solving the vacuum Einstein’s equations and extracting details such as the
event horizon or the gravitational radiation profile of a black hole merger is a
complicated task. It requires in general sophisticated numerical techniques and
heavy computational resources. Chapter 5 contains a publication in which we
show that there is a limit in which the event horizon of a black hole merger can be
described in an analytic way. More details on this are given in Sec. 1.4.

Dynamical situations, as we have mentioned above, are extremely complicated.
However, when one considers static or stationary solutions, the picture simplifies
in a substantial manner. In fact, for vacuum GR in four dimensions, there are
uniqueness theorems that show the only asymptotically flat (AF) static or station-
ary solutions are respectively Schwarzschild’s or Kerr’s. For stationary and AF
black hole solutions of Einstein-Maxwell’s theory, there is a no-hair theorem that
tells us that any black hole solution (non-singular on and outside the event horizon)
can be described only by three parameters, mass, charge and angular momentum
and is given by the Kerr-Newman solution.

Black holes are described in general by very few parameters, as opposed to the
number of parameters needed to describe a star in a detailed way. It seems that
there is something suspicious, and that one could lose entropy by throwing bodies
into a black hole, or in fact, in the gravitational collapse of a star. The fact that
black holes are described by very few parameters together with the resemblance
between the laws of black hole mechanics and the laws of thermodynamics led
Bekenstein to propose that an entropy could be associated to black holes and
that it was proportional to their area2 [1]. It was Hawking, nevertheless, who
made this relation precise. A quantum field theory (QFT) calculation in curved
spacetime showed that black holes are indeed thermodynamic bodies and that their
temperature and entropy depend only on asymptotic charges [2].

It was realised immediately that if black holes had a temperature and radiated,
it was possible for them to eventually evaporate. This led to the formulation of the
black hole information paradox [3]. It states that it is not possible to trace back the
initial state that first formed the black hole from the emitted Hawking quanta and
hence information is lost in the black hole formation/evaporation process. This
has turned into a fundamental problem in theoretical physics (it has been around

2He also noticed that there was a positive quantity, the surface gravity, which was an analogue
of the temperature when comparing the laws of thermodynamics with that of black holes. It
was stressed, however, that this temperature was not to be understood as a real one.
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already 40 years). The information paradox expresses an existing tension between
GR and QFT and highlights the need of a theory of quantum gravity.

One of the strongest candidates for a theory of quantum gravity is string theory.
It has been around for many years now and a lot of effort has been put into devel-
oping it. Being able to identify the microscopic degrees of freedom that account
for the entropy of a specific black hole has been one of its major successes [4]. In
order for string theory to be a sensible theory, however, extra dimensions are un-
avoidable. The presence of extra dimensions within string theory, which contains
GR, fomented the study and interest in higher-dimensional classical gravity. GR
and specifically black holes in more than four dimensions have been an active field
of study in the past decades [5]. Nevertheless, it is important to mention that the
interest in GR with extra dimensions dates back to Kaluza’s theory [6] in 1921.

Gravity in higher dimensions is different in a number of aspects. Extra dimen-
sions allow for a richer space of solutions and, among other things, the uniqueness
theorems that we knew from four dimensions do no longer hold. That is, in some
cases there is more than one static or stationary black hole solution for the same
asymptotic charges. Rotation also changes; increasing the number of dimensions
permits more independent rotation planes. The possibility of extended horizons,
like black strings and black branes, and the dynamics associated to those, are
features that also arise from considering extra dimensions. As we have briefly men-
tioned here, when gravity is extended to higher dimensions substantial differences
appear. In the following sections we will give a taste of higher-dimensional GR;
concentrating on solutions, phenomena and techniques relevant for the publications
contained in Chs. 2, 3 and 4 of this thesis.

1.1 Black branes

Black branes are black hole solutions with extended directions. The publication in
Ch. 2 focuses on stability properties of black p-branes inside a “cylindrical” cavity.
Black p-branes treated there are (n + 3 + p)-dimensional solutions to the vacuum
Einstein’s equations. They are easily obtained by adding p flat directions to the
(n+ 3)-dimensional Schwarzschild-Tangherlini solution,

ds2 = −
(

1− rn0
rn

)
dt2 + dr2

1− rn
0
rn

+ r2dΩ2
(n+1) +

p∑
i=1

(dxi)2. (1.3)

The first three terms in the metric above correspond to the higher-dimensional
generalisation of Schwarzschild solution. The only changes in the metric with
respect to the four dimensional solution are the change in fall of the gravitational
potential 1/r → 1/rn and the substitution of the 2-sphere by a (n+1)-sphere. The
last term accounts for the flat spatial extra dimensions. As a result, the black brane
is a static solution with the horizon located at r = r0 and with horizon topology
Sn+1×Rp if the xi are infinite or Sn+1×Tp if they are compactified. Solution (1.3)
can also be written as

ds2 = −
(
ηab + rn0

rn
uaub

)
dσadσb + dr2

1− rn
0
rn

+ r2dΩ2
(n+1) (1.4)
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making explicit the worldvolume coordinates σa = (t, xi) and the worldvolume
velocity ua which satisfies ηabuaub = −1.

The total mass M and entropy S of these solutions depend on the volume V p

of the space defined by the xi directions. It is more convenient then to define mass
density and entropy density

m = rn0 (n+ 1)Ω(n+1)

16πG , s = Ω(n+1)r
n+1
0

4 . (1.5)

Other quantities such as the temperature

T = n

4πr0
, (1.6)

are insensitive to the volume of the flat spatial directions. The Schwarzschild black
hole in four dimensions is known to be dynamically stable and locally thermody-
namically unstable (negative specific heat). With the quantities above it is easy to
check that these black branes also have a negative specific heat and therefore are
locally thermodynamically unstable.

In 1993, Ruth Gregory and Raymond Laflamme analysed the dynamic stability
of 10 dimensional black p-branes. They found that these black holes are linearly
unstable to long wavelength perturbations along their worldvolume [7]. This is
known as the Gregory-Laflamme (GL) instability. By perturbing the solution

gµν → gµν + hµν (1.7)

and solving the linearised Einstein’s equations3

∆Lhµν = 0, (1.8)

they found solutions of the form

hµν = eΩt+ikix
i

Hµν(r). (1.9)

These are essentially ripples along the horizon (see Fig. 1.1) that grow exponentially
with time. They found real and positive values of Ω(k) for a finite range of k’s from
0 to kGL, see Fig. 1.2. The fact that this instability exists only for wavelengths
larger than λGL = 2π/kGL means that the brane can be stabilised by choosing the
compactification scale smaller that λGL.

In the original derivation of the GL instability, the dispersion relation for un-
stable modes (for which we show a sketch in Fig. 1.2) was obtained numerically.
Even if the GL instability was first found to be present in 10-dimensional solutions,
it is present in neutral black p-branes independently of the number of dimensions
(recall that they exist for D ≥ 5).

All our discussion until now on the GL instability comes from the linearised
analysis and little can be said about the endstate of the instability. One can spec-
ulate, however, on what can happen if the instability is pursued into the nonlinear

3∆L is known as the Lichnerowicz operator and it is the curved space wave operator for a spin
two massless field.
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Figure 1.1: Schematic representation of the GL instability effect on a black string
horizon.

Figure 1.2: Sketch of the dispersion relation Ω(k) obeyed by unstable GL modes.

regime. It was argued in Ref. [7] that inhomogeneities could keep growing larger
and larger until a fragmentation of the black string into localised black holes oc-
curred through a naked singularity. The cosmic censorship hypothesis states that
singularities are hidden behind horizons. In higher dimensions, however, it is not
believed to be true as situations have been found in which probably naked singu-
larities appear in horizon fragmentation processes of unstable black holes.

The full nonlinear evolution of the homogeneous black string in 5 dimensions
was done in 2011 by Luis Lehner and Frans Pretorius [8]. They found the black
string inhomogeneities grew to form almost spherical black holes connected by thin
necks. Those necks subsequently developed a GL instability; giving as a result
an array of localised black holes with smaller black hole satellites in a fractal-like
manner. They argued that cosmic censorship was violated by finding that the
black string thickness appeared to shrink to zero size in finite asymptotic time. It
is now known that this is not the only possible endstate. The GL threshold mode
(highlighted with a purple dot in Fig. 1.2) is a static deformation of the black
brane horizon which gives rise to a family of solutions named non-uniform black
strings (NUBS). There are studies that show the endstate of the GL instability
depends strongly on the number of dimensions4.

4Reference [9] analysed black strings close to the threshold of instability (L ∼ 1/kGL) and
determined that there was a critical dimension dcrit ≈ 13 that marked two distinct behaviours
(for d > dcrit the BS should evolve to a NUBS and for d < dcrit to an array of localised black
holes.). Recently it was shown in Ref. [10], by evolving the GR equations in the large number
of dimensions limit, that for the strict d→∞ limit, the endstate of the evolution is in fact a
NUBS. The large d analysis in Ref. [11] recovered the correct value for dcrit



6 Introduction

A complementary study of the GL instability can be achieved through the
blackfold effective worldvolume theory [12,13]. This approach serves for the study
of long wavelength black brane dynamics and for the construction of new black hole
solutions with two widely separated scales characterizing their horizon. Some black
hole horizons in higher dimensions, for example black branes and some rotating
black holes, have two characteristic length scales of very different size. For the
black branes discussed here, those lengths correspond to the horizon thickness r0
and the compactification scales (Li) of the worldvolume5. AF black branes, in which
the extended directions are not compactified, will naturally have r0 � Li since
Li ≈ ∞. The blackfold effective theory can then be used to study long wavelength
(∼ R � r0) fluctuations of these solutions. These fluctuations can be intrinsic
(thickness variations along the horizon) or extrinsic (bending the worldvolume of
the brane). In this thesis we have only treated intrinsic fluctuations.

When such an approach is taken, the complex dynamics of black brane horizons
is captured by an effective hydrodynamic theory. That is, whenever the wavelength
of the perturbations (let us call them R) along the worldvolume is much larger than
the horizon thickness, Einstein’s equations in a derivative expansion, are equivalent
to the relativistic hydrodynamic equations of an effective fluid. The GL instability
within this approach can then be understood as the dynamic instability of a fluid;
this is reflected by the imaginary velocity of sound waves through it, i.e., the non
propagation of density perturbations.

The black branes discussed here are vacuum solutions to Einstein’s equations,
which means they have a zero stress-energy tensor. One of the crucial ideas of
this approach is to integrate out the short wavelength (r � R) degrees of freedom
captured by the whole geometry and instead describe the system by an effective
stress-energy tensor that reproduces the same gravitational field far away (r � r0).
There are several definitions for such stress-energy tensors but it is better moti-
vated, in the context of the blackfold approach, to use the Brown-York quasilocal
stress-energy tensor [14]. For the black brane (1.4) it is that of a perfect fluid

Tab = ε uaub + PPab, Pab = ηab + uaub (1.10)

with
ε = (n+ 1)Ωn+1r

n
0

4G and P = −Ωn+1r
n
0

4G . (1.11)

Notice that with this effective perfect fluid description, obtained with the unper-
turbed black string, one can already realise the presence of an instability6. One
can see this by introducing small density and velocity perturbations

ε→ ε+ δε, P → P + dP

dε
δε, ua = (1,~0)→ (1, δui), (1.12)

to the static fluid. Then stress-energy conservation gives sound waves

∂2
t T

tt − ∂2
i T

ii = 0 −→
(
∂2
t −

dP

dε
∂2
i

)
δε = 0, (1.13)

5We will consider that all Li are of the same order.
6The equation of motion for the effective stress-energy tensor was derived from Einstein’s theory

in Ref. [15]. The result shows the effective stress-energy tensor is conserved, ∇aT
ab = 0.
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“propagating” with speed

c2
s = dP

dε
= − 1

n+ 1 . (1.14)

The speed is imaginary for the black brane effective fluid and therefore there is no
propagation. Instead, density fluctuations grow exponentially with time

δε ∼ eΩt+ikix
i

, (1.15)

and unstable modes obey the dispersion relation

Ω = k√
n+ 1

. (1.16)

Since the density only depends on the horizon radius r0, the instability of the fluid
shown here corresponds to the hydrodynamic limit of the GL instability present in
black branes; i.e., the k → 0 region of Fig. 1.2.

A further step was taken in Ref. [16]. There, the authors solved Einstein’s
equations for a perturbed black brane in which the parameters r0 and ua were
allowed to slowly vary along the worldvolume,

r0 → r0(σ) and ua → ua(σ). (1.17)

The variations considered there are slow compared with the horizon scale r0 and
the equations can then be solved analytically in a derivative expansion. They
computed the effective stress-energy tensor of the perturbed black brane. It was
seen to be again fluid like, but now with dissipative terms. The perfect fluid part
coincided with that of the homogeneous black string and the differences appeared
as viscous corrections. The damping effect of viscosity can be appreciated in the
corresponding dispersion relation for unstable sound waves

Ω =
√
−c2

sk −
((

1− 1
p

)
η

s
+ ζ

2s

)
k2

T
+O(k3), (1.18)

where η and ζ are the bulk and shear viscosities respectively. This dispersion rela-
tion was compared with numerical results for the GL instability. Surprisingly good
agreement was found, see Fig. 1.3, specially when the number of transverse dimen-
sions considered was large. The surprise comes from the fact that the threshold
mode of the GL instability is not a hydrodynamic mode, and hence one should not
expect it to be captured by the hydrodynamic expansion.

It was proposed by Gubser and Mitra [17], in what has been known as the corre-
lated stability conjecture (CSC), that dynamical and thermodynamical instabilities
of translationally-invariant black branes are linked. The original statement of the
conjecture was:

For a black brane solution to be free of dynamical instabilities, it is necessary and
sufficient for it to be locally thermodynamically stable.
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Figure 1.3: At the top left, the dispersion relation Ω(k) of the effective black brane fluid
(1.18). At the top right, numerical data showing the dispersion relation Ω(k) for unstable
GL modes in black branes. At the bottom, both dispersion relations superimposed for
the n = 100 dimensional case. Images taken from Ref. [16].
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The AF black p-branes we have been discussing are always (for all values of r0,
which is the only parameter of the solution) both thermodynamically and dynam-
ically unstable. This means that they do not violate the conjecture. It would be
handy, however, to study a case in which there is a parameter that controls the
stability of the solution. Then it could be checked if both dynamical and thermo-
dynamical instabilities appear at the same critical value of the parameter.

In Ref. [18] the thermodynamic stability of the Schwarzschild solution in ther-
mal equilibrium inside a cavity was investigated. The temperature a spherical box
of a certain radius (area radius r = R) needs to have in order to be in thermal equi-
librium with a black hole inside it is the same temperature a local observer at that
area radius (in Schw. coordinates at r = R) would measure7. As a consequence,
the temperature of these cavities increases as they are reduced. It was found that
the specific heat of Schwarzschild black holes inside such cavities changes from neg-
ative to positive as the size of the box decreases. Since the same behaviour persists
for black branes in a box, this system serves for the purposes of investigating the
CSC with a control parameter. Most of the studies that investigate the validity of
the CSC have focused mainly in the static threshold mode of the GL instability.
The threshold mode of the black brane inside a cavity was studied in Ref. [19].
There it was shown that the threshold mode disappeared precisely for the size of
the cavity that rendered the black brane thermodynamically stable.

There are many systems in which the ranges of the dynamical and thermody-
namical instabilities coincide, agreeing then with the CSC. There have been found,
however, solutions in which black branes are thermodynamically stable and at the
same time exhibit a static zero mode indicating the presence of a dynamical insta-
bility.

Chapter 2 contains a publication in which we study the black brane in a cavity
using the blackfold approach. We solve Einstein’s equations in a derivative expan-
sion imposing Dirichlet boundary conditions at the box. We compute the viscous
fluid stress-energy tensor and investigate the stability of sound modes depending
on the size of the cavity. There, we argue that the real link is between unstable
hydrodynamic modes (usually, but not necessarily, accompanied with a static zero
mode) and local thermodynamic instability. This relation is in fact direct in the
effective fluid description.

1.2 Flowing horizons

The event horizon of most stationary black holes studied in textbooks and in a
vast majority of papers are Killing horizons. Those black hole spacetimes have
Killing vector fields Kµ

(i) (let us label them by (i)) which are associated with the
symmetries of the solution (generally time translation and axial symmetry). Killing

7Notice that this is just taking into account the redshift factor so that TR = TSchw√
−gtt

∣∣
r→R

, where
TSchw is the Hawking temperature measured by an asymptotic observer and TR is the tem-
perature measured by an observer at fixed r = R.



10 Introduction

vectors obey Killing’s equation

∇(µKν) = 0 (1.19)

and for each Killing vector there is an associated quantity ε(i) which is conserved
along geodesics (with tangent vector pµ)

ε(i) = Kµ
(i)pµ, pµ∇µε(i) = 0. (1.20)

A Killing horizon is a null hypersurface Σ whose null generators are parallel to a
null Killing vector field. A surface gravity κ can be defined for every Killing horizon
as the non-affinity coefficient of the Killing horizon generators8

Kµ
(Σ)∇µK

ν
(Σ) = −κKν

(Σ). (1.21)

It can be proven (under some assumptions) that κ is constant on Σ, both along the
horizon generators and in the spatial directions orthogonal to them. The surface
gravity in stationary horizons can be interpreted as the horizon temperature, hence
black holes with Killing horizons have a constant temperature.

In thermodynamics of conventional systems, not all stationary situations are in
thermal equilibrium. Consider for example, two infinite heat reservoirs at different
temperatures that are connected by a heat conducting bar. The heat flux through
the bar will be stationary even though the system is clearly not in thermal equilib-
rium. In black hole physics, stationary black hole solutions featuring non-Killing
horizons can be found9. Like in the example of the bar connecting two heat reser-
voirs, these horizons can support a temperature gradient along them that remains
constant in time. Chapter 3 contains a publication in which, inspired by black
funnels, we construct analytically such a flowing horizon.

Black funnels are stationary black hole solutions in AdS spacetime which can
feature non-Killing horizons. They have a boundary black hole that extends into
the bulk in a stringlike manner and that deeper in the bulk merges smoothly with
a planar brane; see Fig. 1.4 for a schematic representation. The existence of black
funnels was first proposed in the context of AdS/CFT to study strongly coupled
field theories in black hole backgrounds. Most of the studies regarding quantum
field theories in curved spacetimes had been traditionally addressed with free field
theories and it was not clear how much of what we knew was due to the weakly-
interacting character of the field theory.

The AdS/CFT correspondence permits (among other things) the study of strongly
coupled field theories through their gravity duals. The authors in Ref. [20], with
the goal of studying strongly coupled field theories in black hole backgrounds, be-
gan examining the possible gravity solutions dual to a black hole immersed in a
strongly interacting plasma. In order to accomplish the task they had to seek for
AdS solutions that had a black hole at the boundary metric and a planar black

8Notice that κ depends on the normalization of the Killing vector. For stationary solutions,
however, it is easy to fix the normalization in a sensible way.

9There are theorems that say that stationary horizons must be Killing’s but these solutions
evade those theorems by rendering non-compact horizons.
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Figure 1.4: Schematic representation of the black droplet over a deformed black brane
(left) and the black funnel (right) solutions.

brane asymptotically in the bulk10. The black hole at the boundary, for continuity
of the full solution, had to extend in smoothly into the bulk.

Two gravity duals were proposed to exist for such a setting: black funnels and
black droplets11; see Fig. 1.4 for a schematic representation. Both of them feature a
black hole metric at the boundary which extends into the bulk. In the case of black
droplets the solution contains two disconnected horizons, the droplet that hangs
from the boundary and closes up smoothly in the bulk, and a deformed black brane.
Black funnels, on the other hand, have one non-compact horizon that merges the
black hole at the boundary with a planar brane in the bulk. Black funnel solutions
for which the boundary black hole and the asymptotic planar brane are at different
temperature exhibit a stationary heat flow along the horizon. This might seem
strange but one needs to bear in mind that the boundary metric is a boundary
condition for the full solution.

Several black funnels have been constructed over the years. The construction
of analytic non-flowing funnels in three and four dimensions was realised in Ref.
[23]. Analytic construction of flowing funnels in three dimensions was addressed in
Ref. [24]. Numerical non-flowing funnels in five dimensions were found in Ref. [25].
The funnels studied in this last reference, are of the kind depicted in Fig. 1.4
where a stringlike horizon connects smoothly with a planar brane (both having
the same temperature). Numerical12 flowing funnels in global AdS in 4 dimensions
were constructed in Ref. [26]. These last funnels have two boundary black holes
connected by a tubular horizon through the bulk.

Plenty of work had been done in the field but still a study of a (hot) stringlike
horizon merging smoothly with a (cold) planar one was missing. This is precisely
the issue addressed in the publication contained in Ch. 3. There we give an analytic
construction of a flowing horizon in an arbitrary number of dimensions d ≥ 5. It
features a hot black string freely falling into a cold big black hole. This situation is
certainly not stationary unless one considers the limit in which the big black hole
is infinitely big. We also show that AdS asymptotics are not necessary for having
black hole solutions with non-Killing horizons.

10The planar brane solution in AdS, was known to be equivalent to a deconfined phase of the
strongly coupled field theory in the boundary.

11Black droplets had already been studied in the context of brane worlds [21,22].
12An analytic description was also given in a perturbative analysis.
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1.3 Rotating black holes

General collapse situations occurring in nature are expected to end up forming
stationary black holes with a certain angular momentum. For vacuum GR in four
dimensions the only stationary solution has spherical topology and is given by the
Kerr solution

ds2 =−
(

1− 2Mr

ρ

)
dt2 − 4Mar sin2 θ

ρ
dt dφ

+ ρ

∆dr2 + ρ dθ2 + sin2 θ

ρ

((
r2 + a2

)2
− a2∆ sin2 θ

)
dφ2,

(1.22)

where
∆ = r2 − 2Mr + a2 and ρ = r2 + a2 cos2 θ. (1.23)

Kerr solution depends on two parameters, M and a, that correspond respectively
to the black hole’s mass and angular momentum per unit mass. Its horizons

r± = M ±
√
M2 − a2, (1.24)

(inner and outer horizons) are found by solving ∆(r) = 0.
There seems to be a maximum value for the amount of angular momentum per

unit mass, amax = M , that a solution can have while remaining regular. Notice that
beyond this value, for a > amax, the solution does not have a horizon (there is no
real solution for ∆(r) = 0) and hence exhibits a naked singularity13. The solution
with a = M (extremal Kerr) has both horizons coinciding and its associated surface
gravity/temperature is equal to zero.

When gravity is extended to higher dimensions, rotating black holes acquire
properties only possible in this new setup. The non-trivial higher-dimensional
generalisation of Kerr black hole, the Myers-Perry (MP) solution [27], already
exhibits some of these. Due to the higher amount of spatial directions, rotating
black holes can have several angular momenta; one for every independent rotation
plane14. In this thesis, however, we have restricted ourselves to the investigation
of black holes with a single spin.

Other new features of gravity in higher dimensions are non-uniqueness, i.e., the
fact that more than one solution is possible for the same asymptotic charges and the
possibility of stationary AF vacuum solutions with non-spherical horizon topology.
The first example of black hole non-uniqueness and non-spherical horizon topology
was the five dimensional rotating black ring [28]. The black ring is a black hole
solution whose event horizon has a S1×S2 topology and rotates along the S1 in order
to sustain itself. For a certain range of masses and angular momenta three solutions
were shown to be compatible: two different black rings and a MP black hole.
13The bound on the maximum amount of angular momentum per unit mass that a black hole

can have is known as the Kerr bound. The existence of this bound, as we will see, depends
on the number of dimensions.

