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Preface

Someone: ‘So, what do you do?’
Me (Option 1): ‘I am a theoretical physicist.’ End of the discussion.
Me (Option 2): ‘I do supercomputer simulations of space plasmas.’
Someone: ‘Oh that sounds cool, tell me more!’

This work should be the ultimate answer to the question what I have been
doing in the last four years. I would like to take this opportunity to apolo-
gise to everyone who has had to endure my impromptu lectures on plasma
physics, space weather or high-performance computing, be it on the plane, at
the climbing wall, in a bar or in your living room. I also wish to express to
you my gratitude, as I learn something every time I am asked to explain my
research.

I have been working since 2011 at the Finnish Meteorological Institute (FMI),
initially as a summer student, then as a master’s student and since 2012 as a
doctoral student. My first thanks go to Prof. Hannu Koskinen, who originally
made sure I was accepted by the University of Helsinki, then hooked me with
his plasma physics lectures and later transmitted my application to the Vlasiator
project for a summer job. My thesis work was done under the supervision of
the Vlasiator team leader Res. prof. Minna Palmroth and in close collaboration
with Dr Dimitry Pokhotelov, Dr Sebastian von Alfthan and Dr Arto Sandroos,
all four of whom formed my team of close-range advisers ( lähiohjaajat). Many
thanks for your guidance when it was needed and your trust that I would do
what was necessary when given some academic freedom.

My thanks also go to the extended Vlasiator team, including Dr Urs Ganse,
Dr Liisa Juusola and Dr Riku Järvinen at FMI, Dr Heli Hietala at the Univer-
sity of California in Los Angeles, Prof. Rami Vainio at the University of Turku
and Dr Markus Battarbee at the University of Central Lancashire. Further-
more, I will keep fond memories of our office 2B21 even after the moves to
come. Dr Chandrasekhar Anekallu, Dr Ilja Honkonen, Dr Gábor Facskó,
Dr Dimitry Pokhotelov, Otto Hannuksela and, last but not least and for the
longest time, Sanni Hoilijoki all had to put up over the years with my swearing
at my screen in various languages and with my sprawling green plants. Thanks

xi



xii PREFACE

for your patience and the good moments spent in this office or further afield.
Although the cover of this book bears my name alone, it is the sum of work

done with numerous colleagues. Thanks to my co-authors mentioned above
and Dr Andris Vaivads, Dr Olga Gutynska, Dr Lynn Wilson, Dr Brian Walsh,
Dr David Sibeck and Prof. Steve Milan. I am indebted to the pre-examiners
of this thesis, Prof. Mats André and Prof. James Drake, who despite the ad-
mittedly short notice took the time to read and comment thoroughly my text,
which significantly improved as a consequence. I would like to thank in ad-
vance Dr Benoît Lavraud, who accepted to travel to Finland during the possi-
bly worst season and be the opponent of this thesis. I am honoured that these
three great scientists agreed to examine my work.

All of this in Finland would not have been possible without the support,
confidence and love of my family and friends, even when we flew to an un-
known country without confirmed accommodation and, as it turned out, with-
out a confirmed study place either. Thanks to all of you on either side of the
Baltic, and first and foremost to my wife Kathrin and our child, who still enjoys
warm protection from the snow as of this writing, but will attend the public
defence, continuing a tradition I started some 26 and a half years ago.

My work at FMI was funded by several projects of the Academy of Finland
as well as the European Research Council starting and consolidator grants
QuESpace and PRESTISSIMO awarded to Minna Palmroth. I also acknowl-
edge financial support from the Magnus Ehrnrooth foundation, the Finnish
national Doctoral Programme in Astronomy and Space Physics, the University
of Helsinki Chancellor’s travel grant and the University of Helsinki Doctoral
programme in Particle Physics and Universe Sciences. With their help I was
able to attend several schools and conferences and to visit colleagues, which
allowed me to present my work and get to know the community.

No animals were intentionally harmed during the writing of this thesis.
However, it gave the opportunity to explore cafés and bars in central Helsinki.
Some 18 pieces of cake, one piece of quiche, one crême brûlée, 2 ice creams
and one bagel, as well as 8 cups of coffee, 3 iced teas, one hot chocolate, 4
beers, one Picon-beer and one cidre were consumed at Café DaJa, Café Panik,
Kakkugalleria, Brooklyn Café, il Birrificio, Apéro, Löyly and Kaffeehaus Röntgen.

Git statistics show that in over 130 commits, the LATEX source grew by over
2400 lines and shrank by almost 300 lines. Dear reader, you have been saved
over 10% of material. I hope you won’t regret opening this book or file, it
has entertaining stuff for the layperson and the expert alike. I wish you an
enjoyable read!

Yann Pfau-Kempf
Helsinki, November 2016
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This thesis consists of an introduction and four papers. They have not been
included in prior theses and are published in international peer-reviewed jour-
nals. The topic and the contribution of the author of this thesis are summarised
here for each paper.

Paper I. Wave dispersion in the hybrid-Vlasov model:
Verification of Vlasiator

Yann Kempf, Dimitry Pokhotelov, Sebastian von Alfthan, Andris Vaivads,
Minna Palmroth and Hannu E. J. Koskinen, Physics of Plasmas, Volume 20,
Number 112114, November 2013, doi:10.1063/1.4835315.

The dispersion of low-β plasma wave modes is simulated with Vlasiator
and compared to the solution computed by the Waves in Homogeneous, Anis-
otropic Magnetized Plasmas (whamp) code [Rönnmark, 1982, whamp, 2016].

The author developed the additional parts of the Vlasiator code needed
to perform the simulations of this paper and the analysis tools to process the
simulation data as well as the whamp output. The author wrote the paper under
the guidance of the co-authors.

Paper II. Vlasiator: First global hybrid-Vlasov simula-
tions of Earth’s foreshock and magnetosheath

Sebastian von Alfthan, Dimitry Pokhotelov, Yann Kempf, Sanni Hoilijoki, Ilja
Honkonen, Arto Sandroos and Minna Palmroth, Journal of Atmospheric and
Solar-Terrestrial Physics, Volume 120, Pages 24–35, December 2014, 10.1016/
j.jastp.2014.08.012.

This technical paper presents the algorithms employed in Vlasiator and
gives numerical and physical results of local and global simulations.

The author ran the simulation and performed the analysis presented in Sec-
tion 4 of Paper II. The author took part in preparing, performing and analysing
the simulation presented in Section 5 of the paper. The author wrote Section 4
and contributed to the writing of the rest of the paper as well.
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Paper III. Ion distributions in the Earth’s foreshock: Hy-
brid-Vlasov simulation and themis observations

Yann Kempf, Dimitry Pokhotelov, Olga Gutynska, Lynn B. Wilson III, Brian
M. Walsh, Sebastian von Alfthan, Otto Hannuksela, David G. Sibeck and
Minna Palmroth, Journal of Geophysical Research: Space Physics, Volume 120,
Number 5, Pages 3684–3701, May 2015, doi:10.1002/2014JA020519.

This paper compares the ion velocity distributions obtained in the terres-
trial foreshock of global magnetospheric simulations to the classic types of ve-
locity distributions measured by the themis spacecraft. The mechanism leading
to the loss of gyrotropy of the ions interacting with the foreshock waves and
the limitations of the hybrid-Vlasov approach are also discussed.

The author performed the study with the help of the co-authors, took part
in the preparation and performance of the simulation presented and performed
its analysis with the help of the co-authors. The author wrote all parts of the
paper directly pertaining to modelling.

Paper IV. Evidence for transient, local ion foreshocks
caused by dayside magnetopause reconnection

Yann Pfau-Kempf, Heli Hietala, Steve E. Milan, Liisa Juusola, Sanni Hoilijoki,
Urs Ganse, Sebastian von Alfthan and Minna Palmroth, Annales Geophysicae,
Volume 34, Issue 11, Pages 943–959, November 2016, doi:10.5194/angeo-34-
943-2016.

A scenario is introduced by which dayside reconnection generates magne-
tosheath and subsequently bow shock perturbations, which in turn lead to the
generation of local foreshock-like ion beams reflected off the bow shock and
travelling with the bow shock perturbation. Ground-based magnetometer and
ionospheric radar as well as spacecraft observations support the scenario.

The author took part in the preparation and performance of the simulation
presented and performed its analysis. The author performed the spacecraft data
analysis with help of the co-authors and wrote the paper, with the exception
of the sections on ground-based magnetometer and ionospheric radar measure-
ments.

http://dx.doi.org/10.1002/2014JA020519
http://dx.doi.org/10.5194/angeo-34-943-2016
http://dx.doi.org/10.5194/angeo-34-943-2016


Variables, symbols and
acronyms

This thesis uses the International System of units (si units). The subscripts e
and i stand for electrons and ions respectively, where applicable.

Variables

r =
(
x, y, z

)
Position vector and components/coordinates

v =
(
vx, vy, vz

)
Velocity vector and components/coordinates

a =
(
ax, ay, az

)
Acceleration vector and components/coordinates

t, ω Time, angular frequency
k, k Wave vector, wave number (= 2π times inverse wave-

length)
B, B Magnetic field and its magnitude
E, E, φ Electric field and its magnitude, electric potential
V,V Bulk velocity of plasma and its magnitude (speed)
j, j Current density and its magnitude
P, P Pressure tensor, scalar pressure
T,T Temperature tensor, scalar temperature
n, ρm, ρq Number density, mass density, charge density
m,mi Mass, proton mass (≈ 1.673 · 10−27 kg)
qs Electric charge of species s

Constants and symbols

i Imaginary unit
D
Ds

,
∂

∂s
Total, partial derivative with respect to s

∇,∇(r),∇(v),∇(r,v) Del operator, del operator along the r,v, (r,v)-
coordinates

∆l Small increment of variable l

xv



xvi VARIABLES, SYMBOLS AND ACRONYMS

q Elementary charge (≈ 1.602 · 10−19 C)
c Speed of electromagnetic waves in vacuum

(= 299,792,458m s−1)
µ0 Permeability of vacuum

(= 4π · 10−7 TmA−1 ≈ 1.257 · 10−6 A−2 kgm s−2)
ε0 Permittivity of vacuum

(= (µ0c2)−1 ≈ 8.854 · 10−12 A2 kg−1 m−3 s4)
kB Boltzmann constant (≈ 1.381 · 10−23 m2 kg s−2 K−1)
C,RC Earth, Earth radius (≈ 6400 km)
m Link/reference to a source code file
¯ Music suggestion for the chapter
q Drink suggestion for the chapter1
♨ Food suggestion for the chapter

Acronyms

cfl condition Stability condition on discretised numerical algorithms
which forbids propagation faster than one cell length per
time step. Named after Courant, Friedrichs, and Lewy
[1928].

1d, 2d, ... One, two, ... -dimensional or one, two, ... dimensions
imf Interplanetary magnetic field
mhd Magnetohydrodynamic(s)
pic Particle-in-cell

1The appropriate intake of water (or coffee) all along is assumed.



Chapter 1

Introduction

q 1 part of pastis, 4–5 parts of blood orange
juice, 1/2 part of lemon juice, ice cubes
♨ Good French saucisson, like duck with
green pepper

Some good apéritifs

¯ Kind of Blue
Miles Davis

Before setting off to explore the arcane world of hybrid-Vlasov plasma simula-
tions of the interaction of the solar wind with the Earth’s magnetosphere, some
gear is required. This introductory chapter provides the traveller with a simple
but sturdy overview of plasma, the Earth’s magnetosphere, parallel computing
and the importance of modelling in space physics. Such equipment is necessary
for the journey.

The variety of interesting and relevant plasma phenomena warrants their
introduction in a separate Chapter 2. Chapter 3 then fleshes out the broad
physical approaches used to simulate space plasmas before Chapter 4 presents
the hybrid-Vlasov model Vlasiator in more detail. The author’s major code
contributions to Vlasiator are the topic of Chapter 5 while his main scientific
contributions are summarised in Chapter 6. Conclusions and a vision for the
future in Chapter 7 complete the first part of the thesis, which is followed by
the reprinted Paper I, Paper II, Paper III and Paper IV.

1.1 What is plasma?

This question must be answered right away, since the present thesis is all about
plasma. Remarkably, the word plasma is the same in virtually all languages,
unlike a number of other common physical terms, hence no luck in finding
comparative help there. In Ancient Greek, πλάσμα means something formed

1
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or moulded, such as a clay figure [Liddell and Scott, 1940], which led nine-
teenth century botanists and anatomists to call the shapes they saw through
their microscopes plasma membranes or plasma cells. Later plasma became the
liquid bathing cells, from the inside like cytoplasm or the outside like blood
plasma.

Around 1927, one of the forefathers of plasma physics, Irving Langmuir,
looked with his team for a catchy phrase to designate electric discharges in vac-
uum vessels they were investigating, as they felt the topic was to become impor-
tant. A part of the discharge ‘acted as a sort of sub-stratum carrying particles of
special kinds, like high-velocity electrons [...] and ions of gas impurities. This
remind[ed] him of the way blood plasma carries around red and white corpus-
cles and germs’ [Mott-Smith, 1971]. Indeed the term plasma caught on and is
still used to designate a state of matter where electrons and ions are separated
from each other and have quite some more freedom to move about than in any
other classical state of matter, solid, liquid or gas.

Plasmas are found in many contexts, from fluorescent lamps to plasma ster-
ilisers, from supernova remnants to stellar interiors. Therefore it is hard to
pin plasma down even with ranges of parameters such as temperature or com-
position. At the most general level, plasma is usually characterised by three
features:

• Plasma consists of free electric charges interacting via electric and mag-
netic forces;

• Plasma exhibits collective behaviour arising from these interactions;

• Plasma is quasi-neutral: it does not carry a global net electric charge.

This is enough for theoreticians to set out and write down equations describing
an arbitrary plasma. But in order to apply any such equation to solve a specific
problem, one needs to delve into particulars of a given plasma and give up a
certain amount of generality in exchange for some degree of tractability.

Textbooks covering basics of plasma physics include those by Bellan [2006],
Bittencourt [2004], Boyd and Sanderson [2003] and Koskinen [2011]. Chapter
2 is dedicated to the presentation of the plasma phenomena studied by the
author in Papers I to IV.

1.2 The solar wind, the Earth’s magnetosphere and why
they matter

Exactly like all other stars, the one closest to us, the Sun, is a massive ball of hot
plasma of about 2 · 1030 kg mass [United States Naval Observatory, 2016]. The
fine balance of forces in the vicinity of the solar surface is such that a tenuous
stream of plasma continuously escapes from the Sun’s gravitational pull and
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expands into interplanetary space at typically supersonic speeds [e. g. Chapter
1, Koskinen, 2011]. The mechanisms heating and accelerating this plasma in
the solar corona, to form what is called the solar wind, are not fully understood
and the subject of active research [e. g. Marsch, 2006].

What is better known, thanks to the larger number of available observa-
tions, are the structure and characteristics of the solar wind near Earth. As was
predicted in the pioneering work by Alfvén, Biermann and Parker in the 1950s,
the solar wind is not solely the result of the expansion of the solar corona and
its acceleration to speeds of the order of 1000 km/s. A critical aspect is that the
solar wind plasma is threaded by and carries away a fraction of the magnetic
flux emerging from the solar interior to the Sun’s surface. While the acceler-
ated plasma is expanding radially outwards, the magnetic field is still rooted
in the rotating Sun, giving rise to the Archimedean spiral structure of the in-
terplanetary magnetic field (imf) named the Parker spiral to honour one of its
main theoreticians [Biermann, 1951, 1957, Alfvén, 1957, Parker, 1958]. The
overall structure of the imf is not a perfect spiral though, owing to the solar
activity. Faster streams of solar wind catch up with slower solar wind, or the
odd coronal mass ejection resulting from eruptions near the Sun’s surface hurls
a cloud of plasma and a magnetic structure out into interplanetary space. The
solar wind has been studied quite extensively in the last decades with a fleet of
spacecraft like the Ulysses probe which observed the Sun and the solar wind
for the first time out of the ecliptic plane [Wenzel et al., 1992], the SOlar and
Heliospheric Observatory (soho) continuously picturing the Sun at various
frequencies for over 20 years [Domingo et al., 1995] or the Advanced Compo-
sition Explorer (ace) which has served as the Earth’s primary upstream solar
wind monitor at the solar-terrestrial L1 Lagrange point for almost 20 years
[Stone et al., 1998].

What happens when the fast solar wind hits celestial bodies lurking in the dark-
ness? There is no simple answer to this question, as many factors such as the
presence or absence of a magnetic field, an atmosphere or conductivity of the
body affect the result. The following only covers the solar wind interaction
of magnetised planets with an atmosphere like Earth. The texts by Luhmann
[1995b] and Walker and Russell [1995] are a good starting point for the reader
interested in a deeper introduction to the interaction of unmagnetised and mag-
netised bodies with the solar wind.

Planets with a strong internal magnetic field offer a large interaction cross-
section to the solar wind and the imf, while on the inside their field dominates
the plasma behaviour within the volume of their magnetosphere. Even though
the tenuous plasma making up a magnetosphere and its magnetic field are diffi-
cult to image, a few hundred years of ground-based measurements, six decades
of spacecraft data and a wealth of model simulations have given a good idea
of the general features of at least the terrestrial magnetosphere. The work of
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which this thesis is a part is also a contribution to building a more comprehen-
sive and detailed understanding of the Earth’s magnetosphere. The following
paragraph aims at giving a generic representation of a magnetosphere despite
being written with the terrestrial example and Figure 1.1 in mind.

The magnetic field of a magnetised planet forms an obstacle to the incom-
ing supersonic electrons and ions as they feel the Lorentz force. The raging so-
lar wind flow has to bow to the laws of physics and form a shock to be diverted
around the planet1. In analogy with more down-to-Earth fluid dynamics, this
shock is called the bow shock. It forms the interface with the upstream, pris-
tine solar wind and has a roughly paraboloid shape. The bow shock produces
a steep increase in plasma density, temperature and magnetic field intensity, as
well as a sharp drop in speed, diverting the flow down the flanks of the obsta-
cle. The surface along which the plasma flows, and which it can only cross in
exceptional circumstances, is called the magnetopause. The region of shocked
solar wind plasma and draping imf between the bow shock and the magne-
topause is the magnetosheath. Owing to the shape of the magnetic field of the
planet, which is very close to a dipole field, the magnetopause presents two
funnel-shaped cusps towards the polar regions. The magnetopause is the limit
of the actual magnetosphere defined as the volume where the planetary mag-
netic field controls plasma behaviour, although, much as in the present thesis,
‘magnetosphere’ is often (mis)used to describe the whole structure including
the shock and sheath. On the nightside, the magnetic field is stretched into the
long magnetotail, a roughly cylindrical extension of the magnetosphere con-
sisting of two lobes of very low density plasma, each connected to the polar
region of one hemisphere of the dipole. In the inner magnetosphere, where
the magnetic field is closest to dipolar, plasma is trapped by the magnetic field
configuration. Oppositely-drifting positive ions and negative electrons give rise
to the equatorial ring current around the planet. Deep in the magnetosphere,
high-energy electrons can be trapped for periods significantly longer than their
travel time around the planet. These regions of intense radiation are called the
radiation belts of the planet. To complete the sketch, the upper reaches of the
atmosphere of the planet – if it has one, obviously – are partially ionised most
notably by the solar ultraviolet radiation, forming a conducting ionosphere.
There is much to be said about interesting geophysics happening in the iono-
sphere and lower down, too, but for the sake of not leading the reader – and
before them, the author – too far astray, this is not covered here. The texts by
Luhmann [1995a] and Carlson and Egeland [1995] give a taste of ionospheric
physics.

