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Abstract: We study the dynamical properties of 1D solitary waves in confined Bose-Einstein
condesates of ultracold gases with repulsive interparticle interactions. We perform numerical sim-
ulations of the Gross-Pitaevskii equation for harmonically trapped systems in the presence of dark
and grey solitons, and we compare them with analytical solutions derived for homogeneous con-
densates. Our numerical results show a very good agreement with the theory in the limit of large
trapped systems, which are available in current experiments.

I. INTRODUCTION

In the last two decades, the phenomenon of Bose-
Einstein condensation has become an increasingly active
area of research, both experimentally and theoretically.
A Bose-Einstein condensate is a state of matter that a
bosonic system reaches below a certain critical tempera-
ture. The transition to this state occurs when the ther-
mal de Broglie wavelength becomes comparable to the
mean interparticle separation. When this condition is at-
tained, a macroscopic fraction of the bosons occupies the
lowest single-particle quantum state. The Bose-Einstein
condensation plays remarkable roles in atomic, elemen-
tary particle, nuclear, condensed matter physics and as-
trophysics [1].

The prototype of a system of bosons undergoing Bose-
Einstein condensation is the superfluid 4He, but due to
the strong interaction between helium atoms the conden-
sate fraction, i.e. the ratio N0/N between the number of
condensed particles N0 and the total number of particles
N , is dramatically reduced. For this reason it is advisable
to look for systems where the interaction between parti-
cles is weaker. Currently available systems that fulfill this
condition are the Bose-Einstein condensates of ultracold
gases (BECs). The first BECs made of alkali atoms were
realized in 1995 by using powerful laser-cooling methods
[2], providing unique opportunities for exploring quan-
tum phenomena on a macroscopic scale. Due to the fact
that in a BEC most of the atoms occupy the same quan-
tum state, the condensate can be very well described in
terms of a mean-field theory. This is the so-called Gross-
Pitaevskii (GP) theory, which has reproduced with excel-
lent agreement numerous experimental results, e.g. the
nucleation and dynamics of quantized vortices, the mani-
festation of the Josephson effect in double well potentials
or in spinor condensates, the superfluid response of the
system against rotation, or the generation and motion of
topological defects as solitons.

In this work we analyze the dynamical features of dark
solitonic waves in harmonically trapped, 1D BECs with
repulsive interatomic interactions. We start by charac-
terizing the solitonic waves of this type in homogeneous
systems, where dark solitons are one of the analytic so-
lutions of the GP equation. Then, we perform numerical

simulations for calculating the properties of dark solitons
in trapped condensates, and discuss the matching of our
results, in the limit of large trapped systems, comparing
with the analytical properties derived from the homoge-
neous case. Additionally, we study the oscillatory motion
of dark solitons in harmonic traps, and compare with the
predictions of a classical equation of motion derived from
the conserved energy of the soliton.

II. THEORY

The Gross-Pitaevskii theory is a mean-field approxi-
mation that provides a nonlinear Schrödinger equation
for the wave function ψ(~r, t) (also called the order pa-
rameter) of the condensate. It is valid when the s-wave
scattering length as is much smaller than the average
distance between atoms and the number of atoms in the
dilute system becomes large enough [3] (as is usual in the
mean-field theories). The time-dependent GP equation
is [4]

i~
∂

∂t
ψ =

(
− ~2

2m
∇2 + Vext(~r) + g|ψ|2

)
ψ , (1)

where g = 4π~2as/m is the interaction strength, Vext(~r)
is an external potential, and ψ is normalized to the total
number of particles

∫
d~r|ψ|2 = N .

