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1. SUMMARY 

This final degree project is a study of the consequences of using biogas or adding water to a 

combustion chamber. A sensitivity analysis with the computational fluid dynamics software 

ANSYS® Fluent has been performed to quantify these effects, focusing on the polluting impacts 

and more specifically on the NOx formation. 

First of all, an abstract of the most relevant studies that show up when looking for some of the 

ideas related to this study will be exposed. Then, some explanations about how does ANSYS® 

Fluent work will be given, in order to make this study easy to understand. Finally, the results 

obtained during this project will be showed, accompanied by an interpretation and an analysis of 

them. 

Keywords: combustion, biogas, ANSYS, NOx 
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2. RESUM 

Aquest treball final de grau és un estudi sobre les conseqüències d’utilitzar biogàs o afegir 

aigua a una càmera de combustió. Per a quantificar aquests efectes, s’ha realitzat una anàlisi de 

sensibilitat amb el software de dinàmica de fluids computacional ANSYS® Fluent, fent èmfasi en 

els impactes contaminats i més específicament en la formació de NOx. 

En primer lloc, es mostrarà un abstracte dels estudis més rellevants que apareixen quan es 

busquen idees relacionades amb aquest estudi. A continuació, es donaran algunes explicacions 

sobre com funciona ANSYS® Fluent per a que el treball sigui fàcil d’entendre. Finalment, es 

presentaran els resultats obtinguts durant aquest projecte, acompanyats d’una interpretació i una 

anàlisi dels mateixos. 

Paraules clau: combustió, biogàs, ANSYS, NOx 
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3. INTRODUCTION 

The high and growing demand for energy in today’s world has been met about 80% with a 

fossil fuel supply. Fossil fuel reserve is questionable and the use of fossil fuel resulted in the 

increase of unwanted pollutants emission. This condition requires urgent development of 

improved pollutants process and new sources of energy other than fossil fuel. Biogas is one of 

the options since it is renewable and carbon dioxide produced in the combustion process will be 

used back by the biomass that grown to produce biogas. 

Biogas has a wide range of applications. It can be used for electricity production on sewage 

works, in a CHP (Combined Heat and Power) gas engine, where the waste heat from the engine 

is conveniently used for process heating, space heating, water heating, etc. If compressed, it can 

replace compressed natural gas for use in vehicles, where it can fuel an internal combustion 

engine or fuel cells. Since it is more than likely that biogas will play an important role as an energy 

source in the near future, it is a very attractive field of study for many reasons.  

Firstly, since it is a relatively new source of energy, the efficiency of these combustion systems 

must be maximized in order to obtain the higher possible profit from them. Moreover, not only the 

concern about the efficiency motivates the studies about its combustion, but also these processes 

must be environmentally friendly. One of the most limiting aspects for the optimization of biogas 

combustion systems is the pollution associated to them. For example, CO2 and some VOC’s 

(Volatile Organic Compounds) are related with global warming, SOx produces acid rain, CO bonds 

with hemoglobin (disabling it) and finally NOx causes pollution in big cities and is currently an 

important matter of concern. 

On the other hand, the power of computing technologies has experienced a very important 

increase in the last years, which allows to perform simulations that can be useful for a first 

approach and save time and resources in expensive experiments. 

The effects that water addition has in the NOx formation will be studied, as there is an 

important concern about the production of this pollutant and possible measures to tackle this 

problem are needed. 
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3.1. OTHER BIOGAS SIMULATIONS 

Some interesting examples can be found when looking for studies of biogas combustors using 

CFD. It is more than likely that Noor et al (2013) is the most similar study to this project. Although 

the geometry used in that study is different from the one that is analyzed in this project, the main 

ideas are quite similar: it performs a sensitivity analysis using ANSYS® Fluent to predict the NOx 

formation of a bluff-body MILD (Moderate and Intense Low oxygen Dilution) burner. This burner 

has an important feature: part of the exhaust gases are recirculated and introduced again to the 

furnace. This device is observed in Figure 1. 

Figure 1: Bluff-body MILD combustor. (Noor et al, 2013) 

Noor et al (2013) explains step by step the CFD simulation for the non-premixed MILD 

combustion furnace with biogas as fuel. Although the image above is in 3D, the calculation is 

run in 2D, like in this project. However, no precision or accuracy is lost, due to the fact that 

both this furnace and the one used in this project have a complete symmetry that allows to 

assume no variation in the radial coordinate. This technique is widely used, as it reduces the 

computational time and cost and does not affect the results. 
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The above explanation is illustrated in Figure 2, where all the needed information has been 

calculated only in a symmetry plane. 

Figure 2: Velocity profiles for the MILD combustor. (Noor et al, 2013) 

Another very interesting study, although not related to combustion, is given by Latha et al 

(2009). In this paper, the authors perform different CFD simulations of an anaerobic digester at 

the same time that they carry out the real experiments in a laboratory scale reactor. This is very 

useful, because one can check if the results obtained using the software program are similar or 

not to the obtained in a real experiment. 