14This is the same as saying that the rank of the group of rotations increases with the number
of dimensions.
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Further investigation along these lines led to the construction of black saturns [29]
(black ring with a black hole in the middle), di rings [30] (two concentric black
rings), doubly spinning black rings [31] (black ring with two angular momentum),
etc. Even if the mentioned solutions were constructed originally in five dimensions,
there were good arguments, together with blackfold constructions, to believe that
these and other solutions, with more intricate topologies, existed also in higher
dimensions.

Non-uniqueness was found to be a characteristic feature of gravity higher di-
mensions and its “discovery” raised many questions: What is the final state in a
dynamical collapse situation if the final mass and angular momentum are com-
patible with several black holes? Are some of the solutions unstable? Is cosmic
censorship violated in these setups? Which is the thermodynamically preferred so-
lution? Are there intermediate stationary black hole solutions connecting between
the known solutions? Most of these questions have been addressed over the years
in the literature and we have also dealt with some of them in the publication con-
tained in Ch. 4. In particular, we constructed stationary black hole solutions in six
dimensions that connect (in the space of single spin stationary solutions) between
MP black holes and black rings, black saturns and di rings; we have also studied
their stability properties. In order to motivate their existence, let us begin with
the single spin MP black hole in d dimensions

ds2 =− dt2 + µ

rd−5ρ

(
dt− a sin2 θ dφ

)2
+ ρ

∆dr2

+ ρ dθ2 +
(
r2 + a2

)
sin2 θ dφ2 + r2 cos2 θ dΩ2

(d−4),
(1.25)

with
∆ = r2 + a2 − µ

rd−5 and ρ = r2 + a2 cos2 θ. (1.26)

The first thing to notice is that ∆ = 0 has always one real and positive solution
for d ≥ 6 if µ > 0. Intuitively, this change comes from the fact that the centrifugal
barrier (as it refers to motion in a plane) does not depend on the number of dimen-
sions while the gravitational potential does. As opposed to the four dimensional
counterpart, there is no longer a Kerr bound. For very large a we can always find
a small enough r = rh that gives the horizon position

rh ≈
(
µ

a2

)1/(d−5)
. (1.27)

MP black holes in the ultraspinning regime are then characterised by two very
different lengths

`‖ ∼ a and `⊥ ∼ rh ≈
(
µ

a2

)1/(d−5)
. (1.28)

One of these lengths, `‖, is the invariant radius of the rotating S1. The other,
`⊥, is the invariant radius of the (transverse to rotation) Sd−4. The horizon of
ultraspinning MP black holes is then pancaked, see Fig. 1.5. It extends in the
rotation plane and contracts in the directions perpendicular to it. The area of
these horizons vanishes as a → ∞. This might seem surprising because they can
extend arbitrarily in the rotation plane. Notice, however, that the small radius of
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Figure 1.5: Schematic representation of the pancaked horizon of ultraspinning MP black
holes. The horizon expands in the direction parallel to the rotation plane and shrinks in
the direction perpendicular to the rotation plane. That is `‖ � `⊥.

the Sd−4 contributes more to the horizon area than the arbitrarily large radius of
the S1. Notice also that these black holes have a very large angular momentum per
unit mass due to the fact that they are very extended in the rotation plane and not
due to a very fast rotation. In fact, their angular velocity goes to zero as a→∞;
in turn, their metric close to the rotation axis is that of a black brane.

It was argued in Ref. [32] that ultraspinning MP black holes are unstable. So
even if for d ≥ 6 there is no bound on the angular momentum, the conjectured
instability acts as a dynamical decay mechanism, thus providing an effective Kerr
bound. Since ultraspinning MP black holes are similar to black branes, the conjec-
tured instability was of GL type, i.e., ripples along the horizon. In this case, since
the horizon is rotating and compact, the GL-like instability would have two main
differences: it should respect the axial symmetry and it would arise for specific
wavelengths (the ones that fit in the compact horizon). Reference [32] also pro-
posed that these black holes could suffer of non-axisymmetric instabilities known
as bar-mode instabilities. Both axisymmetric and bar-mode instabilities have been
investigated numerically in Refs. [33–36] and it has been found that bar-mode insta-
bilities are present for lower values of the angular momentum than axisymmetric
ones. These two instabilities are of different nature. Axisymmetric instabilities
can give rise to new stationary solutions while non-axisymmetric ones, due to the
emission of gravitational radiation, can not.

These new axisymmetric solutions, which in Ch. 4 we call bumpy black holes,
branch off the MP solution in the space of stationary solutions (see Fig. 1.6). The
point labelled by a 0 marks the beginning of the ultraspinning regime. At this
point and for larger J the moment of inertia becomes negative. References [33,34]
found the specific values of J at which branching points A, B, C occurred. This
was done numerically for 6 ≤ d ≤ 11 through a perturbative study. They also
found the shape of the perturbation associated to each of the modes. This con-
firmed that the new families of solutions connect the MP branch with the black
ring, black saturn, etc. Notice that there is an infinite number of these branching
points as J is increased. The first branch of bumpy black holes as well as the black
ring in six and seven dimensions were constructed numerically in Ref. [37]. This
first branch is the one that connects the MP and the black ring in the space of
stationary solutions15. It came as a surprise, though it should have been expected,
15Notice that the fact that different branches are connected in the space of stationary solutions,

does not mean that a dynamical evolution will follow such paths.
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Figure 1.6: Sketch of the S (entropy) vs. J (angular momentum) for fixed mass M for
the MP black hole in d ≥ 6. The first point that appears in the curve, labelled with a
0, corresponds to the point at which the MP black hole enters the ultraspinning regime.
The following points, labeled by A, B, C , etc. correspond to branching points due to
the GL-like instability. Figure was taken from Ref. [33].

that two branches of different bumpy black holes emerged from that branching
point. At the linearised level, close to the branching point, these new solutions are
obtained just by considering the perturbation with the opposite sign. While the
endstate of the (+)-branch16 was clear, little was known about the how other solu-
tions (consequently we will refer to these as the (−)-branches) evolved in solution
space.

The publication contained in Ch. 4 goes in a similar direction. We construct
numerically the first three branches of bumpy black holes, both the (+) and the
(−), in six dimensions. In order to construct them we solve Einstein-DeTurck’s
equations

RH
µν = Rµν −∇(µξν) = 0, ξµ = gαβ(Γµµν − Γ̄µµν) (1.29)

subject to specific boundary conditions. Here RH
µν is the Einstein-DeTurck tensor,

ξ is the DeTurck vector and Γ̄ is a reference connection compatible with a reference
metric ḡµν that needs to satisfy the same boundary conditions as the actual metric
gµν . The reason for using these equations instead of the usual Ricci flat equations
(Rµν = 0) is that these have been shown to be elliptic for a class of Lorentzian
stationary metrics (with horizons and ergospheres) [38] into which bumpy black
holes fall. Since these equations are elliptic, one can then use standard numerical
techniques to solve boundary value problems. Notice that there might be solutions
to Einstein-DeTurck’s equations which are not Ricci-flat, these are called Ricci
solitons. Since we were not interested in them, after solving Einstein-DeTurck’s
equations we checked that the DeTurck vector vanished.

In Ch. 4 we extend the (+) and (−) branches very far in deformation and
analyse the changes in the horizon geometry. This allows us to confirm the expected
presence of cone-like geometries close to the pinch-off for the (+)-branches [39,40].
On the other hand we explain that (−)-branches probably end as singular solutions
not connecting to any known black holes. We study and discuss their stability
properties. In order to do that we compute the spectrum of the Lichnerowicz
16From now on we will refer to the bumpy solutions that connect to other known families of

rotating black holes as (+)-branches.
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Figure 1.7: Sketch of a null surface representing the event horizon of a black hole merger.
Constant time slices are highlighted.

operator and look for negative eigenvalues. We also compute the specific heat and
the moment of inertia and check that the number of negative eigenvalues matches
the expected value according to the known instabilities.

1.4 Black hole mergers

The direct detection of gravitational waves by LIGO [41] showed that black hole
mergers occur in Nature. A black hole merger is an event in which two black holes
fuse into one. Black hole spacetimes are characterised by having an event horizon,
which is a null hypersurface in spacetime. In a four dimensional spacetime the event
horizon is a three dimensional null hypersurface and is traced by a two-parameter
family of null geodesics. In a spacetime in which two black holes merge, constant
time slices of the event horizon contain two disconnected spatial surfaces in the
asymptotic past; posterior constant time slices describe how the two disconnected
surfaces merge with one another, see Fig. 1.7.

The null geodesics that generate the horizon are the light rays in a black hole
spacetime that mark the boundary between light rays that reach null asymp-
totic infinity and those that do not. For static and stationary solutions, such
as Schwarzschild’s and Kerr’s, the event horizon is a Killing horizon17 and its gen-
erators are Killing vectors. Future and past developments of such generators never
abandon the horizon hypersurface.

In more general spacetimes, with no timelike Killing vectors, the horizons are
not Killing horizons. The future development of the generators of the null hy-
persurface will however still stay in the horizon. In merger horizons there will in
general be points in the hypersurface, named caustic points, through which null
rays enter the horizon; hence the past development of some generators does not
belong to the horizon. In Fig. 1.8 we show a sketch of the event horizon of a head
on collision of two black holes. There we highlight the presence of a caustic line
(thick dark red curve, collection of caustic points) through which some generators
(red curves) enter the hypersurface.

17Killing horizons are discussed in Sec. 1.2
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Figure 1.8: Sketch of null surface representing the event horizon of a black hole merger.
Dark grey curves indicate horizon generators that have always belonged to the horizon.
Red curves, on the other hand, indicate generators that have entered the horizon at some
point in spacetime through a caustic line (thick dark red curve).

Dynamical situations are in general complicated and numerical computations
are usually unavoidable. The first step, defining the initial data, is already a hard
problem. Afterwards, the system is evolved by solving nonlinearly Einstein’s equa-
tions; this demands a huge amount of computational resources and sophisticated
numerical techniques. Once the spacetime solution is obtained, it is analysed in
the far future, where the system has reached a practically stationary situation (if
the evolution has run for long enough). The light rays belonging to a practically
stationary event horizon are then identified. In order to obtain the event hori-
zon of the merger, those light rays are then propagated back in time through the
previously computed numerical spacetime.

Notice that the event horizon is defined from future to past; this fact has curious
repercussions in its features. In dynamical situations involving mergers, conical
structures appear in the constant time slices of the event horizon even when the
two original black holes are very far apart. The presence of caustics, a characteristic
feature in these horizons, is the reason for the appearance of such cones.

Black hole mergers have been traditionally treated within the field of numerical
relativity and it might seem that there is no hope for an analytic description of a
black hole merger. There is however one limiting — but still realistic — instance
in which the event horizon of the merger of a black hole binary becomes so simple
that it can be described in an exact analytic way. This is precisely the work
contained in the publication in Ch. 5. Our limiting construction, furthermore, only
involves elementary techniques and ideas that lie at the core of GR and have been
well understood for many decades: the Equivalence Principle, the Schwarzschild
solution and its null geodesics, and the notion of Event Horizon.

The limit we consider is that of extreme-mass ratio (EMR) in which one black
hole is much smaller than the other. Given the findings of Ref. [41], it does seem
possible that black hole binary mergers with mass ratios . 1/30 will be detected in
ground-based observatories — and with much smaller ratios in space-based ones.

The EMR limit is often taken as one where the size of the large black hole, M ,
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Figure 1.9: 3D plot for pinch-on instant of the event horizon computed in Ch. 5. This
image has been generated from analytic results for the exact EMR merger.

is fixed; while the small black hole is regarded as a point-like object of size m→ 0.
This is appropriate for extracting the gravitational waves from the collision (with
wavelengths ∼ M), but not details on the scale of m, such as the event horizon
when the two black holes fuse with each other. For this, we must keep m fixed
while M →∞. As a result, in our construction, gravitational radiation decouples
and fine details of the horizon hypersurface, such as caustic structure, generators,
relaxation time scales, etc., are exactly captured. See Fig. 1.9 for a constant time
slice of the event horizon we have constructed. This constant time slice is precisely
that of the pinch-on instant. It is important to stress that Fig. 1.9 has been
generated from the analytic expressions.

Consider now the last moments before the merger, i.e., when the small black
hole is at a distance � M from the large one. The equivalence principle asserts
that we can always place ourselves in the rest frame of the small black hole, and
that the curvature of the large black hole can be neglected over distances much
smaller than M . The spacetime around the small black hole should be then well
approximated by the Schwarzschild geometry [42]. Although the curvature created
by the large black hole vanishes in this limit, its horizon is still present: it becomes
an infinite, Rindler-type, acceleration horizon that reaches asymptotic null infinity
as a planar null surface. Therefore, in the EMR limit on scales much smaller than
M , the event horizon of the black hole merger can be found by tracing in the
Schwarzschild geometry a family of null geodesics that approach a planar horizon
at a large distance from the small black hole.

The publication in Ch. 5 contains the construction of the event horizon of
such a setting. The results are obtained by capturing the appropriate family of
null geodesics in Schwarzschild solution. We extract a number of parameters that
characterise the merger. We identify the line of caustics, the critical radius at
which both horizons touch, the critical growth of the throat formed just after the
two horizon touch, etc.

The equivalence principle — Einstein’s first and firmest intuition about gravity
— lies at the heart of General Relativity. A notion so deep is not easily exhausted
even after a century of use. In a beautiful sleight of hand, it has allowed us to
accurately capture a phenomenon that involves two black holes, using a geometry
that seemingly would contain only one.
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1 Introduction and conclusions

The complex non-linear dynamics of black holes and black branes, governed by Einstein’s

equations, can in some regimes be efficiently captured by an effective theory for collective

degrees of freedom. Some of these degrees of freedom are worldvolume embedding coor-

dinates, associated to the elastic dynamics characteristic of brane-like objects, but there

are also hydrodynamic degrees of freedom — e.g., pressure and velocity — associated to

horizon dynamics. The hydrodynamic approach dates back to [1] and has been greatly ex-

tended following the fluid/gravity correspondence of [2]. In the context of asymptotically

flat black branes, it features within the effective blackfold theory of [3–5]. A framework for

relating all these approaches is presented in [6].

Here we are interested in using the hydrodynamic methods for investigating a pecu-

liar effect of black branes: the classical instability of their horizons to the formation of

ripples along their worldvolume, discovered by Gregory and Laflamme in [7]. Refs. [4, 8]

have shown how this phenomenon is very neatly captured in the hydrodynamic theory of

blackfolds: it is simply an instability of fluctuations of the pressure of the effective black

– 1 –
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brane fluid, i.e., a sound-mode instability. In this paper we investigate it further by in-

troducing an additional parameter to gain control over the stability of the system. To do

so, we place the black brane inside a finite cylindrical cavity of fixed radius R. Then we

find the solution for a fluctuating black brane, with regularity conditions at the horizon, in

the hydrodynamic limit. We analyze how the effective black brane theory, in particular its

stability under hydrodynamic fluctuations, changes as the cavity radius R is varied. This

allows us to study several issues:

Correlated instabilities — ghosts vs. tachyons. One reason to expect that enclosing

the black brane in a cavity should have an effect on its stability comes from the Correlated

Stability Conjecture (CSC) [9], which links classical dynamical stability to local thermo-

dynamical stability. Since it is known that the specific heat of the black brane in a cavity

changes from negative for cavity radii greater than a critical value, R > Rc, to positive when

R < Rc [10], the validity of the conjecture requires that the Gregory-Laflamme instability

of the black brane disappears at the critical radius R = Rc.

To put our study in the right context, it is worth discussing the status and proper

interpretation of the CSC. This has often been taken as the statement that

• (CSC:) translationally invariant horizons have a tachyonic perturbation mode if and

only if they are locally thermodynamically unstable.

Indeed, a large part of the studies of the CSC have focused on the presence or absence

of a static, zero-mode perturbation of finite wavelength (a tachyon) that would mark the

onset of the instability [11, 12]. In particular, ref. [13] studied the static zero-mode for

the black brane in a cavity and showed that it disappears precisely when the cavity size

reaches R = Rc.

This form of the CSC, however, is incorrect: examples of black branes are known which

are thermodynamically stable but nevertheless have tachyonic instabilities [15]. Instead,

the local thermodynamical stability of black branes is more appropriately related to the

presence of massless ghost excitations, rather than tachyons. These two kinds of unstable

modes are quite different. For excitations that in some range of wavenumbers k have a

dispersion relation approximately of the type

ω2 = c2k2 +m2, (1.1)

we say we have a tachyon when m2 < 0. The static zero-mode corresponds to k = k0 =√
−m2/c2 and ω = 0. Instead, we say we have a ghost when c2 < 0, and in particular a

massless ghost has Ω = Imω =
√
−c2k.

The argument why thermodynamical instabilities of a translation-invariant horizon are

connected to massless ghosts is simple [4, 14, 15]. A horizon that is translationally invariant

can support perturbations of arbitrarily long wavelength. In the cases where the frequency

of these perturbations vanishes as the wavelength diverges, they are hydrodynamic modes,

which are either fluctuations of conserved quantities or Goldstone modes. Both of them

feature in the local thermodynamics of the fluid. In the case of main interest to us here, the

conserved quantity is the energy, and it is an old result (which we reproduce in section 4

– 2 –
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below) that small fluctuations in the energy density propagate along the fluid with squared

velocity

v2
s =

s

CV
, (1.2)

where s is the entropy density of the fluid and CV its specific heat at fixed volume. Ob-

viously, a local thermodynamic instability, with CV < 0, results in unstable perturbations

of wavenumber k whose amplitude grows exponentially in time like exp(
√
−v2

s kt). More

generally, any local thermodynamic instability of the black brane gives rise to a long-

wavelength, hydrodynamic instability. In the terms used above, we have a massless ghost

with c2 = v2
s < 0.

Then, the CSC as stated above must be replaced by a statement of Correlated Hydro-

dynamic Stability :

• (CHS:) translationally invariant horizons have massless ghost excitations if and only

if they are locally thermodynamically unstable. The ghost is a long-wavelength, low

imaginary frequency, hydrodynamic instability of the horizon.

Since horizons are stable to fluctuations of very short wavelength,1 the ghost insta-

bility at small k must disappear at some larger k = k0 > 0, i.e., Imω(k0) = 0. If also

Reω(k0) = 0, then this is a zero-mode. In other words, a hydrodynamic ghost instability

(and hence a local thermodynamic instability) of the horizon will typically be accompanied

by a tachyonic zero-mode at finite k. This is indeed the case for the GL instability of neu-

tral black branes (also when in a cavity). But the converse need not be true: a tachyonic

instability need not turn into a hydrodynamic ghost instability at very long wavelengths,2

and hence need not be related to a local thermodynamic instability.

In this paper we construct explicitly the ghost, hydrodynamic unstable perturbation

of the black brane in a cavity, and show that it turns into an oscillatory (damped) sound

wave when R < Rc.

Increasing rigidity. Our analysis of the effective hydrodynamic theory also gives a

concrete intuitive picture of why and how the instability disappears as the cavity size

is reduced. The squared speed of sound of the effective theory at finite R is a monotonic

increasing function of decreasing R. A larger speed of sound reflects a higher rigidity of the

system. This comes about because fixing the metric on the cavity wall at finite R makes it

harder for the geometry to fluctuate, and in particular prevents the creation of worldvolume

gradients of the redshift on the wall. In the hydrodynamic theory, these gradients have the

effect of an acceleration of the fluid that opposes the creation of inhomogeneities along the

worldvolume. This works to make the system more rigid and therefore less unstable, until

the instability disappears.

Viscosities do not run with R. The solution for the spacetime metric for a fluctuating

black brane in a cavity of radius R, to first-derivative order in the fluctuations, allows us

1On very short scales the horizon is indistinguishable from Minkowski space, which in any healthy

gravitational theory is stable at sufficiently short wavelengths.
2For instance, it can become a homogeneous tachyonic mode with Imω(k = 0) =

√
−m2.
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to compute the stress-energy tensor of the effective fluid including dissipative effects. The

values we obtain for the shear and bulk viscosities (and for their ratios to the entropy

density) are the same at all values of R. This is very likely related to a similar result

obtained in the context of black branes in AdS5 in [16], and may be a feature of a larger

class of black branes.

Spectrum and criticality. The inclusion of dissipative terms in the fluid equations gives

us an improved approximation for the spectrum of unstable modes. The dispersion curves

show clearly that the instability weakens as the critical point is approached. Although the

hydrodynamical theory cannot capture all the physics of the critical state, it nevertheless

indicates that critical exponents are of mean-field theory type, a result which is borne out

by the numerical computations of [13].

In the remainder of the paper we elaborate on all these points in detail. Section 2

introduces the black brane in a cavity as a static system. The solution for its fluctuations

to first-derivative order is discussed in section 3. This solution forms the basis for the

study in section 4 of stability from a hydrodynamical perspective, and its connection to

local thermodynamic stability. Section 5 computes the effective viscosities of the black

brane in the cavity of radius R, and then uses them for obtaining the dispersion relation

for unstable modes. We conclude with a brief discussion of the critical point and the

appearance of mean-field critical exponents.

2 Static black brane in a cylindrical cavity

2.1 Geometry

We write the metric of a black p-brane in D = 3 + p+ n spacetime dimensions in the form

ds2 =
(
− f(r)uaub + Pab

)
dσadσb +

dr2

f(r)
+ r2dΩ(n+1) (2.1)

with

f(r) = 1− rn0
rn
, (2.2)

and where

Pab = ηab + uaub (2.3)

is the projector onto spatial direcions orthogonal to the timelike vector ua with normaliza-

tion ηabu
aub = −1.

We put the black brane inside a cylindrical cavity bounded by a ‘wall’ that extends

along the brane worldvolume directions σa and which, in the transverse directions, is a

sphere Sn+1 at finite radius r = R. We denote quantities measured on the cavity wall with

a caret. The metric induced on the wall is

ĥµνdx
µdxν = ĥabdσ

adσb +R2dΩ(n+1) (2.4)

with

ĥab = −f(R)uaub + Pab

= − ûaûb + P̂ab . (2.5)

– 4 –
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Indices of hatted tensors will be raised and lowered with this metric. The velocity

ûa =
√
f(R)ua (2.6)

is unit-normalized with respect to this metric by absorbing the redshift factor on the wall.

The orthogonal projector, instead, is not modified,

P̂ab = Pab , (2.7)

since in the geometry (2.1) the spatial worldvolume directions do not suffer any gravita-

tional deformation.

The geometry of the wall of the cavity is characterized by giving, in addition to the

induced metric, the extrinsic curvature tensor

Θµν = −1

2

√
f(R) ∂Rĥµν . (2.8)

Out of this we obtain the Brown-York quasilocal stress-energy tensor on the wall. Since we

are only interested in the dynamics of the worldvolume, we only consider the components

of the tensor along the directions σa, and we integrate them over the transverse Sn+1 of

radius R. The result is that

T̂ab =
Ωn+1

8πG
Rn+1

(
Θab − ĥabΘ

)

=
Ωn+1

8πG

[
− (n+ 1)Rn

√
f(R) ûaûb + ∂R

(
Rn+1

√
f(R)

)
P̂ab

]
. (2.9)

2.2 Physical magnitudes

Eq. (2.9) is a perfect-fluid stress-energy tensor

T̂ab = ε̂ ûaûb + P̂ P̂ab (2.10)

with energy density and pressure

ε̂ = −Ωn+1

8πG
(n+ 1)Rn

√
f(R) , (2.11)

P̂ = −ε̂+
Ωn+1

8πG
Rn+1∂R

√
f(R) = −ε̂+

Ωn+1

16πG

nrn0√
f(R)

. (2.12)

In addition, we can assign an entropy density and temperature to the system

s =
Ωn+1

4πG
rn+1

0 , (2.13)

T̂ =
n

4πr0

√
f(R)

. (2.14)

The temperature is modified relative to its asymptotic value by the redshift factor at the

wall, but the entropy density does not depend on R: it is obtained as s = S/V̂ , where

the total entropy S is computed from the horizon area, and the spatial volume V̂ does not

undergo any variation as R changes.
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The system satisfies the thermodynamic Euler relation

ε̂+ P̂ = T̂ s , (2.15)

and the first law

dε̂ = T̂ ds , (2.16)

for variations that keep fixed the cavity radius R.