One structure deserves a special mention in the context of the present
work. Although by definition shocks preclude the transport of information
upstream by the means of waves, plasma physics offers a quirk which allows

1See Section 2.3 for more details on plasma shocks.
2See Section 2.4 for more details on magnetic reconnection.
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Figure 1.1 – Overview of the terrestrial magnetosphere in the polar plane, as ob-
tained with the hybrid-Vlasov model Vlasiator.
Background colour: plasma density. Grey lines: magnetic field lines. Arrows:
plasma bulk velocity, length scaled proportionally.
The constant solar wind and a southward imf with an angle of 45° flow in from the
right side (black uniform region). The plasma is compressed and the flow diverted
by the bow shock, beyond which the plasma flows in the magnetosheath (red and
yellow region) over the cusps of the geomagnetic field. The magnetic field is close
to dipolar in the inner region and stretched to form the magnetotail on the night-
side. The magnetotail is characterised by a low plasma density (green and purple
region). Magnetic reconnection2 in the tail plasma sheet strongly accelerates plasma,
magnetic islands are formed in the reconnection exhaust and expelled from the sim-
ulation box (structure in the left-most part of the magnetotail). Ions reflected by the
bow shock generate instabilities causing waves to grow and form the foreshock up-
stream in the region where the imf is almost parallel to the shock normal direction
(black and blue perturbed region south of the bow shock.).
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particles to travel back from a shock. A charged particle encountering a shock
begins to gyrate with a shorter radius than before because of the stronger down-
stream magnetic field. Provided the particle has enough energy after half a gy-
ration when its velocity vector is pointing upstream again, and if the angle θBn
between the shock normal direction and the magnetic field is small enough so
that the particle does not immediately gyrate back into the bow shock, that
very particle can escape into the solar wind. This new particle population up-
stream of the bow shock is forming the aptly-named foreshock, and by virtue
of a variety of plasma interactions, the foreshock is pervaded by a zoo of waves
and turbulence. More on that follows in Chapters 2 and 6.

In addition to being a fascinating topic of fundamental science – what is the
near space environment like and what processes are at play there? – the study
of the interaction of the solar wind with planets and other bodies is a key
building block of space weather research. Space weather describes the condi-
tions in space which affect the Earth’s environment and have consequences on
man-made systems as well as on life in orbit and on the ground [United States
National Research Council, 1997]. This covers the problems for life and satel-
lite electronics posed by the radiation environment in space, or the beautiful
polar lights enchanting Arctic and Antarctic nights. But solar eruption-induced
ionospheric perturbations can also disturb or prevent the propagation of radio
waves critical to satellite positioning systems and to communication for indus-
try or rescue operations in remote regions. Perturbations to the geomagnetic
field can lead to induced currents in the ground and in long artificial conduc-
tors such as power networks and pipelines, causing in the worst cases large-scale
blackouts. In between, humans travelling at high altitudes and latitudes for ex-
ample on an intercontinental flight across the polar regions during episodes of
higher particle precipitation into the atmosphere, are subject to higher doses of
radiation.

The effects of space weather are complex and multi-faceted, and in most
instances they are observed as they occur or predicted only at very short notice.
A thorough understanding of the physics at work at all levels from the Sun to
the ground via the solar wind and its interaction with the magnetosphere is the
condicio sine qua non by which scientists and stakeholders might one day be
able to forecast space weather reliably. Such a forecast would enable to make
life- and asset-saving decisions in due time and reduce the degree to which our
modern society is vulnerable to potential strong space weather events.

1.3 Parallel computing

Many scientific problems and the equations used to solve them are too large and
complex to be solved with a finite number of pens, a realistic amount of paper
and a manageable number of workers in a time of the order of magnitude of
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the work contract duration of a doctoral student. Unfortunately, the legendary
infinite open-space office full of graduate students with pocket calculators has
not been accepted for funding due to budget cuts and ethical reasons, among
others. And in any case, the students have better things to do than perform
the job of a processor. Not only that, but a growing subset of these large
scientific problems consists of tasks that are too heavy for a single computer
to tackle, be it because the memory space accessible to the processor is too
limited or because the result would come in too late to be useful. Luckily
however, funding agencies have not been as reluctant to build analogues of
that office by putting together increasing numbers of processors into massive
supercomputers. This section introduces key techniques used to set multiple
processors to work on the same task.

The easiest case is when the job to be parallelised consists of a number of
independent smaller tasks, such as the chunk-wise processing of a large dataset.
Individual tasks do not need to know what the others are doing and only report
their result at the end. The programmer has nothing more to do than to decide
how to divide the dataset among processors and how each task reports its result.
This category are the embarrassingly parallel problems.

The next technique is called shared-memory programming. Modern pro-
cessors often consist of several computing cores accessing the same physical
memory. This allows a program to be split into several threads each running
on a different core and handling its own chunk of the task. The program-
mer’s job here is more involved as they have to decide among others when
the program should create or merge threads, and to make sure that threads do
not overlap and try to access the same memory location at the same time, a
situation called race condition. The best-known tool for shared-memory paral-
lelisation of programs written in C/C++ or Fortran is the OpenMP library,
that provides compiler instructions defining the code sections to be threaded
and the scope or access rules of variables, for example [Dagum and Menon,
1998, OpenMP Architecture Review Board, 2011].

If the problem at hand is too large to even fit on a multi-core processor
and shared-memory parallelisation is thus not appropriate any more, the task
needs to be split across multiple processors each with its own memory. This
is distributed-memory computing: each processor has its own local memory
and executes its own instance of the program, called a process. Domain decom-
position is a classic example of distributed-memory parallelisation, by which
each process is assigned a part of the computational domain to work on. If a
process needs to get information that it does not have locally, such as a value in
a neighbouring part assigned to another process, the programmer needs to im-
plement the communication between processes themselves. A very commonly
used tool is the Message Passing Interface (mpi), a C/C++ and Fortran library
defining functions for example sending and receiving messages between indi-
vidual processes or performing collective operations like variable reductions



8 CHAPTER 1. INTRODUCTION

across or communication among all processes [mpi Forum, 2004].
Vector processing is a technique which dominated supercomputing from

the 1970s to the 1990s but fell out of fashion as conventional microprocessors
became less expensive, before gaining momentum again in recent years. The
idea behind vectorisation is to use a single processor to perform operations
on multiple numbers at the same time. A processor’s arithmetic logic unit
can only process one pair of numbers at a time, like summing A and B , but
the memory line of the unit is usually larger than the number representation
format used by the program. By appropriately organising the memory layout
and computations, the logic unit can therefore process several pairs of numbers
simultaneously in one clock cycle, such as four pairs of 64-bit numbers with
a logic unit using 256-bit vectors. A variety of tools are available to vectorise
programs, which depend heavily on the processor targeted. Common ones
for Intel’s x86 processors are the mmx, sse, avx and fma sets of instructions
[Intel, 2016]. The programmer’s main task is to arrange data in memory in
such a way that the compiler can easily replace single-number operations by
equivalent vectorised operations.

In general, none of the programming techniques described here is the only
good solution. Some problems can be solved equally well at small scales with
shared- or distributed-memory programs. However, modern supercomputers
typically consist of tens or even hundreds of thousands of processors each com-
prising up to several tens of cores [Strohmaier et al., 2016], making a combi-
nation of shared- and distributed-memory techniques as well as vectorisation
unavoidable in high-performance computing applications, in order to leverage
as much of the theoretically available power as possible.

1.4 The role of simulation in space physics

The two historic pillars of science have been theory and experiment, fostering
the progress of knowledge through their mutual influence. Experiments and
measurements produce new information, which theories try to interpret and
explain. As an example, based on the repeated observations of strong geomag-
netic perturbations during intense displays of auroræ borealis, early investiga-
tors such as Størmer and Birkeland formulated hypotheses trying to explain
experimental datasets [Stern, 1989, and references therein]. They especially
suggested that electrons could be trapped in the terrestrial magnetic field in
near-Earth space.

Space physics can be defined as the study of space as far out as has been
reached by spacecraft taking in-situ measurements. This is not a very precise
definition and the boundaries to adjacent fields like planetary sciences when
studying the environments of other planets, geophysics when studying our
Earth’s magnetosphere, or solar physics when considering that the Sun’s sur-
face and interior cannot be reached in-situ, to name but a few, are by no means
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strict and hermetic. Using this definition nevertheless, and with the notable ex-
ception of geomagnetic and auroral observations, which had been ongoing for
more than a century already, space physics took off as an active field of research
with the advent of the space age in 1957–1958 as direct measurements in space
became feasible. Some of the earliest observations were that space is not empty
but filled with radiation. The Soviet Sputnik 2 – better known for carrying the
dog Laika into space but also equipped to measure radiation – and the Ameri-
can Explorer 1 were the first to measure the van Allen radiation belts, or to do
any measurements in space for that matter [van Allen et al., 1958, Chernov and
Yakovlev, 1958]. These experiments confirmed that the radiation belts indeed
consist of trapped electrons, a picture further bolstered when atomic bombs
were detonated in orbit, populating new regions with energetic electrons in
the process [Christofilos, 1959].

Space physicists are, in some respect, better off than other colleagues be-
cause they do have local measurements available, something astrophysicists,
cosmologists or deep-Earth geophysicists will never enjoy. Yet almost sixty
years after Sputnik 1 – aeons in terms of marketing and product life cycles –
it is still no small feat to send probes into orbit or beyond, and their price tag
puts a strong limit on the number of spacecraft any state, agency or institute
can afford to build and launch. One thing space physicists are helpless with,
on the other hand, is the reproducibility of their experiment: in space chances
are slim that the same conditions are encountered the next time the spacecraft
flies past (if ever), in order to try to nudge the detectors or tweak the detection
ranges to get a better measurement. One option here is to fly several space-
craft in a constellation to get simultaneous and spatially distinct samples of
the same events. This has been very popular in space physics, with successful
examples including the Cluster four-spacecraft mission providing plasma and
magnetic field measurements in the Earth’s magnetosphere [Escoubet et al.,
2001], the Time History of Events and Macroscale Interactions during Sub-
storms mission [themis, Angelopoulos, 2008] with initially five spacecraft in
Earth orbit and later two of them forming the Acceleration, Reconnection,
Turbulence, and Electrodynamics of the Moon’s Interaction with the Sun con-
stellation around the Moon [artemis, Angelopoulos, 2011] or the four Magne-
tospheric Multi-Scale (mms) observatories reaching for the first time down to
electron kinetic scales to study energy transfer in the Earth’s magnetosphere
[Burch et al., 2016a]. Each of these constellations brought about fabulous leaps
in physical understanding, especially when the key point very often is telling
apart spatial and temporal structures, but inherently the measurements are still
taken in no more than a handful of moving points in the vast emptiness of
space. In other words, the big problem for space physicists is to get the big
picture when all that is available are time series of point-wise measurements.

The obvious next step in trying to provide a context to sparse spacecraft
measurements is to seek the support of mathematical models, which usually
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form the basis of physical theories. As the following Chapter 3 shows though,
the equation sets needed to describe somewhat accurately something as com-
plex as, say, the interaction of electrons and protons flying at supersonic speeds
with a large, static magnetic dipole, are such that solving them requires the help
of computers. As in most areas of the physical sciences, numerical modelling
has become the third pillar of research in space physics. Numerical models,
which include simulations, are essential both to theory and experiment. By
choosing the physical ingredients mixed into a model, the relative importance
of various processes can be assessed, improving the theoretical insight. And by
allowing to look at the whole system evolving in time, numerical simulations
are invaluable in helping to grasp the global dynamics in relation to spacecraft
data. Numerical modelling has also become instrumental in the development
of instruments – pun intended – for new spacecraft missions. Simulation data
can for example be processed according to planned instrument parameters in
order to define a priori resolutions, sensitivities and accuracies sufficient to con-
firm observationally phenomena only simulated hitherto. Whence it can be
said that the traditional paradigm of scientific research relying on the interplay
of theory and experiment has to be extended to include numerical modelling,
as all three are critically supporting and complementing each other to facilitate
the building of knowledge.

Having acquired the basic tools if they were not yet at hand, the reader can
now set out for the travel. The work underpinning and constituting the present
thesis lies at the crossroads of all topics brushed in this introduction, namely
the realms of plasma physics, especially applied to study the Earth’s magneto-
sphere, and the lands of supercomputers, of which the power can be harnessed
for the good of mankind and the progress of science.



Chapter 2

Plasma phenomena

q Good wine like a dry white alsace or a
tannic red bordeaux
¯ Collective effects arising from complex
interactions:
Die Kunst der Fuge

Johann Sebastian Bach

Haitian Fight Song; or All the Things You C#
Charles Mingus

Carmen Fantastique
Edson Cordeiro and the Klazz Brothers

What is meant by collective behaviour arising from plasma interactions? Plasma
physics combines the joys of electrodynamics, statistical physics and fluid dy-
namics to conjure up a fascinating world of possibilities. It takes textbook upon
lecture series to even cover the basics, wherefore this Chapter 2 only describes
those aspects important within the scope of this work including Papers I to IV
and abstains from complete mathematical derivations. The author found the
books by Koskinen [2011, Chapters 1 to 11] and Bittencourt [2004] particu-
larly useful when studying basic plasma physics, but plenty of further valuable
literature exists.

2.1 Characteristic length and time scales

The electric potential of a single charged particle in vacuum is given by the
Coulomb potential,

φ =
q

4πε0r
, (2.1)

11



12 CHAPTER 2. PLASMA PHENOMENA

where r is the radial distance from the particle1. As explained in Chapter
1, plasma consists of free electric charges but it is usually quasi-neutral, which
means that charges tend to rearrange in order to cancel large-scale electric fields.
As a consequence, if a test particle is introduced in a plasma, charges are dis-
placed in order to retain quasi-neutrality. Assuming that the particles of species
s are in equilibrium, their density obeys

ns = n0s exp
(
−
qsφ
kBTs

)
(2.2)

and it can be shown that the potential φ is modified by the presence of the
plasma to become

φ̃ = φ exp (−r/λD) (2.3)

where

λD =

√√√
ε0kB∑
s
n0s q2

s
Ts

(2.4)

is the decay length scale of the potential, known as the Debye length. The
plasma effectively shields the test particle so that its potential is exponentially
weakened with distance. This whole consideration only holds if there are
enough particles within a Debye length of any other particle, and if the sys-
tem size L is much larger than the Debye length:

n−30 � λD � L. (2.5)

This condition provides a criterion to determine whether a system can be con-
sidered an actual plasma, although the strength of the ‘much smaller than’-signs
is left to the appreciation of the beholder.

Pondering further the fate of a quasi-neutral electron–ion plasma perturbed
by a test charge, the most fundamental plasma oscillation, known as the Lang-
muir oscillation, can be understood intuitively. A local perturbation intro-
duced in the electron density causes a restoring Coulomb force exerted by the
ions, which do not react as fast with their large inertia. Therefore the electrons
oscillate around their equilibrium position, at the so-called electron plasma fre-
quency

ωpe =

√
neq2

meε0
. (2.6)

Another fundamental frequency belonging to any species s in a magnetised
plasma is the frequency at which the particles gyrate around the magnetic field
owing to the Lorentz force acting perpendicularly to B. This frequency is

1All variables, constants and symbols are defined in the section starting on p. xv.
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variously termed the gyrofrequency, Larmor frequency or cyclotron frequency

ωcs =
qsB
ms

. (2.7)

Both these frequencies are expressed in rad/s. The inverse of the gyrofrequency
is the gyroperiod or Larmor period 2π/ωcs .

These frequencies are also related to two length scales useful in characteris-
ing the spatial scales at which phenomena occur. The radius of the gyromotion
of a particle travelling at speed v⊥ perpendicular to B – the gyroradius or Lar-
mor radius – is given by

rLs =
v⊥
ωcs
=

msv⊥
qsB

, (2.8)

while the inertial length of a particle in a plasma can be defined as the effective
gyroradius of that particle flying at the Alfvén speed (in the case of electrons,
this is the electron Alfvén speed; see the next section for the definition of the
Alfvén speed):

ds =
c

wps
. (2.9)

The Larmor radius and inertial length are collectively designated as the kinetic
scales, above which mostly fluid-like phenomena occur but which need to be
resolved if effects related to the individual particle motion – kinetic effects – are
to be taken into account.

2.2 Waves and instabilities

A great deal of what makes plasma interesting, and more complex than fluid
dynamics or electrodynamics alone, is encapsulated in the intertwined concepts
of plasma waves and instabilities. When solving plasma equations, one can
often write solutions in terms of plane wave modes such as

B = B0e i(k·r−ωt ), (2.10)

which describes the magnetic field of a mode with a wave vector k and a fre-
quency ω. To the enjoyment of the theoretical plasma physicists, a variety
of cases arise where the frequency is not purely real and can be written as
ω = ωr + iγ, so that when rewriting Equation (2.10) the purpose gets clear:

B = B0eγt e i(k·r−ωr t ) . (2.11)

If |γ | � ωr , what remains is essentially a plane wave B ≈ B0e i(k·r−ωr t ) . If γ < 0
the real exponential term damps the wave. On the other hand, if γ > 0, the
amplitude grows exponentially: the wave becomes an instability. The study of
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plasma waves and instabilities theoretically, observationally and in simulations
forms a large part of plasma physics, as they are a key mechanism by which
energy is transported or transferred from particles to fields and vice-versa.

The characteristic frequencies introduced in Section 2.1 are crucial when
studying wave propagation in plasma. A wave with a frequency close to ωps or
ωcs can resonate with the plasma oscillation or the gyromotion of the particles
of species s . In that process, energy from the wave is transferred to the resonat-
ing particles and as a result the wave is damped.

Plasma waves can be classified in several ways depending on their direction
of propagation with respect to the ambient magnetic field, their polarisation,
whether they are compressive or not or whether they are longitudinal or trans-
verse perturbations. Classic large-scale and low-frequency wave modes, that
is at wavelengths longer than the plasma species’ gyroradius and inertial length
and at frequencies lower than the species’ gyrofrequency and plasma frequency,
are

• the ion sound wave, a compressive perturbation of the plasma density
similar to the sound wave from fluid/gas dynamics, propagating with a
speed vs =

√
kBTe/mi;

• the Alfvén wave, a non-compressive transverse perturbation of the mag-
netic field propagating in directions close to parallel to the magnetic field
direction with a speed vA = B/√µ0ρm ;

• the magnetosonic wave, a compressive perturbation of the plasma den-
sity and the magnetic field strength propagating close to perpendicularly
to the magnetic field with a speed vms =

√
v2

s + v2
A.

When studying plasma waves analytically, it is common to describe them
with the dispersion relation expressing ω as a function of k. The phase velocity
of the wave is then defined as

vp =
ω

k
k̂, (2.12)

which gives the velocity of the wave fronts. k̂ = k/k is the unit vector pointing
in the direction of the wave k, thus perpendicularly to wave fronts. The group
velocity, which gives the velocity of wave groups or packets and the direction
in which the wave transports energy, is defined as

vg =
∂ω

∂k
. (2.13)

In the low-frequency regime at hand, the sound, Alfvén and magnetosonic
waves introduced above are not dispersive, meaning that their dispersion re-
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lation is approximately linear:

v B vg = vp =
ω

k
⇔ ω = kv . (2.14)

The more complex behaviour of these waves at higher frequencies is the subject
of Paper I and is addressed in more detail in Section 6.1.