The main idea behind this paper is to use CFD simulations to predict the behavior that the 

system will have in reality without having to perform a real experiment. In fact, a viscosity and 

mixing study is carried out, and CFD simulations’ purpose is to give an idea about the time that 

will take to reach the steady state and when and where will be dead zones due to high viscosity.  
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Figure 3: Real experiment (left) and CFD simulation (right). (Latha et al, 2009) 

3.2. ADDING WATER TO COMBUSTION SYSTEMS 

Although they might seem innovative, water-injection engines began to be used several 

decades ago. At the beginning, water-injection’s purpose was to work as an intercooler: taking 

advantage of water’s high heat of vaporization, heat is transferred from the hot cylinder air into 

the water, evaporating it and cooling the intake charge. Therefore, the intake charge is denser 

and thus the volumetric efficiency is higher. Furthermore, it also prevents that some hot points 

produce premature ignition, and in jet engines increases the thrust of the engine, which is very 

useful at low speeds and takeoff, while also cools the turbines. 

Water-injection engines are mainly used in aircrafts and in automobiles. For example, the 

1957 Boeing KC-135 used water during takeoff to have an extra power. This is known as a wet 

takeoff, and seen in Figure 4. 

Figure 4: Boeing KC-135 performing a wet takeoff. (USAF, 2013) 
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In automobiles, a very recent example can be mentioned. The 2015 BMW M4 GTS features 

a water-injection engine, which is used both to increase the engine’s power and to reduce 

pollutant emissions. Keeping in mind that it is the fastest BMW road car ever and that its price is 

above 150 000 €, and furthermore being the Moto GP official safety car, it is more than likely that 

the tendency of adding water to engines will increase its popularity in the near future. The system 

that this car features is shown in Figure 5. 

Figure 5: BMW M4 GTS water-injection system. (BMW, 2015) 

However, regarding this study, the most interesting advantage of adding water to a 

combustion chamber is the reduction of NOx formation. This reduction is due to two reasons: first 

of all, the peak temperature of the system decreases when water is added, which makes that the 

thermal NOx formation is also decreased, as will be explained in more detail in the following 

section. Additionally, the presence of water influences directly the reaction mechanism. According 

to Chybowski et al (2015), the water supplied into the combustion chamber reduces the 

concentration of atomic oxygen and promotes the formation of hydrogenated species such as 

HCN or HNCO, which cannot convert directly to NO. To explain the behavior previously described, 

Figures 6 and 7 are added.  



18 Vilas Bonafoux, Salvador 

𝐻2𝑂 → 𝑂𝐻 + 𝐻 

𝐻2𝑂 + 𝑂 → 𝑂𝐻 + 𝑂𝐻 

𝐻2 + 𝑂 → 𝐻 + 𝑂𝐻 

𝐻 +  𝑂2  → 𝑂𝐻 + 𝑂 

which influences the reaction speed: 

𝑂 + 𝑁2  ⇌  𝑁𝑂 + 𝑁 

𝑂 +  𝑁2 + 𝑂𝐻 ⇌  𝑁2𝑂 + 𝑂𝐻 

Figure 6: Reaction of atomic oxygen with water. (Chybowski et al, 2015) 

Figure 7: NOx integration and disintegration diagram during combustion. (Chybowski et al, 2015) 

3.3. BIOGAS UPGRADING 

Biogas composition is typically around 60% methane and 30% CO2, with trace elements such 

as H2S, which is not enough quality to be used as fuel. This is why methane in biogas is 

concentrated through a cleaning process to the same standards as natural gas. The result product 

is typically called biomethane. To reach these standards, there are four main methods: water 

washing, pressure swing adsorption, selexol adsorption and amine gas treating. 

Biomethane composition is slightly different for each of these methods, because the steps 

followed, and also the chemical and physical separation processes are not the same. Given that 
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water washing is the most used method, the composition of a biogas upgraded with this method 

will be used in this study. Rasi (2009) published a study where biomethane composition was 

analyzed, to see the differences of using different upgrading processes while using the same raw 

biogas. In the case of water washing, Rasi (2009) saw that depending on the water flow rate and 

gas flow rate used in the process, the obtained biomethane had different compositions. In this 

study, the composition chosen is a mean of the four compositions given in the previous mentioned 

paper, which is going to be detailed in the following section. 

The industrial process to obtain biomethane by using the water washing cleaning method is 

shown in Figure 8. 

