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In this paper we consider a particular version of the random walk with restarts: random reset events which
suddenly bring the system to the starting value. We analyze its relevant statistical properties, like the transition
probability, and show how an equilibrium state appears. Formulas for the first-passage time, high-water marks,
and other extreme statistics are also derived; we consider counting problems naturally associated with the system.
Finally we indicate feasible generalizations useful for interpreting different physical effects.
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I. INTRODUCTION

The Sisyphus random walk, the stochastic process to be
introduced in this paper, is an infinite Markov chain whose
dynamics can be expressed as follows: at every clock tick
the process can move rightward (or upward) one step, with a
certain given probability, or else return to the initial state, from
where it is restarted. Such apparent simplicity is misleading as
this simple evolution law can exhibit a surprisingly complex
and rich behavior

The process considered here bears some analogy with the
punishment, in Greek mythology, of Sisyphus, the first king
of Ephyra, who was sentenced to climb up a hill carrying
a heavy, slippery boulder and watch it roll down again to the
starting point in an endless cycle. Remarkably, it also underlies
the behavior of some physical mechanisms. In the context of
Doppler laser cooling, the “Sisyphus effect” is a well known
mechanism by which alkali atoms in the presence of a light
field rise from the ground Zeeman level to higher excited
states or sublevels. This uphill climbing process increases the
probability to be optically pumped into a minimum potential-
energy state from where the process restarts. In addition, it
involves a loss of momentum, so after each Sisyphus cycle the
total energy of the atom decreases by a certain amount [1].

In a different setting, such a system may be used as an
idealized model of the random dynamics of a “mobile” in a
trap, say, who is trying to climb stepwise a ladder or wall given
that at every step there is a common probability of slipping
to the bottom, resulting in the need to restart again. In such a
situation the distribution of the time to escape the trap becomes
a natural question.

The hallmark of such processes is the possibility to display
return-to-the-origin behavior, a common feature in real-life
systems. The seminal work of Manrubia and Zanette [2]
considering Markov chains where a reset mechanism operates
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has motivated new interest in the field, and presently the
dynamics of systems with resets is being subjected to intense
study. In [3,4] Brownian motion with resets was considered
while in [5] resets were incorporated to a compound Poisson
process with constant drift. Such intermittent strategies have
been considered in general mathematical frameworks [3–8],
but also in more specific contexts, like behavioral ecology
where the browsing activity of living organisms (e.g., capuchin
monkeys) may be suddenly interrupted to return to a preferred
location [9,10], or econophysics where modifying Gibrat’s law
to include reset events has made it possible to account for the
power law’s distribution of a firm’s growth [11]. The present
paper continues this line of research and considers a different
special case of stochastic processes with a reset mechanism.
See [12–16] for other developments in this regard.

The paper is organized as follows. In Sec. II we introduce
the process at hand and recall some basic concepts of renewal
theory. In Sec. III we derive an explicit expression for the
propagator, the transition probability function of the process;
an essential magnitude for understanding the dynamics that
provides a paradigmatic example of the use of renewal
concepts. The statistics analysis of several extreme events,
e.g., the first-passage time or the maximum of the process,
and related survival probabilities are discussed in Secs. IV and
V, where we also analyze in detail related counting problems
and recurrence issues. In Sec. VI we generalize the model
to include different physical effects. By allowing the reset
probability to be random or site-dependent, interesting gen-
eralizations are obtained. The resulting random walk may be
used to model physical systems which become “increasingly
anxious” to restart as they drift far away from the initial state,
as happens in situations as diverse as Sisyphus cooling or
formation—and eventual collapse—of built-up structures like
stalagmites. Depending on the selection of the reset probability
we find that the equilibrium state has heavy or light tails and
obeys a geometric, a zeta, or a Poisson distribution. Other
possible generalizations include the interesting possibility of
having a random walk on the integers which upon reset may
drift upward or downward with different probabilities. Here the
problem of finding the optimal reset strategy appears naturally.
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Conclusions are drawn in Sec. VII and, finally, we complete
some technical details in the Appendix.

II. SISYPHUS RANDOM WALK AS A RENEWAL PROCESS

The Sisyphus random walk, Xt , is an infinite Markov
chain on the positive integers—namely Xt ∈ {0,1,2, . . .} for
t ∈ {0,1,2, . . .}—whose one-step evolution can be expressed
as follows: If at time t the walker is at a given location, Xt = �,
then at time t + 1 one has

Xt+1 =
{
� + 1, with probability q�,

0, with probability (1 − q�);
(1)

that is, at every clock tick the process can increase one unit or
return to the ground state, from where the evolution continues.
If the initial condition is set in such a way that X0 = 0, as we
do consider, this return to the ground state can be understood
as a restart of the process.