For the record, we note that when R is allowed to vary, the first law becomes

dε̂ = T̂ ds− σwdaw (2.17)

where the wall area-density aw and tension σw are

aw = Ωn+1R
n+1, σw =

n

16πG

1 + f(R)

R
√
f(R)

. (2.18)

When R can vary the wall is regarded as a dynamical object, and one gets the coupled

dynamics of the black brane/wall system. However, although this might be of interest,

for the remainder of the paper we will regard the wall only as a non-dynamical boundary

condition.

2.3 No subtraction required

When R→∞ both ε̂ and P̂ diverge, owing to the non-compactness of the space. A simple

remedy to this is to subtract the stress-energy tensor associated to a surface in Minkowski

space with the same induced metric ĥµν . However, we do not need this for our purposes.

The reason is not merely that we keep R finite and thus divergences are absent. More

important, the intrinsic worldvolume dynamics that we are interested in is not affected by

the subtraction. A surface at constant r = R in Minkowski spacetime has Θab = 0 and

the stress-energy tensor T
(M)
ab comes entirely from the curvature Θ of the Sn+1 of radius

R. Then

T
(M)
ab =

Ωn+1

8πG
(n+ 1)Rnĥab . (2.19)

Since we keep R fixed, this stress-energy tensor is of ‘vacuum-type’, i.e., proportional to

the worldvolume metric ĥab and with constant energy density. This is inert: it lacks any

hydrodynamic behavior, which is associated with a breakdown of local Lorentz invariance

and the presence of inhomogeneities on the worldvolume.

Therefore, the subtraction does not affect the hydrodynamics of the brane, and we

shall not implement it.3

3 Fluctuating black brane

We promote the parameters ua and r0 in the solution to worldvolume collective degrees of

freedom, i.e., slowly-varying functions of σa. The remaining parameter, R, is kept fixed.

3It would affect, though, the system in which the wall is dynamical and R varies along the worldvolume.
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Following [2], to the now fluctuating metric (2.1) we add correcting functions fµν such that

the total metric

ds2 =

(
ηab +

r0(σ)n

rn
ua(σ)ub(σ)

)
dσadσb +

dr2

1− r0(σ)n

rn

+ r2dΩ(n+1)

+fµνdx
µdxν (3.1)

is a solution to the field equations. We fix the radial coordinate by choosing it to be

orthogonal to the worldvolume and normalized to measure the Sn+1-area-radius. Then

fΩµ = 0. Working to leading order in derivatives, the correcting functions

fµνdx
µdxν = fabdσ

adσb + 2fardσ
adr + frrdr

2, (3.2)

can be decomposed into SO(p)-algebraically-irreducible terms in the form

fab = θuaub s1(r) +
1

p
θPab s2(r) + a(aub) v1(r) + σab t(r) ,

far = θua s3(r) + aa v2(r) , (3.3)

frr = θ

(
1− rn0

rn

)−1

s4(r) ,

where

θ = ∇aua , aa = ub∇bua , σab = Pa
cPb

d∇(cud) −
θ

p
Pab (3.4)

are respectively the expansion, acceleration, and shear of the flow of ua in the metric ηab.

Since these terms are algebraically independent, each of the sets of functions, si (scalar

sector), vi (vector sector), and t (tensor sector) decouple from the others in the linearized

equations and can be studied separately.

The Einstein equations Rra = 0 do not involve the fµν and are independent of r. Thus

they are ‘constraint equations’, and can be written in the form

∇a ln rn+1
0 = θua + (n+ 1)aa . (3.5)

These equations allow to eliminate the derivatives of r0(σ) in terms of velocity gradients.

Below we will return to their interpretation in fluid-dynamical terms.

In order to specify boundary conditions at r = R, we demand that the induced metric

remains fixed and uncorrected to the order we are working,

ĥab = −ûaûb + Pab +O(∂2) . (3.6)

This requires that

s1(R) = s2(R) = v1(R) = t(R) = 0 . (3.7)

In addition, we ask that the stress-energy tensor is in ‘Landau frame’, defined such that

the corrections T̂
(1)
ab to the leading order value lie entirely along spatial directions, i.e.,

ûaT̂
(1)
ab = 0 . (3.8)
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A brief calculation shows that this implies the conditions

v′1(R) = 0 , s′2(R) =
n+ 1

R
s4(R) . (3.9)

The construction of the solution to the Einstein equations for fµν that satisfies these

boundary conditions and in addition is regular at the horizon, is done in appendix A

using the results of [8]. The explicit results are in eqs. (A.4). This provides the complete

metric for the fluctuating black brane, to first-derivative order, for any solution of the

equations (3.5).

The solution, however, is written in terms of the velocity field ua and the connection

∇a for the metric ηab, which is not the physical metric on the wall at r = R.4 Nevertheless,

we can readily find the relation of the latter to quantities on the wall. We do this in

appendix B, where we find that

ûa =
ua√
f(R)

, θ̂ =
θ√
f(R)

, σ̂ab =
σab√
f(R)

,

âa = aa +
1√
f(R)

Pa
b∂b
√
f(R) . (3.10)

The change in the velocity, expansion and shear in (3.10) is simply a local redshift. The

acceleration is not redshifted, but it is affected by the spatial variation of the redshift along

the worldvolume. The point is clearer if we introduce the Newtonian potential φ,

f(R) = e2φ, (3.11)

which depends on σa through r0. Its spatial gradient is

∇aφ ≡ Pab∂bφ , (3.12)

and we see that the modification of the acceleration is due to a ‘force’ term,

âa = aa + ∇aφ . (3.13)

Now using these relations we write the metric in terms of wall quantities as

ds2 =

(
− f(r)

f(R)
ûaûb + Pab +

θ̂√
f(R)

ûaûb s1(r) +

√
f(R)

p
θ̂Pab s2(r)

+
1√
f(R)

(â−∇φ)(aûb) v1(r) +
√
f(R) σ̂ab t(r)

)
dσadσb

+ 2
(
θ̂ ûa s3(r) + (âa −∇aφ) v2(r)

)
dσadr

+
dr2

f(r)

(
1 +

√
f(R) θ̂ s4(r)

)
+ r2dΩ(n+1) . (3.14)

As we will see in the next section, the most consequential effect is the modification of

the acceleration.
4It is neither the metric on the surface at r →∞, since with our boundary conditions the functions s1,2

and t do not vanish there.
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4 Hydrodynamics and stability

For later reference we review briefly some generic features of the dynamics of perfect fluids.

4.1 Perfect fluid dynamics

The hydrodynamic equations ∇aT ab = 0 for a generic relativistic perfect fluid with stress-

energy tensor

Tab = ε uaub + P Pab (4.1)

are

uaub∇bε+ P ab∇bP + (ε+ P )(θua + aa) = 0 . (4.2)

The fluid is assumed to satisfy the local thermodynamical relations ε + P = Ts and

dε = Tds. Defining also

v2
s =

dP

dε
, (4.3)

we can write the fluid equations (4.2) in a conveniently simple form

∇a ln s = θua −
1

v2
s

aa . (4.4)

Consider now a fluid state initially in static homogeneous equilibrium in its rest frame, and

introduce a small perturbation,

s→ s+ δs eiωt+ik·x, ua = (1,0)→ (1, δu eiωt+ik·x) . (4.5)

Then the solution to the linearized eqs. (4.4) gives fluctuations with dispersion relation

ω(k) =
√
v2
s k +O(k2) , (4.6)

where k = |k|. Hence vs is the velocity of propagation of small density fluctuations, i.e.,

the speed of sound.

4.2 Black brane hydrodynamics

In the black brane fluid, the entropy density s is directly related to the horizon thickness r0

by (2.13). Therefore, density fluctuations in the fluid are variations of the horizon radius.

We can immediately see the hydrodynamic Gregory-Laflamme instability in the sim-

plest case in which the cavity wall is removed, R → ∞ [4, 8]. In this case the induced

metric is ηab, the effective fluid velocity is ua and, comparing to (4.4), we see that the con-

straint eqs. (3.5) are the equations of the effective relativistic fluid at asymptotic infinity.

The effective speed of sound is

v2
s = − 1

n+ 1
, (4.7)

which is imaginary and therefore fluctuations of r0 grow exponentially in time instead of

oscillating as sound waves. This is the Gregory-Laflamme instability in the regime of long

wavelengths and small (imaginary) frequencies.
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Finite cavity: effect of redshift gradients. When we insert the cavity wall at finite R,

the gradient term in (3.13) modifies the acceleration with which the effective fluid responds

to a change in r0. A local fluctuation δr0 > 0 results in a smaller φ, which tends to push

the effective fluid away from the region of increased r0. Conversely, a region of locally

smaller r0 gives a gradient term that accelerates the fluid towards that region. Therefore,

as a consequence of fixing the metric on the cavity wall, the creation of inhomogeneities

along the worldvolume is hindered. The result is to make the fluid more stable. Moreover,

the effect is more pronounced as the cavity radius R gets closer to the brane, since the

redshift becomes stronger.5

We can be more quantitative if we use (3.5) to write

Pa
b∇b ln r0 = aa (4.8)

and then

∇aφ = − n

2f(R)

rn−1
0

Rn
Pa

b∇br0 = −n
2

(
1

f(R)
− 1

)
aa . (4.9)

Since f(R) < 1, we see that ∇aφ is directed opposite to aa and therefore opposes the

unstable growth of inhomogeneities. If, by decreasing R, the gradient grows to a value

such that

∇aφ = −aa , (4.10)

then in this state the acceleration of the fluid on the wall vanishes, âa = 0: the black brane

does not react to a density fluctuation, and the instability disappears. This happens when

n

2

(
1

f(R)
− 1

)
= 1 , (4.11)

that is, when

R = Rc = r0

(
n+ 2

2

)1/n

. (4.12)

If we reduce R below Rc, the acceleration âa will be directed against the inhomogeneities,

and the black brane will be stable.

Effective fluid equations and speed of sound. We can frame this discussion in more

fluid-dynamical terms. From (4.9), the relation between the accelerations (3.13) in the

black brane fluid is

âa = aa
v̂2
s

v2
s

, (4.13)

where

v̂2
s = − 1

n+ 1

(
1− n

2

(
1

f(R)
− 1

))

= − 1

n+ 1

1− (Rc/R)n

f(R)
. (4.14)

5Note that the effect is the opposite of what would occur to a material fluid localized on a brane at

finite R: this would be gravitationally pulled towards larger local mass densities, i.e., larger r0. Instead, our

effective fluid is not any matter in the spacetime, but rather it is a ‘holographic’ description of the black

brane.
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Now the constraint equations (3.5) written in terms of the effective fluid velocity on

the wall become

∇̂a ln rn+1
0 = θ̂ûa −

1

v̂2
s

âa . (4.15)

Comparing to the general form of the perfect fluid equations (4.4), we see that (4.15) are

the equations ∇̂aT̂ ab = 0 for the stress-energy tensor (2.9) and v̂2
s = (dP̂ /dε̂)R is indeed the

speed of sound. The quasilocal stress-energy tensor is known to be conserved on general

grounds [17], so the result is not surprising. What we have done here is to see explicitly

how these conservation equations emerge, on walls at finite R, from the Einstein constraint

equations.

The explicit form of eqs. (4.15) is in any case very illustrative. They show clearly

that, to the order we work, all the flow with R of the black brane dynamics is due to the

modified acceleration term. Since the entropy density is independent of R, the change of

the effective fluid with R can be fully accounted for by the change of v̂2
s .

The sound velocity v̂s is imaginary for large R, but it vanishes when the cavity reaches

the critical radius Rc in (4.12), and then becomes real for cavity radii R ∈ (r0, Rc). This

change in stability works in the direction expected from our argument above.

Intuitively, the speed of sound is a measure of the rigidity of the system to worldvolume

fluctuations. For very large cavities, the geometry is excessively soft, indeed ‘anti-rigid’,

to the point of being unstable to deformations. The cavity wall, by fixing the geometry at

a finite distance from the black brane, increases its stiffness and can even render it stable

when the cavity is small enough. In fact, v̂2
s grows without bound as the wall approaches

the horizon, thus making the effective fluid incompressible in that limit.6

The growing stiffness of the system caused by worldvolume gradients of the redshift is

also apparent in the expressions for the extrinsic curvature, (2.8), and the pressure, (2.12).

Thus, the effective hydrodynamic theory explains in a simple manner why and how the

black brane turns from unstably soft to stably stiff.

Unstable perturbation. It is now easy to give the complete form of the unstable black

brane solution in the cavity. We illustrate it, for simplicity, in the case of a black string

with worldsheet coordinates σa = (t, x). Take a velocity profile of the form

ût = −1 , ûx = exp
(√
−v̂2

s kt
)

cos(kx) δu , (4.16)

and work to linear order in the small amplitude δu. The metric is given by (3.14), with

the functions si(r), vi(r) as in eqs. (A.4), and with

P̂xx = 1 , σ̂xx = 0 , (4.17)

θ̂ = −k exp
(√
−v̂2

s kt
)

sin(kx) δu , (4.18)

âx =
√
−v̂2

s k exp
(√
−v̂2

s kt
)

cos(kx) δu , (4.19)

6The fact that v̂s →∞ as R→ r0 does not necessarily entail any violation of causality. Hydrodynamic

fluctuations are low-frequency modes, and causality is controlled by modes in the high-frequency end of the

spectrum, see e.g., the discussion in [18].
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and

âx −∇xφ =
v2
s

v̂2
s

âx =
f(R)

1− (Rc/R)n
âx . (4.20)

4.3 Correlated dynamical and thermodynamic stability

We can easily see that the change in dynamical stability at R = Rc corresponds precisely

to the change in the local thermodynamic stability of the black brane, i.e., in the thermo-

dynamic stability of the black hole that one obtains at any given point on the worldvolume.

Since (2.15) and (2.16) imply dP̂ = sdT̂ we have

(
dP̂

dε̂

)

R

=
s

ĈV
(4.21)

where ĈV is the specific heat at fixed volume. Since the sign of ĈV determines the local

thermodynamic stability, the connection between the latter and the dynamical stability

of the brane, in the hydrodynamic regime, is obvious. This is nothing but the fact that

stability of hydrodynamic modes associated to conserved quantities is governed by the local

thermodynamic properties of the fluid.

In the calculation of the speed of sound and in eq. (4.21) we only need the static brane

solution. What our study of the fluctuating brane shows is that there is indeed an explicit

solution for a black brane in a fixed cavity which is regular on the horizon and which is

dynamically stable or unstable in accord with its thermodynamical stability.

5 Viscous hydrodynamics

Having the fluctuating black brane geometry to first order in velocity gradients, we extract

its quasilocal stress-energy tensor at finite R including dissipative terms.

5.1 Bulk and shear viscosities do not run

The general form of the stress-energy tensor on the cavity wall at finite R, in the spacetime

given by (3.1), (3.2), (3.3), and with boundary conditions (3.7) and (3.9), is

T̂ab =
Ωn+1

8πG

[
− (n+ 1)Rn

√
f(R) ûaûb + ∂R

(
Rn+1

√
f(R)

)
P̂ab

]

− ζ̂ θ̂P̂ab − 2η̂σ̂ab +O(∂2) , (5.1)

with bulk and shear viscosities

ζ̂ =
Ωn+1

8πG

[
Rn+1

2
s′1(R) +

(
n+ 1

2p
(Rn − rn0 ) +

n

4
rn0

)
s4(R)

]
, (5.2)

and

η̂ =
Ωn+1

8πG

Rn+1

4
f(R)t′(R) . (5.3)

Substituting the explicit values for the solution that is regular on the horizon, we get

ζ̂ =
s

2π

(
1

p
+

1

n+ 1

)
(5.4)
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and

η̂ =
s

4π
, (5.5)

with s the entropy density (2.13).

While the result for the shear viscosity is not surprising, the fact that the bulk viscosity

remains the same at all R is probably less obviously expected. In particular, observe that

it is of the form

ζ̂ =
s

2π

(
1

p
− v2

s

)
. (5.6)

Thus it depends on the asymptotic value of the speed of sound, instead of its value v̂2
s at

the cavity wall, which one might naively have guessed. Had it been the latter case, ζ̂ would

have run with R. Since s is independent of R, we can equivalently say that neither η̂/s nor

ζ̂/s run with R.

This absence of running of ζ̂ is most probably related to the one in [16], where it

was found that for AdS black branes in a finite cavity the bulk viscosity remains zero at

all R, despite the fact that the wall breaks conformal invariance. There exists an explicit

mapping between AdS gravity and the sector of vacuum gravity involved in our system [19]

which is independent of the cavity wall. Conceivably, it relates our result to that of [16]

and possibly makes clearer why ζ̂ depends on v2
s instead of v̂2

s .

For AdS black branes, ref. [16] found an intriguing relation, T̂ aa = −dε̂/d lnR, for the

running of the energy density with R. For our neutral black branes, the same equation

formally applies if we set n = −p − 1, which is not any physical black brane, and in fact

corresponds to setting D = 2. Since, again formally, when n = −p− 1 one gets ζ̂ = 0, this

running is valid including first-derivative corrections. The reason why this result holds in

this context is possibly related to properties of analytic continuation in n, but at present

its ultimate meaning is unclear to us.

5.2 Spectrum of unstable modes

With ζ̂ and η̂ we can compute the corrections to the fluid equations due to the viscous

damping of density fluctuations. This gives us a better approximation for the spectrum of

unstable modes at finite R.

Solving the fluid equations to quadratic order in momenta k, the unstable modes of

the black brane in a cavity with R > Rc have imaginary frequency

Ω(k) =
√
−v̂2

s k −
1

2T̂ s

[(
1− 1

p

)
2η̂ + ζ̂

]
k2 +O(k3)

=
k√
n+ 1

√
1− (Rc/R)n

f(R)
− k2r0

n+ 2

n(n+ 1)

√
f(R) +O(k3) , (5.7)

where Rc is given in (4.12). We illustrate this result in figure 1. As R approaches Rc,

the instability gets weaker, having both a smaller rate of growth Ω and a shorter range of

unstable wavenumbers k.

While there is no previous calculation of black brane instabilities in a finite cavity that

we can match these curves to, we can compare against the computation in ref. [13] of the
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Figure 1. Spectrum of GL unstable modes for a black brane in a cavity of radius R, according to

eq. (5.7). The curves correspond to n = 1, for which the critical radius is Rc = 1.5 r0.

wavenumber kGL of the zero-mode, for which Ω(kGL) = 0. Our analytic expression (5.7),

truncated to quadratic order, gives

kGL =
1

r0

n
√
n+ 1

n+ 2

√
1− (Rc/R)n

f(R)
. (5.8)

We display this result in figure 2, where we compare it with the corresponding one of

figure 3 in [13]. The qualitative agreement between the two graphs is apparent, but one

can easily discern quantitative discrepancies. These are expected, since (5.8) has been

obtained under the hydrodynamic assumption of small wavenumbers k/T̂ � 1, which is

not satisfied in general. As in [8], we may expect the agreement to improve for larger n.

5.3 Critical behavior

Eq. (4.15) implies that when v̂2
s = 0, the acceleration of the fluid under a density perturba-

tion vanishes, i.e., the fluid does not respond to variations of r0. Using (4.21) we see that at

that point the effective specific heat ĈV becomes infinite. This result makes manifest that

the divergence of the specific heat is linked to the ghost instability — the hydrodynamic

mode is at the threshold of becoming ghost-like. The connection between the divergence

of ĈV and the tachyonic instability is, instead, only indirect: as discussed in the intro-

duction, a hydrodynamic ghost instability of a black hole system is typically accompanied

by a tachyonic instability. The hydrodynamic statement that dP̂ /dε̂ → 0 means that the

fluid does not react with any pressure gradient to local variations of the energy density.

Thermodynamically, the fact that ĈV →∞ means that under these density variations the

system does not create any temperature gradients that would restore it back to thermal

equilibrium. Both effects, hydrodynamic and thermodynamic, are of course related via
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Figure 2. Evolution of the GL zero mode kGL as a function of the cavity radius R. Left: obtained

from the approximate analytical expression (5.8). Right: numerical results from [13]. Following [13],

in the vertical axis we display the ‘tachyon mass squared’, −(kGLr0)2, and in the horizontal axis

ρb = (R − r0)/(Rc − r0), so that the critical radius is always at ρb = 1. The curves are for

n = 2, . . . , 7, and lie closer to the horizontal axis the smaller n is. The finite, non-zero slope of the

curves at ρb = 1 indicates mean-field critical behavior (5.9).

dP̂ = sdT̂ . At the point where ĈV → ∞, thermal fluctuations in the fluid have infinite

wavelength. Then, this is a thermodynamic critical point.

In the critical state, the tachyonic zero mode becomes massless, i.e., has infinite wave-

length, and therefore it must be included alongside with the hydrodynamic modes in the

effective low-frequency, long wavelength theory. Note, however, that this tachyon is never

a proper hydrodynamic mode: the fluid equations never admit (to any arbitrary derivative

order) a non-trivial static solution. The inclusion of the massless tachyon in the effective

theory at the critical point cannot be done working solely within hydrodynamics.

Thus, the result (5.8) from a truncated hydrodynamical calculation need not be accu-

rate near the critical point. Note, however, that it predicts a critical behavior

kGL ∼ (R−Rc)1/2, (5.9)

which has a mean-field theory exponent. This appears to be correct: the numerical curves

of [13] for −k2
GL, reproduced in the right-side graph in figure 2, cut the horizontal axis with

non-zero, finite slope consistently with the critical behavior (5.9). Perhaps we should not

be too surprised: a mean-field theory description of the critical state might be natural in

a classical field theory like general relativity and in a state with smooth horizons.
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First order transition: inaccessibility of the critical point. The locally-unstable

phases of the system of a black brane in a cavity are extremely fine-tuned states, which

we have considered not so much for their possible relevance to actual physical phenomena

but as being illustrative of the dynamics of black branes. But, actually, even the critical

point and the associated second-order phase transition cannot be expected to be reached

through any physical process, as they are dominated by a stronger first-order transition.

We have presented the problem starting from the black brane inside a very large

cavity and then reduced the size of the cavity until the black brane becomes locally stable.

However, from the perspective of a physical process it makes more sense to start from

the system in the stable regime of R � Rc and then follow it as we increase R. We

are imagining that we keep the horizon size r0 fixed, but one could easily consider other

processes, e.g., fix R and change the temperature of the box.