Figure 8: Simplified diagram of the counter-current water wash upgrading process. (Rasi, 2009) 
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4. OBJECTIVES  

The aim of the project is performing a CFD (Computational Fluid Dynamics) analysis using 

the simulation tool ANSYS® allowing to study many different aspects about the system in detail 

and to reduce the time spent in research. Taking advantage of this tool, this study has the 

following objectives: 

o To study the water addition effect in a combustion chamber that is burning biogas 

by quantifying the NOx production when different quantities of water are added, 

either to the fuel or to the air. 

o To perform the same study keeping all the parameters constant except the fuel, 

which is industrial methane. 

o To compare both analysis to see which of the fuels has the most negative 

environmental impact, as it is wanted to know if biogas could be a better choice 

than methane in terms of pollution.  
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5. MATERIALS AND METHODS: USING ANSYS® 

FLUENT 

CFD is one of the ways to virtually design and run a simulation experiment without the need 

to physically build the model. The cost of model building and repeat the process until the desired 

result is quite large. This process can be done by CFD modelling using commercial software and 

is much cheaper compared to building the physical unit. 

The precision and accuracy that are going to be obtained performing a CFD analysis very 

much depend on selecting the appropriate models. In the following subsections, the chosen 

models are explained, and reasons why they are used are given. 

5.1. PERFORMING A SIMULATION 

As commented before, ANSYS® provides access to multiple modules that allow to simulate 

a huge number of scenarios focusing on a lot of different engineering areas. Fluent is one of these 

modules, and its characteristics and models are suitable for the combustor that is going to be 

studied in this project. 

To make this study more understandable, a brief explanation of how does the software 

program work and what does the user need to do to perform a simulation is provided. Every step 

that has to be followed to successfully perform a simulation is explained, focusing on the models 

and on the NOx formation setup, which are the most critical steps of the simulation. 

The previous mentioned steps that have to be completed in order to perform a calculation are 

the following: 

o Geometry design 

o Mesh generation 

o Models set up 

o Establishment of the calculation parameters 

o Results review and visualization 

5.1.1. Geometry design 

When a new simulation is started, the first thing to do is to set the geometry that is wanted to 

be analyzed. To do it, ANSYS® offers different tools that allow to draw any kind of geometry. 
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Moreover, a geometry from another drawing software such as AutoCAD, Solidworks or Unigraphic 

can be imported to ANSYS®, which is a very useful feature. 

The combustion chamber used in this project represents the geometry of a 300kW swirl-

stabilized burner. As mentioned before, the system has a high level of symmetry which allows to 

reduce the calculation domain to a 2D problem, which drastically reduces the computational time 

to calculate the solution. The calculation domain is shown in Figure 9. 

Figure 9: Calculation domain of the combustion chamber. (ANSYS®, 2015) 
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5.1.2. Mesh generation 

Once the geometry has been drawn, the system must be discretized in order to solve the 

mathematical model. If the system wanted to be solved without discretizing it, microscopic 

balances should be solved, which are differential equations. By discretizing the system, finite 

elements are created, and its size is such small that those differential equations from the 

microscopic balances can be transformed to algebraic equations, which require less effort to be 

calculated. This is called the finite elements method. 

Obviously, the solution is not completely exact because the equations’ transformation is just 

an approximation. This approximation will be better as finite elements size is reduced. However, 

as smaller is the finite elements size, bigger is the number of points that have to be calculated. 

This is why a mesh cannot be too refined, otherwise the computational time to perform the 

simulation would be too high. To minimize the error, a very common strategy is to create inflation 

zones. Basically, it consists of mesh refining only in the zones where a lot of changes are going 

to happen, such as inlets, intense chemical reactions, etc. By doing this, the accuracy is increased 

in the most important zones while the computational time is still reasonable. 

In the combustion chamber used in this study, the zones that need an inflation are the fuel 

inlet and the symmetry axis, because is where the major part of the combustion will take place. 

The mesh and the inflation zones are showed in Figures 10 and 11.  

Figure 10: Final mesh. The inflation zone around the symmetry axis can be appreciated. 
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Figure 11: Zoom-in at the inflation zone of the fuel inlet. 

5.1.3. Simulation setup 

In this step is where Fluent module is properly used. The two previous steps are general for 

any ANSYS® simulation, and once completed, the appropriate module is chosen. This is probably 

the most important part of the simulation, because it is about choosing the correct models, and is 

crucial to obtain a reliable solution. In this part, the models are set, the boundary conditions are 

defined and the solution methods and controls are established. 