As a stroll into any conference or a glimpse through the papers published by
any journal relating to plasma physics can convince the reader, charged parti-
cles in magnetic fields are a treacherous and vicious lot not waiting for anyone
or anything in particular to get unstable and wreak havoc in the Sun’s chro-
mosphere, the Earth’s magnetosphere or one’s pet fusion reactor. Understand-
ing and predicting or controlling plasma instabilities is the purpose of many
endeavours. Plasma instabilities can be traditionally sorted into two broad cat-
egories, namely macroinstabilities and microinstabilities. The former occur
on large scales with respect to the relevant kinetic scales while the latter relate
to details of particle motion and behaviour at small scales. This separation is
somewhat artificial nevertheless, as kinetic effects can cause large-scale instabil-
ities as well. A few of the general instability types are reviewed in the following
paragraphs.

Some classic macroinstabilities or fluid instabilities have counterparts in
fluid dynamics. For example, the Kelvin-Helmholtz instability causes the inter-
face between two plasma domains which have a strong relative shear velocity to
ripple and form large vortices eventually mixing plasma from both domains. It
has been observed to happen very often at the Earth’s magnetopause where the
magnetosheath plasma picks up speed and flows along the flanks [e. g. Kavosi
and Raeder, 2015].

Other macroinstabilities are intimately tied to magnetised plasmas. In the
case of the mirror instability, a previously homogeneous volume of magnetic
field grows an alternating pattern of high and low magnetic field intensity. The
plasma tends to be trapped in the pockets of lower magnetic field intensity and
a characteristic succession of anticorrelated peaks and troughs of magnetic field
and plasma density forms. This instability is well-known to occur in the subso-
lar region of the terrestrial magnetosheath [e. g. Souček et al., 2008, Hoilijoki
et al., 2016]. A sibling of this instability is the firehose instability. Both these
instabilities are the result of the plasma temperature being different along the
magnetic field direction and across.

There is a large variety of microinstabilities involving particular conditions
for only ions or electrons or combinations thereof. What is always behind a
microinstability is the presence of some form of anisotropy in the plasma, be
it that one species does not flow in the same direction as another, that a beam
propagates separately from the bulk population, or that plasma is hotter along
the magnetic field direction than across, to name but a few examples. The
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Bunemann instability for instance arises when the electrons flow with a differ-
ent bulk velocity than the ions, while the bump-on-tail and many other beam
instabilities arise when a portion of the particle population flows separately
from another. Beam instabilities are ubiquitous in solar and space physics, an
example being type II radio emissions near the Sun [Ganse et al., 2012].

Overall, instabilities can only occur if there is a source of energy for them.
A bulk velocity shear can trigger the Kelvin-Helmholtz instability, whereas
beam instabilities draw their energy from the relative velocity of the various
populations. Identifying the energy source helps to pin down the instability
and predict its evolution. The energy has to come from somewhere: if the
source of the instability is drained, the instability does not grow any further.
This can take place in several ways: the actual source of kinetic energy or
anisotropy can have stopped, or the system can be reconfigured so extensively
by the grown instability that there is no possibility for it to happen any more.
For example, the Kelvin-Helmholtz instability ceases once both domains have
completely mixed.

2.3 Shocks

As soon as characteristic wave speeds have been defined, it is allowed to ask
what happens if an object travels through a medium faster than a given wave2.
And the answer is literally shocking.

Analytically, a shock forms as the solution of a transport or propagation
equation when the slope becomes infinitely steep at some point, which means
that the previously continuous and differentiable solution becomes discontin-
uous at that point and partial solutions have to be sought on either side of the
discontinuity.

Phenomenologically, information about a potential downstream obstacle
cannot reach the upstream medium by means of a given wave, if the medium is
flowing faster than the characteristic speed of that wave. As a common exam-
ple, an observer listening ahead of a supersonic aircraft cannot hear it: they can-
not obtain information about the incoming aircraft by means of sound waves.
Reversing the frame of reference – a mandatory skill for anyone who wishes
to study shocks, the air flowing supersonically cannot know about the aircraft
sitting still further down the path. In order to divert the flow around the obsta-
cle, a shock forms, which is nothing else than a steepened wave front standing
against the flow. It builds an interface between the upstream medium, flow-
ing unwittingly at high speed, and the downstream medium, which is slowed
down below the wave speed and diverted around the obstacle in a layer called
the sheath. It has to be noted that an obstacle is not mandatory for a shock

2Care is required in the case of electromagnetic waves in vacuum, but this definitely exceeds
the scope of the present work.



2.3. SHOCKS 17

to form. A fast flow catching up with a slower one forms a shock front if the
speed difference exceeds the characteristic speed. Energy conservation requires
that the kinetic energy be transformed, which usually means, in classical fluids
or plasma, that the medium is compressed and heated up when crossing the
shock.

The more general evolution of all plasma parameters across a shock can be
derived from mass, momentum, energy and magnetic flux conservation. The
results are called the Rankine-Hugoniot jump conditions, which relate in a sim-
ple and closed form the upstream and downstream density, pressure, velocity
and magnetic field components. The shock conditions are fully determined by
giving either the upstream or downstream conditions and solving the Rankine-
Hugoniot conditions. The interested reader is directed to Section 11.2 of the
book by Koskinen [2011] or for example to the works by Burgess [1995] and
Burgess and Scholer [2015] for a more complete treatment of this topic, only
the evolution of the magnetic field is to be discussed here a little more.

Because of the conservation of magnetic flux and due to the slowing down
of the plasma flow at a supermagnetosonic shock, the magnetic field has to be
compressed too by the shock. However, assuming that the shock surface is pla-
nar and the upstream magnetic field uniform, it follows that the downstream
magnetic field is also uniform. Since B is solenoidal (Equation 3.3), the imme-
diate consequence is that the component of the magnetic field normal to the
shock surface is constant across the shock, in other words, the compression of
the magnetic field only affects the components of B tangential to the shock.

Key figures to describe a shock are the Mach numbers M , defined as the
ratio of the inflow or upstream speed V to the characteristic wave speeds cw :

M =
V
cw
, (2.15)

meaning that a shock has several Mach numbers like the sonic, Alfvénic and
magnetosonic Mach numbers related to the eponymous wave modes presented
earlier. Another important set of shock parameters are the angles between
the inflow velocity V, the upstream magnetic field B and the unit vector n
orthogonal to the shock. The most relevant one in the present thesis is the
angle between the upstream magnetic field and the shock normal

θBn = cos−1
(
B · n
B

)
. (2.16)

Indeed, as already pointed out in Section 1.2 and as illustrated by Figure
2.1, the value of θBn conditions the fate of many a charged particle colliding
with a shock. A particle hitting a shock gyrates more tightly around the com-
pressed magnetic field direction in the shock layer than it did upstream and
after half a gyration it can be turned back to the upstream direction. At a
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Figure 2.1 – Behaviour of a charged particle encountering a supermagnetosonic
shock. The shock causes a compression of the magnetic field, thus the gyroradius of
the particle is shorter downstream of the shock.
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(b) In the quasiparallel case (θBn ≈ 0°), some
particles bend back and escape upstream,
forming the foreshock population.

quasiperpendicular shock, where θBn ≈ 90°, the next half gyration returns the
particle towards the shock and it is transported through the shock layer and
further downstream since B is essentially parallel to the shock plane (upper
part in Figure 1.1 and Figure 2.1a). Conversely, at a quasiparallel shock where
θBn ≈ 0°, an inflowing particle with suitably high energy can be reflected at
the shock and escape back along the magnetic field direction upstream of the
shock, forming a counter-streaming plasma population in the foreshock region
(lower part of the upstream region in Figure 1.1 and Figure 2.1b). This new
population is a source of free energy favouring the growth of waves, thus the
perturbation of the subsequently incoming solar wind and foreshock particles,
and eventually the perturbation of the bow shock itself once the foreshock per-
turbations advected by the solar wind reach and cross the bow shock. Chapter
6 addresses foreshock phenomena in more detail as foreshocks are the central
topic of Paper III and Paper IV. Finally, let it be mentioned that good intro-
ductory texts on shocks in magnetised plasmas are Chapter 11 in the book by
Koskinen [2011] and the works by Burgess [1995] and Burgess and Scholer
[2015].

2.4 Magnetic reconnection

Within the formalism of magnetohydrodynamics (mhd), a set of equations de-
scribing plasma as a magnetised fluid (see Section 3.3), it can be demonstrated
that a given small volume of plasma always remains on the same magnetic field
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line, while the topology of the magnetic field is preserved. This is often re-
ferred to as plasma being frozen-in to the magnetic field. In this framework,
the flow of plasma and magnetic field are closely-knit as the plasma drags the
fields along and stays topologically connected to the same field line. At large
scales, mhd has been shown to be a handy tool to describe plasmas such as
the solar wind or some astrophysical contexts (see Section 3.3 and references
there). Qualitatively, the frozen-in theorem is also very convenient for plasma
physicists to apprehend and get a feeling for the possible plasma behaviour in a
certain configuration. It is nevertheless important to note that the whole edi-
fice of mhd relies on neglecting all kinetic effects at small spatial and short time
scales.

A typical configuration where mhd hits its limits forms when two domains
with antiparallel magnetic field flow towards each other. Owing to the frozen-
in principle, nothing more should happen but a plasma and magnetic field pile-
up, unless some flow channel for the plasma regions around each other is found.
In reality, the behaviour of plasma is greatly modified, in particular because
the magnetic field goes through zero between both domains. In a volume of
the approximate size of the relevant kinetic scales, called the diffusion region,
charged particles are demagnetised and follow ballistic trajectories, only maybe
accelerated by electric fields, until they exit the region and feel some magnetic
field again. As they have a larger Larmor radius and inertial length, ions are
demagnetised at larger scales than electrons; the electron diffusion region is
embedded in the ion diffusion region (see Figure 2.2).

In addition to particles being demagnetised, a topological reconfiguration
of B takes place in the diffusion region, so that field lines initially only thread-
ing either side of the interface end up connected with a field line from the
other side. This happens in more or less complex geometries, the simplest be-
ing the X-line topology represented in Figure 2.2. In that essentially 2d case,
the whole process of magnetic reconnection is organised around a single mag-
netic null, the X-point at the centre of the diffusion region. This process is
energetically favourable: the initial B configuration is more stressed than after
reconnection. The excess magnetic energy is transferred to the plasma, which
is accelerated within and near the diffusion region through the relaxation of
the magnetic field lines and expelled at or near the inflow Alfvén velocity. As
can be expected, reconnection seldom occurs in a purely 2d configuration and
its topology can become complex. The picture of reconnection drawn in this
section corresponds to antiparallel reconnection. Magnetic reconnection can
also occur in cases where only a component of both magnetic domains is an-
tiparallel, a case known as component reconnection. The reviews by Zweibel
and Yamada [2009], Yamada et al. [2010] and Pontin [2011] as well as text-
books such as the classics by Biskamp [2000] and Priest and Forbes [2007] are
a good start for the reader willing to wander into the amazing maze of magnetic
reconnection.
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Figure 2.2 – 2d sketch of magnetic reconnection. The black lines are tangent to
the magnetic field. Plasma flows in from the upper and lower edges towards the
X-line. Ions decouple from the magnetic field within the ion diffusion region (idr)
while electrons are demagnetised in the electron diffusion region (edr – not to scale).
Plasma is accelerated in the process and escapes towards the exhaust regions.

By allowing the topological reorganisation of antiparallel magnetic domains,
releasing energy along the way and accelerating the inflowing plasma, magnetic
reconnection plays a key role in many dynamic systems such as solar eruptions
and, unsurprisingly, in the terrestrial magnetosphere. Under southward imf,
reconnection takes place at the magnetopause in the subsolar region. This day-
side reconnection increases the total magnetic flux in the magnetosphere and
eventually triggers reconnection in the current sheet separating both lobes of
the magnetotail. This interplay of dayside and nightside reconnection drives
the Dungey cycle, which completes by field lines and plasma travelling towards
the dayside again through the inner magnetosphere [Dungey, 1961]. Magnetic
reconnection is the focus of current magnetospheric research, especially since
the launch of mms [e. g. Burch et al., 2016b, Cassak, 2016]. Dayside reconnec-
tion is also a key ingredient in the phenomenon reported for the first time in
Section 6.4 and in Paper IV.
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Plasma is a quasi-neutral bunch of electrically charged particles interacting col-
lectively, but how can that be modelled mathematically? In principle, plasma
is only about the equation of motion of point-like charged particles in elec-
tromagnetic fields. In practice, there are too many particles and the relevant
time and spatial scale ranges to cover are too wide. This is why a number of
approaches exist, varying in degree of physical accuracy and inversely with the
computational weight. There is no free lunch: a lightweight method has less
physical detail while a physically completely accurate model cannot be com-
puted in a reasonable time.

The task is, in many ways, similar to sports reporting. In theory, one could
model the Tour de France down to the physiological parameters of each cyclist,
the pedal phase and tire pressure of the bicycles, the micrometeorological con-
ditions and the exact 3d profile of the road including surface roughness and
cracks. But no one can afford that.

The emphasis here lies on the physical ideas underpinning common plasma
models used in space physics, not on their discretisation for efficient comput-
ing. The reader is referred to further literature describing numerical plasma
simulation methods [e. g. Matsumoto and Sato, 1985, Hockney and Eastwood,
1988, Büchner et al., 2003] and to Chapter 4 of this thesis detailing the algo-
rithms of the hybrid-Vlasov model Vlasiator.
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3.1 Particles in cells, a rough picture

The equation of motion of a particle subjected to the Lorentz force is given by
Newton’s second law of motion

a =
q
m

(E + v × B) . (3.1)

It can easily be integrated once the initial position and velocity of the particle
are known. The electric and magnetic fields can be computed with the help of
Maxwell’s equations

∇ · E =
ρq

ε0
, (3.2)

∇ · B = 0, (3.3)

∇ × E = −
∂B
∂t

(3.4)

and ∇ × B = µ0

(
j + ε0

∂E
∂t

)
, (3.5)

since with the position and velocity of all the particles, the charge density ρq
in Gauss’s law (3.2) and the current density j in Ampère’s law (3.5) are defined
in every position as well. Thus for set initial conditions, one can compute the
fields and the motion of each particle in these ambient fields, and then iterate
through time.

The basic plan is fairly simple, but unfortunately it gets out of hand very
rapidly with a growing number of particles in the system. Even with a small
magnetosphere of 202 × 100 R3

C
and a low ion and electron density of 1m−3,

one ends up with an impossible 2 · 1025 particles to handle. However, closer
inspection of Equation (3.1) indicates that particles with the same charge-to-
mass ratio obey the same equation, which suggests one way of reducing the
number of particles. Suitably similar particles could be grouped into larger
macroparticles with an equivalent q/m. If the macroparticles are judiciously
chosen to sample well the total population, the amount of computations would
be automatically reduced without affecting the modelled physics.

This forms the idea behind particle-in-cell (pic) methods: replace the actual
particles with much fewer representative macroparticles and solve their equa-
tion of motion in electric and magnetic fields. From that, E and B are com-
puted, using the local charge and current densities. This is usually not done for
each macroparticle position separately but the effect of particles is accumulated
and averaged within, and the field values are computed for discrete cells of a
grid to simplify the process – hence the -in-cell part of the name.

Here the astute plasma modeller is confronted with one of the major hur-
dles of pic algorithms. For the purpose of computing the fields, a macroparticle
has to be weighted according to the proper number of ions or electrons it rep-
resents, which is simple enough to do. Additionally though it may be useful
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to assign each macroparticle some spatial shape instead of a point-like location,
so that its influence is not restricted only to the closest grid cell and does not
jump discretely from one cell to the next while propagating through the grid.
This somewhat extended macro-particle can then be thought of as sampling a
small volume instead of a Dirac δ-like point in the (r,v) phase space. The right
choice of such a shape function allows to simplify the expressions involved
when interpolating the fields to the grid and this is one of the keys to develop-
ing a successful pic model [e. g. Hockney and Eastwood, 1988, Markidis et al.,
2010, Kilian et al., 2013].

Another hurdle is the inclusion of collisions. Coulomb collisions are elastic
binary collisions at long range due to the electric interaction. The divergence of
the Colomb force at short range is avoided since the effects of macroparticles
is averaged over the grid cells to compute the fields. Furthermore in many
cases plasmas in space physics are so tenuous that head-on particle collisions
are virtually nonexistent: neglecting collisions means simulating a collisionless
plasma, which is a perfectly valid assumption in many contexts. In regimes
where collisions are important, such as in the Earth’s ionosphere, their direct
treatment is possible but resource-consuming, so that other methods such as
Monte-Carlo approaches have been developed.

Given the relative conceptual and mathematical simplicity of the pic ap-
proach, in combination with the possibility of almost arbitrarily scaling the
computational load of a task by cranking up or down the allowed number of
macroparticles, pic simulations have been popular and successful in plasma re-
search for decades, be it in global magnetospheric research [e. g. Savoini et al.,
2013, Karimabadi et al., 2014], local studies [e. g. Daughton et al., 2011] or
more exotic topics like supernova remnants [e. g. Ohira et al., 2009] or pulsar
magnetospheres [e. g. Philippov et al., 2015].

While it is the major strength of pic models to use macroparticles, it is also
their largest drawback. The reduced number of particles introduces statistical
noise affecting the sampling quality of the modelled particle populations at the
microphysical level. On macroscopic scales, the variables computed from the
particle populations (density, velocity, pressure etc.) are affected by some level
of statistical noise too. With clever weighting and interpolation techniques the
impact of the noise can be diminished, but ultimately the only possibility to
improve the sampling is to increase the number of modelled macroparticles
and with that obviously the computational cost. The latter scales linearly with
the number of particles, but the random noise level scales inversely with the
square root of that number, so that the improvement does not come cheap.
Eventually the question boils down to how few macroparticles the modeller –
or the referee! – is comfortable with whilst still trusting the physical results.

Is the Tour de France enthusiast satisfied with a teamwise coverage of the
day’s stage, or would they like a more detailed report, at a higher cost?
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3.2 Particle distributions in higher dimensions

Explicitly pushing around all particles in self-consistent electromagnetic fields
is computationally too expensive and pic methods can suffer from statistical
noise. Instead of following particles, one could try to study the behaviour of a
function f giving the density of particles in space. Particles are uniquely identi-
fied by giving their position r =

(
x, y, z

)
and velocity v =

(
vx, vy, vz

)
as a func-

tion of time t , which means that f has to be defined in a 6d phase space (r,v).
In other words, this distribution function describes how many particles are go-
ing in which direction (v-coordinates) at any point (r-coordinates). Chemical,
nuclear or high-energy processes whereby particles would split, bind, fuse, or
otherwise appear or vanish do not fall into consideration – f (r,v, t ) is strictly
conserved in time:

D f (r,v, t )
Dt

= 0. (3.6)

Were it not, there would have to be source or sink terms on the right-hand side.
Writing out the total time derivative yields

∂ f
∂t
+
∂ (r,v)
∂t

· ∇(r,v) f = 0

⇔
∂ f
∂t
+
∂r
∂t
· ∇(r) f +

∂v
∂t
· ∇(v) f = 0

⇔
∂ f
∂t
+ v ·

∂ f
∂r
+ a ·

∂ f
∂v
= 0, (3.7)

which is nothing more than the advection equation of a conserved density f ,
albeit in 6d instead of the 3d many are more acquainted with. The acceleration
due to the Lorentz force has not changed since Equation (3.1), so that the
evolution equation for the distribution function fs (r,v, t ) of a particle species
s can be given as

∂ fs
∂t
+ v ·

∂ fs
∂r
+

qs
ms

(E + v × B) ·
∂ fs
∂v
= 0. (3.8)

It has to be noted that v is not the single-particle velocity as in Equation (3.1)
any more but the velocity space coordinate in our 6d phase space. Equation
(3.8) is the Vlasov equation in its full splendour.