When R reaches the value

R1 =

(
n+ 2

2(n+ 1)

)1/n

Rc < Rc , (5.10)

the pressure P̂ of the black brane becomes equal to that of Minkowski space in the same

cavity, (2.19), and for R > R1 the latter has larger pressure. Thus, when the brane is

‘supercooled’ at R1 < R < Rc, even if it is locally stable it will undergo a first-order phase

transition and spontaneously nucleate bubbles of the ‘true vacuum’, i.e., hot flat space.7

This will form holes in the worldvolume of the brane that then begin to expand. It may be

interesting to study further this phenomenon, which shares features with the one studied

in [20]. At any rate, it will prevent the observation of the critical state at R = Rc, and

indeed of all the unstable black brane phases.
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A Solution with finite-cavity boundary conditions

Ref. [8] solved the Einstein equations for the perturbations to first order in derivatives and

obtained the general solution that is regular on the future event horizon. The solution,

expressed in Eddington-Finkelstein coordinates, contains a number of integration constants

that are to be determined by conditions at the spatial boundary. For ease of comparison,

we use the same notation for these constants (cvr, cii, etc.) as in [8]. All the calculations at

finite R, including the stress-energy tensor, could be carried out in Eddington-Finkelstein

7For the black hole inside a spherical cavity (p = 0) this is the analogue of the Hawking-Page transition.
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coordinates [6], but here we choose to work in Schwarzschild coordinates to maintain con-

tinuity with [5, 8]. In these coordinates the solution is

s1(r) =
n+ 2

2(n+ 1)

(
f(r)− n

n+ 2

)
s2(r) + cvv − 2cvr − f(r)cvv , (A.1a)

s2(r) =
2 r0

n
ln f(r) + cii , (A.1b)

s3(r) =
1

2f(r)

[(
n

n+ 1
− f(r)

)
s2(r) +

2r0

n+ 1

(
f(r)− 1

)(
n
r∗
r0

+ 1

)]

+ cvv − cvr −
cvv − 2cvr
f(r)

, (A.1c)

s4(r) =
(
f(r)−1 − 1

)(4r0 − ns2(r)

2(n+ 1)
+ cvv − 2cvr

)
, (A.1d)

v1(r) = c
(2)
vi +

c
(1)
vi

rn
, (A.1e)

v2(r) =
r∗ − r + v1(r)

f(r)
+ frj(r) , (A.1f)

t(r) = s2(r) + cij , (A.1g)

where

r∗ =

∫
dr

1− rn0
rn

. (A.2)

The function frj(r) is a gauge-dependent function only constrained to be finite on the

horizon and thus could be set to zero.

The boundary conditions (3.7), (3.9) are satisfied by choosing

cvv = cvr = c
(1)
vi = c

(2)
vi = cij = 0 , cii = −2 r0

n
ln f(R) , (A.3)

with which

s1(r) =
n+ 2

2(n+ 1)

(
f(r)− n

n+ 2

)
s2(r) , (A.4a)

s2(r) =
2 r0

n
ln
f(r)

f(R)
, (A.4b)

s3(r) =
1

2f(r)

[(
n

n+ 1
− f(r)

)
s2(r) +

2r0

n+ 1

(
f(r)− 1

)(
n
r∗
r0

+ 1

)]
, (A.4c)

s4(r) =
(
f(r)−1 − 1

)(4r0 − ns2(r)

2(n+ 1)

)
, (A.4d)

v1(r) = 0 , (A.4e)

v2(r) =
r∗ − r
f(r)

+ frj(r) , (A.4f)

t(r) = s2(r) . (A.4g)

This is the unique solution, up to the gauge choice of frj(r), that satisfies the regularity

condition at the horizon and the boundary conditions on the wall at fixed R.
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B Connection on the wall

We present here the relation between the connections ∇a and ∇̂a compatible with, resp.,

the metrics ηab and ĥab, and we use this to relate the gradients of the respective velocity

vectors, ua and ûa. We decompose these gradients, as usual, into traceless symmetric shear

σab, expansion θ, acceleration aa, and antisymmetric vorticity ωab, so that

∇aub = σab +
1

p
θPab − uaab + ωab , (B.1)

and similarly for hatted quantities.

We follow the same steps as in [16]. If the difference between the metrics is

γab = ĥab − ηab (B.2)

then the difference between the connections, Γ̃cab, such that

∇̂aVb = ∇aVb − Γ̃cabVc (B.3)

is given by

Γ̃cab =
1

2
ĥcd(∇aγbd +∇bγad −∇dγab) . (B.4)

In our case,

γab = (1− f)uaub . (B.5)

Here we always take f evaluated on the wall, i.e., f = f(R), which depends on σ through

r0(σ). We find

Γ̃cab =
ud∂df

2f
ucuaub −

1

f
ucu(aPb)

d∂df +
1

2
uaubP

cd∂df

+(f−1 − 1)uc
(
σab +

1

p
θPab

)
+ 2(1− f)u(aωb)

c − (1− f)acuaub . (B.6)

Using this and (2.6) we find that

∇̂aûb =
1√
f

(
σab +

1

p
θPab

)
+
√
fωab − ûa

(
ab +

1

2f
Pb

c∂cf

)
, (B.7)

from where we immediately deduce eqs. (3.10) and

ω̂ab =
√
f ωab . (B.8)

Note that we have not made use anywhere of the fluid equations of motion for elimi-

nating the derivatives of f in favor of derivatives of the velocity. This is done in section 4.2

An alternative but equivalent way of obtaining the same results is the following. We

may regard the two metrics as related, to zeroth derivative order, by the change ûaσ̂
a =√

f(R)uaσ
a. Above we have set ûa =

√
f(R)ua and left the coordinates unchanged.

But we could just as well leave ûa = ua, perform a coordinate rescaling (of time), and

include the derivatives of f(R) that result from this coordinate change into the correction

terms fµν .
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Universitat de Barcelona,

Mart́ı i Franquès 1, E-08028 Barcelona, Spain

E-mail: emparan@ub.edu, marinamartinez@icc.ub.edu

Abstract: We give an exact description of the steady flow of a black string into a planar

horizon. The event horizon is out of equilibrium and provides a simple, exact instance of

a ‘flowing black funnel’ in any dimension D � 5. It is also an approximation to a smooth

intersection between a black string and a black hole, in the limit in which the black hole

is much larger than the black string thickness. The construction extends easily to more

general flows, in particular charged flows.

Keywords: Black Holes, Black Holes in String Theory

ArXiv ePrint: 1307.2276

c� SISSA 2013 doi:10.1007/JHEP09(2013)068



J
H
E
P
0
9
(
2
0
1
3
)
0
6
8

Contents

1 Introduction 1

2 Horizon of black string flow 2

3 Out-of-equilibrium flow 7

4 Charged flows 8

5 Outlook 10

A Explicit integration of the event horizon 11

1 Introduction

Recent studies of black holes and black branes have sparked an interest in stationary

spacetimes admitting event horizons that are not Killing horizons, i.e., the null generators

of the horizon are not parallel to the generators of isometric time translations.1 From a

technical viewpoint, the theorems [3–5] that would forbid this possibility are evaded since

the horizons are non-compactly generated. From a physical perspective, such horizons

connect two asymptotic regions of infinite extent which have di↵erent surface gravities, i.e.,

di↵erent temperatures. They can be regarded as describing a steady heat flow between two

infinite heat reservoirs that keep a temperature gradient constant in time.

In this article we describe a remarkably simple, exact solution for a ‘flowing horizon’.

The explicit nature of the construction allows a detailed study of the properties of the

flow. Since the spacetime is Ricci-flat, it shows that, in contrast to previous descriptions

of horizon flows (motivated by AdS/CFT) [1, 2, 6–9], a negative cosmological constant is

not essential for their existence.

In order to motivate the construction, let us first imagine a thin black string, of thick-

ness rbs, that falls vertically into a very large black hole of radius rbh � rbs.
2 The black

string has a much larger surface gravity than the black hole. If the string is free-falling

into the black hole horizon, then there are no external forces acting on the system and we

can expect that the two horizons merge smoothly.3 This is not a stationary configuration:

the black hole is accreting mass from the string that flows into it and therefore must grow

1To the best of our knowledge, horizons with this property were first described, independently, in [1]

and [2].
2We may envisage two black strings, falling at antipodal points of the black hole horizon, in order to

avoid any total pull on the black hole. Note that the notion of the string falling ‘vertically’ along its length

is sensible since the worldsheet of a black string is not Lorentz invariant.
3Instead of meeting at a singular cusp [10], which in the present context would be unphysical.

– 1 –



J
H
E
P
0
9
(
2
0
1
3
)
0
6
8

in size. However, this e↵ect becomes negligible if we take the limit rbh ! 1 keeping rbs

fixed, and focus on the region where the two horizons meet. The black hole horizon then

becomes an acceleration, Rindler-type infinite horizon, into which the black string flows by

falling freely across it. Going to the rest frame of the falling black string, the acceleration

horizon disappears: we are left with the spacetime of a static black string.

In other words, if we take a static black string and view it from a frame that accelerates

along the direction of the string, what we observe is a string in free fall into an acceleration

horizon. We will construct the event horizon for such accelerated observers (taking also

into account their dragging by the string, as we will see), and show that it interpolates

smoothly between the Rindler horizon of a ‘cold’, infinitely-large black hole, at large dis-

tances from the string, and the Killing horizon of the ‘hot’ black string when far from the

acceleration horizon. It is clear that the spacetime has a timelike Killing vector — which

defines the rest frame of the string — but the flowing event horizon is not mapped into

itself under its action.

The horizon of this ‘black string flow’ is closely similar to the ‘black funnels’

of [7–9, 11–14], where a string-like horizon that in one direction extends towards the AdS

boundary, in the other direction smoothly merges with the infinitely extended horizon of an

AdS black brane. The two constructions di↵er in their asymptotics but otherwise describe

essentially similar phenomena. Our construction should approximate well the horizon of

an AdS funnel much thinner than the AdS radius, in the region where it joins the AdS

black brane. Indeed, it should give the universal description of all neutral, non-rotating,

thin black funnels over distances su�ciently close to the horizon.

2 Horizon of black string flow

In the rest frame of the free-falling black string, and in D = n + 4 spacetime dimensions,

the metric is

ds2 = �f(r)dt2 + dz2 +
dr2

f(r)
+ r2d⌦n+1 , (2.1)

with

f(r) = 1 �
⇣r0

r

⌘n
. (2.2)

In the absence of the string (f = 1), the null surfaces t = z + t0, with constant t0, are

(future) acceleration horizons, i.e., event horizons for trajectories of asymptotically uniform

acceleration along z. Often this is made manifest by changing to coordinates adapted to

accelerating observers, but this is actually not needed, nor is it very practical in the present

case. Instead, it is simpler to trace back an appropriate congruence of null rays from null

asymptotic infinity.4 In our case, one condition that we clearly want to be satisfied is that

the null rays reach the conventional Rindler horizon far from the string, i.e.,

ṫ

ż
! 1 and ṙ ! 0 for r ! 1 , (2.3)

4An approach similar in essence was previously used in [15].
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where the dot denotes derivative with respect to an a�ne parameter �. These turn out to

be the main conditions that we will need to impose, with all other initial conditions on the

geodesics following naturally.

The angles on Sn+1 remain fixed for each null geodesic so that the event horizon

preserves the symmetry SO(n+2). The equations for t(�), z(�), r(�) are easy to obtain from

� f ṫ2 + ż2 +
ṙ2

f
= 0 , (2.4)

and

ṫ =
✏

f
, ż = p , (2.5)

where ✏ and p are two integration constants coming from the isometries generated by @t

and @z. Then (2.3) is satisfied by setting

✏

p
= 1 . (2.6)

Null hypersurface Hf . The null hypersurface ruled by outgoing geodesics can now be

characterized by the one-form equation

dt = dz +

p
1 � f

f
dr , (2.7)

i.e.,

t = z + t0 +

Z p
1 � f

f
dr , (2.8)

each value of t0 giving a di↵erent null hypersurface that ends at a di↵erent value of the null

coordinate in future null infinity. Obviously, any of them can serve as our event horizon,

di↵ering simply by a translation in t�z. We shall denote the null hypersurface with t0 = 0

as Hf — the flowing, or funnel, horizon. Clearly it is not a stationary horizon: the action

of @t changes t0 and therefore it does not map a hypersurface onto itself but rather onto

another one. The explicit form of the integral in r in (2.8) is not particularly illuminating

and we give it in the appendix. The surface Hf is plotted in figure 1.

We can introduce coordinates x± adapted to these null surfaces, defined by

dx± = dt ±
✓

dz +

p
1 � f

f
dr

◆
. (2.9)

These are null one-forms normal to the hypersurfaces defined by dx± = 0. The vectors

@/@x± = (@t ±@z)/2 are instead spacelike vectors tangent to these hypersurfaces, i.e., dx� ·
(@/@x+) = 0 and dx+ · (@/@x�) = 0. Moreover, the hypersurfaces dx+ = 0 (resp. dx� = 0)

are symmetric under the action of @/@x� (resp. @/@x+).

The geometry (2.1) written in coordinates (x�, z, r,⌦) takes the form

ds2 = �fdx2
� � 2dx�

⇣
fdz +

p
1 � fdr

⌘
+
⇣
dr �

p
1 � f dz

⌘2
+ r2d⌦n+1 . (2.10)

Hf is the null surface x� = 0. Taking also its time reversal, namely the null surface x+ = 0,

we can regard the region x� < 0, x+ > 0 that they bound as the Rindler wedge modified

by the presence of the black string, see figure 2.
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Figure 1. Event horizon Hf of the black string flow as the hypersurface (2.8) in (t, r, z) space (for

n = 2 and r0 = 1). It extends along �1 < z, t < 1 and 1 < r < 1. The black string lies at r = 1,

and is reached at t ! �1. At any finite r, the surface tends to t = z at large z. The black curves

are null geodesics representative of the congruence that rules the hypersurface, for (left to right)

⇣ = 5, 3, 0,�6. The red curve is a constant-t section.

Null geodesic congruence. The null geodesics that rule Hf are easily obtained. Using

the freedom to rescale � we set ✏ = p = 1. Then, since

ż = 1 , ṙ =
p

1 � f , (2.11)

we have

z(�) = � + ⇣ ,

r
n+2

2 (�) = r
n/2
0

✓
r0 +

n + 2

2
�

◆
, (2.12)

and t(�) is obtained from (A.1). Here ⇣ is an integration constant that labels each null ray

of the congruence. It corresponds to the value of z for the ray when � = 0, i.e., when r = r0

and t ! �1. We can then take (�, ⇣) as the coordinates on the null hypersurface (together

with the angles of Sn+1). If we eliminate them we obtain the hypersurface t(r, z) in (2.8).

For each value of ⇣ we have a light ray outgoing in the r direction, which initially

hovers just above the black string horizon, until it escapes out to infinity moving in the r

and z directions, see figure 1.
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Figure 2. The wedge formed by the null hypersurfaces x+ = 0, x� = 0 (for n = 3). The curve at

their intersection at t = 0 is marked in red.

Note that r = r0 is reached at a finite value of the a�ne parameter, namely � = 0. This

is in fact the same as for null outgoing trajectories outside the horizon in the Schwarzschild

geometry: they have ✏ > 0 and reach r = r0 in the past horizon at a finite a�ne parameter.

In our construction the same happens for the null geodesics in Hf . Taking � < 0 they are

extended into the interior of the white hole until they reach at r = 0 the past curvature

singularity of the solution.

Event horizon and black string drag. Hf given by (2.8) is a codimension-1 null

hypersurface that extends to asymptotic infinity. It is the future null boundary of a region

of spacetime, and it is natural to ask what are the timelike trajectories that have Hf as

their event horizon.

According to eq. (2.12), all light rays on Hf move towards r ! 1 as the a�ne

parameter grows. Then, any timelike trajectory that remains within bounded values of r

will cross Hf at a finite time. That is, Hf is not an event horizon for observers that remain

within a finite range of the black string: they all fall across Hf eventually.

We interpret this phenomenon physically as a dragging e↵ect. A boosted black string

(one that moves at constant velocity) has around itself an ergosurface at a constant radial

distance. Observers inside this surface cannot remain static but are dragged along with

the string. In our configuration the black string is accelerating, i.e., its velocity grows,

– 5 –
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Figure 3. Constant-time cross section of the event horizon (2.14) (for n = 3 and r0 = 1), illustrating

the funnel-shape that interpolates between the black string and the infinite planar acceleration

horizon. The circles at constant z are actually Sn+1. The funnel extends infinitely in z and r.

and so the ergoregion grows too. We expect then that any trajectory that remains within

a finite distance from the string will be dragged along with it and eventually cross the

acceleration horizon, thus moving to the future of Hf . An observer who wants to avoid

crossing Hf must not only accelerate in the z direction, but it must also move out towards

r ! 1. These are the observers that have Hf as their event horizon.5 It is straightforward

to extend this analysis to the class of observers whose motion is confined inside the wedge

in figure 2 by considering trajectories which are time-reversal invariant around t = 0.

Funnel geometry. Consider a cross-section of this horizon at constant t (or equivalently,

at constant x+). From (2.9) and (2.10), the metric induced on it is

ds2
(hor) =

dr2

f2
+ r2d⌦n+1 . (2.13)

This geometry describes an infinite funnel: at r ! 1 it becomes flat space, while near

r = r0, where f vanishes linearly in r, we find an infinite throat with the geometry R⇥Sn+1,

with sphere radius r0.
6 We can describe this surface as the curve

z +

Z p
1 � f

f
dr = 0 , (2.14)

which we represent in figure 3. This illustrates clearly the idea that the black string and

the Rindler horizon merge smoothly into a funnel-shaped horizon.

5The dragging e↵ect becomes weaker in higher dimensions. For very large n it is only appreciable within

a distance r0/n of the black string [16]. As n ! 1, the horizon becomes exactly a planar Rindler horizon

outside this region.
6Coincidentally, this is the same geometry as the spatial section of the extremal Reissner-Nordstrom

solution.
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3 Out-of-equilibrium flow

The vector

d

d�
= ṫ

@

@t
+ ż

@

@z
+ ṙ

@

@r

=
1

f

@

@t
+

@

@z
+
p

1 � f
@

@r
. (3.1)

is an a�ne generator of the null geodesic congruence. It is convenient to consider the

following non-a�ne generator of the future event horizon,

` =
1

2
f (r(�))

d

d�

=
1

2

✓
@

@t
+ f

@

@z
+ f

p
1 � f

@

@r

◆
. (3.2)

This is normalized in such a way that near and far from the black string we recover the

generators of the black string horizon and of the acceleration horizon. Often the Rindler

horizon generator is taken to be the boost vector z@t+t@z, which at t = z becomes t(@t+@z).

However, this is not adequate for us: the boost vector gives a finite, dimensionless surface

gravity  = 1, to the Rindler horizon. This is the acceleration of observers at unit proper

distance from the horizon, and not the surface gravity in the infinite radius limit of a black

hole, which is zero.

The surface gravity (`) of ` is defined as the non-a�nity factor of the geodesics,

r`` = (`) ` . (3.3)

Since � is an a�ne parameter we easily find that

(`) = `µ@µ ln f

=
n

2r

⇣r0

r

⌘3n/2
. (3.4)

This surface gravity decreases monotonically from its asymptotic value at the black string

horizon at r = r0, where (`) ! n/(2r0), down to (`) ! 0 at large r where the horizon

approximates the planar Rindler horizon.

Since the horizon is out of equilibrium, we can expect that its expansion be positive.

In order to compute it, consider the geometry of sections at constant �,

ds2
(hor) =

�
1 � f(r(�))

�
d⇣2 + r2(�)d⌦n+1 . (3.5)

Here we use the coordinate ⇣ on the surface, instead of r as in (2.13), since @/@r does not

commute with d/d� and therefore is not a good coordinate for the congruence. The area

element on this surface is

a =
p

1 � f rn+1!n+1 (3.6)

(where !n+1 is the area element of Sn+1) and therefore the expansion of d/d� is

✓(�) =
d ln a

d�
=

n + 2

2

p
1 � f

r
. (3.7)
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This is indeed positive, so the area of the horizon grows to the future. It is also monoton-

ically decreasing, vanishing at r ! 1.

If we consider the expansion associated to ` we get

✓(`) = `µ@µ ln a =
1

2
f✓(�) =

n + 2

4
f

p
1 � f

r
. (3.8)

This is again positive, but now it vanishes both at r = r0 and at r ! 1. Thus the flow of the

vector ` reflects the property that this event horizon interpolates between two asymptotic

horizons, each of which is asymptotically in equilibrium at a di↵erent temperature.

Finally, note that not only is the horizon out of global equilibrium, i.e., has non-

constant , but it is also away from local equilibrium. By this we mean that the gradient

r0 @z ln(`) becomes large in the region r � r0. Then the surface gravity at a section

of the horizon at constant z, with radius r(�), is not well approximated by the surface

gravity of a black string with that horizon radius — as should be clear from figure 3. As a

consequence, the flowing horizon cannot be described in the e↵ective hydrodynamic theory

for black strings [17, 18].

4 Charged flows

Our previous analysis can be easily extended to more general static black string metrics of

the form

ds2 = �T (r)dt2 + Z(r)dz2 +
dr2

R(r)
+ r2H(r)d⌦n+1 , (4.1)

where all the metric functions are assumed positive outside the black string horizon and

tend to 1 at r ! 1. By a suitable choice of the radial coordinate we could set H = 1, or

instead R = T . Each choice has its virtues, so we shall keep this radial gauge freedom.

Solutions with T = Z are qualitatively di↵erent from those with T < Z (and when

T > Z there are no null geodesics with ✏/p = 1). When T = Z the string worldsheet is

Lorentz-invariant and the notion of the string falling along its length is not well defined.

The black string horizon does not merge with the Rindler horizon, but instead the two

just intersect. This can be easily seen by performing the conventional change to Rindler

coordinates, t = ⇢ sinh ⌘, z = ⇢ cosh ⌘: the black string horizon at r = r0, where T (r0) = 0,

and the Rindler horizon at ⇢ = 0, form two intersecting null surfaces, both with zero

expansion. Later we discuss a relevant instance of this.

Henceforth we restrict ourselves to T <Z. The flowing event horizon is characterized by

dt = dz + dr

s
Z(r) � T (r)

T (r)Z(r)R(r)
, (4.2)

and in terms of the coordinates (�, ⇣) on the congruence, where ⇣ labels di↵erent null rays

and � the a�ne parameter along them, we have

dz = Z�1d� + d⇣ , dr =

r
R(Z � T )

TZ
d� . (4.3)
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The metric on a constant-t section (or constant �) of this horizon is

ds2
(hor) =

Z

TR
dr2 + r2H(r)d⌦n+1

= (Z � T )d⇣2 + r2H(r)d⌦n+1 . (4.4)

For the non-a�ne null geodesic generator

` =
1

2

 
@t +

T

Z
@z +

r
(Z � T )

RT

Z
@r

!
(4.5)

the surface gravity is

(`) =

r
(Z � T )

R

TZ

@rT

2
. (4.6)

This vanishes as r ! 1, while close to T = 0 it reproduces the surface gravity of the event

horizon of the black string,

(`) !
r

R

T

@rT

2
. (4.7)

The expansion is

✓(`) =
1

2

✓
@rZ � @rT

Z � T
+

n + 1

r
+

n + 1

2

@rH

H

◆r
(Z � T )

RT

Z
. (4.8)

The first term inside the brackets is due to the expansion along the string direction, while

the latter two correspond to the spherical expansion in the radial direction. The last factor

comes from `µ@µr.

A natural class of solutions to study are charged strings, in particular electrically

charged ones. The qualitative properties di↵er depending on whether the charge is string-

charge, i.e., the strings are electric sources of a 2-form potential Bµ⌫ , or 0-brane charge,

which sources a Maxwell 1-form potential Aµ.

String charge. Configurations with string charge are of interest for several reasons.

The neutral black string flow of previous sections is unstable, since the spacetime (2.1)

is itself unstable [19]. However, string-charged black strings that are su�ciently close to

extremality, but not necessarily extremal, are stable.

An interesting instance are black strings with fundamental string charge, i.e., black

F-strings. Above extremality the horizon can be regarded as the gravitational description

of a thermal spectrum of excitations on a stack of fundamental strings. The ‘F-string flow’

horizon then describes, in gravitational terms, the flow of these excitations down a very

large black hole that the string intersects. Even if the F-string charge allows to tune down

the temperature of the black string, only at extremality can it be in thermal equilibrium

with the infinitely large black hole. This extremal limit has Lorentz-invariance along z, with

T = Z, so in this case there is actually no flow. Above extremality the string excitations are

at a higher temperature than the black hole, and the system appears to di↵er from those in

which the string excitations are in thermal equilibrium with a finite-temperature horizon

(as studied in a worldsheet approach, e.g., [20–23], or in the blackfold approach [24, 25]).