In the model definition section, one must take into account the mathematical model that 

governs the process to analyze. In Fluent case, the mathematical model is composed of fluid flow 

equations, which are series of balances and fluid properties, including the overall mass balance 

(also known as the continuity equation), the momentum balance, the energy balance (which is 

decomposed in different equations) and partial mass balances. These equations are: 

Continuity 

𝛿𝜌𝑈

𝛿𝑡
+ 𝛻. 𝜌𝑈 = 0 
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Momentum 

𝛿𝜌𝑈

𝛿𝑡
+ (𝛻. 𝜌𝑈𝑈) = −𝛻𝑝 + 𝛻. 𝜏 + 𝜌𝑔 

Enthalpy 

𝛿𝜌ℎ

𝛿𝑡
+ 𝛻. 𝜌𝑈 = 𝛻. 𝜆𝑒𝛻𝑇 − 𝛻. 𝑞𝑟 + 𝛻. ∑ 𝜌ℎ𝑙(𝑇)𝐷𝑒𝛻𝑚𝑙

𝑙
 

Temperature 

𝜌𝐶𝑝

𝐷𝑇

𝐷𝑡
= 𝛻. 𝜆𝑒𝛻𝑇 − 𝛻. ∑ 𝜌ℎ𝑙(𝑇)𝐷𝑒𝛻𝑚𝑙 − 𝜌 ∑

𝐷𝑚𝑙

𝐷𝑡
ℎ𝑙(𝑇)

𝑙𝑙
 

Species mass fraction 

𝛿𝜌𝑚𝑙

𝛿𝑡
+ 𝛻. 𝜌𝑈𝑚𝑙 = 𝛻. 𝐷𝑒𝜌𝛻𝑚𝑙 − 𝑅𝑙 

To solve the problem, Fluent discretizes these governing equations for each point generated 

in the meshing section. But apart from the previous mentioned equations, Fluent offers different 

additional models that can be activated depending on the system that is going to be studied. In 

this case, four additional models must be activated in order to perform the simulation as accurately 

as possible. 

First of all, viscous model must be activated because there is a fluid flowing through the 

system. Due to high velocity inlet (around 160 m/s for the fuel) and swirl’s presence, turbulent 

flow is expected, and therefore an appropriate model is needed to be chosen. The most accepted 

and used method to perform calculations where turbulent flow is present is the k-epsilon model, 

which consists of two equations, one for the turbulent kinetic energy (k) and one for the turbulent 

dissipation rate (epsilon). These equations are: 

Turbulent kinetic energy (k) 

𝛿(𝜌𝑘)

𝛿𝑡
+

𝛿(𝜌𝑘𝑢𝑖)

𝛿𝑥𝑖

=
𝛿

𝛿𝑥𝑗

[(𝜇 +
𝜇𝑡

𝜎𝑘

)
𝛿𝑘

𝛿𝑥𝑗

] + 𝑃𝑘+𝑃𝑏 + 𝜌𝜖 − 𝑌𝑀 + 𝑆𝑘  

Turbulent dissipation rate (epsilon) 

𝛿(𝜌 ∈)

𝛿𝑡
+

𝛿(𝜌 ∈ 𝑢𝑖)

𝛿𝑥𝑖

=
𝛿

𝛿𝑥𝑗

[(𝜇 +
𝜇𝑡

𝜎∈

)
𝛿 ∈

𝛿𝑥𝑗

] + 𝐶1∈

∈

𝑘
(𝑃𝑘 + 𝐶3∈𝑃𝑏) − 𝜌𝐶2∈

𝜖2

𝑘
+ 𝑆∈ 

Then, also the radiation model has to be activated because in the combustion chamber, 

temperatures above 2200K are achieved. The P-1 radiation model will be applied, which is the 

simplest particular case of the P-N model. The radiation flux term in the energy balance is 

provided by the following equation: 



26 Vilas Bonafoux, Salvador 

−𝛻 · 𝑞𝑟 = 𝑎𝐺 − 4𝑎𝑛2𝜎𝑇4 

where 𝑎 is the absorption coefficient, 𝑛 is the refractive index of the medium, 𝜎 is the Stefan-

Boltzmann constant and 𝐺 is the incident radiation. 

Afterwards, the appropriate species model is chosen. In this case, the non-premixed model 

is activated, because it is used when the oxidizer and the fuel enter the combustion chamber in 

different streams. This method reduces the thermochemistry of the problem to a single parameter, 

assuming some simplifications. This parameter is called the mixture fraction, and it establishes a 

relation between the burned and the unburned fuel stream elements. Therefore, all the species 

parameters required for the transport equations are defined in terms of the mixture fraction, which 

allows to simplify the difficulties of determining them using non-linear equations. The mixture 

fraction has the following expression: 

𝑓 =
𝑍𝑖 − 𝑍𝑖,𝑂𝑋

𝑍𝑖,𝑓𝑢𝑒𝑙 − 𝑍𝑖,𝑂𝑋

 

where 𝑍𝑖 is the elemental mass fraction of the element  and the subscripts OX and fuel 

denote the value at the oxidizer stream inlet and at the fuel stream inlet respectively. As can be 

seen, the value of the mixture fraction will be always between 0 and 1, which gives an idea about 

how burned is a certain element in a very simple way. 

Finally, regarding the fact that one of the most important objectives of this study is to 

determine the pollutant formation, a model to calculate NOx formation is set. The three primary 

pathways of NOx formation in combustion processes are thermal NOx, fuel NOx and prompt NOx. 