Typical sample paths of the process Xt are (irregular)
sawtooth functions, namely, piecewise linear functions that
slope upward and then sharply fall at reset times; see Fig. 1.

Equation (1) stresses the fact that the elements q� of the
transition matrix between different locations on the chain can
depend on the present state � of the system, an assumption
consistent with the Markov property. We rule out, however,
the possibility that the transition matrix depends on the
chronological time t , or on some other hidden variable. Under
such hypothesis, the process is time homogeneous.

An appropriate dependence of q� on � may befit a model
where, as a result of learning abilities—or some exogenous
circumstance—the system becomes more (or less) anxious to
return to the origin the farther off it is. In the rest of the
paper we study the most relevant statistical magnitudes of Xt

corresponding to the case q� = q, a constant parameter. This
simplification reduces the algebraic intricacy of a model which,
despite this, is still mathematically rich and complex. We
indicate some results corresponding to different � dependences
in Sec. VI.

To this end we note that, under such an assumption,
the existence of resets gives rise to an underlying renewal

FIG. 1. Typical realization of the process Xt for q� = 4/5,
independent of �.

structure1 and hence, for most statistics of interest, renewal-
type equations can be employed to advantage over conven-
tional random walk theory; see [18]. The reader is also referred
to the interesting paper [10], where some properties of a related
discrete-time random walk—which evolves via Lévy flights on
the line combined with resets—are considered.

A key quantity in renewal theory is the renewal function,
m(t ; t0), the mean number of reset events in a given interval
(t0,t]. Most of the formulas employed in the paper consider
different properties of the walker in some future instant t ,
subject to the knowledge of its state at time t0, t0 < t . Due
to the time homogeneity of the process, those expressions
actually depend not on the calendar time but on the time lapsed
between the two events, τ ≡ t − t0, and thus we define m(τ ) ≡
m(t0 + τ ; t0).

The renewal function m(τ ) satisfies a renewal equation,
which reflects the two possible scenarios that appear depending
on the relative value of τ with respect to τ ∗, the random instant
at which the first reset (after t0) takes place. Using that

P{τ ∗ = k} = qk−1(1 − q) and P{τ ∗ > τ } = qτ , (2)

where P{· · · } is the probability relative to the set {· · · }, one
finds that m(τ ) must solve

m(τ ) = 1 − qτ +
τ∑

k=1

qk−1(1 − q)m(τ − k). (3)

Equations like (3) can be conveniently analyzed by recourse
to the so called z transform:

m̂(z) ≡
∞∑

k=0

m(k)zk,

where z is a complex variable. Equation (3) is solved in terms
of this object to find

m̂(z) = (1 − q)z

(1 − z)2
and m(τ ) = (1 − q)τ = τ

E[τ ∗]
, (4)

where E[·] denotes the expectation of its argument.

III. TRANSITION PROBABILITY

We start our analysis of Xt with the determination of the
transition probability of the process, the propagator:

p(�,t ; �0,t0) ≡ P{Xt = �|Xt0 = �0}. (5)

The propagator gives the probability of finding the walker in
position � at the future instant t , if we know that it is in �0 at
the present time t0 < t . Note that, as discussed previously, it
depends on time only via τ = t − t0 but must depend on both
� and �0:

p(�,t ; �0,t0) = p(�,t − t0; �0,0) ≡ p(�,τ ; �0).

Indeed we do not expect translation invariance since the
reset mechanism favors a particular point, the origin; as a

1Discrete renewal theory, as used here, is a prototype tool in fields
like reliability theory or block replacement policies; see [17].
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FIG. 2. Distribution of the process Xt at time t = 7 for q = 4/5.
Note that the probability is decreasing, but the most likely position is
found at the ending point � = t .

consequence the probability function for the walker position

p(�,t ; 0) ≡ P{Xt = �|X0 = 0}
does not contain all physical information and the full transition
probability, Eq. (8) below, is required to describe the dynamics.
The equation that p(�,τ ; �0) satisfies follows by analyzing the
different situations that may present depending on whether
t0 + τ ∗, namely the first reset after t0, occurs or not in the
interval (t0,t0 + τ ]. If δk,k′ is the Kronecker delta, the transition
probability becomes p(�,τ − τ ∗; 0) in the first case and δτ,�−�0

in the latter—see also [14] for a similar reasoning in the context
of Brownian motion with resets to the origin. In view of all this,
and the probabilities (2), p(�,τ ; �0) must satisfy the following
equation:

p(�,τ ; �0) = qτ δτ,�−�0 +
τ∑

k=1

qk−1(1 − q)p(�,τ − k; 0). (6)