In our construction, when the black string is not extremal it is not mining energy from the

black hole, but rather dumping it.
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0-brane charge. 0-brane charge on a black string breaks Lorentz symmetry on the

worldsheet at any temperature, including at extremality. The horizons of these strings can

then merge smoothly with the Rindler horizon and there is always a non-zero flow. For

extremal string flows the surface gravity associated to ` is zero only at the black string,

where (4.7) vanishes, and at the Rindler horizon at r ! 1. Inbetween them, the surface

gravity is generically non-zero, as is also the expansion ✓(`). So these are always out-of-

equilibrium configurations.

One may wonder what drives the flow when both its endpoints are at zero temperature.

It is easy to see that it is driven by a gradient of the electric potential, i.e., an electric field

along the horizon. The charge on the string is in free fall across the acceleration horizon.

On the event horizon, this phenomenon is a charge current from the black string to the

planar horizon, driven by an electric field. This field on the event horizon is the projection

(pullback) of the spacetime electric field that the static black string creates. Clearly this

field points in the direction of increasing r, and thus, on the event horizon, it points from the

black string towards the planar horizon. It may be interesting to understand better these

charge flows. In particular the appearance of a temperature on the horizon of the extremal

string flow, in which the asymptotic endpoints are at zero temperature, is suggestive of

resistive (Joule) dissipation of the electric current on the horizon.

Finally, 0-brane charge does not prevent the instability of the black string, as this

charge can be redistributed along the horizon. However, the addition of string charge can

make these solutions stable, even supersymmetric. In the latter case, the flowing horizon

is not parallel to the timelike vector associated to the Killing spinors, and therefore need

not be an extremal horizon.

5 Outlook

The black string flow studied above approximates a system where a very thin black string

smoothly pierces a black hole. A similar-looking configuration has been found in the late-

time evolution of the black string instability [26] — including a flow from the string that

makes the black hole grow. It would be interesting to study in more detail the geometry

in the latter case, near the region where the ‘black hole’ and ‘black string’ meet, to see if

it conforms to the flowing horizon we have constructed.

Black funnels in AdS can be interpreted holographically in dual terms as a flow of

Hawking radiation in the boundary theory, emitted from a black hole through a thermal

radiation fluid that extends to infinity [1, 7]. For our flowing geometries, a similar in-

terpretation is also possible — although only to some extent, since the quantum degrees

of freedom of the dual radiation are not known. In order to understand how this works,

consider first the Rindler horizon, without the string. If we impose Dirichlet boundary con-

ditions on a timelike surface S at a fixed, finite proper distance from the horizon, then the

gravitational dynamics of the system can be described in terms of a dual thermal ‘Rindler

fluid’ on S [27]. If we introduce the black string, then there will be a black hole horizon

on S where it intersects the black string. The dual description, in terms of the quasilocal

stress-energy tensor on S, will then exhibit a flow of the Rindler fluid qualitatively similar
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to that in AdS. Note also that in this Rindler-fluid set up, the C-metric yields an exact

droplet solution in a four-dimensional bulk. The construction is like that of a black hole

on a thin, planar domain wall in [28].

The method we have employed of finding non-equilibrium acceleration horizons in sta-

tionary black hole spacetimes can be extended to other situations of interest, for instance:

(i) rotating black strings, to yield rotating string flows; (ii) black strings in AdS, to obtain

black funnels in (hyperbolic) AdS black branes; (iii) Schwarzschild black holes, to find the

event horizon in the final plunge of extreme-mass-ratio black hole collisions. We plan to

report on these systems elsewhere.
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A Explicit integration of the event horizon

Setting for simplicity r0 = 1, the event horizon (2.8) is the surface

t � t0 = z +

Z
dr

rn/2 � r�n/2

= z � 2r(2�n)/2

n � 2
2F1

✓
n � 2

2n
, 1,

3n � 2

2n
; r�n

◆
. (A.1)

When n = 2 we find

t � t0 = z +
1

2
ln(r2 � 1) . (A.2)

The expression simplifies for other values of n, e.g.,

t � t0 = z + 2
p

r + ln

p
r � 1p
r + 1

(n = 1) , (A.3)

t � t0 = z +
1

2
arctan r +

1

4
ln

r � 1

r + 1
(n = 4) . (A.4)

At large values of r the surface tends to

t � t0 ! z � 2r(2�n)/2

n � 2
, (A.5)

so for larger n the horizon asymptotes more rapidly to t = z. In fact for n = 1, 2, the limit

of r ! 1 at fixed z or fixed t does not tend to t = z (although it is always the case that

dt ! dz at r ! 1). The interpretation is that, as might be expected, low-codimension

black string flows spread much more in the transverse directions than higher-codimension

flows. Nevertheless, the spatial geometry of the horizon (2.13) is asymptotically flat in

all dimensions.
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1 Introduction and main results

In spite of the lack of effective solution-generating methods, the exploration of black hole

solutions of the vacuum Einstein equations in D ≥ 6 has made significant strides through

the complementary use of approximate analytical methods and numerical calculations. One

line of study follows the observation that rapidly spinning Myers-Perry (MP) black holes

in D ≥ 6 [1] approach black membranes, so they can be expected to admit, as black branes

do, stationary deformations that ripple the horizon [2]. Such bumpy black hole solutions

would naturally connect to black rings, black Saturns, and multi-ring solutions through

topology-changing transitions in solution space [3, 4]. Evidence for this picture has been

provided in [5–9]. In this article we confirm, refine, and extend aspects of it through a

detailed numerical investigation of bumpy black holes in D = 6.

Bumpy black holes, like MP black holes (in the singly-spinning case that will be the

focus of this article), have horizon topology SD−2 with spatial symmetry group U(1) ×
SO(D − 3). What distinguishes them from the “smooth” MP black holes is that the size

of the SD−4 symmetry orbits on their horizon varies in a non-monotonic fashion from the

axis of rotation to the equator.

The different families of bumpy black holes are conveniently identified by the way they

branch off the MP family. Refs. [5, 6] identified linearized zero-mode perturbations of

singly-rotating MP black holes, to which we can assign an ‘overtone’ number i = 1, 2, . . . 1

1We ignore the “i = 0” zero mode [5] since it stays on the MP family and does not give rise to new

branches of solutions.
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that, for fixed mass, grows with the spin. Let us conventionally fix the sign of the zero-

mode so that the i-th mode wavefunction at the axis of rotation has sign (−1)i. By adding

or subtracting the zero-mode perturbation to the MP black hole, we obtain two different

branches, (+)i and (−)i, of solutions emerging from the branching point. The evolution of

the solutions along the (+)-branches was anticipated in [3]: the horizon develops bumps

that grow until a SD−4 cycle pinches down to zero size, naturally suggesting a topology-

changing transition to other black holes: black rings for i = 1, black Saturns for i = 2,

and multi-ring configurations for i > 2. The (−)-branches of solutions were only identified

recently in [8], and as we will see, they seem to terminate without any plausible connection

to other black hole solutions.

Ref. [8] has studied the (+)1 and (−)1 branches in six and seven dimensions. Here

we extend the analysis in the six-dimensional case to higher branches, i = 1, 2, 3, while

pushing both the (+) and (−) branches closer to their ends in phase space at singular

solutions. We also perform a detailed investigation of the geometrical properties of these

bumpy black holes. Our main conclusions, partly illustrated in figures 1 and 2, are:

1. The (+) branches terminate at critical solutions with conifold-type singularities lo-

calized on the horizon of precisely the kind predicted in [10] (following [11]).

2. The (+)3 solutions pinch on the horizon at two places, on the rotation axis and off

the axis, with the on-axis pinch growing deeper than the off-axis one. This strongly

suggests that these solutions connect to a family of ‘bumpy black rings’ not yet

constructed. We expect that these rings eventually pinch off to connect to black

di-rings.

3. The (−) branches terminate at solutions with a curvature singularity localized at the

equator of the horizon. The structure of the singularity appears to be locally the

same for all i: the S2 on the horizon shrinks to zero at the equator in a manner

that resembles the cone that appears in the (+)2 branch, while the length of the

equatorial circle diverges. However, we are unable to provide an explicit local model

for this singularity. We do not find any plausible extension of this branch to other

singly-spinning black hole solutions.

The conclusion in point 2 eliminates the possibility, considered as an alternative in [3],

that the connection to black di-rings occurs through a phase of ‘bumpy black Saturns’. We

give a simple argument to suggest that, as we move away of the MP solutions, the horizons

in higher-i branches pinch-off in succession from the rotation axis to the equator. Let us

also remark that the divergent length of the equatorial circle mentioned in point 3 is not

visible in figure 2, but will be made apparent in figure 8 below.

These results are explained in detail in section 3, after having outlined in section 2

the construction of the solutions. In addition, in section 4 we compute the thermodynamic

properties of these solutions and draw phase diagrams. We also analyze the spectrum of the

Lichnerowicz operator, and relate the number of negative eigenvalues to the thermodynamic

stability of the solutions. The details of our numerics are relegated to appendix A.
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(a) (+)1-branch black hole at j = 1.13,

close to the transition to a black ring.

2 21 1
u

0.6

0.6

0.3

0.3

R⟂

(b) (+)2-branch black hole at j = 1.20, close to the

transition to a black Saturn.

2 21 1
u

0.2

0.2

R⟂

(c) (+)3-branch black hole at j = 1.55, close to the transition

to a bumpy black ring.

Figure 1. Embedding diagrams of bumpy black hole horizons of the (+)1,2,3 branches (red curves),

for the largest deformations we have obtained. The value of R⊥ gives the size of the spheres S2

transverse to the rotation plane. The vertical axis u = 0 is the rotation axis, but u does not measure

the radius of the rotation circles. We superimpose the embeddings of MP black holes with the same

mass and spin (dashed black), and of the cones proposed for a local model of the critical singularity,

eq. (3.9) (blue). The angular momentum j is normalized as in (2.19). In this and all subsequent

plots, units are GM = 1.

2 1 1 2
u

0.5

0.25

0.25

0.5

R⟂

Figure 2. Embedding diagrams for (−)1,2,3 branch black holes (1: orange long-dash; 2: red short-

dash; 3: purple dot-dash) at the largest deformations we have obtained. All branches exhibit the

same singular conical shape near the equator (reflecting the rate at which the S2 shrink there),

with the same opening angle as in the critical (+)2 solutions.
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We remark that all these bumpy black holes are expected to be dynamically unsta-

ble; their importance lies in what they reveal about the possible geometries of black hole

horizons in higher dimensions and the rich web of interconnections among them.

2 Construction of the Solutions

In order to construct deformed rotating black holes in six dimensions we solve the Einstein-

DeTurck equations RH
ab = 0 where

RH
ab = Rab − ∇(aξb) and ξa = gbc(Γa

bc − Γ̄a
bc). (2.1)

Γ is the usual Levi-Civita connection compatible with the spacetime metric g and Γ̄ is

the Levi-Civita connection compatible with some reference metric ḡ that satisfies the same

boundary conditions as the spacetime metric g but needs not be a solution to Einstein’s

equations. This is a standard method used in numerical General Relativity to find static

and stationary solutions [12–14]: the equations are manifestly elliptic and one can then

use conventional numerical techniques for solving such partial differential equations. For

asymptotically flat (AdS or Kaluza-Klein) static metrics [13] proved that the solutions to

the Einstein-DeTurck equations must in fact be Einstein. This result is yet to be extended

to the stationary case, and hence, since we are interested in Einstein metrics, we must

check that the DeTurck vector ξ vanishes. For the solutions presented in this article we

have checked that this is indeed the case, within our numerical accuracy.

The solutions we study are stationary and with only one of the two possible rotations

turned on. Thus the rotation group SO(5) is broken down to U(1) × SO(3), which act on

the direction of rotation φ and on the spheres S2 transverse to the rotation plane. The

metric can then be written in the form

gabdxadxb = − T (r, x)dt2 + P (r, x)(dφ + W (r, x)dt)2 + S(r, x)dΩ2
(2)

+ A(r, x)dr2 + B(r, x)dx2 + 2F (r, x)drdx
(2.2)

and we denote the reference metric as

ḡabdxadxb = − T0(r, x)dt2 + P0(r, x)(dφ + W0(r, x)dt)2 + S0(r, x)dΩ2
(2)

+ A0(r, x)dr2 + B0(r, x)dx2 .
(2.3)

The compact radial direction r ∈ [0, 1) covers the region from the horizon at r = 0, to

infinity at r = 1. We seek solutions with horizons that are topologically S4, so we choose

sections at constant t and r to also be topological S4’s. The size of the φ-circles and of the

symmetric S2’s varies along the polar angular direction x ∈ [0, 1], with x = 0 corresponding

to the rotation axis (where φ-circles shrink to zero) and x = 1 to the equatorial plane

(where S2 spheres shrink to zero). The “bumpiness” of the horizon corresponds to non-

monotonicity (of, say, the size of the S2 on the horizon) along this polar direction.
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We write the metric functions as

T (r, x) = T0(r, x)Q1(r, x),

W (r, x) = W0(r, z)Q2(r, x),

P (r, x) = P0(r, x)Q3(r, x),

S(r, x) = S0(r, x)Q4(r, x),

A(r, x) = A0(r, x)Q5(r, x),

B(r, x) = B0(r, x)Q6(r, x),

F (r, x) =
rx(1 − x2)

(1 − r2)3
Q7(r, x)

(2.4)

and the reference metric is the MP metric with a small modification that enables us to

control the temperature of the solutions.

In order to obtain the functions (T0, W0, . . . etc.) for the reference metric we begin

with the single-spin MP metric in standard Boyer-Lindquist-like coordinates (here r̄, φ̄, t̄

and θ)

ds2 = − dt̄2 +
r3
0

r̄ρ2

(
dt̄ + a sin2 θdφ̄

)2
+ (r̄2 + a2) sin2 θdφ̄2

+
ρ2

∆
dr̄2 + ρ2dθ2 + r̄2 cos2 θdΩ2

(2)

(2.5)

where

ρ2 = r̄2 + a2 cos2 θ, ∆ = r̄2 + a2 − r3
0

r̄
(2.6)

and the dΩ2
(2) is the line element of a 2-sphere. The horizon (r̄ = r+) is found by solving

∆(r+) = r2
+ + a2 − r3

0

r+
= 0, (2.7)

the mass and angular momentum are

MMP =
r3
0Ω(4)

4πG
, JMP =

aMMP

2
, (2.8)

where Ω(4) is the area of a unit 4-sphere, and the temperature and angular velocity are

TMP =
1

4π

(
2r2

+

r3
0

+
1

r+

)
, ΩH =

a

a2 + r2
+

. (2.9)

We perform the changes of coordinates

r̄ =
r+

1 − r2
, cos θ = 1 − x2, φ̄ = φ + ΩHt, t̄ = t. (2.10)

The first two are made so that the ranges of the coordinates are 0 < r, x < 1 and the

third change, to co-rotating coordinates, is made because otherwise the W0 function goes

to zero too fast at infinity, which is inconvenient for numerical calculation. In co-rotating

coordinates the function W0 is 0 at the horizon and ΩH asymptotically.

– 5 –



J
H
E
P
1
2
(
2
0
1
4
)
0
7
2

The MP metric then takes the form

ds2
MP = − TMP (r, x)dt2 + P0(r, x)(dφ + W0(r, x)dt)2

+ A0(r, x)dr2 + B0(r, x)dx2 + S0dΩ2
(2)

(2.11)

with

TMP (r, x)=
r2

(
f(r)2r3

0+g(r)r3
+

) (
f(x)2

(
f(r)2r3

0+r2g(r)r3
+

)
+r2x2g(x)r3

+

)
(
f(r)2r3

0+r2g(r)r3
+

)2−r2x2f(r)2g(x)
(
r3
0−r3

+

) (
f(r)2r3

0+g(r)r3
+

) , (2.12)

where

f(r) = 1 − r2, g(r) = 2 − r2. (2.13)

We will find bumpy black hole solutions with given values of the temperature and

angular velocity. It is convenient to specify these in terms of parameters of the reference

metric. In order to control the temperature, we introduce a parameter k in the reference

metric

T0(r, x) =
r2

(
f(r)2r3

0k + g(r)r3
+

) (
f(x)2

(
f(r)2r3

0 + r2g(r)r3
+

)
+ r2x2g(x)r3

+

)
(
f(r)2r3

0 + r2g(r)r3
+

)2 − r2x2f(r)2g(x)
(
r3
0 − r3

+

) (
f(r)2r3

0 + g(r)r3
+

) (2.14)

so that the surface gravity κ of the reference metric is given by

κ2 =
T0(r, x)

r2A0(r, x)

∣∣∣∣∣
r→0

=
1

4r2
+

(
r3
0k + 2r3

+

) (
r3
0 + 2r3

+

)
. (2.15)

Obviously, whenever k ̸= 1 the reference metric is not a solution of Einstein’s equations

but nonetheless it has a smooth horizon. However, k allows us to move along the branches

of solutions by varying it as a parameter in the reference metric. We will choose boundary

conditions on the Q’s at the horizon in such a way that the surface gravity of the bumpy

black holes is also given by (2.15). Note that by modifying k not only the temperature

but also the mass and angular momentum of the solutions change. However, with the

appropriate boundary conditions, ΩH remains unchanged.

2.1 Boundary conditions

The conditions we impose on the Q’s at each of the boundaries of our domain in order to

get regular solutions are

Horizon (r = 0): the reference metric is already regular on the horizon. Since the

spacetime metric is the reference metric multiplied by the Q’s, we ensure regularity on the

horizon by imposing Neumann boundary conditions ∂rQ|r=0 = 0. In addition we impose

Q1(0, x) = Q5(0, x), which fixes the surface gravity to the value (2.15).

Axis (x = 0): the reference metric is already regular on the axis of rotation so again

we impose Neumann boundary conditions ∂xQ|x=0 = 0. The φ circle goes to zero at this

boundary and in order to avoid a conical singularity we impose Q3(r, 0) = Q6(r, 0).
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Equator (x = 1): the boundary conditions are again Neumann ∂xQ|x=1 = 0. Since here

the radius of the S2 shrinks to zero size, we impose Q4(r, 1) = Q6(r, 1) to avoid a conical

singularity.

Infinity (r = 1): for asymptotically flat (AF) solutions, since the reference metric is

already AF, we impose the Dirichlet boundary conditions

Qi=1,...,6(1, x) = 1 , Q7(1, x) = 0 , (2.16)

so that the asymptotics are unchanged by the Q’s. Since we are in co-rotating coordinates

the horizon angular velocity relative to infinity is given by the asymptotic value of W (r, x).

Then the condition Q2(1, x) = 1 ensures that ΩH is given by the same expression as in the

MP black hole.

2.2 Physical magnitudes

Given our choice of boundary conditions, the temperature and the angular velocity at the

horizon are easily extracted in terms of quantities present in the reference metric, namely,

r0, k and r+, so that

T =
1

4πr+

√(
r3
0k + 2r3

+

) (
r3
0 + 2r3

+

)
, ΩH =

√
r+(r3

0 − r3
+)

r3
0

. (2.17)

Since we work with vacuum solutions, we can obtain the mass and angular momentum

by evaluating their Komar integrals at the horizon,

M =
1

12πG

∫

H
∗dχ, J =

−1

16πG

∫

H
∗dζ, (2.18)

where χ is the 1-form dual to the asymptotic time-translation Killing vector ∂t − ΩH∂φ,

and ζ is dual to the axial Killing vector ∂φ. In addition to these quantities we also compute

the area of the horizon. In order to compare different solutions that have the same mass

we use the dimensionless quantities

aD−3
H = ca

AD−3
H

(GM)D−2
, jD−3 = cj

JD−3

GMD−2
,

ωH = cωΩH(GM)1/(D−3), tH = ctT (GM)1/(D−3),

(2.19)

with the numerical factors ca, cj , cω, ct chosen as in [3].

Other geometric invariant quantities that are of interest for characterizing the solutions

are the radii on the horizon (r = 0) of the circles parallel to the plane of rotation, R∥(x),

and of the spheres S2 orthogonal to it, R⊥(x). They are given by

R∥(x) =
√

P (0, x) , R⊥(x) =
√

S(0, x) . (2.20)

We render these dimensionless by dividing them by (GM)1/(D−3) without any additional

factors.
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We will often use j as the ‘control parameter’ that changes along a branch of solutions.

The bumpy branches extend over rather narrow ranges of j. They originate at bifurcation

points in the MP family given respectively by

(±)1,2,3 beginning : j = 1.20, 1.41, 1.57. (2.21)

The (+)-branches initially extend towards larger values of j, but then bend backwards

towards decreasing j, which we have followed down to

(+)1,2,3 end : j = 1.13, 1.20, 1.55. (2.22)

Along the (−)-branches, j decreases away from the bifurcation, and the lowest values we

have attained are

(−)1,2,3 end : j = 1.11, 1.36, 1.53. (2.23)

3 Geometry of bumpy black holes

In this section we explore the geometry of the solutions, in particular of their horizons. Since

we have pushed the new branches close to their endpoints in solution space, one purpose

is to examine whether the critical solutions of (+) branches have singularities modeled

by Ricci-flat double-cone geometries that can mediate the transitions to black ring, black

Saturn, and multi-ring solutions [10]. Such structures in topology-changing transitions

were first argued to be present in the context of Kaluza-Klein black holes [11] and have

been extensively studied, see [12, 16–29], and [30] for a recent review of the subject.

Another aim is to get a better understanding of the solutions in the (−) branches, in

particular where and how these branches end.

The spatial horizon geometry, r = 0, t = constant, is

ds2
H = B(0, x)dx2 + R2

∥(x)dφ2 + R2
⊥(x)dΩ2

(2) . (3.1)

In order to gain some intuitive understanding of these geometries, we perform two kinds

of plots: embedding diagrams of sections of the horizon into Euclidean space, and plots of

the invariant radii of the S1 and S2 symmetry cycles.

Embedding diagrams. Embeddings in Euclidean space provide useful and intuitive

visualizations of the geometry. Here we use the same type of embeddings as ref. [15]

presented for black rings. On the spatial horizon geometry we choose a section φ = const.,

ds2
sec = B(0, x)dx2 + R2

⊥(x)dΩ2
(2), (3.2)

and embed it in E4

ds2
E4

= du2 + dρ2 + ρ2dΩ2
(2) (3.3)

as a surface of the form

ρ = R⊥(x), u = u(x) , (3.4)
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so the induced geometry is

ds2
emb = (R′

⊥(x)2 + u′(x)2)dx2 + R2
⊥(x)dΩ2

(2) . (3.5)

The embedding is found by integrating

u(x) =

∫ x

0
dx̄

√
B(0, x̄) − R′

⊥(x̄)2, (3.6)

which is possible since B(0, x) ≥ R′
⊥(x)2 for all our solutions. In our plots we present

R⊥(x) versus u(x).

The coordinate u does not have any invariant meaning as the radius of the rotational

S1’s, since this representation misses the information about R∥(x). For this, we employ a

different type of plot.2

Invariant-radii plots. These are plots of R⊥(x) versus R∥(x). Information about the

length in the polar direction is lost now, which makes the horizon shapes in these plots

look somewhat peculiar.

3.1 (+)-branch bumpy black holes

Representative solutions of these branches are depicted in embedding diagrams in figure 3

and in invariant-radii diagrams in figure 4. Observe that, contrary to what may seem from

the embedding diagrams, the radius R∥ of the S1 near the equator is larger in MP black

holes than in the bumpy solutions with the same mass and angular momentum.

Near the values (2.22) the solutions clearly approach configurations where a symmetric

S2 on the horizon pinches down to zero size, developing a singularity whose structure we

analyze next.

3.1.1 Critical cone geometries

Depending on whether the singular pinch-off occurs along the rotation axis or on a circle

away from the axis, the geometries are expected to be locally Lorentzian double-cones of

the form

ds2
on-axis = dz2 +

2z2

D − 2

(
− cos2 χdt2 + dχ2 + sin2 χdφ2 +

D − 5

2
dΩ2

(D−4)

)
, (3.7)

ds2
off-axis = dz2 + L2dφ2 +

z2

D − 3

(
− cos2 χdt2 + dχ2 + (D − 5)dΩ2

(D−4)

)
, (3.8)

with horizons at χ = π/2, and where L is the radius of the circle where the S2 pinch to

zero [10].