First of all, thermal NOx refers to NOx formed through high temperature (usually above 1600 ºC) 

oxidation of the diatomic nitrogen found in combustion air, and is recognized as the most relevant 

source in combustion. The main reactions producing thermal NOx are described in the extended 

Zeldovich mechanism: 

𝑁2 + 𝑂 ⇌  𝑁𝑂 + 𝑁 

𝑁 +  𝑂2  ⇌  𝑁𝑂 + 𝑂 

𝑁 + 𝑂𝐻 ⇌  𝑁𝑂 + 𝐻 

These reactions are highly temperature dependent, because the N2 triple bond requires to be 

broken. In fact, it is estimated that the NOx production rate doubles for every 90 K temperature 

increase when system temperature is above 2200 K. 
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Then, prompt NOx is attributed to the reaction of atmospheric nitrogen, N2, with radicals 

derived from fuel. Although it is usually the minor contribution in NOx formation, it becomes 

relevant in low temperature combustions of oxygenated fuels. However, as NOx emissions are 

nowadays reduced to very low levels, even a small contribution has to be taken into account. It 

occurs in the earliest stage of combustion, and its mechanism is the following: 

𝐶𝐻 +  𝑁2  ⇌  𝐻𝐶𝑁 + 𝑁 

𝑁 +  𝑂2  ⇌  𝑁𝑂 + 𝑂 

𝐻𝐶𝑁 + 𝑂𝐻 ⇌  𝐶𝑁 + 𝐻2𝑂 

𝐶𝑁 +  𝑂2  ⇌  𝑁𝑂 + 𝐶𝑂 

Fuel NOx is not calculated in this experiment, because it is associated with nitrogenous 

hydrocarbons, which are not present in any of the two studied fuels. 
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6. SENSITIVITY ANALYSIS 

Now that all the models are described and properly activated, the simulation can be carried 

out. As commented before, the effect of water addition into the combustor is studied. This is done 

by performing different simulations maintaining all the variables constant and only changing the 

amount of water added in the system. This is called a parametric analysis. 

As mentioned in the Objectives section, one of the objectives of this project is to compare the 

pollutant emission of an upgraded biogas (also called biomethane) and an industrial methane. 

Biomethane composition has been extracted from Rasi (2009) while methane composition was 

obtained from Union Gas Ltd Company, a Canadian natural gas storage, transmission and 

distribution company. These compositions are shown in Tables 1 and 2.

Table 1. Biomethane composition. (Rasi, 2009) 

Species Mole fraction 

CH4 9.00·10-1 

N2 6.00·10-2 

CO2 3.99·10-2 

C2H6 3.20·10-5 

C3H8 3.00·10-5 

C4H10 1.76·10-5 

C6H6 2.00·10-5 

H2S 2.50·10-7 

CH3Cl 1.50·10-7 

Table 2. Methane composition. (Union Gas Ltd) 

Species Mole fraction 

CH4 9.50·10-1 

N2 1.00·10-2 

CO2 5.00·10-3 

C2H6 3.19·10-2 

C3H8 2.00·10-3 

C4H10 6.00·10-4 

C5H12 2.00·10-4 

C6H14 1.00·10-4 

O2 2.00·10-4 

Water is added both in air and fuel inlets, because not only the amount of water affects the 

system but also the contact model has to be taken into account. To make the study reliable, when 

water is added, the flow rate of the inlet stream needs to be changed in order to keep the fuel/air 

ratio constant in all the experiments. Otherwise, adding water would mean adding less fuel or air, 

which would conduct to false results. To do it, the inlet velocity has been changed in proportion 

to the added water, so that the air or fuel mass flow rate maintains constant. The amount of water 

added is referred to the mass fraction of CH4 present in the fuel, and varies from 0% to 25% in 

5% increments. The velocities used are shown in Tables 3 and 4. 
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Table 3. Biomethane velocity inlets. 

Inlet with 
water 

Water 
percentage 

Velocity [m/s] 

 

 

Fuel 

5 163.60 

10 169.94 

15 176.29 

20 182.64 

25 188.98 

 

 

Air 

5 32.05 

10 32.09 

15 32.14 

20 32.18 

25 32.23 

 

Table 4. Industrial methane velocity inlets. 

Inlet with 
water 

Water 
percentage 

Velocity [m/s] 

 

 

Fuel 

5 164.36 

10 171.47 

15 178.58 

20 185.69 

25 192.80 

 

 

Air 

5 32.05 

10 32.09 

15 32.14 

20 32.18 

25 32.23 

In both cases, the velocity inlet for fuel and water was 157.25 m/s and 32 m/s respectively in 

the dry case (0% water). Finally, compositions used in each simulation are shown in Tables 5 and 

6, one for each fuel. 

Table 5. Biomethane compositions for each water percentage (mole fraction). 