For stationary solutions ψ(~r, t) = ψ(~r) exp(−iµt/~),
where µ is the chemical potential, and the GP Eq. (1)
becomes (

− ~2

2m
∇2 + Vext(~r) + g|ψ|2

)
ψ = µψ . (2)

In the absence of interactions (g = 0) this equation re-
duces to the usual Schrödinger equation for the non-
interacting hamiltonian. The energy of the system can
be calculated from the functional [3]

E[ψ] =

∫
d~r

[
~2

2m
|∇ψ|2 + Vext(~r)|ψ|2 +

g

2
|ψ|4

]
. (3)
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Exact solutions: dark solitons

In the homogeneous case, Vext(~r) = 0, the GP Eq. (1)
has analytical solutions. One particular kind of these so-
lutions are the so-called solitons [3]. A soliton is a solitary
wave that propagates preserving its intrinsic shape, and
can interact with other solitons emerging from the colli-
sion unchanged, except for a phase shift [5]. There are
two different solitonic solutions: the bright soliton and
the dark (grey) soliton. Both solutions correspond to a
localized modulation of the density profile characterized
by an increase (bright) or a suppression (dark, or grey if
the supression is not total) of the density respect the bulk
value. The typical length characterizing the extension of
the density modulation is fixed by the healing length ξ.

If the interaction is attractive (g < 0), the solitonic
solution to Eq. (2) corresponds to a bright soliton with

functional form ∝ sech(x/
√

2ξ) and negative chemical
potential. This type of solitons can move freely in space
(along the x-direction) like an ordinary particle. In spite
of the fact that bright solitons are not stable configura-
tions, they can be produced in traps with tight radial
confinement, where the mechanism of destabilization is
reduced [6].

We focus on the case of repulsive interparticle interac-
tions (g > 0), where there exist an analytical solution to
the GP Eq. (1) for a solitary wave moving with constant
velocity v on a constant background [7]:

ψs =
√
n

(
i
v

c
+

√
1−

(v
c

)2
tanh

[
x− vt√

2ξ

√
1−

(v
c

)2])
,

(4)
where n is the background (ground state) constant den-

sity, c =
√
gn/m is the speed of sound and the healing

length is given by ξ = ~/
√

2mgn. The density profile
n(x) = |ψs|2 has a minimum at the center of the soli-
ton corresponding to n(0) = nv2/c2. Notice that for
the static case (v = 0), i.e. the dark soliton, the mini-
mum density is equal to zero. The width of the soliton is
fixed by the healing length ξ and amplified by the factor
1/
√

1− (v/c)2, which increases as v approaches c. The
chemical potential is positive and is given by the back-
ground density where the condensate is living, µ = gn.

In contrast to the bright soliton case, dark (and grey)
solitons present topological features that deserve a fur-
ther analysis. Dark solitons can be seen as topological
defects connecting two ground states with the same den-
sity but different phase [8]. The phase S of the wave

function ψ(x) =
√
n(x)eiS(x) undergoes a finite change

as x varies from −∞ to +∞:

∆S = S(∞)− S(−∞) = 2 cos−1
(v
c

)
. (5)

For a static dark soliton the phase change is given by
∆S = π and the wave function ψs(x) =

√
n tanh(x/

√
2ξ)

is real.
Fig. 1 shows the characteristic density profiles (upper

panel) and phases (lower panel) of moving grey solitons

FIG. 1: Density profiles (upper panel) and phases (lower
panel) of 1D moving grey solitons with varying velocity in
an homogenous background with density n = 1/ξ.

with varying velocity. As can be seen, the width of the
soliton, which is proportional to the healing length ξ,
increases as v approaches c. On the other hand, the
phase change ∆S increases up to π as v approaches zero.

The excitation energy εs of the soliton can be evalu-
ated by taking the difference between the grand canonical
energies (since the system is open) in the presence and
in the absence of the soliton for fixed chemical poten-
tial εS = (E[ψs] − µN) − (E[ψGS ] − µNGS), where N
and NGS are the number of particles for the state with
the soliton and for the ground state, respectively. The
resulting expression is [9]

εS =

∫ ∞
−∞

[
~2

2m

∣∣∣∣dψsdx
∣∣∣∣2 +

g

2
(|ψs|2 − n)2

]
dx , (6)

and can be easily calculated from Eq. (4). The result is

εS(µ, v) =
4

3

~m
g

( µ
m
− v2

)3/2
. (7)

It is worth noticing that the velocity of the soliton in-
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creases when its energy decreases. The main consequence
is that the inertial mass of the soliton is negative

Min =
1

v

∂εs
∂v

∣∣∣∣
µ

< 0 . (8)

As v → c the excitation energy of the soliton ap-
proaches zero, and the nonlinear solitonic solution to the
GP equation converges with the linear sound excitations
(phonons) of the constant ground state.