Letting first �0 = 0 in (6), an equation for p(�,τ ; 0) follows
which can be handled by using z transforms. We find

p(�,τ ; 0) = qτ δτ,� + (1 − q)q��(τ − � − 1), (7)

where �(u) is the (right-continuous) Heaviside step function:
�(u) = 1 for u � 0 and �(u) = 0 for u < 0. Hence, having
started from the origin, the position has (truncated) geometric
distribution p(�,τ ; 0), which decreases with �. However, if
q > 1/2, the mode of the distribution is found at � = τ , as
Fig. 2 shows.

By insertion of (7) in Eq. (6) we obtain the complete
propagator as

p(�,τ ; �0) = qτ δτ,�−�0 + (1 − q)q��(τ − � − 1). (8)

Hence the only effect of having started from � > 0 is to
shift the highest accessible site from τ to τ + �0, maintaining
the probabilities of the remaining accessible states {0,1, . . . ,

τ − 1} unchanged:

p(�,τ ; �0) = p(�,τ ; 0), 0 � � � τ − 1, (9)

and p(�0 + τ,τ ; �0) = p(τ,τ ; 0).

FIG. 3. The conditional mean position of the process,
E[Xt |Xt0 = �0], is plotted as a function of τ = t − t0 for �0 = 2
and q = 4/5.

From Eq. (8) the conditional mean position is given by

E[Xt |Xt0 = �0] =
∞∑

�=0

� p(�,τ ; �0) = q − qτ+1

1 − q
+ qτ �0, (10)

and is a monotone function of τ going from �0 to the limit
value q/(1 − q); see Fig. 3.

Figures 1 to 3 show respectively the sample path, distri-
bution, and the conditional mean of the processes Xt when
q = 4/5 (and �0 = 2). In this case the average time between
resets is 5 and the average limit value is 4—see Eqs. (2) and
(10) above. Notice how the mean function fails to capture the
sharp drops in trajectories at reset times.

From Eq. (8) we obtain the stationary state

p(�) ≡ lim
τ→∞ p(�,τ ; �0) = lim

τ→∞ p(�,τ ; 0) = (1 − q)q�, (11)

a geometric distribution with mean μ = q/(1 − q) and stan-
dard deviation σ = √

q/(1 − q). Thus the system is recurrent
and ergodic and, given enough time, attains an equilibrium
distribution. This ergodicity could be expected on physical
grounds since the incorporation of this reset mechanism
guarantees that the system will not be driven too far off from
the origin. Note that this stationary state X∞ ≡ limτ→∞ Xτ has
the same distribution as Xτ ∗−1, the distance covered before the
motion restarts:

P{Xτ ∗−1 = �} = P{X∞ = �}; (12)

cf. Eqs. (2) and (11). We stress that those remarkable
concurrences in Eqs. (9) and (12) do not extend to general
selection of q�.

IV. EXTREME-TIME STATISTICS

In the next two sections we study some statistical properties
of several extreme functionals associated with the process Xt .
In our context, an extreme event is simply a physical observable
or quantity related to Xt that has attained a minimum or a
maximum. It turns out that there are several of them which are
quite interesting from a physical viewpoint.
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A. First-passage statistics

Let � be a given level. The first-passage time, or hitting time
[6], F(�),

F(�) ≡ min {t : Xt = �|X0 = 0}, (13)

represents the minimum lapse of time needed for the process
to travel from the ground state to the given site, or for the
walker to exit the trap by climbing an elevation �. We begin
considering the analysis of the first-passage time probability
of the process to this level, P(t,�),

P(t,�) = P{F(�) = t}, (14)

namely, the probability that the process which is initially at
X0 = 0 reaches level � for the first time at instant t .

The renewal equation for P(�,t) reads

P(t,�) = q�δt,� +
�∑

k=1

qk−1(1 − q)P(t − k,�), (15)

where the first term accounts for the eventuality that the
process reaches � without restarting, and the summation
contains those cases in which the first reset takes place at time
t∗ = k � �. (We remark that related techniques have been used
elsewhere in the context of reset systems; note, in particular, the
close similarity with the derivation of the survival probability
in [10].)

Taking the z transform of (15) with respect to the time
variable t , one gets

P̂(z,�) = (qz)�
1 − qz

1 − z + (1 − q)z(qz)�
. (16)

The value of any given P(t,�) could be obtained from the
t-order derivative of P̂(z,�) at z = 0,

P(t,�) = 1

t!