If we embed the section t = const, χ = π/2 of these geometries in Euclidean space as

above, then it is easy to see that they are represented as the cones

on-axis: u =

√
3

D − 2
z , off-axis: u =

√
2

D − 3
z . (3.9)

2Embedding the (x, φ) part of the horizon in this manner fails at large rotations, as in the case of the

Kerr solution. A different kind of embedding is nevertheless possible [6].
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2 21 1
u

0.4

0.4

R⟂

(a) (+)1 black hole at j = 1.17.

2 21 1
u

0.5

0.5
R⟂

(b) (+)2 black hole at j = 1.36.

2 21 1
u

0.2

0.2

R⟂

(c) (+)3 black hole at j = 1.56.

Figure 3. Isometric embeddings for representative black holes in the (+)1,2,3 branches. R⊥ is the

radius of the S2 orthogonal to the rotation plane and u is a coordinate of Euclidean flat space,

see (3.3) and (3.6). The dashed black curve shows the embedding of a MP black hole of the same

mass and angular momentum.

6 64 42 2
R||

0.5

0.5
R⟂

(a) (+)1 black hole at j = 1.17.

12 12
R||

0.5

0.5
R⟂

(b) (+)2 black hole at j = 1.36.

20 20
R||

0.2

0.2

R⟂

(c) (+)3 black hole at j = 1.56.

Figure 4. Invariant-radii plots for the same black holes as in figure 3. R∥ is the radius of circles

parallel to the rotation plane and R⊥ is the radius of the orthogonal S2. The black dashed curve

shows a MP black hole of the same mass and angular momentum.
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7 7
R||

0.4

0.4

R⟂

(a) (+)1-branch black hole at j = 1.13, close

to the transition to a black ring.

9 9
R||

0.6

0.6
R⟂

(b) (+)2-branch black hole at j = 1.20, close to the tran-

sition to a black Saturn.

20 20
R||

0.2

0.2

R⟂

(c) (+)3-branch black hole at j = 1.55, close to the transition to a

bumpy black ring.

Figure 5. Invariant-radii diagrams of bumpy black hole horizons of the (+)1,2,3 branches (red

curves), for the largest deformations we have obtained. We superimpose the MP black holes with

the same mass and spin (dashed black), and the plots for the conifolds eq. (3.10) (blue).

We can superimpose these on the most deformed solutions we have obtained in these

branches. Figure 1 shows excellent agreement with the prediction of [10].

The invariant-radii plots probe complementary geometric aspects of the horizon. The

geometries (3.7), (3.8) have slopes

on-axis:
dR⊥
dR∥

=

√
D − 5

2
, off-axis:

dR⊥
dR∥

→ ∞ , (3.10)

which are also very well reproduced on-axis for (+)1,3, see figure 5, but less well so off-axis

for (+)2, reflecting (maybe unsurprisingly) a remaining small dependence of R∥ on the

polar angle that would become negligible only much closer to the critical singularity.

We also compare the Kretschmann scalar

K = RµνρσRµνρσ (3.11)

of both geometries, following the study in [18] of the conical waist of inhomogeneous black

strings. For the cones, K depends only on the ‘polar’ coordinate z while for the black

holes it depends not only on x but also on r. In order to make the comparison we must

specify a way to map points between the two geometries, i.e., a function z(r, x). This

involves a certain arbitrariness, which we fix by equating the radius of the 2-sphere in both

geometries. Then (in six dimensions)

on-axis: S(r, x) =
z2

4
, off-axis: S(r, x) =

z2

3
(3.12)
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0.1 0.2 0.3 0.4 0.5 0.6 0.7
proper distance

0.1

0.2

0.3

0.4

0.5

0.6
Time circle radius

Figure 6. Circular-radius of the Euclidean time circle as a function of the proper distance to the

horizon along the rotation axis, in the (+)1 black hole at j = 1.13. The slope matches well that of

the cone geometry (blue) as the black hole is approached, although not very close to the horizon

where the singular cone is smoothed in our solution.

and so

Kon-axis cone =
72

z4
=

9

2S(r, x)2
, Koff-axis cone =

48

z4
=

16

3S(r, x)2
. (3.13)

These comparisons are dominated by how the size of the S2 shrink close to the singularity,

including away from the horizon, but they do not test the length of the equatorial S1, to

which K is largely insensitive.

We have computed the discrepancy between the Kretschmann scalars of both geome-

tries,
∣∣∣ Kbh
Kcone

− 1
∣∣∣, for the three branches and it is less than 10% (often less than 5%) in

the region near the singularity. Therefore, we conclude that the critical cones are locally a

good description of the singular region.

Finally, we have also checked the appearance of a conical structure in the Euclidean

time direction. Figure 6 shows the rate at which the Euclidean time circle shrinks along the

axis of rotation in our nearest-to-critical (+)1 solution.3 The slope in this curve fits well

the slope of the conical solution over a range of distances close to the black hole. It departs

from it very near the horizon, as it must since the cone is smoothed in our solution.4

3.1.2 (+)3: transition to bumpy black rings

It was naturally conjectured in ref. [3] that black holes along the (+)1,2 branches would

pinch to zero and transition to black ring and black Saturn phases, respectively. However,

higher branches (+)i≥2 have multiple pinches and it was less clear what their fate could be.

If pinch-down occurred first on a circle off-axis, then the branch (+)3 would transition to

a black Saturn configuration with a bumpy central black hole. However, the deformation

of (+)3 black holes is expected to be larger on-axis than off-axis. The reason is that in the

black membrane limit of the MP black holes, and for small, linearized perturbations, the

3Close to the horizon, and in corotating coordinates, the geometry is very approximately static and one

can sensibly talk about the Euclidean time circle.
4In fact, very close to the horizon the slope in this plot must become the same as the surface gravity.
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axisymmetric Gregory-Laflamme-type perturbation takes the form [2]

δgµν ∼ J0(x)hµν(r), (3.14)

where x is the distance from the rotation axis in directions parallel to the horizon, and

hence plays the role of the polar angle. The Bessel function J0(x) yields larger deformations

close to the axis of rotation at x = 0, and decays away from it. Figures 1 and 3 show that

this behavior persists when the deformations are not small.

This evolution of the (+)3 branch has a natural end at a topology-changing transition

to a branch of bumpy black rings, of horizon topology S1 × SD−3, with a deformed SD−3.

These have not been constructed yet, and our arguments are the first clear indication of

their existence. It is also natural to expect that the bumpy black ring branch will connect,

at its other end, to black di-rings. Indeed it seems implausible that they smooth out their

deformations and connect to the known (smooth) black ring solutions, since these two

branches are very far apart in solution space (see figure 10 below).

The argument also suggests that the same behavior occurs in higher branches, with

pinches being larger closer to the axis, and pinching-down sequentially at increasing values

of the polar angle x. The conifold-type transition then connects them to new families

of multiply-bumpy black rings, which eventually, through several transitions, connect to

multi-ring configurations.

3.2 (−)-branch bumpy black holes

Figures 7 and 8 show the previous two types of graphics for the horizon geometry of these

black holes at their largest deformation, (2.23) (these were also shown in figure 2).

From figure 8 we see that these horizons spread in the rotation plane more than the

MP black holes of the same mass and spin. This could be anticipated near the bifurcation

point, where the deformation is controlled by a zero-mode with i + 1 nodes: since the (−)i

zero mode wavefunctions have sign (−1)i+1 at the rotation axis, then the wavefunction at

the equator must always be positive, i.e., the bumpy black hole bulges out.5 At least for the

i = 1 solutions, we can also understand this in more physical terms: close to the branching

point both solutions have the same mass, angular momentum and angular velocity. If the

MP black hole is perturbed in such a way that some of its mass is concentrated closer to

the axis of rotation, then in order to maintain the angular momentum constant (with the

same angular velocity) some mass must also be moved farther along the rotation plane,

preferrably around the equator.

Further along the branch the horizons stretch a lot on the rotation plane, see figure 8,

and get highly pancaked, R⊥ ≪ R∥. Nevertheless, in contrast to ultraspinning MP black

holes, they do not seem to approach black membranes in the limit, and in particular (as

we will see in section 4) they do not develop the Gregory-Laflamme zero modes of the

Lichnerowicz operator characteristic of black membranes that would signal the appearance

of new branches of solutions [31].

5The same argument implies that (+)-branch black holes bulge out less at the equator than MP black

holes of the same mass and spin, see figure 4.
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1 1
u

0.5

0.5

R⟂

(a) (−)1-branch black hole with j = 1.11.

2 21 1
u

0.2

0.2

R⟂

(b) (−)2-branch black hole with j = 1.36.

2 21 1
u

0.2

0.2

R⟂

(c) (−)3-branch black hole with j = 1.53.

Figure 7. Isometric embeddings for bumpy black holes near the termination of the (−) branches.

R⊥ is the radius of the transverse S2 and u is a coordinate of Euclidean flat space. The black

dashed curve shows the embedding of a MP black hole of the same mass and angular momentum.

The conical shapes at the equator have the same opening angle for the three branches, u =
√

2/3 z.

35 35
R||

0.6

0.6

R⟂

(a) (−)1-branch black hole with j = 1.11.

40 40
R||

0.4

0.4
R⟂

(b) (−)2-branch black hole with j = 1.36.

60 6030 30
R||

0.35

0.35
R⟂

(c) (−)3-branch black hole with j = 1.53.

Figure 8. Invariant-radii plots for the same black holes as in figure 7. R∥ is the radius of circles

parallel to the rotation plane and R⊥ is the radius of the orthogonal S2. The black dashed curve

shows a MP black hole of the same mass and angular momentum.
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Figure 9. R∥/R⊥ for (−)1 bumpy black holes as a function of j. Note that j decreases as the

solutions get farther from the MP bifurcation point. Close to the limiting value j ≈ 1.11 the

equatorial radius R∥ appears to diverge, both for fixed R⊥ and for fixed mass. The (−)2,3 branches

show similar behavior.

Figure 9 strongly suggests that the length of the equatorial circle diverges in the

limiting solutions — even though the radial distance to the equator remains finite. This

behavior is known to occur for the extremal limit of the five-dimensional MP black hole,

although in the latter case the extremal solution has zero temperature and area, whereas

these remain finite in the critical (−) solutions.

The S2’s on the equator shrink to zero in the limiting solutions in a singular way,

causing the Kretschmann scalar to diverge. The effect seems to be the same in all three

branches, being well reproduced on sections of constant t and φ on the horizon (such as

are captured in figure 7, and by the Kretschmann scalar) by the geometry

ds2 = dz2 +
z2

3
dΩ(2), (3.15)

which is also present in off-axis cones (3.8).

This suggests that the local structure of the singularity at the equator in these solutions

may be universal for all (−) branches: the S2 shrink to zero along the horizon like in (3.15),

while the length of the equatorial S1 diverge.

Although we do not have a local model for the full singularity, it is not one of the

conical geometries that effect a transition to another branch of black holes. In fact it seems

unlikely that the singularity is a Ricci-flat scaling geometry. In view of this, and in the

absence of a plausible candidate for a merger transition, we are led to conjecture that the

(−) branches of black holes terminate in phase space without continuing into any other

singly-spinning stationary black hole solutions.

4 Phase diagrams, thermodynamic stability, and negative modes

In figure 10 we show the area, temperature and angular velocity as a function of the angular

momentum for fixed mass. We can see the two different families of solutions branching off
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from each of the perturbative zero modes. Since in figure 11 it is difficult to distinguish

the two branches in the (j, ah) plane, we also show plots of the area difference between

the bumpy black holes and the MP solutions for values of j close to each branching point.

The black ring phases obtained in [8] are also included in these plots, and it is apparent

that the (+)1 solutions tend to a merger point with the black rings. Although our results

suggest that solution-trajectories inspiral close to this transition (which would lead to

infinite discrete non-uniqueness of the kind found in [32–34]), our accuracy in this region

is not enough to reach a definite conclusion.

Thermodynamic stability of these black holes in the grand-canonical ensemble is ob-

tained when the specific heat at constant angular momentum Cj and the isothermal moment

of inertia ϵ are both positive [35]

Cj =
dM

dT

∣∣∣∣
J

> 0, ϵ =
dJ

dΩH

∣∣∣∣
T

> 0. (4.1)

Negative moments of inertia are possible for black holes since they are not rigid bodies.

They can reduce their angular velocity while gaining angular momentum by spreading in

the rotation plane. This is precisely what happens in ultra-spinning MP black holes. In this

case it impossible for the black hole to remain in equilibrium with a co-rotating radiation

reservoir.

The specific heat and moment of inertia can be read off from the slopes of the solution

curves in the (T , M) and (ΩH , J) planes. The details of the plots for actual solutions are

difficult to distinguish, so instead in figure 12 we present sketches of them that capture

their qualitative features.

In addition, we have also studied the spectrum of the Lichnerowicz operator, since

its negative eigenvalues are directly related to the negative modes of the quasi-Euclidean

action. We have checked that the number of negative eigenvalues coincides with the ex-

pectations from thermodynamic stability. In particular, along the MP family of solutions

in the direction of increasing j, initially the solutions have one negative mode that cor-

responds to negative specific heat (it is the MP extension of the Euclidean Schwarzschild

negative mode), and acquire a second one at the cusp in the (ΩH , J) plane where the mo-

ment of inertia first becomes negative. This is also the minimum of the temperature (see

figure 10) which signals the entrance into the ultraspinning regime, and which coincides

with the change of sign of ϵ. At higher j one encounters further zero modes that become

negative ones. These are not associated to new thermodynamic instabilities, instead they

are ‘overtones’ of Gregory-Laflamme-type negative modes.

The thermodynamic stability and negative modes along (+) branches are more com-

plicated, as there are several points where the susceptibilities (4.1) change sign. Here we

explain it for (+)1 solutions (higher (+) branches exhibit the same qualitative behavior),

referring to figure 12:

From O1 to A1: Point O1 is the bifurcation from the MP branch of solutions. The new

branch bifurcates with higher area, hence the MP solution is expected to be less stable,

and indeed it acquires an extra negative mode, while the bumpy solution keeps the number

– 16 –
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Figure 10. Thermodynamic quantities. Green: MP black hole. Brown: (+)-branch bumpy black

holes. Black: (−)-branch bumpy black holes. Blue: black rings (from [8]). Red dots: branching

points from the zero modes found in [6].
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Figure 11. Area difference ∆aH between bumpy and MP black holes vs. angular momentum j.

Color coding as in figure 10.

M

T

(fixed J)

A1
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O1

(a) M vs. T for fixed J . The slope is the specific

heat at constant angular momentum CJ

O1

A1

B1

C1

J

ΩH

(fixed T )

(b) J vs. ΩH for fixed T . The slope is the

isothermal moment of inertia ϵ

Figure 12. Sketch of phases in the (T , M) and (ΩH , J) planes (color coding as in figure 10). We

only show the branches (±)1, but (±)2,3 have the same behavior. The branch (+)1 (brown) has two

negative modes from O1 to C1 and three from C1 onwards, while the branch (−)1 (black) always

has three negative modes.

of negative modes present in the MP solutions just before O1. Both the specific heat and

the moment of inertia are negative in this segment; accordingly, the Lichnerowicz operator

on solutions from O1 to A1 has two negative eigenvalues.

From A1 to B1: The point A1 at which Cj changes sign from negative to positive passing

through zero corresponds to the cusp in the (j, ah) plane in figure 10, where the branch

beyond A1 has lower area and Cj remains positive until B1. But there is no qualitative

change in the spectrum of the Lichnerowicz operator at A1. We interpret the two negative

eigenvalues present here as due to the negative ϵ and to the fact that there exists another

solution with higher area for the same j. Observe that a given negative mode does not

strictly correspond to just one instability.

From B1 to C1: At B1 the sign of Cj changes from positive to negative and the sign of ϵ

from negative to positive. Like before, the number of negative modes is preserved and the
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spectrum of the Lichnerowicz operator does not signal these changes in thermodynamic

susceptibilities.

From C1: At C1 the sign of ϵ changes from positive to negative going through infinity.

The Lichnerowicz operator acquires a third negative mode.

We see that the (+)-branch solutions are always thermodynamically unstable, since

either ϵ or CJ or both are negative. The solutions are likely dynamically unstable to bar-

mode perturbations, like MP black holes are at even lower values of j.

Regarding the (−) branches, they all have negative Cj and ϵ. In addition they come out

of the bifurcation with less area than the MP black holes. As expected from the arguments

above, the Lichnerowicz operator on these solution has three negative eigenvalues. We also

expect them to be dynamically unstable to bar-mode deformations.
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A Numerics

In this appendix we explain the details of our numerical construction of the bumpy black

holes.

Plugging the ansatz (2.2) and the reference metric (2.3) into the Einstein-DeTurck

equations gives a system of partial differential equations that we solve numerically.

First we discretize the system using Chebyshev points. We need more resolution in

the angular x coordinate than in the radial r one, so we use conforming patches, see

figure 13 for an example. This is computationally cheaper than having one bigger grid and

gives us the flexibility of increasing the resolution just where it is necessary. This type of

patches coincide along one line of points (no overlapping regions), in the present situation

they coincided along a line of constant x. We used 2 to 5 patches depending on various

factors. Higher zero modes have more bumps (the Q’s vary more along x) and we need

more resolution. Close to transitions the functions become singular and therefore we need
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Figure 13. Grid used for some solutions. Each of the three patches (red, blue, green) has 30 points

in the r direction and 20 in the x direction.

to concentrate more points in a specific part of the domain. We impose continuity of the

functions and the first derivatives as boundary conditions between the patches.

Once discretized, we solve the system by an iterative Newton-Raphson method. Since

this method needs a seed, we first solve the linearized problem, find the eigenvectors that

correspond to the zero modes and use them (ref. metric perturbed with the eigenvector)

as a seed for the first solution in each of the branches. Once we have solved the nonlinear

problem, we move along the branch by using the previous solution as a seed and by changing

the value of k in the background metric. We keep r0 = 1 in all the solutions.

For the standard branches that connect the MP black hole with the black ring, black

Saturn and black diring, we begin by increasing the temperature. At some point the

branches reach a maximum of the temperature and in order to go past it we keep k fixed

and vary r+ instead. The solutions close to this maximum are tricky to obtain because the

Lichnerowicz operator has a near zero mode, but once we pass it the following solutions are

easily obtained by lowering the temperature (decreasing k with fixed r+). The other type

of branches do not have any extrema of the temperature and to obtain them we always

decrease k.

As for the resolution used, we began with two patches of 20×20 in the branches (+)1,2

(heading towards the black ring and black saturn) and with four patches of 30 × 20 for the

(+)3 branch (heading towards the diring); we began with similar resolutions for the other

branches. In order to know when to increase the resolution we estimated the numerical

error in the physical quantities and if it was greater than a few percent we decided that

more resolution was needed. We have also checked that our numerical solutions converge

to the continuum limit according to our discretization scheme.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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Abstract
We argue that the event horizon of a binary black hole merger, in the extreme-
mass-ratio limit where one of the black holes is much smaller than the other,
can be described in an exact analytic way. This is done by tracing in the
Schwarzschild geometry a congruence of null geodesics that approaches a null
plane at infinity. Its form can be given explicitly in terms of elliptic functions,
and we use it to analyze and illustrate the time-evolution of the horizon along
the merger. We identify features such as the line of caustics at which light rays
enter the horizon, and the critical point at which the horizons touch. We also
compute several quantities that characterize these aspects of the merger.

S Online supplementary data available from stacks.iop.org/cqg/33/155003/
mmedia

Keywords: event horizon, black hole, black hole merger

(Some figures may appear in colour only in the online journal)

1. Introduction

Black hole mergers occur in nature [1]. In the theory of general relativity they are entirely
described by the vacuum equations Rμν=0, but extracting the details of the fusion of the two
horizons requires in general heavy computational resources. Nevertheless, we will show that
there is one instance in which the event horizon of the merger becomes so simple that it can
be described in an exact analytic way. This is the extreme-mass-ratio (EMR) limit in which
one of the black holes is much smaller than the other. If m and M are the two black hole
masses, or equivalently their characteristic sizes (in units G=c=1), then the EMR limit
is m M 0.

Classical and Quantum Gravity
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This limit is often taken as one where the size of the large black hole, M, is fixed while
the small black hole is regarded as a point-like object of size m 0. Although this viewpoint
is appropriate for extracting the gravitational waves emitted in the collision (with wavelengths
that grow with M), it erases the details of phenomena that happen on the scale of m, such as
the evolution of the event horizon as the two black holes fuse with each other. In order to
resolve these smaller length scales, we must take the EMR limit keeping m fixed
while3  ¥M .

The techniques and ideas that we need for describing this process are elementary.
Consider the last moments before the merger, when the small black hole is at a distanceM
of the large one. The equivalence principle asserts that we can always place ourselves in the
rest frame of the small black hole, and that the curvature of the large black hole can be
neglected over distancesM . Then the spacetime around the small black hole should be well
approximated by the Schwarzschild geometry [3]. Although the curvature created by the large
black hole vanishes in this limit, its horizon is still present: it becomes an infinite, Rindler-
type, acceleration horizon. More precisely, it is a congruence of light rays that reach
asymptotic null infinity as a planar null surface. We conclude that in the EMR limit, on scales
much smaller than M, the event horizon of the black hole merger can be found by tracing an
appropriate family of light rays in the Schwarzschild geometry; specifically, a congruence of
null geodesics that approach a planar horizon at a large distance from the small black hole.

We will construct this event horizon explicitly, and show that it does indeed exhibit the
behavior expected of the merger: at early times, spatial sections of the event horizon consist of
two components, one of them an almost spherical small black hole, and the other an almost
planar large black hole. The two horizons deform each other through their gravitational
attraction (which the large black hole exerts as an acceleration effect, in accord with the
equivalence principle) and develop conical shapes along a line of caustics where light rays
enter the horizon before the merger. When the black holes merge, they form a single smooth
surface that then relaxes down to a planar horizon at late times. We illustrate this with pictures
drawn using our exact results. We also compute several parameters that characterize the
merger—they are solutions of transcendental equations, so we obtain them numerically.

In our analysis the small black hole plunges head-on into the large one, but it is easy to
show that if there is a relative velocity between the two black holes, e.g., the small black hole
moves in a direction parallel to the large horizon, the situation is equivalent to our con-
struction up to a rotation.

While we are not aware that this analysis of the horizon of EMR mergers has been done
before, related ideas have been employed in recent years. References [4–7] apply the idea that
the event horizon for the fall of any gravitating object into an acceleration horizon is obtained
by appropriate light-ray-tracing in the spacetime of that object. Reference [8] studies the event
horizon of the same EMR merger as we do, but it focuses on scales ∼M and therefore misses
the structure of the merger that we observe. A different study of an exact merger, focusing on
two equal-mass charged black holes in the Kastor–Traschen solution in deSitter space [9],
reaches some conclusions that agree with ours and are presumably generic [10].

Finally, since we have the exact geometry for the merger—i.e., the Schwarzschild metric
—it is also possible to study the evolution of its apparent horizon. We leave this for a
forthcoming article [11]. A 3D animation of the horizon merger is available at (stacks.iop.
org/cqg/33/155003/mmedia).

3 These two views of the EMR limit are the leading-order approximations in a matched asymptotic expansion
between the near-zone, with radii r M , and the far-zone, with r m , which can be matched in the overlap-zone
 m r M [2]. We return to this issue in the conclusions.
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2. Defining the event horizon

As we explained above, the exact geometry for the merger in the limit m M 0 is the
Schwarzschild solution with mass m. We seek the event horizon as a particular null hyper-
surface in this geometry. Conventionally, the Schwarzschild solution has an event horizon at
=r m2 , which is a cylindrical null hypersurface that reaches + at infinite retarded time.