The number of particles Ns depleted from the back-
ground density by the dark soliton can be evaluated from
the difference between the number of particles in the pres-
ence and in the absence of the soliton for fixed chemical
potential. The missing number of particles of the dark
soliton is [9]

Ns = −∂εs
∂µ

∣∣∣∣
v

= −2~
g

√
µ

m
. (9)

The topological nature of dark solitons makes them dy-
namically stable states (i.e. stable in the absence of dissi-
pation) against decay to the ground state of the system.
However, they are unstable with respect to fluctuations
along the transverse directions (y and z). This instability
can be suppressed in experiments by squeezing the con-
densate in the transverse direction, as the cigar-shaped
traps do [10].

III. RESULTS AND DISCUSSION: DARK
SOLITONS IN HARMONIC TRAPS

We consider BECs confined by harmonic potentials
Vext(x, y, z) = 1

2 m(ωxx
2 + ω⊥(y2 + z2)), focusing on

elongated geometries of the system along the x-direction.
These geometries are experimentally accesible by us-
ing large harmonic frequencies along the transverse y–z
plane. In what follows, we assume a transverse isotropic
trapping of angular frequency ω⊥ >> ωx, so that the
transverse degrees of freedom are frozen, and the system
shows effective 1D dynamics along the x-direction. As
a consequence, the interaction strength entering the GP
equation has to be renormalized to [3]

g =
~2

m

2a

a2⊥
(10)

where a⊥ is the characteristic length of the transverse
harmonic oscillator.

We start by characterising the different states we are
dealing with, namely solitonic and ground states in 1D
harmonic traps. To obtain these states we solve the GP
Eq. (1) by using a finite-difference method for the space
discretization along with a norm preserving time evolu-
tion scheme. The stationary states are reached after an
imaginary time evolution. In the soliton case, our initial
state contains a node at x = 0.

FIG. 2: Top panel: density profiles of dark solitons (DS) and
ground states (GS) in a harmonic trap. Bottom panel: phase
profiles of dark solitons. All the quantities are expressed in
the characteristic units of the harmonic oscillator.

Fig. 2 shows the density profiles (upper panel) of dark
solitons and ground states for µ = 25 ~ωx and µ = 4 ~ωx
and phases (lower panel) for the dark solitons. The phase
jump ∆S given by both dark solitons is π, whereas the
ground states present a constant phase (not shown) all
along the condensates. Confinement plays an important
role in the density profile. The first thing to note is that
the trap enforces the density to go to zero at the bound-
ary of the condensate. The different chemical potentials
considered in Fig. 2 correspond to two different dynam-
ical regimes. For µ � ~ωx the system enters the so-
called Thomas-Fermi regime, where the healing length
is very small in comparison with the size of the conden-
sate. On the other hand, for small chemical potentials
µ ∼ ~ωx, the system approaches the non-interacting (lin-
ear) regime, where the healing length is of the order of
the whole condensate. We see that in the trapped sys-
tem there exists a solitonic state even in the linear case
µ = ~ωx, due the fact that the first excitated state of
the harmonic oscillator has a node. Therefore the family
of solitonic solutions can be considered as the non-linear
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FIG. 3: Energy of the dark soliton (upper panel) and number
of particles depleted from the background density due to the
presence of the dark soliton (lower panel) as a function of the
chemical potential. We also plotted the relative error com-
pared to the analytic case. All the quantities are expressed in
the characteristic units of the harmonic oscillator.

continuation of the first linear excited state.
From the previous considerations, we expect that the

dark solitons in the Thomas-Fermi regime can be de-
scribed by the analytical features derived for homoge-
neous condensates. We expect to have good results when
the radius of the condensate is much bigger than the
healing length ξ.