 Water percentage 

Species 5 10 15 20 25 

H2O 3.85E-02 7.41E-02 1.07E-01 1.38E-01 1.67E-01 

CH4 8.65E-01 8.33E-01 8.04E-01 7.76E-01 7.50E-01 

N2 5.77E-02 5.56E-02 5.36E-02 5.17E-02 5.00E-02 

CO2 3.84E-02 3.69E-02 3.56E-02 3.44E-02 3.33E-02 

C2H6 3.08E-05 2.96E-05 2.86E-05 2.76E-05 2.67E-05 

C3H8 2.88E-05 2.78E-05 2.68E-05 2.59E-05 2.50E-05 

C4H10 1.69E-05 1.63E-05 1.57E-05 1.52E-05 1.47E-05 

C6H6 1.92E-05 1.85E-05 1.79E-05 1.72E-05 1.67E-05 

H2S 2.40E-07 2.31E-07 2.23E-07 2.16E-07 2.08E-07 

CH3Cl 1.44E-07 1.39E-07 1.34E-07 1.29E-07 1.25E-07 
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Table 6. Methane compositions for each water percentage (mole fraction). 

 Water percentage 

Species 5 10 15 20 25 

H2O 4.05E-02 7.79E-02 1.12E-01 1.44E-01 1.74E-01 

CH4 9.12E-01 8.76E-01 8.43E-01 8.13E-01 7.84E-01 

N2 3.06E-02 2.94E-02 2.83E-02 2.73E-02 2.63E-02 

CO2 1.92E-03 1.84E-03 1.78E-03 1.71E-03 1.65E-03 

C2H6 5.76E-04 5.53E-04 5.33E-04 5.13E-04 4.95E-04 

C3H8 1.92E-04 1.84E-04 1.78E-04 1.71E-04 1.65E-04 

C4H10 9.59E-05 9.22E-05 8.88E-05 8.56E-05 8.26E-05 

C5H12 9.59E-03 9.22E-03 8.88E-03 8.56E-03 8.26E-03 

C6H14 4.80E-03 4.61E-03 4.44E-03 4.28E-03 4.13E-03 

O2 1.92E-04 1.84E-04 1.78E-04 1.71E-04 1.65E-04 

In the following section, in order to abbreviate, cases with water in fuel will be named WF 

while cases with water in air will be named WA. 
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7. RESULTS AND INTERPRETATION 

As described before, one of the most important parameters involved in NOx formation is the 

temperature of the system, as it has a very important influence on thermal NOx rate. For this 

reason, four profiles will be exposed for each simulation: temperature, NOx ppm, thermal NOx and 

prompt NOx. 

First of all, a graphic with the NOx ppm of each simulation is shown, to give an idea about the 

order of magnitude that is being obtained and to quickly see the water addition effect. To compute 

NOx parts per million, a custom function is introduced. With it, dry ppm are calculated by removing 

the water mole fraction in the denominator. The formula is: 

𝑁𝑂𝑥 𝑝𝑝𝑚 =
𝑁𝑂𝑚𝑜𝑙𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 · 106

1 − 𝐻2𝑂𝑚𝑜𝑙𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

 

Figures 12 and 13 show the average NOx ppm in the outlet of the system, either for WF and 

WA simulations.  

Figure 12: Biomethane average outlet NOx ppm. 
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Figure 13: Methane average outlet NOx ppm. 

 From the figures above, it is clear that the contact model influences the behavior of the 

system, as Iglesias (2015) observed in his final master thesis. However, the results of this study 

have some differences from the results obtained by Iglesias (2015). 

On the one hand, the difference between water in air and water in fuel is much smaller when 

comparing with the previous mentioned study. This is because the combustor of this project 

features a swirl that affects the air inlet, which conducts to a faster mixing of air and fuel, so that 

the contact model loses influence as seen in Figures 12 and 13. 

On the other hand, it is observed that as water percentage increases, the difference between 

water in air and water in fuel becomes more notable. This is probably because the swirl only 

affects the air inlet, and when water percentage becomes important, swirl is not able to properly 

mix air and fuel. Furthermore, it is important to remember that fuel enters the chamber at around 

160 m/s while air velocity inlet is about 32 m/s. 

Finally, the last step before showing result profiles is to expose summary tables of the most 

important results that have been obtained. These results are seen in Tables 7 and 8. 
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Table 7. Biomethane results summary. 

Inlet with 
water 

Water 
percentage 

Average NOx 
ppm outlet 

Temperature 
peak [K] 

Average temperature 
outlet [K] 

Dry case 0 20.12 2014.91 1431.23 

 

 

Fuel 

5 16.64 2003.50 1430.32 

10 15.18 1999.00 1429.11 

15 12.76 1988.78 1428.05 

20 11.71 1985.18 1426.92 

25 10.01 1976.92 1425.55 

 

 

Air 

5 19.13 2011.45 1430.56 

10 18.20 2007.95 1429.90 

15 17.29 2004.43 1429.25 

20 16.43 2000.91 1428.60 

25 15.62 1997.40 1427.95 

 

Table 8. Methane results summary. 