However, we are interested instead in a different null hypersurface, namely one that reaches
+ at a finite retarded time with the geometry of a null plane, like an acceleration horizon
would do. This acceleration horizon is the limiting form of the event horizon of the large
black hole when  ¥M .

So we begin with the Schwarzschild black hole, in D=n+3 dimensions

⎛
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⎞
⎠⎟= - - +
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+ W +s

r

r
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We use the horizon radius r0 instead of the mass µm rn
0 . Although we could set r0=1

without loss of generality, we will mostly keep it explicit.
This geometry has a timelike Killing vector ∂t, which defines the rest frame of the small

black hole, and an exact SO(n+ 2) rotational symmetry. Both isometries are only approx-
imate when the ratio m/M is finite, and would be broken by corrections in an expansion in
m/M. But the exact symmetry in the limit m M 0 is crucial for our analysis.

The tangent vector to the light-ray trajectories is

l
l

f f= = ¼m
m

+P
x

t r
d

d
, , , , , 2.2n1 1

( ) (˙ ˙ ˙ ˙ ) ( )

with P2=0 and λ an affine parameter along the geodesics. The event horizon of the collision
has SO(n+ 1) symmetry along the axis that joins the two black holes4, so we need only
consider one angle of Sn+1, call it f. Specifically, we write

q q f qW = + + W+ -d d sin d cos d , 2.3n n1
2 2 2 2

1 ( )( ) ( )

and study geodesics on the plane θ=π/2. We put the collision axis along the two segments
f=0, π. Before the merger, f=0 points away from the large black hole and f=π points
towards it.

The Killing vectors ∂t and ∂f of the geometry imply two integrals of motion, and the
equations to solve are
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where q is the impact parameter, i.e., the ratio between the conserved angular momentum and
the energy of the light-ray trajectory.

It will be convenient to use r instead of λ as the (non-affine) parameter along the
geodesics. This is because the integration of (2.6) gives λ(r) as a combination of elliptic
integrals of different kinds, which we cannot invert analytically to find r(λ) and then obtain t

4 This is also a symmetry of a head-on, radial plunge of two Schwarzschild black holes at finite m/M.

Class. Quantum Grav. 33 (2016) 155003 R Emparan and M Martínez

3



(λ) and f(λ). Instead, we get the geodesics as

ò òf
f

= =t r r
t

r
r r

r
d , d . 2.7q q( )

˙
˙

( )
˙
˙

( )

The section of the event horizon in the space (t, f, r) is a two-dimensional surface, i.e., a
one-parameter family of geodesics. The entire (n+ 2)-dimensional event horizon is obtained
by rotating through an angle π around the collision axis, and acting with the group SO(n) to
generate the Ω(n–1) factor of the geometry.

The integration constants in (2.7) are fixed by the requirement that the null surface
becomes a planar horizon at infinity. The geodesics on this event horizon will be labeled by q.
Let us first fix the integration constant for fq. We have

òf
f

a ¥ = = + +
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-r r
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r
rd , 2.8q

r

q
3( )

˙
˙
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with constant αq. The latter corresponds to the asymptotic angle of the light-ray trajectories.
In order that these rays asymptotically move all in the same direction, we must set αq to a q-
independent value. Without loss of generality, we choose

a = 0. 2.9q ( )

If we define coordinates

f f= =x r z rsin , cos , 2.10( )
then asymptotically all light rays move with dx=0,

= +¥
- +x q r , 2.11r

n 2∣ ( ) ( )( )

= +¥
-z r r . 2.12r

1∣ ( ) ( )
Figure 1 illustrates the meaning of q as the impact parameter of each geodesic at infinity.

With our choice (2.9) the horizon will satisfy

- = -t z rd d . 2.13n( ) ( )
We fix the integration constant for tq so that all light rays arrive at + at the same, q-
independent, retarded time. Since

b ¥ = + + + =-t r r r r r r Dln , 4 , 2.14q q0 0
1( ) ( ) ( ) ( ) ( )

 b ¥ = + + -t r r r D, 5 , 2.15q q
n( ) ( ) ( ) ( )

Figure 1. Projection on the spatial plane (x, z) of null generators of the event horizon.
The blue curves are the paths traced by light rays that move from left to right towards
+. At late times they move along the z direction as the generators of a Rindler horizon
(dt=dz). They are labeled by the impact parameter q at future infinity.
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we must set the integration constant βq to a q-independent value. For simplicity we choose

b = 0. 2.16q ( )

The integrals (2.7) do not take any simple form in general, but for n=1, 2 they can be
expressed as combinations of incomplete elliptic integrals. One particular generator can be
found easily: the ‘central’ geodesic at q=0, which is
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(the result for arbitrary n can be given in terms of hypergeometric functions). This is a light
ray that at  -¥t emerges in the radial direction from the Schwarzschild horizon, to
escape towards infinity.

3. Event horizon in D ¼ 4

The explicit form of the integrals for D=4,

ò=
- - +

t r
r r

r r r r q r q r

d
, 3.1q

3

0
3 2 2

0

( )
( ) ( )

( )

òf = -
- +

r
q r

r r q r q r

d
, 3.2q 3 2 2

0

( )
( )

( )

Figure 2. Two views of the event horizon of the four-dimensional merger, in the rest
frame of the small black hole. Each curve is a null generator of the hypersurface with a
different value of q. The coordinate t is the Killing time. +x z2 2 is the area-radius of
the Schwarzschild solution.
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is not very enlightening; we give it in appendix A. The most delicate step is fixing the
integration constants to the values (2.9) and (2.16). We have performed first the indefinite
integrals using Mathematica, which makes specific q-dependent choices for the integration

Figure 3. Sequence of constant-time slices of the D=4 event horizon. t is the Killing
time of the Schwarszchild geometry, and the spatial coordinates are centered on the
small black hole, with area-radius +x z2 2 . Pinch-on occurs at *=t t (3.8). The time
interval Δ* is a natural measure of the duration of the fusion (3.9). New null generators
enter the two components of the horizon at all *Î -¥t t,( ], creating cones at the
caustic points. The full two-dimensional constant-time slices of the event horizon are
obtained by rotating around x=0. Axis units are r0=1.

Class. Quantum Grav. 33 (2016) 155003 R Emparan and M Martínez

6



constants that we must extract and then subtract. The procedure is cumbersome but
straightforward. Figure 2 shows the hypersurface generated by these geodesics.

In figure 3 we show a sequence of constant-time slices of this event horizon. They clearly
show the evolution expected in this merger: in the past there are two disconnected surfaces: an
almost planar one and an almost spherical one. Evolving towards the future they approach
each other, and eventually merge into a single horizon, which then relaxes into a flat surface.
We do not have explicit analytic expressions for these constant-t slices. These require
inverting the function tq(r) to find rq(t), which we have not managed to do except in the limit
r?r0, to be discussed in section 3.2. The plots in figure 3 have been drawn by taking
constant-t cuts of plots generated with a sufficiently dense number of geodesics.

We often use the spatial coordinates x and z introduced in (2.10). Although these are not
convenient for writing the metric at finite r, they provide an easy way of representing the
information in the plane of polar coordinates (r, f).

3.1. Structure of the event horizon and parameters of the merger

Figure 2 exhibits clearly the presence before the merger of a line of caustics (also known as a
crease set), where light rays intersect. At these points, null generators enter to be part of the
event horizon. In the full three-dimensional event horizon all the generators that intersect lie
on a S1 of radius q at future infinity5. The presence of caustics is generic in the event horizons
of black hole mergers. In our hypersurface the caustic line extends to past infinity.

There are two special values of the impact parameter, qc and q*, with *
<q qc , which

separate the generators into different classes.

3.1.1. Non-caustic generators. The light rays at q=qc separate the generators with q>qc
that enter the horizon at a caustic at finite time, from those with q<qc that extend back to
infinitely early times (see figure 4). The latter asymptote in the past to the generators of the
Schwarzschild horizon at r=r0. In particular, the critical value q=qc corresponds to the
rays that start at r=r0 at f=π, and therefore are determined by the equation

f p=r . 3.3q 0
c
( ) ( )

We can solve this numerically to obtain6

=q r2.228 64 . 3.4c 0 ( )

The generators with q�qc form at future infinity a disk of radius qc and area pqc
2. Their

initial area at past infinity is the area of the Schwarzschild black hole, p= r4in 0
2. Thus in the

evolution of this part of the event horizon, to which no new generators are added, the area
increases by
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3.1.2. Caustic generators. All generators with < < ¥q qc enter the horizon at a caustic at
finite time. Among them, we single out those with

*
=q q which are the last to enter the

horizon as measured in Killing time t. Generators with q>q* enter the horizon on the side of

5 It may be more appropriate to refer to the intersection as a focus rather than a caustic, but the latter terminology is
rather common.
6 This and subsequent numerical solutions of transcendental equations are obtained using Mathematica’s
FindRoot, which gives better precision than we are showing.

Class. Quantum Grav. 33 (2016) 155003 R Emparan and M Martínez

7



the large black hole, and generators with
*

< <q q qc enter on the side of the small black
hole. This is illustrated in figure 5.

The rays with q=q* enter at time t=t* and radius r=r*. These are the parameters
that characterize the pinch-on instant at which the two horizons touch and merge to form a
single one. In order to determine these parameters, follow the rays with q=q* back in time
from +. At the caustic on the collision axis f=π, where they leave the horizon towards the
past, they neither approach the small black hole nor escape from it, that is, =f p=r 0˙∣ . Then
(2.6) implies that q* and r* are obtained by solving the equations

* * * * **
f p- + = =r q r q r r0, , 3.6q

3 2 2
0 ( ) ( )

where r* is the largest root of the cubic polynomial7. We find

* *= =q r r r2.678 48 , 1.760 31 . 3.70 0 ( )

r* can be taken as a measure of how strongly the small black hole is distorted, or pulled at the
cusp, from the initial sphere of radius r0.

Inserting these values in the solution for tq(r) we obtain

* = -t r4.460 48 . 3.80 ( )

Note that t* is determined only with reference to the choice (2.16) that fixes the origin of
retarded time. We may also consider the difference Δ* between the retarded time at + of the

Figure 4. Event horizon of the merger in four-dimensions. Non-caustic geodesics are
the green curves, which emanate from the Schwarzschild horizon in the infinite past.
Caustic geodesics are shown in black. They enter the hypersurface through the caustic
line (red thick curve). The black dashed curves are the geodesics with q=qc that
separate the two classes.

7 For < =q q r3 3 2ph 0( ) there are no real positive roots. qph corresponds to the unstable circular photon orbit at
rph=3r0/2, which does not appear to play any special role in this construction.
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event horizon (in the direction f=0), and the retarded time of the light ray emitted at the
pinch-on instant in the opposite direction f=π—i.e., towards the large black hole. This is

* * * *D = + - - =r r r r r t rln 5.946 76 . 3.90 0 0 0(( ) ) ( )
Figure 6 illustrates it in a conformal diagram for the causal structure of the merger geometry
(i.e., the Schwarzschild spacetime) along the collision axis.

Note that the dashed-red light ray propagates inside the large black hole, so the retarded-
time difference Δ* is not measurable by observers outside it.Δ* also admits an interpretation
that does not involve any propagation through the large black hole interior: it is the time
elapsed from t* until the moment when the central generator (2.17) reaches r=r* along the
antipodal direction f=0, i.e., until the instant at which the green ray intersects the line
r=r* in figure 6. By this time, the two horizons have noticeably fused with each other (see
figure 3). Through either interpretation, Δ* can be regarded as characterizing the duration of
the merger.

We can also quantify the growth in the area of the small black hole, now taking into
account the addition of generators to the small horizon at caustics. This is

⎛
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The difference between (3.10) and (3.5) is attributed to the generators with qc<q<q* that
are added, and to their subsequent expansion until they reach +.

Figure 5. Projection of the hypersurface in the (x, z) plane. All rays propagate towards
 +¥z . Green curves are non-caustic generators. The black dashed curves with

q=qc separate them from caustic generators. The dotted purple curves with q=q*
separate the generators that enter the horizon on the side of the small black hole,
qc<q<q* from those that enter on the side of the large black hole, q>q*. The
latter rays first approach the small black hole, reach a minimum distance rmin (red dots),
and then move away from it. For q=q*, the minimum rmin lies at the caustic. Rays
with qc<q<q* move away from the small black hole at all times after they enter the
event horizon.
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It is unclear to us whether there is any useful way to quantify the total growth of the large
horizon in the merger, since it is an infinite horizon where all the generators with < < ¥q qc
have entered at caustics at a finite time in the past. That is, the number of generators entering
the large horizon is infinite. This is a consequence of taking the EMR limit when the large
black hole is infinite in size. Indeed, if we estimate the increment in the area neglecting the
emission of radiation (see section 7), it is expected to be

 p p p pD + - - = M m M m Mm16 16 16 32 , 3.112 2 2( ) ( )
which diverges in the limit  ¥M m if we keep fixed the small black hole mass m.

We can obtain the equation for the caustics in explicit form. In order to find the radial
position rcaustic(q) we have to solve

f p=r 3.12q caustic( ) ( )

for a given q>qc. Using the expressions in appendix A we obtain
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where sn is a Jacobi elliptic function, r2 and r3 are two of the roots of the polynomial
- +r q r q r3 2 2

0 (their explicit form is given in appendix A), and a and b are combinations of
them,
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Equation (3.13) is valid for both qc<q<q* and q>q*.

Figure 6. Conformal diagram for the geometry along the collision axis f=0, π. The
green light ray is the central event horizon generator (2.17) with q=0, which moves
along f=0. The solid-red spacelike curve is the line of caustics, which extends along
f=π. The dashed-red line is a light ray that emerges from the pinch-on point at
r=r*, t=t*, towards 

+ on f=π. This ray propagates inside the large black hole.
The retarded-time difference Δ* characterizes the duration of the merger.
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The rays qc<q<q* that enter at the small horizon at radius r=rcaustic, afterwards
move away from the small black hole in trajectories with >r 0˙ . In contrast, the generators
with q>q* that enter at the large horizon, first approach the small black hole, then reach a
minimum distance of it, r=rmin, and afterwards escape away towards infinity. This
minimum radius is the largest root of - +r q r q r3 2 2

0 that is also smaller than rcaustic, and we
show it for some geodesics in figure 4.

These considerations imply that we must be careful when computing the generators with
q>q*. Since we are parametrizing the geodesics using r, their trajectories must be given as
two branches of solutions
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where tq(r) and fq(r) are the same functions we use for the other geodesics.

3.2. Perturbative solution at r?r0

The integrals (3.1) and (3.2) simplify considerably if we evaluate them in an expansion in
r r 10 . In this limit the small black hole appears as a point particle, so we miss the

structure of the event horizon around the region r∼ r0 where the merger takes place. On the
other hand, this limit allows us to find much more easily the geometry of the horizon at large
distances of the small black hole.

In fact, we can obtain explicit analytic expressions for constant-time sections of the event
horizon, which we could not do in the exact solution. For this purpose it is convenient to give
the event horizon as a surface parametrized by t and q. To first order in r0, and after fixing the
integration constant (2.16) we can invert tq(r) to find
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With this, and after integrating fq(r) imposing (2.9), we obtain the event horizon in the spatial
coordinates of (2.10),
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This is valid both for z, t>0 and z, t<0. In appendix B we extend it to the next order.
The only assumption in obtaining this result is that r?r0. This includes several regions

of interest:

3.2.1. Late times t, z? r0, for all x and q. When ~ ~t z x (possibly x t z, ) the horizon
takes an asymptotically planar form with logarithmic corrections
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3.2.2. Moment of merger t, z∼ r0, at large distance from the merger region, ∣x ∣? r0. Here the
event horizon is the surface
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r
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and the spatial sections do not become flat (i.e., z;t) at large x∣ ∣, but have ~ -z xln ∣ ∣
instead. In fact the same phenomenon happens for t z r, 0 if we consider exponentially
large ~x r et r

0 0∣ ∣ .
This distortion from the planar shape is an effect of the long range of the gravitational

field of the small black hole in four-dimensions. In a merger of black holes with small but
finite mass ratio m/M, the radius of the large black hole acts as a long-distance cut-off on the
coordinate x along the horizon. The results above mean that around the moment when the
small black hole falls into the large one, it creates a big distortion ~m M mln( ) at distances
m on the horizon of the latter, which does not dissipate until late times t m M mln( ).

3.2.3. Early times −t, −z? r0, including the caustic line. Here equations (3.19) apply at all x
and in particular around the caustic line on the large horizon at x=0. Then we can we study
the properties of the caustic cones at early times. Assuming that the generators that reach the
axis f=π at this time have q t∣ ∣ we can expand
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so near the axis x=0 we find, consistently,  q r t t2 0∣ ∣ ∣ ∣. Note that in z(q, t) we have
included a term of order r0

2, since near the caustic line at t r0∣ ∣ it contributes at the same
order as the others (corrections to z(q, t) at order r0

3 or higher are suppressed near the caustic).
Then, the caustic cone at the axis has slope

=
¶

¶
-z

x

z

x

r

t

d

d

2
. 3.24

q

qcone cone

0

∣ ∣
( )

This result is in precise agreement with the value that [8] calculated keeping the large black
hole size fixed and expanding in the small black hole size8 r0.

The caustic line at early times is the spacelike curve - = +t r r0( ). Its line element is

ds
r

r
rd 3.25c

0 ( )

so its total length ò=L sdc c diverges in the past at  ¥r . If the line is cut off by the size
∼M of the large black hole, then its length is

8 Reference [8] in equation (120) gives the cone angle α as a function of the (large black hole) retarded time v and
the small black hole mass μ. The result at v 0 agrees with ours at large −t, once we identify a  z x2 d d cone∣ ,
v ; − t and m = r 20 .
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~L mM , 3.26c ( )
which is in parametric agreement with the calculation in [8].

The perturbative solution at order r0
2 (appendix B) reproduces very well the exact shape

of the event horizon outside of a region of size ≈Δ* around the merger where the evolution is
very nonlinear. Figure 7 exhibits this agreement.

It may be interesting to study the properties of the caustic line along the small black hole
horizon. However, this requires a different approach and we have not pursued it.

4. Event horizon in D ¼ 5

The five-dimensional version of (2.7),

ò=
- - +

t r
r r

r r r q r q r

d
, 4.1q

4

2
0
2 4 2 2 2

0
2

( )
( )

( )

òf = -
- +

r
q r

r q r q r

d
, 4.2q

4 2 2 2
0
2

( ) ( )

is not more complicated than the four-dimensional case. Once again the solution is expressed
in terms of elliptic integrals of different kinds, which we give in appendix A.

We show the D=5 hypersurface in figure 8. It is very similar to the four-dimensional
one, but now the event horizon at late time approaches a planar horizon more quickly, as we
will see below.

Again, we have the same three types of null geodesics on the event horizon, and the
values of q that delimit them are

*
= =q r q r1.886 98 , 2.009 00 . 4.3c 0 0 ( )

The pinch-on radius and times are

* =r r1.486 22 , 4.40 ( )

* = -t r3.984 44 , 4.50 ( )

*D = r4.654 73 . 4.60 ( )

All these parameters are smaller than in four-dimensions, which reflects the fact that as D
grows larger the gravitational potential is concentrated closer to the small black hole, and the
merger proceeds more swiftly.

The area increments of the small black hole part of the horizon are

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟ 

p
pD = - =

q

r
r

2

3
1 2 0.425 807 , 4.7c

non caustic
0

3
2

0
3

in ( )‐

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟* 

p
pD = - =

q

r
r

2

3
1 2 0.720 674 . 4.8smallbh

0

3
2

0
3

in ( )

The fact that (4.7) is larger than in four-dimensions is due to the larger number of directions in
which the generators can expand. In contrast, the total increase in the area of the small black
hole (4.8) is less than in four-dimensions, indicating that fewer generators are added to the
horizon through the milder caustic. This conforms to the general idea that black hole mergers
are less irreversible (produce less entropy) as the number of dimensions grows larger.
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4.1. Perturbative solution

Performing the integrals for small r0 we now find

⎛
⎝⎜

⎞
⎠⎟ = + -

+
+

+ +x q t q r
q t

q t q

t

q

q

t
r,

2 3

4

3

4
arctan , 4.90

2
2 2

2 2 2 0
4( )

( )
( ) ( )

Figure 7. Constant-time slices of the four-dimensional event horizon, computed exactly
(solid black), and approximately to order r0

2 (dashed red). From top to bottom, these are

* *- = D - - -t t 10, 8, , 4, 2, 0, 2, 4, 6. The region excluded, where the discrepan-
cies are larger, has diameter *D⪅ around x=z=0.

Figure 8. Event horizon of the merger in five-dimensions. Each curve is a null
generator of the hypersurface.
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⎛
⎝⎜

⎞
⎠⎟ = +

+
+ +z q t t r

t

t q q

q

t
r,

4

3

4
arctan , 4.100

2
2 2 0

4( )
( )

( ) ( )

when t> 0. The analytic continuation to t< 0 is obtained by substituting

p -
q

t

q

t
arctan arctan . 4.11

∣ ∣
( )

At late times the horizon becomes planar, = +z t r t0
2( ), even at very large values of

x. It is also planar at large distances around the merger time, ~x r t z,0∣ ∣ ,
where = +z t r x0

2( ).
The generators that enter at the caustic at the axis x=0 at an early time- t r0 have
pq r t3 43

0
2∣ ∣ . There the horizon develops a cone with slope

⎛
⎝⎜

⎞
⎠⎟~ -

z

x

r

t

d

d
4.12

cone

0
2 3

∣ ∣
( )

(to obtain the precise factor we would need the corrections at r0
4 in z(q, t)). The length of the

caustic line - = +t r r0
2( ) is again infinite, but now its dependence on the large black hole

size is only logarithmic

~L m
M

m
ln . 4.13c ( )

These results generalize to arbitrary dimension, where the rays at the caustic have
µ+q r tn n1

0 ∣ ∣ and

⎛
⎝⎜

⎞
⎠⎟~ - ~ -

+
z

x

q

t

r

t

d

d
, 4.14

n n

cone

0
1

∣ ∣ ∣ ∣
( )

( )

so the cone is less pointed for larger n. The line element along the caustic line,
s r r rd dc

n
0

2( ) is such that when n> 2 the total length is finite, even if the line extends to
the infinite past. This is because the caustic line approaches much more quickly a null curve,
which does not add to the total proper length.

Again, we interpret these results as consequences of the stronger localization of the
gravitational field as n increases, which yields a very mild caustic singularity on the horizon
at r?r0.

5. Throat swelling

Black hole fusion begins at the moment when the cones on the event horizon close off,
develop into cusps at t=t*, and then form a thin throat that connects the two horizons. We
can expect that the geometry of the event horizon exhibits critical behavior in the instants
before and after pinch-on. Since in this regime we do not have explicit solutions for the
constant-time sections of the event horizon, we study it through slices such as those used to
produce the plots in figure 3.

Right before the merger, when the caustic cone on the large horizon closes off as *t t ,
we expect that

*~ - - g-z

x
t t

d

d
. 5.1

cone

( ) ( )
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We find γ=1/2 up to a few percent, both in D=4 and D=5. This suggests that it may be
the same in other dimensions. It may be interesting to verify this, and also to investigate
whether this exponent is universal, e.g., when charge or rotation are introduced. Being a
short-distance effect, the same critical behavior could be present in the small black hole
horizon, but this remains to be studied.