∂t P̂(z,�)

∂zt

∣∣∣∣
z=0

,

and leads to the following formula, valid for t � � + 1; see the
Appendix A:

P(t,�) = q�

	 t−�
�+1 
∑
k=0

(
t − (k + 1)�

k

)
[(q − 1)q�]k

− q�+1

	 t−�−1
�+1 
∑
k=0

(
t − (k + 1)� − 1

k

)
[(q − 1)q�]k,

(17)

where 	·
 denotes the floor function,

	x
 = max {k ∈ Z | k � x}.
In Fig. 4, we plot the corresponding distribution of probability
for � = 10 as a function of t .

It is fortunate that despite the unwieldiness of Eq. (17)
most statistical magnitudes can be obtained in an easy way. In
particular, the mean first-passage time can be easily obtained
from P̂(z,�),

E[F(�)] = ∂P̂(z,�)

∂z

∣∣∣∣
z=1

= 1

1 − q

(
1

q�
− 1

)
, (18)

FIG. 4. First-passage time probability of the processes Xt for
� = 10 and q = 4/5.

and hence the mean time to reach � grows exponentially with
the distance [3].

B. Record statistics

By construction, the first time our Sisyphus random walk
visits a given threshold �, F(�), it scores a record: the highest
value reached by the process up to that time. Since the process
is right continuous, one can guarantee that Xt ′ < � for 0 �
t ′ < F(�) and that Xt = � at t = F(�).

The next question that naturally arises within this context
is what are the properties of the interval spent between two
records of the process [19], the inter-record statistics? To
answer this question we are going to generalize (13) and define
F(�; t0,�0),

F(�; t0,�0) ≡ min{t > t0 : Xt = �|Xt0 = �0}, (19)

the first time the process reaches � after time t0, and call
P(t,�; t0,�0) its associated probability

P(t,�; t0,�0) ≡ P{F(�; t0,�0) = t}. (20)

When � > �0, as we assume in this section, P(t,�; t0,�0) is the
probability that at time t , t > t0, the process achieves the new
local maximum �, since Xt ′ < � for t0 � t ′ < F(�; t0,�0). We
will clarify later on the connection between P(t,�; t0,�0) and
R(t,�; t0,�0), the probability that the process sets a new record
� at time t , provided it scored record �0 at time t0.

As in Sec. III, the time homogeneity of the process
implies that P(t,�; t0,�0) is a function of t and t0 through
the time interval τ = t − t0, P(τ,�; �0) ≡ P(t − t0,�; 0,�0). In
this case, the equation for P(τ,�; �0) reads

P(τ,�; �0) = qτ δτ,�−�0 +
�−�0∑
k=1

qk−1(1 − q)P(τ − k,�), (21)

with the first term representing the contingency in which the
process increases steadily during τ consecutive steps, passing
from �0 to �, whereas the summation contains those cases
where the first reset happens after a lapse of τ ∗ = k � � − �0.
Since the restart takes the process to the origin, in the sum
appears P(τ,�) = P(τ,�; 0); see Eq. (14).
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The z transform of Eq. (21) with respect to τ reads

P̂(z,�; �0) = (1 − z)(qz)�−�0 + (1 − q)z(qz)�

1 − z + (1 − q)z(qz)�
, (22)

where we have used Eq. (16). The general expression of
P(τ,�; �0) follows by differentiation around z = 0.

Now, assume that Xt0 = �0 is a record. If such is the
case, Xt ′ < �0 < � for 0 � t ′ < t0. We also know that Xt ′ < �

for t0 � t ′ < t , consequently, Xt ′ < � for 0 � t ′ < t , and the
process scores a new record at time t . In conclusion, the
inter-record probability, R(τ,�; �0), is equal to P(τ,�; �0) for
� > �0.

Basic moments ofR(τ,�; �0) follow from Eq. (22) by taking
derivatives at z = 1. In particular, the mean inter-record lapse
is

R(�; �0) = ∂R̂(z,�; �0)

∂z

∣∣∣∣
z=1

= 1

1 − q

[
1

q�
− 1

q�0

]
. (23)

Finally, note that we have not demanded that the two records
are consecutive; that is, that there is no additional record in the
time interval. In our case, however, the statistics associated
with this contingency can be easily derived from R(τ,�; �0),
by merely setting � = �0 + 1, R(τ,�) ≡ R(τ,�; � − 1). Thus,
for instance,

R(�) ≡ R(�; � − 1) = 1

q�
. (24)

C. Mean recurrence time

In this section we will finish the analysis ofP(τ,�; �0) when
� � �0. In this case, the system can only attain � having first
been reset to the origin, and therefore

P(τ,�; �0) =
∞∑

k=1

qk−1(1 − q)P(τ − k,�), (25)

whose generating function is given by

P̂(z,�; �0) = (1 − q)z(qz)�

1 − z + (1 − q)z(qz)�
, (26)

where we have used again (16).
Equation (26) can be inverted by the methods described

above. In particular, as expected on intuitive grounds, the
probability that the chain ever visits �, starting at �0 � �,
is P̂(z = 1,�; �0) = 1, and all states are positive recurrent.
Actually, site � is visited infinitely often with probability 1.