Inlet with 
water 

Water 
percentage 

Average NOx 
ppm outlet 

Temperature 
peak [K] 

Average temperature 
outlet [K] 

Dry case 0 19.27 1987.71 1468.31 

 

 

Fuel 

5 17.29 1981.33 1468.28 

10 14.25 1969.70 1468.15 

15 12.81 1964.14 1467.42 

20 11.39 1957.75 1466.77 

25 9.38 1946.42 1465.89 

 

 

Air 

5 18.32 1984.28 1467.64 

10 17.42 1980.91 1466.97 

15 16.82 1979.13 1466.46 

20 16.10 1976.45 1465.88 

25 15.39 1973.59 1465.24 
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From the tables above, it is seen that as the amount of water added increases, NOx production 

and temperature in the system decrease. As explained before, water absorbs part of the heat 

produced in the combustion, allowing to reduce the system overall temperature. As the 

temperatures are in some cases above 2000 K, thermal NOx is drastically reduced when reached 

temperature decreases, which is reflected in the NOx ppm in the system outlet. 

In the following subsections all the obtained profiles are shown, and an analysis and 

interpretation of them is done. First, biomethane profiles are provided from Figure 14 to Figure 17 

and from Figure 22 to Figure 25, followed by industrial methane profiles, provided from Figure 18 

to Figure 21 and from Figure 26 to Figure 29. Moreover, the first six profiles correspond to water 

in fuel cases while the next six profiles to water in air cases. The color scale is the same for all 

the graphics of the same kind, so that they can be easily compared.  
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7.1. TEMPERATURE PROFILES 

Figure 14: Biomethane temperature profiles. From up to down: 0%, 5% and 10% water in fuel. 
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Figure 15: Biomethane temperature profiles. From up to down: 15%, 20% and 25% water in fuel. 
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Figure 16: Biomethane temperature profiles. From up to down: 0%, 5% and 10% water in air. 
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Figure 17: Biomethane temperature profiles. From up to down: 15%, 20% and 25% water in air. 
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Figure 18: Methane temperature profiles. From up to down: 0%, 5% and 10% water in fuel. 
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Figure 19: Methane temperature profiles. From up to down: 15%, 20% and 25% water in fuel. 
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Figure 20: Methane temperature profiles. From up to down: 0%, 5% and 10% water in air. 
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 Figure 21: Methane temperature profiles. From up to down: 15%, 20% and 25% water in air. 
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It is observed that as predicted a few sections before, combustion takes place around the 

symmetry axis, and thus the most important changes in system properties are made in this zone. 

This means that the mesh refinement explained before has been done in the right zone of the 

system, and it has allowed to obtain more accurate results while calculation time is still 

reasonable. 

Moreover, although these contours might seem similar, values of peak temperature and 

average outlet temperature change from one case to another. Graphics look very similar because 

the scale covers a wide range of temperatures (from 310 K to 2010 K approximately), which 

means that temperature must change a lot to see differences between them. However, taking into 

account that when temperature is around 2000 K, the amount of NOx produced doubles every 90 

K, a small difference in peak temperature can have a very important effect in NOx formation, as 

seen in the next section. 

As shown in Tables 7 and 8, when water is added to fuel, temperature reduction is more 

important than when the addition is made in the air. Furthermore, as seen from the graphics, the 

difference between methane and biogas is almost null in terms of reached temperature, which 

means that biogas could give approximately the same energy when combusted that methane or 

natural gas, but being a renewable energy and not a fossil fuel. 

The following section includes the NOx ppm profiles obtained during the simulations. They are 

presented in the same order as temperature profiles, and they illustrate the effect of temperature 

decrease in NOx formation due to water addition.  
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7.2. NOX PPM PROFILES 

Figure 22: Biomethane NOx ppm profiles. From up to down: 0%, 5% and 10% water in fuel.  
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Figure 23: Biomethane NOx ppm profiles. From up to down: 15%, 20% and 25% water in fuel. 
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Figure 24: Biomethane NOx ppm profiles. From up to down: 0%, 5% and 10% water in air. 
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Figure 25: Biomethane NOx ppm profiles. From up to down: 15%, 20% and 25% water in air. 
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Figure 26: Methane NOx ppm profiles. From up to down: 0%, 5% and 10% water in fuel. 
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Figure 27: Methane NOx ppm profiles. From up to down: 15%, 20% and 25% water in fuel. 
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Figure 28: Methane NOx ppm profiles. From up to down: 0%, 5% and 10% water in air. 
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Figure 29: Methane NOx ppm profiles. From up to down: 15%, 20% and 25% water in air. 
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It is observed that water addition has a very important impact in terms of NOx formation. The 

difference between graphics is quite large, and NOx production almost halves in comparison with 

the dry case. As commented before, although peak temperature difference is around 40 K 

between the dry case and the 25% water in fuel case, the effect in NOx rate production is much 

bigger than could be expected.  