We can also examine the growth of the thin throat connecting the two horizons imme-
diately after its formation at pinch-on time t*. We have managed to accurately measure the
half-width ρ of the throat, i.e., its extent along the semi-axis x> 0. We find that, for times
shortly after t*, the throat grows linearly

⎧⎨⎩ *
*

r =
 - =
 - =

t t D
t t D

0.650 0.005 , 4
0.730 0.005 , 5

5.2
( )( ) ( )
( )( ) ( )

( )

(see figure 9). This linear growth lasts until ρ/r0;0.25, and then begins to slow down.
The linear behavior (5.2) agrees with the results in [10], which studied a merger in the

Kastor–Traschen solution of four-dimensional charged black holes in deSitter [9]. As [10]
observed, the linear growth may be expected since after the merger the surface is smooth. So
we expect this to be a general feature of black hole mergers.

In the example in [10] the behavior (5.2) was followed after a time by exponential
growth, presumably due to the deSitter expansion. Instead, in our setup the growth
slows down.

6. Mergers with relative velocities

We have described a merger in which an infinitely large black hole approaches along the z
direction a finite-size black hole that is at rest. The asymptotic surface dt=dz from which the
event horizon is traced back is invariant under boosts in z, so the event horizon would be the
same if there were any velocity along the collision axis.

We may also consider situations where the black holes have a relative velocity along a
direction parallel to the large horizon—this includes in particular the possibility of a large
rotating black hole and a small black hole on a trajectory not co-rotating with it. The generic
arguments in the introduction indicate that in the EMR limit this event horizon should be
equivalent to the one for radial plunge, but it may be worth elaborating the case.

Figure 9. Plots of the throat thickness versus time, in units r0=1. The blue curve is a
linear fit to the first 20 points with *- Ît t 0.01, 0.2( ). The inset is a magnification
close to the pinch-on, where the throat grows linearly with t.
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Let us focus on the form of the event horizon in the asymptotic future, where we impose
the initial (actually final) conditions that determine the null congruence. We have been
considering that this horizon does not move, relative to the small black hole, along its planar
directions, so asymptotically the surface is given by

=t zd d . 6.1( )

If instead the large horizon moves along the x direction, we can obtain its asymptotic
form by a boost

h h= -t t xcosh sinh , 6.2¯ ¯ ( )

h h= -x x tcosh sinh , 6.3¯ ¯ ( )

and =z z̄ . That is, if now t̄ is the time in the rest frame of the small black hole, the event
horizon is a null congruence in the Schwarzschild geometry that asymptotes to

h
h= +t

z
xd

d

cosh
tanh d . 6.4¯ ¯ ¯ ( )

However, this surface can also be obtained from (6.1) by performing a rotation in the (x, z)
plane

a a= +z z xcos sin , 6.5¯ ¯ ( )

a a= -x x zcos sin , 6.6¯ ¯ ( )

and =t t̄ , so that

a a= +t z xd cos d sin d . 6.7¯ ¯ ¯ ( )
We just need to choose the rotation angle to be

a h=sin tanh . 6.8( )

Thus the effect of a boost in a direction parallel to the large horizon is equivalent to a rotation
in the plane formed by this direction and the collision axis. We do not need to compute again
the null generators, since it suffices to set the q-independent integration constant α in (2.9) to
the value (6.8).

7. Concluding remarks

Everything we have needed to obtain the event horizon has been in place for a long time: the
technical ingredients are the Schwarzschild solution and its null geodesics, known 100 years
ago. The concepts involved are also venerably old—the equivalence principle, which predates
general relativity itself, and the notion of event horizon, well understood more than 50
years ago.

The construction can be extended to EMR mergers with small black holes other than
Schwarzschild. When the small black hole is asymptotically flat and spherically symmetric,
like the Reissner–Nordstrom solution, the extension is straightforward, up to the explicit
quadratures for tq(r) and fq(r). Of more direct physical interest is the EMR merger with a
small Kerr black hole. The lower degree of symmetry makes the problem computationally
quite harder, but still much simpler than when m/M is finite, since we know the exact
geometry in which the event horizon must be found. The class of large black holes that can be
covered is also very wide, since the geometry near a non-degenerate horizon is always
Rindler space.
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Gravitational wave emission is conspicuously absent from our description of the merger.
In the limit  ¥M the radiation zone is pushed infinitely far away, and the geometry
acquires an exact time-translation isometry, so there cannot be any waves. Relatedly, the
quasinormal oscillations of the large black hole are not visible in our analysis. The lowest
quasinormal modes have wavelengths ∼M, so they disappear from sight in the limit, while the
higher modes of wavelength ∼m have large partial wave numbers ℓ ∼M/m and are localized
near the circular photon orbit of the large black hole, i.e., at a large distance, ∼M, from the
near-zone that we focus on.

Thus the price to pay for capturing exactly the event horizon is that the main observa-
tional signature of a black hole merger is removed from the picture. What is, then, the utility
of this analysis?

First of all, and leaving aside the difficulties (even of principle) of directly observing the
structure of the event horizon at very short scales, we believe that it is useful to have as simple
an understanding as possible of a basic phenomenon in general relativity—which furthermore
can be a good approximation to events that possibly take place in nature: given the findings of
[1], it does not seem impossible that black hole binary mergers with mass ratios 1/30 could
be detected in ground-based observatories, even more so in space-based ones. Our con-
struction and characterization of the event horizon can be used as a benchmark for detailed
numerical calculations that attempt to capture all the features of the phenomenon down to
scales ∼m.

Second, our study gives the near-zone solution of the merger to leading order in m/M.
One can then match it to the far-zone construction of the EMR event horizon in [8], to obtain
the first-order corrections in m/M. This will make the curvature of the large black hole visible
in the near-zone, as well as the effects of gravitational waves on it. Corrections computed in
the near-zone then provide the boundary conditions for the next-order calculation in the far
zone, and so on, iteratively in a matched asymptotic expansion. It is not inconceivable that the
sensitivity of future detectors will require such higher-order calculations. Our work is only the
first step in the description of their event horizons.
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Appendix A. Explicit solution

A.1. D ¼ 4

In order to solve the integrals we begin by writing them as

ò=
- - - -

t r
r r

r r r r r r r r r

d
, A.1q

3

0 1 2 3

( )
( ) ( )( )( )

( )

òf = -
- - -

r
q r

r r r r r r r

d
, A.2q

1 2 3

( )
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where r1, r2 and r3 are the roots of the polynomial - +r q r q r3 2 2
0. For <q r 3 3 20∣ ∣ one

of the roots is real (r1) and the other two (r2 and r3) are complex conjugates:

=
-

+r f f
1

18
, A.31 1

1 3
2
1 3

3
( ) ( )

= + + -r f f f f
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1 3
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0
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= + -f q r q r q9 81 12 , A.72
2

0
2

0
2 2 ( )

are positive and real for <q r 3 3 20∣ ∣ . When >q r 3 3 20∣ ∣ the polynomial has three
different real roots, and it is simpler to write them as
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Since they are roots of a cubic with no quadratic term they satisfy

+ + =r r r 0, A.111 2 3 ( )

which we use to eliminate r1 in favor of r2 and r3.
The results can be expressed in terms of incomplete elliptic integrals of the first, second

and third kind
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When evaluating these expressions care must be exercised with the prescription for the square
root of complex numbers and with the branch cuts in the elliptic functions. Our prescriptions
are those implemented in Mathematica 10, which we have used for these calculations.

After using identities of elliptic integrals, and fixing the integration constants to the
values (2.9) and (2.16), we get
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ct(q) is the integration constant in the time integral
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A.2. D ¼ 5

The integrals for the geodesics
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are very similar to the four-dimensional ones. We rewrite them using two of the four roots of
the polynomial under the surds
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(the other two roots are −r1,2). Then
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We perform the integrals again using Mathematica 10. After some manipulation and fixing
the integration constants we obtain
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where the integration constant is given by
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Appendix B. Perturbative solution to order r20

Here we give the result of the integrals (3.1) and (3.2) computed up to order r0
2, with the

integration constants fixed to the values (2.9) and (2.16):

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ 

= - +
-

- +
+ -

-
-
-

+
-

+

t r r q
r r

r q

r r q

r

r
q r

r q q

q

r q
r

2
1 2 ln

2

8 7

8

15

8
arctan , B.1

q
2 2 0

2 2

2 2

0

0
2

2 2

2 2 3 2 2 2 0
3

( )

( )
( ) ( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ 

f =
-

+
-

-
+

+ -
- +

-
+

-
+

r
q

r q

r

q

q r

r r q

r
q q r r

qr r q q

q

r q
r

arctan
2

2
1

3 20 15

16

15

16
arctan . B.2

q 2 2

0
2 2

2 2

0
2

4 2 2 4

2 2 2 3 2 2 2 2 0
3

( )

( )
( ) ( )

Eliminating r in favor of q and t, and using the coordinates x and z defined in (2.10) we find
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These expressions are valid for t>0. The analytic continuation (4.11) gives the results
for t<0.
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6
Conclusions

This thesis has focused entirely on classical and thermodynamical aspects of black
hole physics. We have considered four different classes of black holes that can be
broadly classified as:
• black branes
• stationary black holes with non-Killing horizons
• rotating black holes
• dynamical black hole mergers

For each of these we have studied characteristic features and phenomena and we
have produced new results. These results are contained in the four publications
present in chapters 2, 3, 4 and 5. We will briefly summarise the main achievements.

Black branes in a box. We studied the effective hydrodynamics of neutral
black branes enclosed in a cylindrical cavity. We used the size of the box, R, as a
control parameter to study dynamic and thermodynamic instabilities. We observed
that both instabilities disappear at the same critical value, Rc, of the cavity ra-
dius. We explained why the correlated stability conjecture, as usually interpreted,
does not hold for all systems and we argued that its correct interpretation is the
Correlated Hydrodynamic Stability (CHS). The CHS links the presence of unstable
hydrodynamic modes to the local thermodynamic instability; this is transparent in
our approach. We computed the viscosities of the effective fluid and obtained that
they do not run with R. This might be a feature of a larger class of black branes.
Close to the critical point, R ≈ Rc, the wavenumber that marks the threshold of
the instability exhibits critical behaviour kGL ∼ (R−Rc)1/2.

Black string flow. We computed the smooth horizon of a black string falling
through a planar acceleration horizon. This was the first exact description of a
flowing horizon connecting a stringlike horizon with a planar one and it is valid
for any number of dimensions d > 5. We obtained the horizon generators as well
as the exact geometry of the flowing funnel. We computed a surface gravity that
varies along the horizon. We also computed the expansion associated to the hori-
zon generators: it vanishes in both asymptotic regions. This construction shows
that stationary black holes with non-Killing horizons are possible with non-AdS
asymptotics.
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Bumpy black holes. We constructed numerically the first three families of ro-
tating bumpy black holes in six dimensions. We followed the branches until they
approached singular solutions. We found strong evidence of branches that exhibit
conical structures close to the transitions to black rings, black saturns and di rings.
We argued for the existence of a new class of solutions, bumpy black rings. We
argued that transitions in higher branches would also occur beginning closer to
the rotation axis and pinching-down subsequently at increasing value of the polar
angle. Other branches were found to be extremely expanded in the rotation plane
and exhibited the same kind of “cone” at their equator; thus becoming singular
when highly deformed. We showed that these branches probably end in the phase
diagram not connecting to any other black holes in the space of single spinning
stationary solutions. Finally we found that a specific negative eigenvalue of the
Lichnerowicz operator is not directly linked with a specific instability even though
the total number of eigenvalues is consistent with the total number of instabilities
at all times.

Black hole merger. We described in an exact analytic way the event horizon
of a black hole merger in the extreme mass ratio (EMR) limit for four and five
dimensions. Mergers in which the ratio of the masses is large are specially hard for
numerical simulations. We expect that our exact results will be useful and serve as
check/guide for future research in the area. We constructed the horizon by com-
puting its generators and we extracted a number of parameters that characterise
the merger. We identified the line of caustics, the critical radius at which both
horizon touch, the big horizon relaxation timescale among other things. Finally we
analysed the critical behaviour shortly before and after the pinch-on.

The same technique was used in the horizon construction of the black string flow
and the black hole merger. This technique is very general and it can be employed
in other setups to obtain different merging horizons. A clear extension to our work
in Ch. 5 is to consider the Kerr metric instead of Schwarzschild’s. Kerr solution is
less symmetric and different event horizons will be obtained depending on the rel-
ative orientation of the rotation and collision axes. Notice that by obtaining these
horizons we will be able to describe all possible EMR black hole mergers occurring
in our universe.



7
Resumen en Castellano

Esta tesis está enmarcada en el campo de los agujeros negros. En ella hemos consi-
derado tanto agujeros negros en cuatro dimensiones como en dimensiones superiores
(d = 5, d = 6 y d genérico).

Durante la tesis se han realizado cuatro proyectos que han involucrado diferentes
tipos de agujeros negros. Grosso modo se pueden agrupar de la siguiente manera:

• Branas negras con horizontes extendidos

• Agujeros negros estacionarios con horizontes que no son de Killing

• Agujeros negros estacionarios que giran

• Fusión de agujeros negros

En cada uno de los proyectos se han estudiado fenómenos característicos del tipo
de agujeros negros. Para conseguirlo se han utilizado diferentes técnicas adaptadas
a cada uno de los problemas atacados. Cada uno de los estudios ha culminado en
una publicación con nuevos resultados en el campo. Dichas publicaciones forman
parte de esta tesis y están contenidas en los capítulos 2, 3, 4 y 5. En lo que sigue,
explicaremos los fenómenos estudiados, mencionaremos las técnicas utilizadas y
resumiremos los resultados obtenidos en cada una de ellas.

7.1 Branas negras en una caja

Las branas negras son agujeros negros que presentan horizontes de sucesos exten-
didos1 y que poseen más de cuatro dimensiones. Este tipo de agujeros negros se ha
estudiado mucho a lo largo de los años y algo que los caracteriza es ser inestables
bajo perturbaciones a lo largo de sus horizontes. Perturbaciones de longitud de
onda suficientemente larga (λ > λGL) crecen exponencialmente en el tiempo en
vez de disiparse. Esta famosa inestabilidad es conocida como la inestabilidad de
Gregory-Laflamme (GL).

1Las que hemos estudiado en la tesis son p-branas neutras. Las soluciones presentan un total
de d = n+ p+ 3 dimensiones y sus horizontes son una (n+ 1)-esfera por p direcciones planas,
esto es Sn+1 × Rp.
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Las branas negras aquí estudiadas, al igual que el agujero negro de Schwarzschild,
tienen calor específico negativo. Esto significa que son termodinámicamente ines-
tables cuando se ponen en contacto con un baño térmico a su misma temperatu-
ra. Hace unos años se propuso una conjetura que relacionaba las inestabilidades
dinámicas y termodinámicas de agujeros negros con horizontes extendidos. Esta
conjetura, por Gubser y Mitra, es conocida como la Correlated Stability Conjec-
ture (CSC) y ha sido estudiada a fondo. Normalmente se emplea un parámetro
de control (carga de algún tipo, condiciones de contorno de caja, etc.) con el que
se pueden investigar tanto zonas de estabilidad como de inestabilidad. En muchos
casos los regímenes de estabilidad termodinámica y dinámica coinciden. Se han
encontrado sin embargo contraejemplos en los que la solución, aún siendo termo-
dinámicamente estable, presenta inestabilidades dinámicas.

En el primer proyecto realizado durante esta tesis investigamos el sistema de
una brana dentro de una caja con condiciones de contorno de Dirichlet. Atacamos
el problema desde la teoría efectiva de worldvolumes de branas negras2. Utilizamos
el radio de la caja R como parámetro de control entre zonas de estabilidad e inesta-
bilidad y observamos que las dos inestabilidades desaparecen para el mismo valor
crítico de radio de la caja Rc. Esto es, para cajas con R ≤ Rc las inestabilidades
desaparecen mientras que para cajas mayores las inestabilidades vuelven a estar
presentes, como se sabe que lo están en el caso en el que no hay caja. Debido a
que en este marco la relación entre inestabilidades de tipo hidrodinámico (inesta-
bilidades dinámicas de longitud de onda arbitrariamente grande) y termodinámico
están directamente relacionadas, en la publicación contenida en el capítulo 2 damos
una explicación de como debe realmente entenderse la CSC. Derivamos también
las cantidades asociadas al fluido efectivo, incluyendo sus correcciones disipativas
(viscosidades). Desde la visión del fluido efectivo, la inestabilidad de GL presente
en branas negras se traduce en una inestabilidad del fluido bajo perturbaciones de
densidad, es decir, las ondas de sonido no se propagan. Por último, estudiamos el
comportamiento crítico del sistema al estabilizarse cuando R → Rc y vimos que
hay un exponente crítico determinando el comportamiento, kGL ∼ (R−Rc)1/2.

7.2 Horizontes que fluyen (Black String Flow)

La mayoría de agujeros negros estacionarios estudiados en libros de texto y en una
amplia mayoría de artículos presentan horizontes de Killing y por ende una tempe-
ratura constante (constante tanto a lo largo de secciones espaciales de sus horizontes
como en el tiempo). Se ha mostrado, sin embargo, que ésta no es la única posibili-
dad para agujeros negros estacionarios. Éstos pueden tener horizontes que no sean
de Killing y describir un gradiente de temperatura a lo largo de sus horizontes que
se mantenga constante en el tiempo si presentan horizontes no compactos.

En el segundo proyecto de esta tesis construimos un horizonte de este tipo. El
horizonte del black string flow describe una cuerda infinitamente larga en caída libre

2Esta teoría permite describir de manera efectiva la dinámica de estos agujeros negros mediante
variables y ecuaciones propias de la hidrodinámica.
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(a lo largo de su longitud) a un horizonte (planar) de aceleración3. La intersección
entre ambos horizontes es suave y está perfectamente capturada en nuestra descrip-
ción. La construcción se llevó a cabo mediante la integración de geodésicas nulas
en el espaciotiempo de la cuerda negra estática y eligiendo la familia de geodésicas
específica que genera correctamente el horizonte. Efectivamente, los generadores de
esta hipersuperficie nula no son vectores de Killing del espaciotiempo de la cuerda
negra. Calculamos la temperatura (gravedad superficial) como el parámetro de
no afinidad de los generadores del horizonte y vimos que el horizonte describe un
gradiente de temperaturas que se mantiene constante en el tiempo. El horizonte
describe un flujo de calor estacionario entre dos depósitos infinitos de calor, uno
de ellos a temperatura finita (la cuerda) y el otro a temperatura cero (el agujero
negro infinitamente grande).

La construcción es totalmente analítica y en un numero arbitrario de dimen-
siones (d ≥ 5). Además, ha sido realizada en espacio asintóticamente plano y
muestra que los horizontes con flujo de calor no solamente existen en espacios con
constante cosmológica negativa.

7.3 Agujeros negros bumpy

En cuatro dimensiones la única solución estacionaria de las ecuaciones de Einstein
en el vacío tiene topología esférica y es el agujero negro de Kerr. En cinco o más
dimensiones el espacio de soluciones de agujeros negros compactos y con momento
angular es, sin embargo, mucho más rico. Son posibles horizontes estacionarios con
topologías diferentes a la esférica: anillo negro, saturno negro, dos anillos negros
concéntricos, etc.

En esta parte de la tesis estudiamos un tipo de agujeros negros estacionarios de
topología esférica llamados bumpy black holes4. Los agujeros negros que conside-
ramos tienen solamente un momento angular. Lo que diferencia a estos agujeros
negros del agujero negro de Myers Perry5 (MP) es que la esfera transversa a la
rotación varía de manera no monótona a lo largo del ángulo polar. Estos agujeros
negros, en espacio de soluciones, conectan las ramas del agujero negro de Myers
Perry con las otras soluciones (con diferentes topologías) mencionadas anterior-
mente.

Construimos numéricamente las primeras tres familias de agujeros negros bumpy.
Realmente son seis familias de soluciones (se agrupan de dos en dos según el punto
de corte con la rama del MP de donde nacen). Tres de ellas son las que conectan
con el anillo negro, el saturno negro y los dos anillos negros concéntricos (las lla-
mamos ramas-(+)). Las otras tres son las “anti-ramas” de estas y las llamamos

3Este horizonte también describe la caída libre de una cuerda negra fina (y por ende caliente) a
un agujero negro esférico de radio característico mucho mayor que el de la cuerda (y por ende
frío); en el límite cercano al horizonte del agujero negro grande.

4Aunque el estudio ha sido realizado en seis dimensiones, estas familias de agujeros negros existen
para todo d ≥ 6.

5El agujero negro de MP es la generalización a dimensiones d > 4 del agujero negro de Kerr y
puede tener uno o más momentos angulares según el numero de dimensiones.
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ramas-(−); es decir, son soluciones con la deformación con respecto al MP en el
sentido opuesto que en el caso de las ramas-(+).

Estudiamos a fondo la geometría de todas las soluciones. Para el caso de las
ramas-(+) verificamos la presencia de conos en los horizontes para valores grandes
de deformación. Estos conos aparecen para mediar la transición topológica que
ocurre cuando dos ramas con diferente topología se encuentran en el espacio de
soluciones. Con el estudio de la tercera rama-(+) obtuvimos evidencia fuerte de
un nuevo tipo de solución al que llamamos anillo negro bumpy. Las ramas-(−) se
extienden mucho en el plano de rotación y parecen acabar, en el espacio de solu-
ciones, con una singularidad localizada en el ecuador y sin conectar a ninguna otra
solución. En este artículo también estudiamos la estabilidad de estas soluciones
mediante cantidades termodinámicas y mediante el espectro del operador de Lich-
nerowicz. Comprobamos que el número de autovalores negativos de este operador
coincide con el numero de inestabilidades presentes en las soluciones.

7.4 Fusión de agujeros negros

La fusión de agujeros negros es tradicionalmente parte del campo de la relatividad
general numérica. Para describir de manera razonable la radiación gravitatoria
emitida y el horizonte de sucesos de un proceso de fusión de agujeros negros se
requieren tanto superordenadores como técnicas numéricas muy complejas.

Hay sin embargo un caso en que el proceso puede tratarse de manera analítica.
Es el límite de razón de masas extremas (EMR) en que uno de los agujeros negros
tiene infinita o cero masa en comparación al compañero. Curiosamente casos en que
las masas difieren mucho son especialmente complicados numéricamente. Nosotros
consideraremos el límite exacto en que m/M → 0 manteniendo la masa del agujero
negro pequeño, m, fija y la del grande, M , infinita.

En general los horizontes de sucesos pueden describirse mediante sus generado-
res. Éstos son simplemente rayos de luz en el espaciotiempo que nunca abandonan
el horizonte. En el límite de EMR, la geometría está dominada totalmente por
el agujero negro pequeño y basta con trazar geodésicas nulas en el espaciotiempo
de éste. En este proceso, al fijar las constantes de integración cuiḋadosamente, es
posible obtener el horizonte de sucesos de una colisión de dos agujeros negros.

Como última parte de esta tesis construimos y caracterizamos el horizonte de
sucesos de una colisión de agujeros negros en el limite EMR (en cuatro y cinco
dimensiones) considerando un agujero negro pequeño de tipo Schwarzschild. Una
vez obtenida la hipersuperficie, identificamos la línea de cáusticas, el radio crítico
r∗ en el cual los horizontes se tocan, los tiempos de relajación del agujero negro
grande, etc. Estudiamos los instantes críticos anteriores y posteriores al primer
contacto entre los horizontes. Justo antes de la fusión, el horizonte del agujero
negro grande presenta un cono con un cierto ángulo, este ángulo va cerrándose
hasta que llega a cero en el momento del contacto (t = t∗). Hemos observado
que el cierre del ángulo del cono está bien descrito por un comportamiento crítico
∼ (t∗ − t)γ con γ = 1/2. Una vez los dos horizontes se han unido, se forma una
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garganta conectando a ambos. Se ha observado que esta garganta crece linealmente
con el tiempo, ρ ∼ (t− t∗). Estos últimos resultados han sido obtenidos tanto para
cuatro como para cinco dimensiones y parecen indicar cierta independencia del
número de dimensiones.