Caveat lector, a significant amount of physical generality has now been surrep-
titiously traded in for a great deal of mathematical simplification: this equation
takes into account the Lorentz force but completely neglects collisions. The
Vlasov model has no difficulty with that though and happily provides a de-
scription of collisionless plasmas. And since there are no particles to speak
of in this formalism, it is no easy thing to include the treatment of collisions.
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Wrapping the variations of fs due to collisions into a term on the right-hand
side of the Vlasov equation gives

∂ fs
∂t
+ v ·

∂ fs
∂r
+

qs
ms

(E + v × B) ·
∂ fs
∂v
=

(
∂ f
∂t

)
C
, (3.9)

which is essentially equivalent to the well-known Boltzmann equation from
statistical physics, applied here for plasma. Without going into details, the col-
lisional term is usually of such a mathematical form that its computation is
rather expensive. Such term has not yet been included in large-scale Vlasov-
based space plasma models. Considering the physical systems targeted in the
future, their relevance will increase and it is likely that efforts to include com-
putationally more efficient collisional terms in Vlasov-based space plasma sim-
ulations will be made. Such effort has already been undertaken in the field of
gyrokinetic simulations [see Section 3.4 below and e. g. Abel et al., 2008, Barnes
et al., 2009]. Although collisions are unimportant in the studies pertaining to
this thesis, it is not so in adjacent fields. Be it in stellar plasmas, ionospheres
or in fusion reactors: many a plasma context requires to include collisions for
a sensible treatment.

A further term in the equations is being neglected within the scope of this
work: gravity. It would be included alongside the Lorentz force in the accel-
eration term, both in pic and in Vlasov methods. Its effects are not foreign to
space plasma physics: the structure of stars, the expansion of the solar wind
or the dynamics of the Earth’s ionosphere for example are all affected or even
dominated by gravitation. However in the present work its influence can safely
be disregarded.

As in pic methods, the electromagnetic fields are needed to propagate the so-
lution in time, and as in pic methods too, the charge and current densities are
computed in each simulation cell and fed into Maxwell’s equations (Equations
3.2–3.5). Since the particle distribution function fs (r,v, t ) expresses the num-
ber density of particles of species s at a time t in six dimensions, that is in a
volume d3r d3v = dxdydzdvxdvydvz of the (r,v)-space, the total number of
particles Ns is given by

Ns =

∫
(r)

∫
(v)

fs (r,v, t ) d3r d3v, (3.10)

which defines the normalisation of fs . Following that principle, the (spatial)
number density ns is easily obtained as

ns (r, t ) =
∫

(v)
fs (r,v, t ) d3v . (3.11)

This is the zeroth-order velocity moment of fs . The first-order moment

Γs (r, t ) =
∫

(v)
v fs (r,v, t ) d3v (3.12)
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is the flux vector of particles at each point r, which yields the bulk velocity Vs
when normalised by the particle density:

Vs (r, t ) =
Γs (r, t )
ns (r, t )

=

∫
(v) v fs (r,v, t ) d3v∫
(v) fs (r,v, t ) d3v

. (3.13)

The current density is then simply js = qsΓs = qsnsVs . One step further lies
the pressure tensorPs , the second-order velocity moment of fs (note the tensor
product inside the integral):

Ps (r, t ) = ms

∫
(v)

(v − Vs ) (v − Vs ) fs (r,v, t ) d3v, (π )

which can be used to define the temperature tensor Ts with Ps = nskBTs . The
latter two become the scalar pressure Ps and temperature Ts in the case of an
fs (r,v, t ) spherically symmetric in v.

Indeed the Vlasov equation is great to simulate collisionless magnetised
plasmas and a lot of exciting plasma physics such as wave propagation and insta-
bilities can be readily modelled with it [e. g. Eliasson and Shukla, 2004, Umeda
et al., 2012]. One of the major advantages when modelling fs instead of using
randomly-distributed macroparticles in pic methods is the absence of statisti-
cal sampling noise. But the astute plasma modeller probably started scratching
her/his head somewhere around Equation (3.7) and wondering whether this is
not going to consume a tremendous amount of computation and a humongous
space in memory and on disk. Here is namely the crux of Vlasov methods:
modelling a large system with good resolution in all six space and velocity di-
mensions means going for a huge number of sampling points. That’s why prop-
agating fs turns out to be at the same time a major disadvantage with respect
to pic simulations: whereas the latter can live with a relatively low number of
macroparticles per grid cell – there may be noise but the physics is essentially
correct –, a decent sampling of fs in 3d velocity space requires a minimum
resolution which cannot be too coarse or the moments obtained are grossly
incorrect. Historically, Vlasov-based simulations have thus been used mainly
to model reduced systems in 1d or 2d in space and velocity. To simulate larger
systems with the Vlasov equation, top-tier supercomputing resources were and
are still needed [e. g. prace, 2015].

Back on the Tour de France, knowing the density and velocity distribu-
tion of cyclists for each square metre of road throughout the day is certainly
comprehensive, but maybe too much information?

3.3 Magnetohydrodynamics

The previous Section 3.2 introduces the concept of the particle distribution
function and its moments, but the resulting equations such as Boltzmann’s
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equation (3.9) are still on the computationally heavy side. Yet the plasma the-
oretician is by no means at the end of her/his wits, more simplifications can be
undertaken to proceed.

One very popular set of equations are the magnetohydrodynamic (mhd)
equations. They can be built as an extension to the Navier-Stokes equations
including electric and magnetic fields, or derived from Boltzmann’s equation.
The steps taken in the latter case are the following:

1. Consider the plasma as a single fluid by summing the equations and mo-
ments over the various particle species;

2. Take the zeroth, first, second, ... velocity moments of Boltzmann’s equa-
tion and combine with Maxwell’s equations (Equations 3.2–3.5) to ob-
tain a set of equations describing the dynamics of the plasma moments
(density, velocity, pressure, ...) and the electric and magnetic fields;

3. Choose an equation of state providing an appropriate closure of the sys-
tem, in the case of mhd usually P = P0 (n/n0)γ where γ is the polytropic
index.

This procedure is not very involved and has been treated in detail before [e.
g. Kempf, 2012], hence it is not written out in this thesis. The key assump-
tions and simplifications underlying the three steps above are to be emphasised
nevertheless:

1’. In a single fluid, no effects related to multiple species or multiple popula-
tions are included;

2’. Only moments are included in the equations, thus neglecting all kinetic
effects;

3’. The polytropic equation of state entails the assumption that a scalar, iso-
tropic pressure suffices to describe the plasma, instead of a full tensor.
Closing the equation system at this level excludes higher moments such
as the third-order heat flux tensor.

It is also assumed along the way that the electron mass can be neglected with
respect to the ion masses (mi � me). The resulting system of equations takes
up a few more lines when writing it out, but it is computationally much lighter
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to solve than the above-mentioned pic and Vlasov/Boltzmann methods:

∂ρm
∂t
+ ∇ · (ρmV) = 0 (3.15)

ρm

(
∂

∂t
+ V · ∇

)
V − j × B + ∇P = 0 (3.16)

P = P0

(
n
n0

)γ
(3.17)

∂B
∂t
= −∇ × E (3.18)

∇ × B = µ0j. (3.19)

This system thus comprises a continuity equation (3.15), a momentum equa-
tion (3.16), the equation of state (3.17) and the Maxwell–Faraday and Maxwell–
Ampère equations (3.18 and 3.19). In the Maxwell–Ampère equation, it has to
be noted that the displacement current is neglected, thus excluding light waves
from the model (compare with Equation 3.5). The last equation closing the
system is Ohm’s law, which provides a relation between the electric and mag-
netic fields. It is derived by manipulating the momentum transport equation.
In its generalised form, it takes the shape

E + V × B =
j
σ
+

1
qne

j × B +
1

qne
∇ ·Pe +

me

q2ne

∂j
∂t

(3.20)

where σ is the plasma’s electrical conductivity. With the assumption mi � me,
one can readily drop the last term. Dimensional analysis shows that the second
and third terms on the right-hand side are only important at spatial scales close
to the ion kinetic scales, from which follows that they can be neglected in a
fluid approach. Hence, the usual form of Ohm’s law in mhd is

E + V × B =
j
σ

(3.21)

and in the case of very conductive plasma, it is simplified even further to

E = −V × B. (3.22)

What is left to work with in this description? The plasma has been reduced
from a multi-species system of interacting electrons and ions with arbitrary ve-
locities to a single fluid with a scalar pressure and no kinetic effects whatsoever.
At best, mhd should only be fit to describe plasmas of homogeneous compo-
sition, in thermal equilibrium and exclusively at large time and spatial scales.
Despite these theoretical limitations, mhd has found a wide use especially in
space physics. Comparisons to observations have proven that although in prin-
ciple mhd should not even properly apply, its results are reliable in many cases
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and it can be applied to a lot of systems. Examples include simulations of the
Sun and its cyclical variability [e. g. Käpylä et al., 2012], simulations of the
solar wind and coronal heating [e. g. Evans et al., 2012], models of the solar
wind propagation such as the Wang-Sheeley-Arge–Enlil model used for real-
time solar wind forecasting [Parsons et al., 2011], global magnetospheric mod-
els such as the Grand Unified Magnetosphere–Ionosphere Coupling Simulation
[gumics-4, Janhunen et al., 2012], the Lyon-Fedder-Mobarry model [lfm, Lyon
et al., 2004], the Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme [bats-r-
us, Tóth et al., 2012] or the Open Geospace General Circulation Model [open-
ggcm, Raeder et al., 1998], as well as astrophysics with the Athena code [Stone
et al., 2008] and even cosmology [e. g. Dolag and Stasyszyn, 2009]. Of course
this list is by far not exhaustive.

Describing the Tour de France by just telling the route and the timing of
the whole peloton is indeed a bit rough of a description, but isn’t that what
most are interested in?

3.4 Hybrids and other combinations

As has become apparent in the first sections of this chapter, the choice of a
model to solve a given plasma physical problem is often a matter of striking
the right balance between the computational and the physical complexity. The
more physics a model describes, the heavier it is to deploy. Conversely, a sim-
ple model might not include enough features to give a satisfying solution. The
variety of mathematical approaches leading to equations describing plasma of-
fers an endless playground to seek different models. A few of the more famous
trails venturing into this vast landscape are indicated in this section.

Step 3 on the road to mhd in Section 3.3 requires to choose a closure to
the system of equations in the form of an equation of state for the pressure.
Indeed, taking increasing moments of Boltzmann’s equation produces a chain
of equations expressing the nth moment of f as a function of the moment of
order n + 1. This chain can be truncated at any order with adequate assump-
tions. In addition to this, the summation over all species undertaken in step
1 can be skipped in order to take moments over electrons and ions separately
and then couple the resulting equations by means of Maxwell’s equation. Mod-
els derived with this method are called multi-fluid as each species is described
as a separate fluid. Common models are the five- and ten-moment two-fluid
methods, where protons and electrons as well as their moments (n,V, P ) and
(n,V,P) respectively are retained. This amounts to 5 respectively 10 moments
(P is a symmetric 3× 3 tensor) being taken into account for each species. More
such two-fluid multi-moment methods exist, as the review of 5-, 8-, 10-, 13- and
20-moment methods by Schunk [1977], for example, shows. Being computa-
tionally lighter than pic or Vlasov/Boltzmann methods, they are a seducing
option including more kinetic physics than mhd [e. g. Wang et al., 2015].
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As pointed out by Schunk [1977], the multi-fluid methods require that f
be of a form which can be easily integrated; in practice it is assumed to be
a Maxwellian. This restricts the validity of the models when situations arise
where f is anisotropic, as is often the case in magnetised plasmas, where B
and the Lorentz force naturally define a preferential direction. Going from
mhd towards more complexity, a set of single-fluid equations with both parallel
and perpendicular pressure P ‖, P⊥ has been first derived by Chew, Goldberger,
and Low [1956] and is commonly known as the cgl equations. Going from
Vlasov’s equation towards less complexity, another approach is to assume that
f is symmetric around the magnetic field direction – gyrotropic – so that the
azimuthal degree of freedom around B can be integrated over. This results in
a different class of models, gyrokinetics, particularly popular in fusion plasma
research [e. g. Dannert and Jenko, 2005, Angioni et al., 2009].

Many a plasma modeller’s headache originates in the disparity of scales between
species. The ratios of the characteristic lengths and frequencies are equal to the
ratio of the masses or its square root:

ωce

ωci
=
ω2

pe

ω2
pi

=
rLi
rLe
=

d2
i

d2
e
=

mi
me

(3.23)

which in the best case with protons is approximately equal to 1836 (or its square
root, defined to be 42 for mnemotechnic reasons). Thus during the time a
proton leisurely surveys its large Larmor circle, a puny little electron flying at
the same speed spins 1836 times around its 1836 times shorter path. Resolving
electron and ion kinetics in a larger system encompassing fluid scales involves
a scale separation in time stepping and spatial resolution which is not easily
achievable, even with supercomputers.

Especially with this handicap in mind, it is worth questioning whether
any of the requirements can be relaxed. The easiest is to relinquish the global
nature of the simulation and not aim for hundreds of ion gyroperiods and
inertial lengths – a restriction often not compatible with the nature of the
research considered. The alternative is to ponder the need for detailed electron
and ion physics simultaneously. The class of hybrid models emerges from this
reasoning, describing ions kinetically while relying on a simpler fluid model for
the electrons. Undoubtedly, the inherent loss of kinetic electron physics has to
be justified, but the unmistakable bonus of such a hybrid is that the minimal
resolution requirements correspond to the ion and no longer to the electron
scales.

The most widely-used hybrid models combine pic ions with mhd equations
to close the system. They have been successfully applied to model magneto-
spheres in global contexts including ion kinetics [e. g. Lin and Wang, 2005,
Omidi et al., 2005, Blanco-Cano et al., 2006, Karimabadi et al., 2014]. A com-
pletely equivalent scheme is obtained by replacing the pic ions with a velocity
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distribution. Due to the computational challenge it represents to simulate large
systems with the hybrid-Vlasov method, it is not yet as common as hybrid-pic.
A number of efforts are undertaken though and give excellent results [e. g.
Valentini et al., 2007, Perrone et al., 2014, Pokhotelov et al., 2013]. Given that
the rest of this thesis presents in depth the hybrid-Vlasov model Vlasiator, this
very brief introduction of hybrid models shall stop here.

Concluding this chapter on plasma modelling, it should be mentioned that
numerous other stratagems can be devised and combined to achieve specific
goals.

To alleviate the pains of large mass ratios, picmethods can be run with mass
ratios lower than 1836 to reduce the gap between electron and ion scales. In
the works cited above, the ratio is 50 [Karimabadi et al., 2014] respectively 84
[Savoini et al., 2013]. In this way, more electron physics is retained than with
fluid electrons in a hybrid model.

In large, heterogeneous systems such as the magnetosphere or the propa-
gation of eruptions from the Sun’s surface to the Earth, it is conceivable that
the same level of physical detail is not necessary throughout the simulation.
Consequently, a lot of work has been invested in attempts to couple fluid and
kinetic models, providing a large-scale context with mhd or multi-fluids and
detailed kinetics in selected regions of interest [e. g. Lapenta et al., 2013, Rieke
et al., 2015, Tóth et al., 2016].

The present chapter attempts to give an overview of physical approaches
that can be taken individually or combined to simulate plasmas. Each has its
advantages and inconveniences and the choice is largely problem-specific. The
second aspect, which would take an equally detailed chapter to treat if not a full
textbook, is the discretisation of the algorithms to ensure a swift computation
of the solution. This comprises both fundamentally different mathematical
strategies to solve differential equations and more or less flexible alternatives
regarding the efficient implementation and execution on (super)computers. It
is not covered at all in this work, however the next Chapter 4 is focussing on the
physical and technical options taken to develop the hybrid-Vlasov model Vlasi-
ator and achieve its set goal of exceeding the limits of mhd in the simulation of
the Earth’s magnetosphere.





Chapter 4

¯ Take Five
Dave Brubeck

q Long Island Iced Tea – tequila, vodka, rum,
triple sec, gin and cola

A true 6d drink

The year is ad 2016. Global magnetospheric physics is entirely occupied by
mhd and pic. All? Not quite! For a research group of indomitable Finns
still holds out against the world and claims that hybrid-Vlasov global magneto-
spheric simulations are possible [Palmroth et al., 2013, Pokhotelov et al., 2013,
Sandroos et al., 2015, Palmroth et al., 2015, Hoilijoki et al., 2016, 2017, Paper
II, Paper III and Paper IV].

This chapter describes Vlasiator as it stands in 2016. The main features
of the algorithm are presented without however going into implementation
details. The source code’s git repository can be browsed, forked and cloned
at https://github.com/fmihpc/vlasiator, current information on the code,
data, science and team can be found at http://vlasiator.fmi.fi. References
to files in the Vlasiator repository such as the main file m vlasiator.cpp are
given relative to the base directory of the source in the text and linked to https:
//github.com in the pdf version of the thesis.

The next Chapter 5 covers the author’s major code contributions pertain-
ing especially to the field solver and the boundary conditions.

4.1 The hybrid-Vlasov model

Vlasiator treats H+ ions (protons) kinetically through Vlasov’s equation (3.8):

∂ f
∂t
+ v ·

∂ f
∂r
+

q
mi

(Ev + v × B) ·
∂ f
∂v
= 0. (4.1)
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For simplicity from here on f denotes the ion distribution function unless
mentioned otherwise. The electric field Ev is computed in a fashion similar to
mhd using the following generalised Ohm’s law:

Ev = −Vi × B +
1
qni

j × B

⇔ Ev = −Vi × B +
1

µ0qni
(∇ × B) × B, (4.2)

where the second step is derived from Ampère’s law (3.5) again under the as-
sumption that the variation of E in time is slow, yielding j = ∇ × B/µ0.

The time evolution of the magnetic field is computed using Faraday’s law
(3.4), which can be rewritten to yield the increment of the magnetic field ∆B
as a function of the increment in time ∆t and the electric field Ef:

∆B = −∆t · ∇ × Ef. (4.3)

The electric field computed with the generalised Ohm’s law (4.2) can be used
in this equation, in which case Ef = Ev. Another option is to use a yet more
simplified Ohm’s law

Ef = −Vi × B, (4.4)

where the Hall term j×B/qni has been neglected. When using the latter electric
field (4.4) to compute the magnetic field increment (4.3), the resulting scheme
is a Hall-less hybrid algorithm. The Hall term cannot be neglected in Ev (4.2)
used in Vlasov’s equation (4.1) though, otherwise the ion momentum equation
is violated and no force is exerted on the ions [Karimabadi et al., 2004]. The
importance of the Hall term in plasma wave dispersion is the subject of Paper
I and is discussed in Section 6.1 of this thesis. Paper II and Paper III however
show that on global scales, a Hall-less Ef is sufficient to capture the relevant
physical phenomena, at least as long as ion kinetic scales are not properly re-
solved.

This set of equations makes Vlasiator a hybrid-Vlasov model, which can be
Hall-less if Ef from the simplified Ohm’s law (4.4) is used to propagate B in
time. The whole algorithm can be summarised as follows. The superscripts
n and n + 1 are used to designate the value of variables at time t0 and after
one time step at time t0 + ∆t , respectively. Assuming that the initial values
f n and Bn are known, which means that the moments of f n such as Vn

i are
also known, En

v
and En

f
are computed with Ohm’s law (4.2) and (4.4) in the

Hall-less case:

En
v
= −Vn

i × B
n +

1
µ0qnn

i

(
∇ × Bn) × Bn, (4.5)

En
f
= −Vn

i × B
n . (4.6)
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Vlasov’s equation (4.1) can be rewritten in terms of increments as well, yield-
ing:

f n+1 = f n + ∆ f n

= f n − ∆t ·
(
v ·

∂ f n

∂r
+

q
mi

(
En
v
+ v × Bn) · ∂ f n

∂v

)
. (4.7)

Finally, Bn is advanced using Equation (4.3)

Bn+1 = Bn + ∆Bn

= Bn − ∆t · ∇ × En
f
. (4.8)

With equations (4.5) to (4.8) the state at t0 + ∆t is known and the same steps
can be used to progress from f n+1 and Bn+1 to f n+2 and Bn+2, and so forth.