A. Excitation energy and missing number of
particles

With the aim of comparison with the analytical expres-
sions Eqs. (7, 9), we have evaluated both the excitation
energy and the missing number for particles for a trapped
soliton, relative to the ground state with the same chem-
ical potential. In the upper panel of Fig. 3 we show
our numerical results for the excitation energy of a dark
soliton in a harmonic trap. First of all, we can see that
the energy follows the functional form given by Eq.(7)

for v = 0, increasing as ∝ µ3/2. As the chemical poten-
tial enters the Thomas-Fermi regime the relative error of
the energy, compared with that of the homogenous case,
decreases. For µ higher than 60 ~ωx the discrepancy is
lower than 1%. This agrees with the fact that for high
chemical potential our trapped system behaves locally as
homogeneous.

In the lower panel of Fig. 3 we show our numerical
results for the missing number of particles −Ns in our
trapped system. We can see that the dependence is in
fact −Ns ∝ (µ/~ωx)1/2. The relative error for −Ns has
an analogous behavior to that of the energy. Further-
more, in this case µ needs to be higher than 100 in order
to reach a discrepancy lower than 0.5%, reflecting the in-
fluence of the boundary conditions on the soliton features
for small values of the chemical potential.

B. Oscillatory motion of solitons

Knowing the excitation energy εs(µ, v) one can derive
the equations of motion of a solitary wave in a trapped
condensate [11] taking into account that the local density
follows from a local chemical potential, that is (µ, n) →
(µ(x), n(x)), where µ(x) = µ − 1

2mω
2
xx

2. Requiring the
energy to be a constant of motion, and letting x be the
position of the soliton, we get

0 =
dεs
dt

=

(
∂εs
∂µ

∣∣∣∣
v

dµ

dx
+

1

v

∂εs
∂v

∣∣∣∣
µ

∂v

∂t

)
ẋ , (11)

where we arrive at Newton’s equation of motion in the
form

Minẍ = −Mphω
2
xx , (12)

where Min is the inertial mass defined by

Min =
1

v

∂εs
∂v

∣∣∣∣
µ

= −4~m
g

( µ
m
− v2

)1/2
, (13)

and Mph is the physical mass of the soliton (associated
to the missing number of particles Mph = mNs):

Mph = −m ∂εs
∂µ

∣∣∣∣
v

= −2~m
g

( µ
m
− v2

)1/2
. (14)

One can finally obtain that x(t) ∝ cos(Ωt) with

ω2
x

Ω2
=
Min

Mph
= 2 (15)

Such harmonic oscillations have already been observed in
experiments, and the frequency ratio measured for dark
solitons is Ω = ωx/

√
2 [12] in Bose-Einstein condensates.

In order to check the theoretical predictions, we have
performed numerical simulations with the GP Eq. (1) fol-
lowing the real time evolution of a dark soliton imprinted
at an off-center location in the trapped condensate. We
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FIG. 4: Position (upper panel) and velocity (lower panel) of
a soliton in a harmonic trap against time. The analytical pre-
dictions x(t) ∝ cos(ωxt/

√
2) and v(t) ∝ sin(ωxt/

√
2) are also

plotted for comparison purposes. All the quantities are ex-
pressed in the characteristic units of the harmonic oscillator.

have added white noise to make the simulation more re-
alistic. We observe the subsequent evolution and track

the soliton position.

Figure 4 shows our numerical results for the position
(points, upper panel) and velocity (triangles, lower panel)
of a soliton in a condensate with µ = 100 ~ωx. One can
see that the motion of the dark soliton in the trap fits the
theoretical values obtained from the expressions for the
homogeneous case (solid lines). We note that besides the
soliton there is also noise and sound excitations, which
are difficult to avoid, in the trap. At same time a slight
vibration of the whole condensate condensate is taking
place. Because of these reasons our numerical results do
not fit perfectly to the theoretical ones.

IV. CONCLUSIONS

We have analyzed the dynamical properties of dark
solitons in 1D BECs confined in harmonic potentials.
Our numerical results, obtained with the 1D Gross-
Pitaeskii equation, show that these solitonic waves share
the analytical features derived for homogeneous systems
only within the Thomas-Fermi regime, where the size
of the condensate is much larger than the characteristic
length of the soliton, and the local density approxima-
tion applies. In addition, we have demonstrated that the
oscillatory motion of a dark soliton in a harmonic trap of
angular frequency ωx follows that of a classical particle
in an equivalent trap of frequency ωx/

√
2.
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