The mean recurrence time satisfies

E[T�→�] = ∂P̂(z,�; �)

∂z

∣∣∣∣
z=1

= 1

p(�)
, (27)

as the classical ergodic theorem predicts [18]. Further, the time
average of the process is given by

lim
k→∞

1

k + 1

k∑
t=0

Xt = E[X∞] = q

(1 − q)
.

FIG. 5. Realization of the process Mt for the sample path Xt

shown in Fig. 1.

V. WATER MARKS

A. Number of sites visited

Another interesting magnitude, closely connected toP(t,�),
is the high-water mark: the highest value � that the process has
reached for a fixed time t , namely

Mt ≡ max{X0, . . . ,Xt |X0 = 0}. (28)

This quantity marks the threshold between those sites that
have been already reached from those that have not. Classical
extreme-value theory is devoted to study the distribution of
this statistics, typically assuming strong conditions on the
increments of the process, i.e., they are independent and
identically distributed; conditions that are not met here. Note
that 0 � Mt � t and, in contrast to Xt , the path of Mt either
increases linearly or remains constant—see Figs. 1 and 5.

Consider the probability associated with Mt , H(�,t):

H(�,t) ≡ P{Mt = �}. (29)

Obviously, H(t,t) = qt while H(t − 1,t) = 2qt−1(1 − q)
since Mt = t − 1 can only happen if the process suffers just
one restart either at t = 1 or at t − 1. For general values, 0 �
� � t − 2, the derivation of the corresponding probabilities is
not straightforward. The key fact is that Mt < � ⇔ F(�) > t .
Hence

P{Mt < �} = P{F(�) > t} =
∞∑

k=t+1

P(k,�), (30)

and therefore it follows that

H(�,t) =
t∑

k=0

[P(k,�) − P(k,� + 1)]. (31)

We can see a practical example in Fig. 6, where for t = 30 and
two different choices for q, q = 4/5 and q = 9/10, we plot
H(�,t) versus �. In the lower panel, observe the local maximum
at � = t and the kink at � = t/2. Exact determination of the
mode of the distribution is not an easy task.
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(a)

(b)

FIG. 6. High-water mark probability of the processes Xt for t =
30 and (a) q = 4/5, (b) q = 9/10.

B. Number of visits

Given a fixed time t , the high-water mark level counts the
number of sites that have been visited. A related counting
physical observable involves N (t ; �), the number of visits to a
fixed level � up to time t , and N (n,t ; �), the probability that
this number equals n ∈ N, i.e.,

N (n,t ; �) ≡ P{N (t ; �) = n}. (32)

In the extreme case t = �, obviously

P{N (�; �) = 1} = 1 − P{N (�; �) = 0} = q�.

By contrast, if � = 0, N (t ; 0) is just the number of resets up
to time t plus 1 (the initial visit) and hence E[N (t ; 0)] = 1 +
m(t). Finally the ergodic theorem guarantees that

lim
t→∞

N (t ; �)

t
= p(�),

with probability 1. In addition, the probability that the site �

have never been visited is just

N (0,t ; �) = P{Mt < �}. (33)

However, to go beyond these general statements and
determine N (n,t ; �) with all generality is far from trivial. We
resort again to renewal arguments to obtain a set of equations

with hierarchical structure:2

N (n,t ; �) = qtδn,1 +
�∑

k=1

qk−1(1 − q)N (n,t − k; �)

+
t∑

k=�+1

qk−1(1 − q)N (n − 1,t − k; �). (34)

In this formula we can identify three different kinds of
contributions. The single term assumes that no reset has taken
place up to time t , and the process visits just once each of the
levels between 0 and �. The first summation contains those
cases for which the first reset takes place before the walker
visits the targeted level �. In the second summation we find
those cases in which the process has reached or passed � once
by the time of the first restart.