4.2 Discretising a six-dimensional space

The position and velocity spaces are discretised separately in Vlasiator. E, B,
ni,Vi and Pi as well as a few housekeeping variables are stored for each spatial
cell on a uniform Cartesian grid. This grid is 1d, 2d or 3d depending on the
simulated case. Alongside these variables, the 3d velocity distribution function
at every spatial cell position r is discretised on a uniform Cartesian grid in
velocity space and stored in that spatial cell.

The storage and handling of this data in the cells is performed using the
Distributed Cartesian Cell-Refinable Grid (dccrg) library [Honkonen et al.,
2013, dccrg, 2016]. No grid refinement is used. dccrg decomposes the posi-
tion space into domains distributed among the mpi processes when distributed-
memory parallelisation is activated. All detail of inter-process communication
and bookkeeping of ghost cells, which hold values on one process correspond-
ing to a neighbouring cell solved by another process, is delegated to dccrg.
Load balancing, ensuring that even in an inhomogeneous simulation each pro-
cess handles approximately the same amount of data, is delegated further by
dccrg to the Zoltan library [Devine et al., 2002, Boman et al., 2016].

The phase-space cells store the volume average f̃ of the distribution function
over their 6d volume:

f̃ =
1

∆3r∆3v

∫
cell

d3r d3v f (r,v, t ), (4.9)

where ∆3r∆3v = ∆x∆y∆z∆vx∆vy∆vz denotes the phase-space integration vol-
ume, and ∆x , ∆y, etc. are the cell dimensions. For simplicity, f stands for the
volume average of the distribution function over a 6d cell from here on.

In the early version of Vlasiator used in Paper I, Paper III and other works
[Palmroth et al., 2013, Pokhotelov et al., 2013], and as explained in detail in
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Paper II, f is propagated forward in time by calculating fluxes at every cell face
in all dimensions. The nature of Vlasov’s equation gives a simple form to the
spatial Fr = (Fx, Fy, Fz ) and velocity Fv = (Fvx, Fvy, Fvz ) fluxes:

Fr = v f , (4.10)

Fv =
q
mi

(
v − Vi +

1
µ0qn

∇ × B
)
× B f , (4.11)

as can be readily seen from Equation (4.7). Because f is a volume average, it is
propagated using a volume-averaged B computed with a divergence-free recon-
struction method [Balsara, 2009, details on the field solving and reconstruction
algorithms are given in Section 4.3]. The propagation of f is obtained by in-
crementing it by the fluxes in and out of the cell in all directions:

f n+1 = f n −
∑

j ∈{x,y,z,
vx ,vy ,vz}

∆t
∆ j

[
F n
j

(
j + ∆ j

)
− F n

j
(
j
)]
. (4.12)

The fluxes are computed by means of a 3d wave propagation algorithm solving
the Riemann problem of a propagating medium with a discontinuity at the cell
interface [LeVeque, 1997, Langseth and LeVeque, 2000]. By construction, the
scheme (4.12) is conserving mass except at the simulation domain boundaries.

Despite being a robust and reliable algorithm, this method is limited by a
Courant-Friedrichs-Lewy (cfl) condition making it numerically unstable if f
is propagating further than into the next cell in one time step [Courant et al.,
1928]. This restricts the time step length ∆t :

∆t < min
(
∆x
vx
,
∆y
vy
,
∆z
vz
,
∆vx

ax
,
∆vy
ay

,
∆vz
az

)
. (4.13)

This type of restriction is common to many algorithms modelling the propa-
gation of a field in a fixed Eulerian grid.

To circumvent the time step limitation posed by the algorithm’s cfl condition,
a semi-Lagrangian algorithm was implemented for the propagation of f . This
is the method used in Paper IV, other works [Palmroth et al., 2015, Hoilijoki
et al., 2016, 2017] and more recent production runs.

Lagrangian (and semi-Lagrangian) methods rely on the property that the
solution g (r, t ) to the advection equation

∂g
∂t
+ V · ∇g = 0, (4.14)

where the velocity field V is known, is of the form

g (r, t ) = g (r − (t − t0) V, t0) . (4.15)
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Put in words, g at time t and position r is the same as g at the previous time t0
at the location which flowed with the velocity V to reach r at time t , namely
r−(t − t0) V. This solution is unconditionally stable, provided thatV is known
everywhere at all times. When using this approach to solve an advection equa-
tion numerically, often V is not known a priori as it is being computed as well.
The method can however be applied stepwise by computing Vn from gn and
using it to compute

gn+1 (r) = gn
(
r − ∆tVn) . (4.16)

Using this formal solution to follow the propagation of a small volume of
the fluid g results in a Lagrangian method. It can become impractical because
of the inherent deformation of the Lagrangian volumes with the flow, and the
possible accumulation of such Lagrangian volumes in some regions of the sim-
ulation leaving other regions badly covered. Semi-Lagrangian approaches use
the stepwise solution (4.16) in combination with a fixed Eulerian grid instead,
to retain a meaningful coverage of the simulation domain. The decisive as-
pect immediately stands out: the starting point of the flow r − ∆tVn needed
to obtain the value gn+1 (r) is unlikely to be located exactly at a Eulerian grid
point where the values gn are known. Semi-Lagrangian algorithms rely on in-
terpolating gn from the fixed Eulerian grid points to the location r − ∆tVn

to obtain the values gn+1. The choice of the interpolation technique is aimed
at preserving the monotonicity of solutions and conserving g . Even though
the semi-Lagrangian method is numerically stable for any ∆t , the convergence
towards a sensible solution is of course paramount and the length of the time
step is guided by the fastest relevant dynamics in the problem considered.

One of the beautiful aspects of Vlasov’s equation is that the acceleration
of f in velocity space (4.11) is nothing more than a rotation around B, the
gyromotion, in the frame where −Vi + ∇ × B/

(
µ0qn

)
= 0. Hence the semi-

Lagrangian transformation to accelerate f is constructed from a translation,
a rotation around B and a translation back to the original frame, while the
spatial translation is by definition just that. Essentially, the algorithm amounts
to mapping f from the original grid to another rotated and/or translated grid.

Vlasiator uses a 3d conservative semi-Lagrangian scheme developed origi-
nally for weather prediction models [slice3d, Zerroukat and Allen, 2012] and
adapted to the separate spatial translation and velocity space acceleration of
f , similarly to the split of the flux propagation method in Equations (4.10)
and (4.11). slice3d is based on the use of volume averages of the variable to
propagate. The scheme is dimensionally split: the interpolation and mapping
to the transformed grid is performed one dimension at a time, which corre-
sponds a translation and a shear transformation of the grid in each dimension.
The interpolation scheme uses piecewise quartic polynomials [Piecewise Quar-
tic Method (pqm), White and Adcroft, 2008] for the acceleration and piece-
wise quadratic polynomials [Piecewise Parabolic Method (ppm), Colella and
Woodward, 1984] for the translation part of the propagation respectively. A
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Piecewise Linear Method (plm) is also implemented in Vlasiator and any com-
bination of pqm, ppm and plm is allowed for acceleration and translation. The
combination of pqm for acceleration and ppm for translation is found to be the
best trade-off between the quality of the interpolation results and the compu-
tational weight of the interpolation steps in Vlasiator. The implementation of
the slice3d algorithm is available as a standalone library [lib-slice3d, 2016].

The geometric simplicity of the transformations allows to use the external
library Eigen to perform the geometrical transformations [Eigen, 2016]. In the
absence of a formal cfl condition, the configurable parameter for the Vlasov
solver acceleration is the maximum rotation angle around B, following physical
considerations. The slice3d algorithm does have limitations, for example a
rotation of exactly 90° is not possible, but they are beyond the range of sensible
physical limits. For the translation part of the Vlasov solver, a cfl limit is set
to prevent the propagation of f further than into the neighbouring cells. This
is done so that the communication of ghost cell information only needs to be
performed over a fixed neighbourhood of one cell depth.

4.3 The field solver

The field solver propagating E and B uses the upwind constrained transport
method proposed by Londrillo and Del Zanna [2004]. Its foremost quality
is its conserving the divergence of B to numerical accuracy [as shown in the
author’s previous work, Kempf, 2012], therefore conserving the solenoidality
of B provided the initial and boundary conditions do not introduce divergence.
This property relieves from devising a divergence-cleaning method removing
spurious numerical monopoles appearing in algorithms which do not ensure
∇ · B = 0 down to numerical accuracy.

On the spatial grid, the electric field components are stored as values av-
eraged along the cell edge pointing to the corresponding direction while the
magnetic field components are stored as values averaged over the cell face or-
thogonal to the corresponding direction, as illustrated in Figure 4.1. The use of
such a staggered grid makes the formulation of a discretisation scheme of the
field propagation equations (4.5) and (4.8) particularly intuitive. The advantage
is clear when reformulating Equation (4.8) in integral form:

∆B = −∆t∇ × E⇔
∫

face
∆B · dS = −∆t

�
C
E · ds, (4.17)

where dS is the unit vector pointing orthogonally to the cell face and ds is the
unit vector pointing along the directed path following the edges around the
face right-handedly. Dropping the integration symbols as the face and edge
averaging on the staggered grid is implicitly understood, the increment in Bz
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Figure 4.1 – Illustration of the staggered
grid principle used in the field solver to
store and propagate the E and B fields.
Figure courtesy of Arto Sandroos.

for the cell located at coordinate indices
(
i, j, k

)
can be written out as

∆Bzdxdy = −∆t
((
Ex (i, j,k) − Ex (i, j+1,k)

)
dx +

(
Ey (i+1, j,k) − Ey (i, j,k)

)
dy

)
,

(4.18)
where dx (respectively dy, dz ) is the cell length in x (respectively y, z ) direc-
tion and similar expressions hold for Bx and By . In this form, ∆B is analytically
the curl of E and thus ∇ · ∆B = 0 by construction. The computation of E us-
ing Equation (4.5) is correct if edge-averaged values for Vi and B are used. In
Vlasiator, Vi and B are interpolated to and averaged along the edges using the
divergence-free reconstruction method proposed by Balsara [2009]. As men-
tioned in Section 4.2, the same reconstruction scheme is used to compute the
volume-averaged B needed to propagate f with Vlasov’s equation (4.7).

The field solver is subject to a cfl condition limiting its stability if the time
steps are too long. In principle, no plasma wave is allowed to travel faster than
one cell width per time step, and this is even reduced to half a cell width in
the field solver used [Londrillo and Del Zanna, 2004, Paper II]. The relevant
wave modes are added to the flow speed to determine the maximally allowed
time step. The magnetosonic speed has to be taken into account, as well as
the whistler wave speed, a mode only present when the Hall term is present in
Ohm’s law [e. g. Paper I]. This mode is dispersive and has a higher group and
phase speed with increasing k. The whistler speed on a discrete grid is

vw =
2πv2

Ami

dxqB
, (4.19)

meaning that the limiting time step length, which depends on dx/vw ∼ dx2,
decreases quadratically with the resolution of the simulation grid in regions
where the whistler speed dominates.
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4.4 From six to seven dimensions: time stepping

Having described how the various solver parts work individually, it is time
to explain how they are working together. Section 4.2 shows that the spatial
translation ST and the acceleration in velocity space SA of f are separated.
Vlasiator uses the method of Strang [1968] to split the propagation so that f n
can be understood as the result of n applications of a time-stepping operator:

f n =
[
ST

(
1
2
∆t

)
SA (∆t ) ST

(
1
2
∆t

)]n
f 0. (4.20)

Consecutive applications of ST
(
1
2∆t

)
can be combined into a single propaga-

tion of length ∆t , so that the acceleration and translation operations are shifted
with respect to each other by half a time step, a method called the leapfrog
algorithm. It is initialised by half a time step of translation

fr
(
t0 +

∆t
2

)
= ST

(
∆t
2

)
f (4.21)

and all further steps are advancing with a complete ∆t :

fv (t + ∆t ) = SA (∆t ) fr
(
t +

1
2
∆t

)
(4.22)

fr
(
t +

3
2
∆t

)
= ST (∆t ) fv (t + ∆t ) , (4.23)

where the subscripts r and v indicate the state of f after a translation and an
acceleration step, respectively. This Strang splitting scheme is used with both
the wave-propagation-based and the semi-Lagrangian Vlasov solvers.

The field solver propagates E and B between the translation and accelera-
tion step. The simplest option is a first-order Euler step using nn, Vn, and En to
compute Bn+1 and then En+1. A more accurate algorithm using a second-order
Runge-Kutta method also exists. As this was implemented by the author of the
present thesis, it is the subject of its own detailed Section 5.1.

Dynamic plasma simulations require the time step length to be adapted dur-
ing the simulation. The range of allowed cfl numbers – the ratio between the
distance travelled by the fastest wave mode and the cell length – is configured by
the user where applicable. For the semi-Lagrangian Vlasov solver, a maximum
rotation angle of the velocity distribution is set and a maximum cfl number
of 1 is enforced to make sure that f only flows into the nearest neighbours,
facilitating the handling of ghost cell communication. A check is run at each
time step during the simulation to ensure the limits are not exceeded. If the
time step would be going over (or below) the admissible range, f is translated
half an old time step backwards and half a new time step forward again, after
which the simulation is run with the new time step.
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4.5 Making kinetic global magnetospheric simulations
possible

Some of the tools and methods which allow Vlasiator to model the terrestrial
magnetosphere in a global context using the hybrid-Vlasov approach deserve a
special mention in this section.

It is important to track the efficiency of any high-performance computing
application, both at the global level and at more fine-grained levels. An off-
spring of the Vlasiator development is the Parallel Hierarchical Profiler phiprof
library [phiprof, 2016]. It uses a simple interface based on start and stop
functions to time the execution of the enclosed code region. It supports mpi
parallelisation and OpenMP threading, an arbitrary number of nested levels
and reports the results in ascii format. Good profiling is a cornerstone as de-
tailed knowledge of the performance of individual code sections allows targeted
optimisations, which are the most beneficial.

On the physical side, the three major solver parts – field solver, Vlasov trans-
lation and Vlasov acceleration – have very different computational character-
istics. The field solver only handles E and B with the knowledge of n, Vi
and Pi, so 13 scalars per spatial cell and their derivatives, which involve only
the directly neighbouring cells. The Vlasov solver has to work with the 6d
distribution function, but whereas translation by essence involves flows from
and into the spatially neighbouring cells, acceleration is local to the spatial cell.
This means for example that the field solver and the Vlasov acceleration involve
updating of the neighbouring cell information to ensure all processes are up to
date while acceleration can proceed without such an update.

Since the field solver is relatively lightweight, acceleration involves less com-
munications, and to allow the use of longer translation time steps, the accelera-
tion and field solvers can be subcycled. In order not to break the cfl condition
imposed by the whistler wave speed, the field solver can execute a number of
first-order time steps. Similarly, in order not to accelerate the velocity distri-
bution by an exaggerated amount in one step, the acceleration can be done in
several subcycles. Again, this is not imposed by a cfl limitation but by the
largest angle the person in charge of the simulation feels comfortable rotating
f around B in velocity space without compromising the physical results. The
main concerns are the coupling to the other solver parts when f rotates by
large amounts in one step and the introduction of larger interpolation artefacts
with increasing rotation angles. The maximum angle is set to 44° in the large
magnetospheric simulations presented in this work, split in at most 2 to 4 sub-
cycles occurring exclusively in the region close to the inner boundary where
the dipole field is strongest.

In global magnetospheric simulations, the need also arises to treat spatial
derivatives of the magnetic field with care to ensure a good quality of interpo-
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lations and reconstructions even in regions with strong gradients, such as in
the vicinity of the dipole’s origin. Vlasiator splits the magnetic field into two
components, a constant background field and the perturbed field component
added to the background. The background field, its derivatives and its volume-
averaged values are computed analytically upon initialisation and stored for
later use, while the field solver only computes the perturbed part of the mag-
netic field which is then added to the background field. The background field
is required to be curl-free so that computations pertaining to the Hall term do
not include the background field. This method reduces significantly the inac-
curacy of the field interpolations near the dipole’s origin in magnetospheric
simulations, thus resulting in better stability of the model.

The single biggest gain in computational efficiency in the development of Vlasi-
ator is the application of the concept of sparse velocity space. It stems from the
observation that a simple velocity distribution function, such as a Maxwellian
with a thermal speed of the order of 100 km/s drifting at 500–1000 km/s, oc-
cupies a much smaller volume than the whole velocity space possibly reached
within a magnetospheric simulation, which can easily be ±2000 km/s in every
direction. By setting an adequate phase space density threshold fmin, it is pos-
sible to disregard a sizeable fraction of velocity space (in practice upwards of
90% of it) and neither propagate nor store f where f < fmin. The overhead
incurred by controlling the propagation of f and (de)allocating memory for
the phase space regions becoming (in)significant, which is of the order of 10%
of the computation time, is largely compensated by the reduction in memory
usage and computations. Vlasiator is the first Vlasov model using such an ap-
proach, to the knowledge of the team. To stretch one last time the Tour de
France metaphor, it pays off not to report on the empty sections of the road.

In practice, velocity space cells are organised in memory in blocks of 4 ×
4 × 4 cells. If f > fmin in any of the cells of a block Λ, the neighbouring
blocks in all six dimensions are retained so that f can propagate from Λ in any
direction. If a block becomes significant because its f increases above fmin, all
its neighbours are created if they were not yet allocated. Conversely, a block
whose neighbours all lie below fmin is deallocated. Although this mechanically
breaks the conservation of f inherent to the Vlasov equation and thus the
conservation of mass, if fmin is sufficiently low and the velocity space resolution
not too coarse, the mass losses are negligible [see Paper II, for a quantification
using the wave-propagating Vlasov solver]. Figure 4.2 illustrates the principle
with a simple velocity distribution taken from a simulation. The parts of f
above fmin are in full colour in the right panel, while the parts retained in
neighbouring cells and blocks are greyed out. The block 4 for example is not
stored as it is not neighbouring to any block with f > fmin.

In recent simulations posterior to the ones presented in Papers I to IV,
adaptive schemes are introduced to optimise the threshold fmin. Instead of a
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Figure 4.2 – Illustration of the sparse velocity space. Left: full extent of velocity
space including a population drifting at Vx ≈ −500 km/s. Middle: Cut through the
population. Right: Slice showing the cells with f > fmin in full colour and retained
neighbours greyed out. 1: block fully above fmin. 2: block partially above fmin. 3:
retained neighbouring block. 4: disregarded block without neighbours above fmin.

constant value throughout the simulation box and for the whole run, fmin can
be made to vary proportionally to the spatial cell’s density within a certain
range. This allows to better target cold and low-density regions like the magne-
totail without increasing excessively the load of hot and dense regions like the
magnetosheath.

On the technical side, it comes as no surprise to the reader that all the paral-
lelisation techniques presented in Section 1.3 are leveraged in Vlasiator. As ex-
plained in Section 4.2, the dccrg library is used to perform domain decomposi-
tion. The up to 3d position space is decomposed into domains assigned to mpi

processes communicating the necessary ghost cell information to each other.
As this inter-process communication yields some overhead, classic staggered
communication schemes are used, in which the simulation cells which have
all the necessary neighbour information perform their computations while the
process boundary cells are exchanging neighbour information.