Once more, in these graphics it is seen that the water addition effect is more important when 

it is added to the fuel than to the air, and also the most important changes are around the 

symmetry axis. NOx ppm peak is in the same zone that peak temperature is, which has logic 

taking into account that thermal NOx formation is more important as temperature increases, 

because chemical reactions that involve it highly depend on temperature. 

According to Tables 7 and 8, methane average NOx ppm outlet is slightly less than 

biomethane, but the difference is almost negligible (less than 1 ppm). Keeping in mind that biogas 

is a renewable energy while methane and natural gas are fossil fuels, it would be advisable to 

start to replace them in order to generate energy in a more sustainable way. 
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8. CONCLUSIONS 

The most remarkable conclusion is that NOx ppm production is less than half while outlet 

temperature is barely 5 K lower when comparing the 25% water in fuel case with the dry case. 

This is very important, because it means that almost the same energy could be produced with a 

lower environmental cost.  

Moreover, it is observed that the contact model influences both the pollutant formation and 

the energy produced, as seen in Figures 12 and 13. It is interesting, because having exactly the 

same quantities of fuel, air and water in the combustion chamber, the obtained results are 

different. This illustrates how important is the contact model, and that it has to be taken into 

account when performing any chemical reaction. 

However, if compared with Iglesias (2015) final master thesis, it is observed that the contact 

model has less influence in this study. The reason is that the swirl that this combustion chamber 

features mixes the fuel and the air so fast that the contact model losses influence when comparing 

with a non-swirl experiment. In fact, it is not that the contact model loses influence, but that the 

contact model changes due to swirl presence in the system. 

Furthermore, from the comparison between biomethane and industrial methane, it is observed 

that NOx production is slightly lower in industrial methane than in biomethane. However, the 

difference is less than 1 ppm, and given that biomethane is a renewable energy while industrial 

methane is a fossil fuel, it could be worth to start using biomethane to replace fossil fuels in order 

to produce energy in a more sustainable way. 

Finally, to understand better why NOx production has experience such an important decrease 

due to water addition, more graphics are shown in the Appendices. As explained before, in this 

study two mechanisms of NOx formation are used: thermal NOx formation and prompt NOx 

formation. By illustrating its profiles, it is possible to see which varies the most, and based on the 

results, one can see which factor contributes the most in this reduction, in order to make possible 

further improvements.  
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10. ACRONYMS 

CFD Computational Fluid Dynamics 

NOx Mono-Nitrogen Oxides (NO and NO2) 

SOx Sulfur Oxides 

CHP Combined Heat and Power 

VOC Volatile Organic Compound 

MILD Moderate and Intense Low oxygen Dilution 

WF Water in Fuel 

WA Water in Air 

 





Study of a Biogas Combustion Chamber using CFD (ANSYS®) 59 

 

APPENDICES 
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APPENDIX 1: THERMAL NOX RATE PROFILES 

Figure 30: Biomethane thermal NOx rate profiles. From up to down: 0%, 5% and 10% water in fuel. 
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Figure 31: Biomethane thermal NOx rate profiles. From up to down: 15%, 20% and 25% water in fuel. 
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Figure 32: Biomethane thermal NOx rate profiles. From up to down: 0%, 5% and 10% water in air. 
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Figure 33: Biomethane thermal NOx rate profiles. From up to down: 15%, 20% and 25% water in air. 
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Figure 34: Methane thermal NOx rate profiles. From up to down: 0%, 5% and 10% water in fuel. 
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Figure 35: Methane thermal NOx rate profiles. From up to down: 15%, 20% and 25% water in fuel. 
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Figure 36: Methane thermal NOx rate profiles. From up to down: 0%, 5% and 10% water in air. 
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Figure 37: Methane thermal NOx rate profiles. From up to down: 15%, 20% and 25% water in air.  
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APPENDIX 2: PROMPT NOX RATE PROFILES 

Figure 38: Biomethane prompt NOx rate profiles. From up to down: 0%, 5% and 10% water in fuel. 
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Figure 39: Biomethane prompt NOx rate profiles. From up to down: 15%, 20% and 25% water in fuel. 
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Figure 40: Biomethane prompt NOx rate profiles. From up to down: 0%, 5% and 10% water in air. 
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Figure 41: Biomethane prompt NOx rate profiles. From up to down: 15%, 20% and 25% water in air. 
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Figure 42: Methane prompt NOx rate profiles. From up to down: 0%, 5% and 10% water in fuel. 
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Figure 43: Methane prompt NOx rate profiles. From up to down: 15%, 20% and 25% water in fuel. 
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Figure 44: Methane prompt NOx rate profiles. From up to down: 0%, 5% and 10% water in air. 
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Figure 45: Methane prompt NOx rate profiles. From up to down: 15%, 20% and 25% water in air.  



 