The z transform of Eq. (34) with respect to the time variable
t leads to

N̂ (n,z; �) = [δn,1 + (1 − q)zN̂ (n − 1,z; �)](qz)�

1 − z + (1 − q)z(qz)�
(35)

for n � 1, while the value of N̂ (0,z; �) can be readily obtained
from Eqs. (16), (30), and (33):

N̂ (0,z; �) = 1 − (qz)�

1 − z + (1 − q)z(qz)�
. (36)

Hence, for n � 1, the z transform is given in an explicit way
as

N̂ (n,z; �) = (1 − qz)(1 − q)n−1zn−1(qz)n�

[1 − z + (1 − q)z(qz)�]n+1
. (37)

Fortunately, there is no need to invert this expression to
obtain the mean and main moments of the distribution. Indeed,
say

N̂ (z; �) ≡
∞∑

n=0

n N̂ (n,z; �) = (1 − qz)(qz)�

(1 − z)2 . (38)

The “mean occupation number,” i.e., the mean number of visits
to level � at time t � �, follows by inversion of this result as

N (t ; �) = q�[1 + (1 − q)(t − �)], (39)

and depends linearly on t − �. In particular, letting � = t , � =
0, or t → ∞, the results at the beginning of the section are
recovered.

VI. ALTERNATIVE DYNAMICS

In this section we relax some of the assumptions made in the
core of the main text, to indicate the capabilities and possible
generalizations of Sisyphus random walk.

2With no loss of generality we take n � t and � � t since, at
most, a single visit is possible within each reset interval, and hence
N (n,t ; �) = 0 if n > t or � > t .
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A. Random probabilities

The first variation to the previous setup is obtained
assuming that q� is still independent of �, but is random,
and hence not a fixed parameter. This situation corresponds
to a walker climbing a ladder whose slip probability does not
change with the step but remains unknown, due to insufficient
information on the walker idiosyncrasy. By replacing q by
Q, a random variable, some results appropriate to this case
follow from the previous expressions, by taking expectations
with respect to Q. Concretely, unconditional probabilities may
be derived this way. However, conditioning gives information
which may partially pin down the slip probability of the walker.

For instance, suppose that

P{q < Q � q + dq} = α(1 − q)α−1dq, (40)

α > 0, i.e., 1 − Q has a Pareto distribution on the interval
[0,1]. Then one has that

P{τ ∗ = k} = α
	(α + 1)(k − 1)!

	(α + k + 1)
, (41)

where 	(x) is the Gamma function. This means that inter-
reset times follow a Zipf-Simon-Yule (or discretized Pareto)
distribution, well known in certain areas of econophysics, like
wealth distribution. Recall that Eq. (41) is used to model
the frequency of words in languages, or the size of objects
randomly chosen from certain types of populations; see [20],
p. 260 et seq.

The mean value of the inter-reset time now reads

E[τ ∗] = α

α − 1
, (42)

and is finite if and only if α > 1. Note that this excludes
the uniform distribution, α = 1. Mean first-passage times or
mean inter-record times are always unbounded magnitudes for
� � 1.

The same law governs the properties of marginal and
equilibrium probabilities of the process, cf. Eqs. (7) and (11),

p(�,τ ; 0) = 	(α + 1)�!

	(α + � + 1)
δτ,� + α	(α + 1)�!

	(α + � + 2)
�(τ − � − 1),

p(�) = lim
τ→∞ p(�,τ ; 0) = α	(α + 1)�!

	(α + � + 2)
.

Thus, the equilibrium distribution p(�) has heavy tails with
Pareto exponent α + 1.

B. Shrinking probabilities

In this section we drop the requirement that q� be constant
[4]. In this case most previous results, including the distribution
of τ ∗, must be generalized appropriately. We focus on a
system whose return probability increases with the location
of the walker. This assumption is adequate to describe, say,
the process of formation and eventual collapse of stalagmites
or a house of cards. A natural choice is

q� = q0

[
1 −

(
�

� + 1

)α]
, (43)

where q0, 0 < q0 � 1 is a constant parameter that accounts
for the probability of leaving the ground level, and α > 0. To

FIG. 7. A feasible realization of the process Xt with shrinking
probabilities: q� = q0/(� + 1) and q0 = 4/5.

show how the methodology must be deployed, we detail the
simple case corresponding to α = 1, namely

q� = q0

� + 1
.

Figure 7 shows how typical trajectories under this dynamics
are less likely to access higher values than the initial model
with q� = q0, cf. Fig. 1.

It follows that the reset probability satisfies

P{τ ∗ = τ } = qτ−1
0

(τ − 1)!

(
1 − q0

τ

)
, 1 � τ < ∞. (44)

This leads to a mean inter-reset time E[τ ∗] = eq0 and to the
following renewal equation:

p(�,τ ; 0) = qτ
0

τ !
δτ,� +

τ∑
k=1

qk−1
0

(k − 1)!