The next level of performance when scaling to larger systems, especially on
supercomputers where each node comprises tens of cores, is reached through
hybrid parallelisation. OpenMP threading is used to process logically separate
parts of the simulation domain, each thread handling typically one spatial cell
or one velocity space block at a time, as this entails distinct memory accesses
thus avoiding race conditions. The optimal ratio of threads per process is a
sensitive parameter depending both on the architecture of the nodes and the
communication network, and on the geometry of the simulation, as the pro-
portion of spatial cells located at process boundaries varies in 1d, 2d or 3d.

Vectorisation is mostly applied to velocity space computations. The most
intensive parts of velocity space computations are vectorised so that single
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arithmetic operations are performed on eight numbers simultaneously. This
is the fundamental reason for grouping the velocity space cells in blocks of
4 × 4 × 4. Fog’s vector class library is used in Vlasiator, as it allows a relatively
easy implementation of vectorised operations [Fog, 2016]. Substantial perfor-
mance gains are observed when using vectorised operations with respect to the
non-vectorised version.
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No simulation can exist without substantial investments in sometimes long and
often frustrating development and debugging tasks. Vlasiator is no exception.
It is the growing and ripening fruit of many years of work by a dedicated team
combining the skills and knowledge of the fields of space plasma physics and
high-performance computing.

From the research funding perspective, initial and continuing model de-
velopment is arguably one of the most expensive budget posts in modelling
projects. From the same perspective, a project’s progress is often measured by
the number of peer-reviewed publications resulting from it. Yet the extended
description of a model and its implementation is often not deemed to be worth
a scientific publication of its own.

The author of this thesis is also the author of significant parts of the Vlasia-
tor source code, which justifies the emphasis put both on physical and compu-
tational aspects in the previous chapters. Some code developments are original
work and critical to the successful modelling of the terrestrial magnetosphere at
large scales. This chapter serves the dual purpose of acknowledging the behind-
the-science technical achievements and providing a reference to future genera-
tions of Vlasiator users and developers.

5.1 Second-order field solver time stepping

Along with improvements in the Vlasov solver’s spatial and time accuracy, the
field solver time stepping has been improved from a simple first-order accu-
rate Euler method to a second-order Runge–Kutta method. The Runge–Kutta
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algorithms are a large family of methods to solve differential equations using
intermediate solution steps. As a reminder, the basic time progression of the
field solver computes

Bn+1 = Bn − ∆t∇ × En, (5.1)

En+1 = −Vn+1
i × Bn+1 +

(
∇ × Bn+1

)
× Bn+1/

(
µ0qnn+1

i

)
. (5.2)

Taking advantage of the fact that f is propagated forward using the leapfrog
algorithm, two values of the moments can be interpolated from the moments
computed after translation and acceleration respectively. nn

i ,V
n
i ,P

n
i are com-

puted before the translation and the acceleration step, while a set of moments
nn+1/2

i ,Vn+1/2
i ,Pn+1/2

i can be computed after the translation and before the ac-
celeration [Eq. (20) and (21) in Paper II, Valentini et al., 2007]. With these
intermediate moment values, one can extend the field solver time propagation
to obtain a second-order accurate Runge–Kutta method:

Bn+1/2 = Bn −
1
2
∆t∇ × En, (5.3)

En+1/2 = −Vn+1/2
i × Bn+1/2 +

(
∇ × Bn+1/2

)
× Bn+1/2/

(
µ0qnn+1/2

i

)
, (5.4)

Bn+1 = Bn − ∆t∇ × En+1/2, (5.5)

En+1 = −Vn
i × B

n+1 +
(
∇ × Bn+1

)
× Bn+1/

(
µ0qnn

i

)
. (5.6)

Then En+1 and Bn+1 are used for the next acceleration and translation steps.
Despite its improving the diffusive and stability properties of the field solver,

the introduction of the Hall term in Ohm’s law brings changes which mean
that the second-order accurate time stepping of the field solver is seldom if ever
applied in magnetospheric simulations. The second-order time stepping is used
in Paper I, Paper II and Paper III, but not any more in Paper IV or by Palmroth
et al. [2015] and Hoilijoki et al. [2016, 2017] for the reason explained in the
next section.

5.2 The Hall term in Ohm’s law

It is as major extension of the physics described to add the Hall term in Ohm’s
law in a hybrid kinetic model as it is when going from ideal to Hall mhd.

The Hall term introduced in Vlasiator’s Ohm’s law and used in Paper I
is of low spatial accuracy. It uses the spatial derivatives of the face-averaged
B components to compute j = ∇ × B/µ0 and the volume-averaged ni to com-
pute the Hall term j × B/

(
qni

)
, which is directly added to the edge-averaged E

components.
The second-order accurate Hall term developed in 2013–2014 relies on the

same divergence-free reconstruction method used elsewhere in the field solver,
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for example to compute the volume-averaged B components for the Lorentz
force in the Vlasov solver. This method was proposed by Balsara [2009]. Leg-
endre polynomials serve as the function basis to interpolate B at any point
within a spatial cell with the knowledge of the face-averaged components and
their spatial derivatives. The first polynomials P (x ) are given by

P0 (x ) = 1; P1 (x ) = x ; P2 (x ) = x2 −
1
12

; P3 (x ) = x3 −
3
20

x . (5.7)

Their scaling is adapted to a local coordinate system in which the cell spans
[−1/2; 1/2] in every dimension. Equations (7)–(9) by Balsara [2009] list ex-
pressions for B

(
x, y, z

)
anywhere within the cell up to fourth-order accuracy,

in terms of the Legendre polynomials with coefficients built as linear combi-
nations of the face-averaged components of B and their spatial derivatives to
suitable order. The coefficients are listed in that paper’s Equations (10)–(14).

To compute j × B for the Hall term, B is reconstructed to third-order ac-
curacy using up to second derivatives, yielding a second-order accurate j =
∇ × B/µ0. It is then crossed with a second-order accurate B. The resulting ex-
pressions are integrated along the cell edges to obtain edge-averaged expressions
for the components of j × B which can be directly added to the edge-averaged
E computed with the upwind constrained transport method from Londrillo
and Del Zanna [2004]. The symmetry of the local coordinate system and of
the Legendre polynomial basis functions results in significantly simplified lin-
ear combinations of the reconstruction coefficients, as odd terms are zeroed
through the edge-averaging.

The initial analytic calculations are performed using the wxMaxima sheet
m doc/fieldsolver/Hall_term/HallTermComputations_dxdydz.wxm, as a
fair amount of algebra is involved despite the symmetries. The resulting strings
of coefficients can be converted to C source code with a bash script similar to
m doc/fieldsolver/Hall_term/codifyCoeffs.sh. That is then included
in the source code of the second-order accurate Hall term in m fieldsolver/
ldz_hall.cpp.

Among the physics added to a hybrid or mhdmodel by including the Hall term
in Ohm’s law, one notable phenomenon are the whistler waves. As explained
in Section 4.3, this puts a constraint on the maximal allowed time step for the
field solver to remain stable. Equation (4.19) shows that regions of low density
or high magnetic field drive down the time step, as does spatial resolution.

One of the methods described in Section 4.5 to make global magneto-
spheric simulations affordable is to subcycle some solvers to allow for longer
global time steps. If the field solver time step is significantly smaller than the
Vlasov solver limits, and if the configuration allows it, the field solver switches
from second-order time stepping (Section 5.1) to a sequence of first-order time
steps using the basic Euler method.

https://github.com/fmihpc/vlasiator/tree/master/doc/fieldsolver/Hall_term/HallTermComputations_dxdydz.wxm
https://github.com/fmihpc/vlasiator/tree/master/doc/fieldsolver/Hall_term/codifyCoeffs.sh
https://github.com/fmihpc/vlasiator/tree/master/fieldsolver/ldz_hall.cpp
https://github.com/fmihpc/vlasiator/tree/master/fieldsolver/ldz_hall.cpp
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As the Vlasov propagation is not applied, the moments of f are not updated
during the substeps. It is left to the appreciation of the user how sensitive and
sensible the approximation is in the case at hand. It is straightforward to con-
figure how many subcycles are allowed and the model automatically adapts the
time step if the limits would be exceeded. In the case of global magnetospheric
simulations lasting hundreds of seconds or tens of gyroperiods, the choice is
usually made to allow up to a few tens of subcycles until the Vlasov solver limit
is reached. Thus the simulation time step is typically of the order of 20− 50ms
instead of 1ms or less. This does somewhat affect physics at short time scales
as f does not follow the fields as tightly, but it is deemed a reasonable measure
to enable longer or better-resolved simulations within the same computational
budget. In particular, since ions decouple completely from the whistler wave
at high frequencies the impact is reduced. Additionally, the focus in the global
simulations lies on the large scales. Also, typical file sizes only permit to save
a snapshot of fields and moments with a frequency of one or two files per sim-
ulated second, which anyway does not allow to appreciate evolutions on the
scale of milliseconds.

5.3 System boundary conditions

Once the solvers are numerically and physically stable and working as intended,
the biggest can of worms affecting the life of model developers are the bound-
ary conditions determining the behaviour of the simulation at its edges. The
simplest is of course to use periodic conditions as in Paper I, but this is not
feasible when modelling a magnetosphere in the solar wind. The term ‘system
boundary conditions’ is used in Vlasiator to distinguish them from process
boundaries which are of importance among others in staggered mpi communi-
cation schemes.

From the coding point of view, the system boundaries are classes inher-
ited from the base SysBoundaryCondition class defined in m sysboundary/
sysboundarycondition.h. These system boundary classes contain functions
performing a variety of tasks. They define whether a spatial cell pertains to
the boundary type, they set the initial state of cells belonging to the boundary
type and they set the boundary conditions for E, B, f and their derivatives.
The class mechanism easily allows extension by coding a new class with the
relevant members or by inheriting from an existing class to specialise some
tasks.

From the physical point of view, global magnetospheric simulations require
at least the following basic system boundary types: a solar wind inflow bound-
ary, outflow boundaries for the other outer faces of the simulation domain and
some form of inner boundary to shield the origin of the dipole magnetic field.

Due to the properties of the solvers used in Vlasiator, and in particular the
staggered grid method employed in the field solver, two layers of simulation

https://github.com/fmihpc/vlasiator/tree/master/sysboundary/sysboundarycondition.h
https://github.com/fmihpc/vlasiator/tree/master/sysboundary/sysboundarycondition.h
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cells form a system boundary. The outer layer is by definition two cells away
from the inner domain and does not contain velocity space blocks, it is suffi-
cient to set the moments in these cells. The fields also need to be set ‘by hand’
in the outer cells. The inner layer of cells stores velocity space blocks, moments
and fields. While f , the moments and B need to be handled explicitly by the
system boundary class, E is computed self-consistently by the field solver in
these cells.

The easiest system boundary implemented in Vlasiator is the inflow boundary.
It initialises the two layers of cells with a Maxwellian f and its moments and
sets B, according to the parameters passed in an input ascii file. Nothing is
done subsequently to these cells so that they ensure a constant inflow bound-
ary condition. A feature allows to reinitialise this boundary when continuing
the simulation from a restart file, mimicking a dynamic change such as the in-
flow of a shock front parallel to the inflow boundary. The behaviour of the
inflow boundary and some of the code base are taken over from the gumics-4
global magnetospheric mhd model [Janhunen et al., 2012].

The increasing dipole magnetic field close to the origin limits drastically the
time step length in typical magnetospheric simulations. Furthermore, when
approaching the Earth, the ionosphere is the latest region along the way where
the conditions deviate so much from a fully ionised, collisionless plasma that
some other treatment is required. This is why an inner boundary is needed
when performing global magnetospheric simulations.

The inner boundary in Vlasiator emulates a perfect conductor. The mag-
netic field from the inner cells neighbouring to each boundary cell is averaged,
and only the perturbed B components normal to the boundary’s surface are
retained in the boundary cell. The electric field in the outer boundary cells,
in this case the ones towards the origin of the dipole field, is identically set to
zero. As for f , the initial Maxwellian distribution is retained throughout the
simulation. The geometry of the inner boundary can be chosen to be a square,
a circle or a diamond (a circle respectively in the 1-norm, the Euclidean norm
and the ∞-norm), though the regular circular boundary has been preferred for
all large-scale runs.

The major reason presiding to the admittedly rudimentary current choice
of an inner boundary in Vlasiator is precisely the simplicity of the scheme: Oc-
cam’s razor teaches that it is preferable to use such a simple solution as long as
it works sufficiently well. The focus on the outer regions – magnetotail, mag-
netopause, magnetosheath, bow shock and foreshock – as well as the radius at
which the boundary is usually set – 30,000 km ≈ 5 RC – so far warrants this
choice. Implementing a more physical inner or ionospheric boundary, if not
done very carefully and thoroughly, is likely to introduce worse artefacts and
instabilities to the model than it would solve issues.
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The other outer boundaries of the simulation box have somewhat hastily been
named ‘outflow’ boundaries [Paper III] by the then younger, eager student
who wrote the initial system boundary code and looks back today. They are
however not technically ensuring outflow, they merely perform a copy [Pa-
per II]. f and the moments as well as B are copied from the nearest inner
cell in the simplest implementation. More recent developments to the code in
m sysboundary/outflow.cpp aim at reducing the undesirable effects the copy
condition can have, in particular self-replicating phenomena. They allow to
choose whether an outer boundary performs a classic copy condition, a copy
condition limiting the value of f to avoid self-replication, or keeps static con-
ditions.

It is not unique to Vlasiator that clean outflow boundaries are difficult
to achieve. In pic algorithms particles can be drawn from a random distri-
bution matching either the neighbouring cells or a prescribed one such as a
Maxwellian, in order to compensate for the particles flowing out of the sim-
ulation domain. In Vlasiator, owing to the necessity to fully describe f , the
solution is less obvious and a plain copy condition can be insufficient.

Another difficulty resides in the propagation of waves through the bound-
ary. While ideally the boundary should be transparent to all wave modes and
not reflect any energy back into the domain, let alone trigger wave modes
propagating inwards, it is practically impossible to achieve this. Simulation
techniques developed in some areas allow to match a single mode and modify
its dispersion relation such that it is extinguished at the boundary, or to damp
exponentially modes propagating in one precise direction [e. g. Berenger, 1994,
Oskooi and Johnson, 2011]. The opposite approach, trying to cleanly transmit
waves through the boundary, has also been successfully applied in some con-
texts [e. g. Liao et al., 1984, Wagner and Chew, 1995]. Unfortunately, none of
these methods can be applied to a continuous spectrum of waves and directions.

The development of the parts of the model presented here, along with a flurry
of smaller tasks and contributions to the development of analysis and visualisa-
tion tools, have formed a substantial fraction of the work done by the author of
these lines, although it does not directly appear as such in scientific publications
and presentations.

https://github.com/fmihpc/vlasiator/tree/master/sysboundary/outflow.cpp
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Beyond the pure technical testing [Kempf, 2012, among others], a sustained
effort of verification and validation punctuated the youth of Vlasiator. Palm-
roth et al. [2013] provide a verification of an early form of the Vlasov solver
in a test-Vlasov simulation where f is propagated in fields obtained from a
gumics-4 global mhd run. Another verification step comparing the propaga-
tion of plasma waves in Vlasiator to the results of the whamp solver is presented
in Paper I (Section 6.1). The technical Paper II includes verification through
the study of an ion beam instability (Section 6.2), and the validation against
observed ion foreshock velocity distributions introduced by Pokhotelov et al.
[2013] and in Paper II is developed in depth in Paper III (Section 6.3). This
strong footing paves the way towards new scientific contributions in a variety
of areas, such as the propagation of foreshock waves [Palmroth et al., 2015], the
effects of magnetosheath waves on dayside reconnection [Hoilijoki et al., 2017]
or the discovery of new foreshock phenomena (Paper IV and Section 6.4).

6.1 Wave dispersion

The behaviour of the solvers in some of the simpler propagation benchmarks
such as advection or acceleration tests [Kempf, 2012] is essentially prescribed
by the technical design of the algorithms. The propagation of plasma waves,
on the other hand, is a phenomenon emerging from the physics described by
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the equations and not directly modelled in Vlasiator. This makes the analysis
of wave dispersion a powerful tool to evaluate the physical correctness of the
model or detect otherwise subtle and inconspicuous bugs. It is usually done by
studying 2d

(
ω, k

)
plots resulting from the discrete Fourier transformation of

the (t, x ) dataset extracted from a 1d periodic simulation.
For anything but the simplest cases tractable by hand, the Waves in Ho-

mogeneous, Anisotropic Magnetized Plasmas (whamp) code [Rönnmark, 1982,
whamp, 2016] is a reference numerical tool in the space plasma physics commu-
nity for problems related to wave propagation and instabilities. whamp solves
the linearised plasma dispersion equation numerically and yields parameters
such as the wave frequency and growth rate when provided the physical pa-
rameters of the plasma to consider and the wave vector coordinates to probe.

Paper I reports the comparison of plasma wave dispersion in Vlasiator with
the whamp results. The simple test setup consists of 1d periodic simulations
of weakly perturbed plasma, initialised with a Maxwellian velocity distribu-
tion and small perturbations to the density and bulk velocity. The angle of
propagation of the waves with respect to B is set by changing the angle of the
background magnetic field with respect to the box orientation. The Fourier-
transformed dataset is then directly comparable to the wave modes found with
whamp. To take into account the lack of electron physics in Vlasiator, the
electron temperature is set to a very small value in whamp, suppressing the
ion-acoustic wave mode which requires Te � Ti.

As expected from theoretical derivations, the wave modes present in the
Hall-less hybrid-Vlasov model correspond to the mhd modes throughout the
range covered; the Alfvén wave in the quasiparallel direction and the magne-
tosonic wave in the quasiperpendicular direction.

With the Hall term included in Ohm’s law, the wave modes tend towards
the mhd modes only in the low frequency and long wavelength limit. In the
quasiparallel regime at high k, the Alfvén wave splits into the left-hand mode
resonating with the ion gyromotion at ω = ωci, and the right-hand whistler
mode. In the quasiperpendicular regime, the ion Bernstein modes appear in
addition to the magnetosonic mode.

The excellent match of the Vlasiator dispersion plots with the whamp out-
put is a significant verification result strengthening the confidence in the valid-
ity of the hybrid-Vlasov approach, at the same time as it emphasizes the need
for sufficiently rich physics in Ohm’s law to obtain a model departing signifi-
cantly from mhd.

6.2 Ion beam instabilities

The Mr. Hyde personality of plasma waves are the plasma instabilities: as ex-
plained in Section 2.2, waves and instabilities are two aspects of the same phe-
nomenon. The correct description of plasma instabilities can be considered an
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even more stringent verification test of simulation models than wave dispersion
is. The foremost characteristic of an instability to get right is the growth rate,
but the instability threshold and its saturation amplitude are also important for
the physical correctness of the results.

Beam instabilities, triggered by the presence of at least two distinct parti-
cle populations in velocity space, are by definition excluded from single fluid
models. They are however critical in many contexts, such as the interaction of
the terrestrial magnetosphere and the solar wind in the quasiparallel bow shock
and foreshock region. This is why the ion/ion right-hand resonant beam insta-
bility, triggered by the presence of a fast, cool beam – the beam speed is higher
than the Alfvén speed, the core population thermal speed and the beam thermal
speed – is selected in Paper II as an additional verification test. As the results in
Section 4 of Paper II show, the dependency of the instability growth rate on the
beam density is well reproduced by Vlasiator. Other aspects of the comparison
to the analytical result are too dependent on characteristics of the simulation
setup and the algorithm to be matched accurately. In particular, the 1d box
of 10 RC length constrains the wave number of the growing mode to one not
necessarily matching the fastest-growing mode in an unbounded system.

An important feature of the Hall-less regime in Vlasiator emerges from the
set of verification studies in Paper I, Paper II and by Pokhotelov et al. [2013].
Although the Hall-less wave dispersion simulations show that for weakly per-
turbed Maxwellian velocity distributions, only the mhdwave modes propagate,
the Hall-less local and magnetospheric simulations show that ion kinetic effects
such as ion beam instabilities are described by the model even without the Hall
term in Ohm’s law. This is consistent with the fact that the scaling of the Hall
term makes it anyway very small if ion kinetic scales are not spatially resolved.

Building on the verification results, new physical understanding is gained
through the combined use of whamp and Vlasiator to study the evolution of
ion beam generated waves and instabilities. A long-standing problem was posed
by the observation that the foreshock ultra low frequency (ulf) waves prop-
agate obliquely with respect to the imf, despite their growth rate being max-
imised along the magnetic field direction in linear theory [e. g. Eastwood et al.,
2005a]. Taking advantage of the global context offered by the simulation to
map the spatial evolution of the ion beam speed and density across the fore-
shock, Palmroth et al. show that the refraction index of the foreshock ulf

waves evolves in a way explaining the oblique propagation of the waves even
in the case of a quasi-radial imf orientation which precludes the E × B effects
previously assumed to explain the observations [Palmroth et al., 2015].

6.3 Ion foreshock populations

Vlasiator matching the theoretical predictions of wave dispersion and beam
instability growth is a milestone in verifying the code, but it is only at best
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as good as the theory used in comparison. Ultimately, validation against ex-
perimental data is the only relevant yardstick to establish confidence in and
credibility of Vlasiator simulation results.

The ion foreshock is a prime ion kinetic phenomenon absent from global
mhd models and the abundance of spacecraft measuring particle velocity dis-
tribution functions makes the foreshock a good target for validation studies.
Currently operating spacecraft missions visiting the Earth’s foreshock and ob-
serving ions include Geotail [Nishida, 1994], Cluster [Escoubet et al., 2001]
and themis/artemis [Angelopoulos, 2008, 2011]. They were preceded by a
number of missions since the 1970s, so that the morphology of the foreshock
region and of the particle distributions found there are well-known observa-
tionally [see e. g. the reviews by Fuselier, 1994, Eastwood et al., 2005b].

As Pokhotelov et al. [2013] and Paper II show, Vlasiator produces clean and
well-resolved ion velocity distributions including the backstreaming foreshock
populations. In Paper III, the types of ion velocity distributions found in the
foreshock region of the simulation are matched with themis observations of
the same distribution types. Additionally, the simulated spatial evolution of
the beam density and velocity in the foreshock reproduce well observational
statistics. This, along with the related analysis of the ulf wave characteristics in
Paper II and especially by Palmroth et al. [2015], are validation studies showing
that Vlasiator results are in good correspondence with observations.

Being a global model, Vlasiator provides a spatial and temporal context
which enables to better understand the point-wise spacecraft measurements and
propose new interpretations. The simulation analysis in Paper III concludes
that in Vlasiator simulations, the very gyrotropic field-aligned ion beams gen-
erate ulf waves via the ion/ion right-hand resonant instability, which in return
interact with the beam population and cause it to gradually lose its gyrotropy
further downstream from the foreshock edge. This confirms the temporal and
spatial evolution from gyrotropic to gyrophase-bunched ions in the foreshock
previously deduced from observations [Meziane et al., 2001].

6.4 Local foreshocks

The goal of the concerted development, verification and validation effort is
naturally a simulation tool allowing to produce new scientific knowledge rel-
evant to space physics and possibly space weather activities. In the four years
preceding the writing of this thesis, Vlasiator has reached the maturity neces-
sary to enable ground-breaking progress in a wealth of areas of plasma physics.
The phenomenon presented in Paper IV and explained in this Section is a dis-
covery made on the basis of Vlasiator global magnetospheric simulations and
confirmed in part by ground- and space-based observational data. It combines
in a unique way all the plasma physical phenomena introduced in Chapter 2
and in Paper I, Paper II and Paper III.
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Figure 6.1 is a graphic representation of the scenario explained in the next para-
graphs based on the simulation presented in Paper IV.

When the imf has a southward component, this very component is antipar-
allel to the northward geomagnetic field in the subsolar region of the magne-
topause. Magnetic reconnection occurs in such cases. In this process of mag-
netic field topological reconfiguration, magnetic energy is released in the form
of plasma accelerated out of the reconnection region at sometimes supermag-
netosonic speeds. At the subsolar magnetopause, the variability of reconnec-
tion in space and time causes the formation of magnetic structures such as flux
tubes propagating poleward along the magnetopause. These structures were
first observed by spacecraft and are called flux transfer events (ftes). In 2d
simulations, ftes take the form of magnetic islands. Vlasiator 2d polar plane
simulations of the terrestrial magnetosphere under southward imf show that
reconnection is active throughout and produces a flurry of magnetic islands ac-
celerated away from reconnection X-points [Hoilijoki et al., 2017]. Magnetic
islands are well-visible in Figure 6.1a and b.

Owing to their momentum and magnetic structure, the islands are pre-
ceded (followed) by bow (stern) magnetosonic wave fronts which propagate
throughout the magnetosheath, as shown in Figure 6.1b and c. In the case of
larger magnetic islands, the bow wave fronts steepen so much that they drive a
foreshock-like ion beam ahead of them in the sheath. Once a wave front hits
the bow shock, the pressure balance is displaced upstream in favour of the in-
creased magnetosheath pressure and the shock surface bulges out with respect
to its unperturbed position (Figure 6.1d).

This affects the shock geometry so that θBn can become favourable to ion
reflection off the bow shock in a very localised patch at the foot of the bow
shock bulge. A field-aligned ion beam exactly similar to those observed at the
foreshock upstream edge propagates into the solar wind. An example is in Fig-
ure 6.1d and e. The major difference with respect to the ‘regular’ foreshock is
that this ion beam is very localised – as wide as the region where θBn allows
reflection at the bow shock – and travels along with the original wave front.
Observationally, this means that a transient field-aligned ion beam is observed
for a duration of about 1min without any perturbation of the imf or the solar
wind. Due to the swift travel of the ion beam, instabilities do not have time
to grow and a foreshock-like beam is observed without the ulf waves usually
associated with foreshock observations.

In a global simulation, such a complex chain of processes is readily visible and
can be analysed under all aspects, in an extended spatial and temporal con-
text. Its comprehensive observational confirmation is a different story alto-
gether. Ideally, spacecraft observing dayside reconnection and ftes at the mag-
netopause, fast-mode wave fronts in the magnetosheath and transient ion beams
upstream of the bow shock as well as monitoring the upstream solar wind are
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Figure 6.1 – Illustration of the local foreshock scenario [Paper IV]. (a) Density
plot: dayside reconnection generates magnetic islands. (b) Density plot: strong is-
lands push bow (black dashed) and heck (white dash-dotted) wave fronts into the
magnetosheath. (c) Profiles along the white arrow: the fronts are fast-mode waves.
(d) Parallel ion temperature plot: the fronts push out the bow shock (white continu-
ous line) and modify the shock normal direction (white continuous segment) with
respect to the unperturbed bow shock (dashed). An ion beam is emitted (upstream
structure). (e) Ion velocity distribution at the white cross: a typical field-aligned ion
beam is observed upstream of the bow shock and ‘regular’ foreshock.
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required. In spite of the extensive fleet of (multi-)spacecraft missions dedicated
to space physics, the coincidence of a useful spacecraft constellation during a
suitably stable period of southward imf is a rare event, taking into account
that solar wind or imf perturbations as well as the too close vicinity of the
bow shock or the foreshock from the beam-observing spacecraft have to be
excluded.

Paper IV presents the scenario identified in simulations as well as observa-
tions supporting it. On August 30, 2004 during a long interval of stable south-
ward imf, Geotail observed transient ion beams in the solar wind well upstream
of the bow shock and the foreshock. No suitable spacecraft was observing the
magnetopause or the magnetosheath simultaneously, but ground-based magne-
tometer and radar ionospheric observations give an indirect proof of dayside
reconnection and ftes occurring during the event.

The scenario leading from steady southward imf to the occurrence of tran-
sient ion beam signatures upstream of the bow shock and distinct from the
‘regular’ foreshock is new in several respects. It represents a new mechanism
generating a time-dependent behaviour of the bow shock in the absence of
driving upstream conditions. It is distinct in nature and consequences from the
likes of shock reformation in the quasiperpendicular region or the dynamics
of the quasiparallel bow shock region including the ‘regular’ foreshock. It fur-
thermore offers an interpretation of transient foreshock observations in cases
where no obvious imf or solar wind perturbations could otherwise account for
the ion beam formation. Finally, it suggests the existence of steep fast mag-
netosonic wave fronts in the magnetosheath related to dayside reconnection, a
phenomenon hitherto not confirmed by in-situ observations and only seldom
reported in literature before [e. g. by Sibeck and Omidi, 2012, who report slow-
mode waves though].

The work presented in this chapter demonstrates that Vlasiator is now estab-
lished as a reliable and well-performing tool. Its unique and unprecedented
capability of modelling the Earth’s magnetosphere in a global context with
the kinetic hybrid-Vlasov model fosters advances in space physics and promises
breakthroughs in adjacent fields of plasma physics.





Chapter 7

Conclusions and outlook

q Something sweet and homemade
¯ Symphony No. 9 in E minor, ‘From the
new world’, especially the fourth movement
Allegro con fuoco

Antonín Dvořák

The present thesis, comprising the pages preceding these lines and the four
peer-reviewed journal articles included hereafter, condenses the essence of the
work achieved by its author within the Vlasiator project. The new kid on the
block Vlasiator is established as a landmark of kinetic plasma simulations and
the results obtained by the team are pushing the frontiers of space physics.

The first years of using Vlasiator have widened the horizon of magneto-
spheric simulations, sometimes against the prevalent intuition. The equations
can lead to believe that the hybrid-Vlasov system, especially in its Hall-less
form, would not depart significantly from fluid models as long as kinetic scales
are left unresolved. The results speak for themselves, showing kinetic phenom-
ena even at coarser resolutions. It has also been repeatedly astonishing to see
how supposedly local, kinetic, microphysical phenomena interact and combine
to eventually affect global processes. Most of this may seem natural with the
wisdom of hindsight, but it was definitely not generally envisioned beforehand.

Despite their covering most of the global system, magnetospheric Vlasiator
simulations are still restricted to two spatial and three velocity dimensions due
to the sheer size of the runs. A straightforward extension of the simulation
box in the third dimension with the same resolution and using the current
algorithms would right away exceed the limits of manageability even on top-tier
supercomputers – hundreds of millions of core-hours and hundreds of terabytes
of memory are a fantasy of the future. The development roadmap is therefore
unequivocally aiming at enabling 6d kinetic magnetospheric simulations.

The eager scientist increases the resolution of the runs whenever better

59



60 CHAPTER 7. CONCLUSIONS AND OUTLOOK

performance is available. The weight of the run for a given system does not
decrease in that way, however. The order of magnitude of improvements nec-
essary to reach global 6d modelling at kinetic resolution will not be attained
unless drastic mesh coarsening is applied to some regions of the simulation.
Adaptive mesh refinement in velocity space combined with the existing spar-
sity technique should also be deployed in order to efficiently track the distri-
bution. This joint strategy resulting in a truly 6d adaptive mesh is the only
realistic path towards fully global hybrid-Vlasov magnetospheric simulations.

The implications are far-reaching for the code base. Neither the Vlasov
solver nor the field solver support non-uniform meshes for now. Hence ex-
tending their functionality or replacing them partially is a sizeable investment.
Alongside this fundamental development, a major step has to be taken to im-
prove the physical quality of the magnetospheric model. The simple, perfectly
conducting inner boundary is sufficient for 5d simulations but certainly too
unrealistic for the future. The choice of an adequate ionospheric model will
be guided by the experience gathered with global mhd and pic models, but its
coupling to the hybrid-Vlasov model is a challenge never faced before. These
plans entail thorough testing, verification and validation throughout.

The development of Vlasiator is not solely focussing on the requirements of
6d magnetospheric simulations. It has gone hand-in-hand with technological
advances from the onset.

Leveraging the full power of supercomputers is only possible by targeting
today the cutting-edge technology of tomorrow. This is why the code will not
simply be adapted to meet physical goals, but performance gains will be sought
from new computing paradigms, too. Emerging possibilities include extreme
threading on architectures offering hundreds of processing cores per node and
the development of algorithms which can run simultaneously on classic cores
and graphical processing units (gpus) on the same nodes. The key is to keep in
sync with the pulse of the computing industry.

Another technological driver in the search for improved space plasma mod-
els is the rich array of available ground-based and in-situ measurements. Only a
few years ago, Vlasiator ion distributions sported a better resolution than space-
craft data. The ball was returned swiftly to the modelling camp at the latest fol-
lowing the launch of the Magnetospheric Multi-Scale constellation (mms) and
its high-cadence, high-resolution datasets in 2015 [Burch et al., 2016a]. Space-
craft technology is also driving pre-flight model development, when it comes
to modelling future instruments and deciding on their optimal parameters.

Of course the purpose of Vlasiator is not to provide work to the cooling sys-
tems of high-end supercomputers, nor is it to produce ever better-resolved
pretty pictures (although the former has happened and the latter are extremely
important!). Scientific progress in space physics and plasma modelling is the
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compass giving the direction.
Even though Vlasiator is rooted in magnetospheric science, its capabilities

extend much wider. Hybrid-Vlasov modelling is shedding light onto a variety
of other topics such as particle acceleration and turbulent energy dissipation
in the solar wind. The overarching ambition, besides a better first-principle
understanding of the physics at play, is to build a comprehensive picture of the
solar-terrestrial interaction. This is a prerequisite to the reliable modelling and
operational forecasting of the space weather chain.

Modelling also belongs to the toolkit of modern space technology research
and development. What the high cost of in-orbit or even laboratory testing
prohibits, can in part be achieved by simulations, especially in the proof-of-
concept phase. In the case of Vlasiator, the simulation support offered to stud-
ies of novel space propulsion techniques, namely the electric sail and the Hall
thruster, results in a fruitful and mutually beneficial collaboration.

Regardless of a certain bias in the present thesis, plasma physics is not the
private turf of space scientists. The long-term dream of exploiting nuclear fu-
sion as a safer and cleaner source of energy to quench mankind’s thirst for
growth and expansion relies largely on – or is hampered by the lack of – the
theoretical and technical mastery over hot and unstable plasmas. In that field
as well, theory and experiment need the complement of modelling, in partic-
ular beyond the classic mhd and pic frameworks. Developing and applying
Vlasiator to solve scientific riddles in fusion plasma research opens up new per-
spectives which will undoubtedly multiply the return on investment.

The core business of Vlasiator remains nonetheless kinetic simulations of the
Earth’s magnetosphere. The development of hybrid-Vlasov models to simu-
late space plasmas at large scales in the last decade has brought new insights in
ion physics that are not accessible to particle-based methods. Yet the advent
of satellite missions such as mms and the planning of projects like the Turbu-
lence Heating ObserveR [thor, Vaivads et al., 2016] are already pushing the
hybrid simulation community out of its comfort zone and down the turbulent
cascade to smaller scales. Due to the electron and ion scale separation, the re-
alistic, fully kinetic simulation of the terrestrial magnetosphere is impossible –
something said of hybrid-Vlasov magnetospheric simulations not long ago still.
Since impossible n’est pas français1, the quest of innovative approaches to mod-
elling the magnetosphere including electron physics in addition to kinetic ions
is naturally the next journey to embark on. Should a hybrid model include
multi-moment or even gyrokinetic electrons? Are subgrid-scale or heuristic
modelling, let even the buzzword deep learning appear here, paving the road
to success? Ideas abound and the territory is almost completely uncharted. If
there be dragons, the time is ripe to coax them out and tame them.

1Impossible is not French.
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Vlasiator is a new hybrid-Vlasov plasma simulation code aimed at simulating the entire

magnetosphere of the Earth. The code treats ions (protons) kinetically through Vlasov’s equation in

the six-dimensional phase space while electrons are a massless charge-neutralizing fluid [M.

Palmroth et al., J. Atmos. Sol.-Terr. Phys. 99, 41 (2013); A. Sandroos et al., Parallel Comput. 39,

306 (2013)]. For first global simulations of the magnetosphere, it is critical to verify and validate

the model by established methods. Here, as part of the verification of Vlasiator, we characterize the

low-b plasma wave modes described by this model and compare with the solution computed by the

Waves in Homogeneous, Anisotropic Multicomponent Plasmas (WHAMP) code [K. R€onnmark,

Kiruna Geophysical Institute Reports No. 179, 1982], using dispersion curves and surfaces

produced with both programs. The match between the two fundamentally different approaches is

excellent in the low-frequency, long wavelength range which is of interest in global

magnetospheric simulations. The left-hand and right-hand polarized wave modes as well as the

Bernstein modes in the Vlasiator simulations agree well with the WHAMP solutions. Vlasiator

allows a direct investigation of the importance of the Hall term by including it in or excluding it

from Ohm’s law in simulations. This is illustrated showing examples of waves obtained using the

ideal Ohm’s law and Ohm’s law including the Hall term. Our analysis emphasizes the role of the

Hall term in Ohm’s law in obtaining wave modes departing from ideal magnetohydrodynamics in

the hybrid-Vlasov model. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4835315]

I. INTRODUCTION

The exponential growth in available computing power

has made hybrid and fully kinetic plasma simulations

increasingly feasible for a variety of space plasma applica-

tions. Non-exhaustive examples include hybrid particle-in-

cell (hybrid-PIC) simulations of planetary environments1,2

and magnetospheres,3–6 full-PIC studies of magnetic recon-

nection,7,8 local hybrid-Vlasov simulations of wave-particle

interactions in the solar wind,9 or full-Vlasov simulations of

the Kelvin-Helmholtz instability.10 Vlasiator is a new self-

consistent hybrid-Vlasov simulation code in which the ions

(protons) are treated kinetically via Vlasov’s equation and

electrons are a massless charge-neutralizing fluid. It is based

on a robust finite volume method, which has been optimized

for the modeling of the entire magnetosphere of the Earth

(http://vlasiator.fmi.fi).11,12 To our knowledge, Vlasiator is

the first hybrid-Vlasov code to allow simulations on this

scale. An important advantage of the hybrid-Vlasov model

with respect to (hybrid-)PIC methods is the absence of noise

related to the low number of particles representing the distri-

bution function, as hybrid-Vlasov algorithms propagate the

full distribution function in the six-dimensional phase space

using Vlasov’s equation. The uniform sampling in velocity

space provides a description of the distribution function with

a quality comparable to spacecraft measurements. However,

the six-dimensional representation of the distribution

function in the hybrid-Vlasov approach makes the memory

and computing requirements high, even for modern mas-

sively parallel supercomputers.

The hybrid-Vlasov scheme is a relatively new approach

to computational plasma physics at large scales because of the

aforementioned need of computing resources. Hence it is criti-

cal to provide basic benchmarks to assess the possibilities and

limits of the model in terms of its physical features. As part of

the verification of Vlasiator, we perform local simulations to

investigate the propagation of low-b plasma waves in the

hybrid-Vlasov model by studying wave dispersion in a variety

of cases. The dispersion of the left- and right-hand polarized

modes as well as the ion-acoustic waves propagating parallel

to the magnetic field has been used before to verify a hybrid-

Vlasov simulation code.13 We extend this test to include more

plasma wave modes in all propagation directions ranging

from parallel to perpendicular to the magnetic field and pres-

ent dispersion surface plots. The cases included here are in a

range of parameters relevant to understand global magneto-

spheric simulations. Thus, this study helps bolstering the inter-

pretation of current and future large-scale simulations of the

magnetosphere of the Earth in 2þ3 and 3þ3 spatial and ve-

locity dimensions. We compare the results obtained with

Vlasiator to the solutions calculated using the Waves in

Homogeneous, Anisotropic Multicomponent Plasmas code

(WHAMP, https://github.com/irfu/whamp), which solves the

linearized kinetic dispersion equation numerically.14,15 The

simple and robust solution approach of WHAMP starting

from the general dispersion equation and its stronga)Electronic mail: yann.kempf@fmi.fi
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establishment as a tool for the determination of wave disper-

sion in homogeneous plasmas make it an ideal tool to verify

Vlasiator results.