(
1 − q0

k

)
p(�,τ − k; 0),

(45)

for p(�,τ ; 0), cf. Eq. (6) with � = 0.
Appropriate use of the z transform permits solving this

equation as

p(�,τ ; 0) = q�
0

�!
eτ−�(−q0) �(τ − �). (46)

Here we have introduced the exponential sum function
en(−q0), defined as the nth Taylor polynomial for the expo-
nential function:

eτ (−q0) ≡
τ∑

k=0

(−q0)k

k!
. (47)

Letting τ → ∞ in Eq. (46) we find that the stationary state
has Poisson distribution with parameter q0 and mean position
1/q0.

The results can be generalized to an arbitrary choice of q�.
Skipping the details, we note that for τ � �,

p(�,τ ; 0) = P{τ ∗ > �}[δτ,� + m(τ − �) − m(τ − � − 1)].

(48)
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The renewal theorem implies then that as long as one has
E[τ ∗] < ∞, the stationary distribution is

p(�) = P{τ ∗ > �}
E[τ ∗]

, 0 � � < ∞. (49)

Thus, both the finite-time position distribution and stationary
state follow in closed form given the distribution of renewals
P{τ ∗ > �} = q0 · · · q�−1 and the function m(τ )—which can be
recovered solving Eq. (3) appropriately generalized, cf. [17].

C. Sisyphus random walk on the integers

Here we consider the Sisyphus random walk generalized
to a case where trajectories could, after every reset, either
increase or decrease linearly with probabilities ρ and 1 − ρ,
respectively. Concretely, given Xt = 0 we generalize Eq. (1)
to

Xt+1 =

⎧⎪⎨
⎪⎩

1 with probability qρ,

−1 with probability q(1 − ρ),

0 with probability 1 − q,

(50)

while if Xt �= 0 then

Xt+1 =
{
� + sgn(�) with probability q,

0 with probability (1 − q).
(51)

Xt is now a Markov chain on the full integers, namely Xt ∈
{−t,−t + 1, . . . ,t − 1,t} for t ∈ {0,1,2, . . .}, defined by two
independent parameters, q and ρ, with 0 < q < 1, 0 < ρ < 1.
It could be used as a crash model for search strategies wherein
the walker may return to the origin and restart in the opposite
direction.3 The optimal reset strategy is described below; see
Eq. (60). This more general situation may be analyzed with
similar techniques to those employed previously. We find it
convenient to define

ρ� ≡

⎧⎪⎨
⎪⎩

ρ for � > 0,

1 for � = 0,

1 − ρ for � < 0.

(52)

With such a proviso we find that when �0 = 0, Eq. (6)
generalizes to

p(�,τ ; 0) = ρ�q
|�|δτ,|�| +

τ∑
k=1

qk−1(1 − q)p(�,τ − k; 0), (53)

whose solution for −τ � � � τ reads

p(�,τ ; 0) = ρ�q
|�|[δτ,|�| + (1 − q)�(τ − |�| − 1)]. (54)

Other statistical observables, like the propagator p(�,τ ; �0)
or the first hitting time, can also be obtained by establishing
the renewal equation that codifies the possible behaviors after
the first renewal. Starting from �0 �= 0, the propagator reads
simply

p(�,τ ; �0) = qτ δ�0+τσ0,� + ρ�q
|�|(1 − q)�(τ − |�| − 1), (55)

3In this case, the rock pushed by the king of Ephyra rolls down
toward a valley located between two twin hills.

where σ0 ≡ sgn(�0). The stationary state has a two-sided
geometric distribution

p(�) = ρ�(1 − q)q |�|, −∞ < � < ∞, (56)

and satisfies P{Xτ ∗−1 = �} = P{|X∞| = �}.
If, say, � > 0, Eq. (15) for the hitting time reads now

P(t,�) = ρq�δt,� +
�∑

k=1

qk−1(1 − q)P(t − k,�)

+ (1 − ρ)
∞∑

k=�+1

qk−1(1 − q)P(t − k,�), (57)

with t � �, and hence the generating function and mean of the
hitting time read respectively

P̂(z,�) = ρ(qz)�(1 − qz)

1 − z + ρz(1 − q)(qz)�
(58)

and

E[F(�)] = 1

1 − q

(
1

ρq�
− 1

)
. (59)

Equation (59) can be used to minimize the mean exit time
[3], for given ρ and �. The condition for the minimum is

ρq�+1 − (1 + �)q + � = 0. (60)

By a well-known result in calculus, this equation has exactly
one solution q∗ satisfying 0 � q∗ � 1. The choice q = q∗
corresponds to the optimal search, or reset, strategy for the
two-sided Sisyphus random walk. In particular, it reduces to

ρeε∗−1 = ε∗, (61)

when � → ∞. In Eq. (61) we have introduced parameter
ε∗, ε∗ ≡ (� + 1)q∗ − �, 0 < ε∗ < 1, in terms of which the
minimum mean exit time reads

E[F∗(�)] → �

ε∗ . (62)

VII. CONCLUSIONS

We have analyzed an extremely simple random walk with
constant deterministic dynamics that may randomly return
to the origin, and we have determined its main statistics; in
particular, the first-passage time and high-water marks of the
process are discussed. It turns out that this simple evolution law
is misleading and the corresponding dynamics is surprisingly
complex and exhibits a rich behavior. Nevertheless suitable
renewal ideas may be used to simplify the analysis. We
suggest generalizations of the system, appropriate to different
physical settings; in particular a situation where the tendency
to return increases with the distance from the initial state can
be incorporated into our formalism. The resulting system is
then capable of providing a gross description of Sisyphus
cooling and formation and growth of houses of cards and
icicles. Depending on the selection, Zipf, geometric, or Poisson
distributions are found to describe the equilibrium state.
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APPENDIX: INVERSE z TRANSFORMS

We have

P̂(z,�) ≡
∞∑

k=0

P(k,�)zk (A1)

with

P̂(z,�) = (qz)�
1 − qz

1 − z + (1 − q)z(qz)�
. (A2)

We can obtain P(k,�) by looking at the coefficient in front of
the zk term. Consider

G(z) ≡ 1

1 − z + (1 − q)z(qz)�
, (A3)

in terms of which P̂(z,�) reads

P̂(z,�) = (qz)�(1 − qz)G(z).

One has

G(z) = 1

1 − z[1 − (1 − q)(qz)�]

=
∞∑

m=0

[1 − (1 − q)(qz)�]mzm

=
∞∑

m=0

m∑
k=0

(
m

k

)
[(q − 1)q�]kzm+k�

=
∞∑

k=0

∞∑
m=k

(
m

k

)
[(q − 1)q�]kzm+k�.

Hence

P̂(z,�) = q�

∞∑
k=0

∞∑
m=k

(
m

k

)
[(q − 1)q�]kzm+(k+1)�

− q�+1
∞∑

k=0

∞∑
m=k

(
m

k

)
[(q − 1)q�]kzm+(k+1)�+1,

and therefore, collecting the terms with zτ , we have

P(τ,�) = q�

	 τ−�
�+1 
∑
k=0

(
τ − (k + 1)�

k

)
[(q − 1)q�]k

−q�+1

	 τ−�−1
�+1 
∑
k=0

(
τ − (k + 1)� − 1

k

)
[(q − 1)q�]k,

for τ � � + 1, and where 	x
 = max {k ∈ Z | k � x}. Then
we have for � + 1 � τ � 2�, P(τ,�) = (1 − q)q�; for 2� +
1 � τ � 3� + 1,

P(τ,�) = (1 − q)q�[1 − (τ − 2�)(1 − q)q� − q�+1];

for 3� + 2 � τ � 4� + 2,

P(τ,�) = (1 − q)q�[1 − (τ − 2�)(1 − q)q� − q�+1]

+ τ − 3� − 1

2
(1 − q)2q3�[(τ − 3�)(1 − q) + 2q];

and so forth. For P̂(z,�; �0), we have

P̂(z,�; �0) = (1 − q)z(qz)�

1 − z + (1 − q)z(qz)�

= (1 − q)z(qz)�G(z)

for � � �0 and

P̂(z,�; �0) = (1 − z)(qz)�−�0 + (1 − q)z(qz)�

1 − z + (1 − q)z(qz)�

= [(1 − z)(qz)�−�0 + (1 − q)z(qz)�]G(z)

for � > �0; therefore we can use the same technique. In par-
ticular, for the case in which the two records are consecutive,
R(τ,�) = P(τ,�; � − 1), τ � 1, we have

R(τ,�) = q

	 τ−1
�+1 
∑
k=0

(
τ − k� − 1

k

)
[(q − 1)q�]k

−�(τ − 2)q
	 τ−2

�+1 
∑
k=0

(
τ − k� − 2

k

)
[(q − 1)q�]k

+�(τ − � − 1)(1 − q)q�

×
	 τ−�−1

�+1 
∑
k=0

(
τ − (k + 1)� − 1

k

)
[(q − 1)q�]k.
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