Since the central interest of Vlasiator lies in simulating

the entire magnetosphere of the Earth, we focus on wave

modes at spatial and temporal ion scales. In ideal magneto-

hydrodynamic (MHD) theory, the only possible wave modes

are the Alfv�en wave, which is a shear electromagnetic mode

propagating at all angles except perpendicularly to the mag-

netic field, and the fast and slow magnetosonic modes, which

are compressional electromagnetic modes propagating at an

oblique angle with respect to the magnetic field.16 The dis-

persion equation of the shear Alfv�en wave is given by

x
k
¼ vAcos h; (1)

where x is the angular frequency, k the wave number, vA ¼
B=

ffiffiffiffiffiffiffiffiffiffi
l0qm
p

(B is the magnetic field intensity, l0 is the perme-

ability of vacuum, and qm is the mass density) is the Alfv�en

speed and h is the angle between the wave vector k and the

magnetic field vector B. The fast (þ) and slow (–) magneto-

sonic wave dispersion equation is given by

x
k

� �2

¼ 1

2
v2

s þ v2
A

� �
6

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

s þ v2
A

� �2 � 4v2
s v

2
Acos2 h

q
; (2)

where vs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=mi

p
(kB is the Boltzmann constant, T is the

temperature, and mi is the ion mass) is the sound speed. In a

low-b plasma, we have vA > vs. For parallel propagation

ðh ¼ 0Þ, the Alfv�en and fast magnetosonic modes coincide

and the mode propagates at vA, whereas the slow magneto-

sonic mode becomes the sound wave propagating at vS. In

the perpendicular case ðh ¼ p=2Þ, the Alfv�en and slow mode

cannot propagate and only the fast magnetosonic mode prop-

agating at magnetosonic speed vMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

A þ v2
s

p
subsists.

These modes are dispersionless.

Multi-fluid and kinetic theories describe more plasma

wave modes. The left- and right-hand polarized modes (L-

and R-mode hereafter) propagate along or quasi-parallel to

the magnetic field. They couple to the ion and electron gyro-

motion, therefore they resonate at the ion and electron gyro-

frequency, respectively. In the low-frequency, small wave

number limit both modes converge towards the ideal MHD

Alfv�en mode.

The last wave modes in the range of frequencies and

wavelengths of interest in this paper are the ion Bernstein

modes, which are electrostatic ion-cyclotron resonances

(quasi-)perpendicular to the magnetic field. Their dispersion

equation can be expressed in terms of infinite sums of Bessel

functions in the hybrid-Vlasov model.17 A thorough review

of plasma wave dispersion surfaces obtained with WHAMP

at ion and electron scales (including the modes introduced in

this section) is given by Andr�e.18

This paper is organized as follows. In Sec. II, we present

Vlasiator and WHAMP as well as the simulation setup used

with Vlasiator. Then, we present our results in Sec. III. We

show the importance of the Hall term in Ohm’s law, and we

study dispersion curves for parallel, perpendicular and oblique

propagation as well as dispersion surfaces. We discuss the

results in Sec. IV and conclusions are drawn in Sec. V.

II. MODEL AND METHODS

A. The hybrid-Vlasov model in Vlasiator

The solver for Vlasov’s equation implemented in the

hybrid-Vlasov model of Vlasiator is based on a three-

dimensional wave propagation algorithm19,20 applied sepa-

rately to translation in position space and acceleration in ve-

locity space. It is self-consistently coupled to a field solver21

which uses divergence-free magnetic field reconstruction.22

We only introduce here the solver features relevant to this

study.

Vlasiator solves Vlasov’s equation,

@

@t
f ðr; v; tÞ þ v � rrf ðr; v; tÞ þ a � rvf ðr; v; tÞ ¼ 0; (3)

where r and v are the spatial and velocity coordinates, t is

time, f(r,v,t) is the six-dimensional phase-space density of

ions with mass m and charge q, and acceleration a is due to

the Lorentz force

a ¼ q

m
ðEþ v� BÞ; (4)

in which E is the electric field and B is the magnetic field.

In the hybrid-Vlasov model, Vlasov’s equation is

coupled to Maxwell’s equations. The displacement current is

neglected in the Ampère-Maxwell law and the equations

take the form

r� E ¼ � @

@t
B; (5)

r� B ¼ l0j; (6)

where j is the total current density. Note that the equation

r � B ¼ 0 is respected by the field propagation algorithm of

Vlasiator by construction, provided the initial conditions are

divergence-free.21,22

Ohm’s law describes the relationship between the elec-

tric and the magnetic field. It is needed to close the hybrid-

Vlasov system of equations, when updating the magnetic

field using Faraday’s law (Eq. (5)). In the present study,

Vlasiator is using the ideal Ohm’s law supplemented by a

Hall term (rightmost term in Eq. (7)) with first-order spatial

accuracy,

E ¼ �Vi � Bþ 1

qq

j� B: (7)

The ion charge density qq and (ion) bulk velocity Vi are

obtained from velocity moments of the distribution function,

j is computed using Eq. (6). This effectively represents elec-

trons as a massless, charge-neutralizing fluid. The rest of the

solvers in Vlasiator retain second-order spatial accuracy

throughout in smooth cases. In cases with strong spatial

gradients—in position or velocity space alike—flux limiters

112114-2 Kempf et al. Phys. Plasmas 20, 112114 (2013)



effectively reduce the spatial accuracy of the solvers in order

to preserve the numerical stability of the scheme.

Note that although the Hall term in the computation of

the electric field can be neglected using the ideal Ohm’s law,

it has to be retained in the electric field input into the

Lorentz force (Eq. (4)) in order to model bulk forces on the

ions. This makes Vlasiator a proper Hall-less hybrid model

when the Hall term in Ohm’s law is not used.23

B. The WHAMP code

WHAMP is a code solving the linear analytic disper-

sion equation of waves in magnetized plasmas. It can

include several populations with differing number density,

mass, temperature, loss cone, anisotropy and drift parame-

ters for anisotropic Maxwellian distributions.14,15,18 A gen-

eral form of the plasma wave dispersion equation is

D x; kð Þ � E x; kð Þ ¼ 0, where D is the dispersion tensor and

E is the wave electric field. Solutions can be found by

equating the determinant of the dispersion tensor to zero,

jD x; kð Þj ¼ 0. WHAMP solves this in a linearized form

using a Pad�e approximant to ensure a fast computation yet

good approximation of the result.

The WHAMP interface is designed to take in the plasma

parameters initially and then query the solution point by point

in the (k-x) space. Given an initial ðk?; kkÞ point WHAMP

tries to find a wave mode close-by and returns the frequency,

wave vector, and growth rate of the mode among others. A

script querying WHAMP systematically is used to ease com-

parison with the full dispersion plots and surfaces obtained

with Vlasiator following the methods presented in Sec. II C.

When comparing WHAMP and Vlasiator results, the

electron temperature Te in WHAMP is set to a small value in

order to mimic the absence of electron pressure gradient

effects in our hybrid-Vlasov model. The electron tempera-

ture is ignored in Vlasiator, effectively suppressing in the

model the ion-acoustic wave for which Te � Ti must hold.

C. Simulation setup and processing

The simulation setup of Vlasiator in the present study

consists of a one-dimensional spatial domain along the

x-axis, constraining the wave vector to be in that direction,

with fully periodic boundary conditions. The angle between

the magnetic field and the wave vector is defined by setting

the magnetic field orientation with respect to the simulation

box. The initial conditions are uniform up to small random

perturbations in the number density and bulk velocity. The

velocity distribution is isotropic and Maxwellian, therefore

excluding waves growing from anisotropy-driven instabil-

ities. The system relaxes and no forcing is applied during the

simulation.

A two-dimensional space-time (x-t) dataset is formed by

saving the spatial profile of a bulk variable at every (con-

stant) time step. The total run time is typically several ion

gyroperiods. The data is first windowed along the time

dimension using a Hamming window to reduce the noise

induced by the abrupt start and stop of the time series. Then

it is subjected to a discrete Fourier transformation to produce

a (k-x) dispersion plot.

Dispersion surfaces are computed by extracting the

points above a threshold in each (k-x) dataset to retrieve the

dispersion branches for multiple angles. The extracted data

is interpolated and re-sampled on a Cartesian coordinate grid

to obtain smoother dispersion surfaces more readily compa-

rable with the dispersion surfaces from WHAMP.

The simulation and plasma parameters of all Vlasiator

simulations presented in this paper are given in Table I.

WHAMP uses exactly the same parameters as input, except

for the electron temperature as discussed above.

III. RESULTS

A. The Hall term in Ohm’s law and parallel
propagation

In ideal MHD, Ohm’s law takes the form E ¼ �V� B,

where V is the bulk velocity and the Hall term j� B=qq has

been omitted with respect to Eq. (7). The absence of spatial

scales in this form of Ohm’s law in the hybrid-Vlasov model

prevents the kinetic coupling of the ions to any wave mode.

There are thus no resonances and the wave modes present

are the non-dispersive ideal MHD wave modes. In the paral-

lel case this means that the only wave mode one can observe

in the dispersion plot is the ideal MHD Alfv�en wave (Eq.

(1)), as illustrated in Figure 1 on the left-hand side

ðh ¼ 0:001Þ. All other cases hereafter were obtained using

the Hall term in Ohm’s law.

Using j ¼ r� B=l0 [Eq. (6)], the Hall term can be

expressed as r� Bð Þ � B= l0qqð Þ. It becomes apparent in this

form that through the current density, spatial derivatives of the

magnetic field and thus spatial scales are introduced. One con-

sequence is that wave dispersion can occur in the hybrid-

Vlasov model and one departs from the ideal MHD description.

The dispersion plot for the same parameters but with the

Hall term included is presented on the right-hand side of

Figure 1. As expected, the L-mode has a resonance at the

fundamental ion gyrofrequency. The R-mode on the other

hand is not expected to resonate at xce (beyond the upper

edge of the figure) because of the lack of electron physics in

our hybrid-Vlasov model. At low frequencies and low wave

numbers, the two modes converge towards the ideal MHD

TABLE I. Parameters of the Vlasiator simulations presented in this paper.

The propagation angles with respect to the magnetic field are h ¼ 0:001 for

the parallel cases without and with Hall term (Fig. 1); h ¼ 1:57 for the perpen-

dicular case (Fig. 2); h ¼ 0:001; 0:1; 0:3; 0:5; 0:7; 1:0; 1:2; 1:3; 1:4; and 1:57

for the dispersion surfaces (Fig. 3); and h ¼ 0:3 for the oblique case (Fig. 4).

Simulation parameters

Dispersion

surface/parallel/oblique Perpendicular

Simulation domain length 2:5� 108 m 5:0� 108 m

Number of spatial cells 10 000 10 000

Velocity space resolution 4:0� 103 m=s 4:0� 103 m=s

Time step 0.001 s 0.025 s

Plasma parameters

Ion (proton) number density 1:0� 106 m�3 1:0� 104 m�3

Ion (proton) temperature 1:0� 105 K 1:0� 105 K

Magnetic field intensity 5:0� 10�8 T 1:0� 10�9 T

Plasma b 1:4� 10�3 3:5� 10�2
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Alfv�en wave. Without the Hall term in Ohm’s law, the simu-

lation result matches the ideal MHD theory. With the Hall

term, the simulation result matches the dispersion obtained

by WHAMP. The reason for the slight discrepancy in the R-

mode at higher frequencies is analyzed in Sec. III C.

B. The ion Bernstein modes in perpendicular
propagation

In the perpendicular propagation case ðh ¼ 1:57Þ shown

in Figure 2, the dispersion plot exhibits the ion Bernstein

modes, which are relatively weak but correspond well to the

WHAMP solution. The non-propagating mode at xci and its

harmonic at 2xci are due to the initial random perturbations

fluctuating at the ion gyrofrequency throughout the simula-

tion domain at all spatial scales. The strongest mode in the

plot is the magnetosonic mode, which is non-dispersive in

Vlasiator. It shows dispersion in the WHAMP solution and

bends towards the lower-hybrid plateau (top of the plot and

beyond), a feature not reproduced by Vlasiator again due to

lacking electron physics in the hybrid-Vlasov model.

C. Dispersion surfaces and oblique propagation

Following the tradition established by Andr�e18 to study

wave dispersion using dispersion surfaces in the ðk?; kk;xÞ
space, we produced the dispersion surfaces for Vlasiator as

well. The comparison of the Vlasiator dispersion surfaces

with the WHAMP solution is shown in Figure 3. The

WHAMP solution is plotted regardless of the damping or the

relative amplitude of the modes. This explains the smaller

extent of the L-mode surface (lower surface) as well as the

absence of the ion Bernstein modes in this regime in the

Vlasiator results.

In order to convey a better impression of the relation

between the Vlasiator and WHAMP solutions, the dispersion

for oblique propagation at h ¼ 0:3 is presented in Figure 4.

A first observation is that Vlasiator and WHAMP consis-

tently show a strong damping of the L-mode beyond

k � rL � 0:18; the signal weakens in Vlasiator and WHAMP

does not pick the mode any more. Another observation is

that while at low frequencies and long wavelengths both sol-

utions overlap completely, the R-mode does not match

exactly at higher x, in a similar way as was observed for the

parallel propagation case in Sec. III A. Increasing the spatial

resolution of the Vlasiator simulation improves the situation,

in that the Vlasiator R-mode is closer to the WHAMP solu-

tion for a longer range. This indicates that the spatial accu-

racy of the code, and especially the accuracy of the Hall

term, which is currently of lower order than the Vlasov and

field solvers, is responsible for this discrepancy.

IV. DISCUSSION

In this study, we show that the wave dispersion results

from Vlasiator are closely matched by the WHAMP solution

FIG. 2. Dispersion plot in the case of perpendicular propagation ðh ¼ 1:57Þ
including the Hall term in Ohm’s law. Further parameters are given in Table

I. The curves represent the WHAMP solution. The magnetosonic mode is

non-dispersive in Vlasiator whereas it bends towards the lower-hybrid pla-

teau in WHAMP (top of the plot and beyond), the first few ion Bernstein

modes are visible but relatively weak.

FIG. 1. Dispersion plot for parallel

propagation ðh ¼ 0:001Þ with the ideal

Ohm’s law (left) and Ohm’s law

including the Hall term (right). Further

parameters are given in Table I.

Wavelengths are scaled to the ion

gyroradius rL, frequencies to the ion

gyrofrequency xci. The dashed line

represents the ideal MHD Alfv�en wave

speed vAcos h. The curves represent

the WHAMP solution. Without the

Hall term Vlasiator only shows the

non-dispersive ideal MHD Alfv�en

mode. With the Hall term in Ohm’s

law the L-mode resonates at xci, while

the higher-frequency branch is the R-

mode.
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in all propagation directions. The good correspondence

between these two essentially different approaches to solving

Vlasov’s equation, namely the linearized kinetic theory and

the hybrid-Vlasov simulation, is an indicator of the good

quality of the Vlasiator results. They clearly show that the

Hall term in Ohm’s law is critical to go beyond ideal MHD

in terms of wave modes described by the hybrid-Vlasov

model. Introducing spatial scales through the derivatives of

the magnetic field, the Hall term in Ohm’s law makes wave

dispersion possible. In particular the L- and R-modes split

and the L-mode, coupling to the ion gyromotion, resonates at

the ion gyrofrequency. In addition to this, the ion Bernstein

modes are a feature which arises purely from the kinetic

description of magnetized plasma. Two major consequences

and expected shortcomings of the limited electron physics

of the hybrid-Vlasov model are that the R-mode should not

resonate at any frequency, and that the magnetosonic

mode does not couple to electrons to form the lower-hybrid

plateau at the ion-electron lower-hybrid frequency

x2
LH ¼ x2

pi þ x2
ci

� �
= 1þ x2

pe=x
2
ce

� �
in quasi-perpendicular

propagation.

This work is a major step in the verification of Vlasiator

and it provides vital insight into the model’s wave modes.

The aim of the development of Vlasiator is to provide the

first self-consistent hybrid-Vlasov model able to simulate the

entire magnetosphere of the Earth including ion-kinetic

effects. Plasma wave modes are a key feature which should

be described accurately by the model and properly under-

stood in order to interpret global magnetospheric simula-

tions. It is important to note that the splitting of wave modes

introduced by the Hall term in Ohm’s law also occurs on

temporal and spatial scales comparable to and longer than

the ion scales. These long scales are of primary interest in

global magnetospheric simulations using a hybrid code in

which the emphasis is placed on ion kinetics. Therefore dif-

ferences are expected to appear between Hall-less simula-

tions of the magnetosphere and their counterparts using the

Hall term in Ohm’s law, even if the ion gyroradius were not

resolved. Adding the Hall term to Ohm’s law in Vlasiator is

expected to make the described physics richer but suitable

numerical accuracy and stability in global magnetospheric

simulations will only be achieved with a Hall term of appro-

priate spatial accuracy. Realistic results have already been

obtained nevertheless in successful Hall-less magnetospheric

simulations, comparing favorably to observed phenomena.24

V. CONCLUSIONS

By studying the dispersion of plasma waves in the

hybrid-Vlasov model of the new Vlasiator code and compar-

ing it to the linearized solution computed with WHAMP, we

provide a key verification benchmark for Vlasiator. The

match between the two fundamentally different approaches

is excellent, even with a Hall term in Ohm’s law of first-

order spatial accuracy. This study underlines the importance

of using a sufficiently rich Ohm’s law in the hybrid-Vlasov

model to obtain a kinetic description of waves departing

from ideal MHD, even on temporal and spatial scales typi-

cally associated with ideal MHD. The future addition of

FIG. 4. Dispersion plot in the case of oblique propagation ðh ¼ 0:3Þ includ-

ing the Hall term in Ohm’s law. Further parameters are given in Table I. The

black curves represent the WHAMP solution. The dashed line represents the

ideal MHD Alfv�en wave speed vAcos h.

FIG. 3. Dispersion surfaces for the

parameters given in Table I. Left:

WHAMP results. Right: Vlasiator

results interpolated and re-sampled

from simulations at propagation angles

h¼ 0:001;0:1;0:3;0:5;0:7;1:0;1:2;1:3;
1:4; and1:57. Lower surface: L-mode.

Higher surface: R-mode. The non-

dispersive surface at x=xci ¼ 2 in the

WHAMP solution is the first ion

Bernstein mode. The WHAMP solu-

tion is plotted regardless of the damp-

ing of the modes.
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terms to Ohm’s law such as the electron pressure gradient

term is expected to play a significant role as well in introduc-

ing richer electron physics, the lower-hybrid plateau for

example. This will improve the quality of the model and the

variety of physical phenomena included in it, even more so

in the perspective of implementing adaptive mesh refinement

in Vlasiator to resolve ion-kinetic scales in selected regions.
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a b s t r a c t

We present results from a new hybrid-Vlasov simulation code, Vlasiator, designed for global magneto-

spheric simulations. Vlasiator represents ions by a six-dimensional distribution function propagated

using a finite volume approach. The distribution functions are self-consistently coupled to electro-

magnetic fields with electrons modeled as a charge-neutralizing fluid. A novel sparse representation of

the distribution function reduces the computational demands of the problem by up to two orders of

magnitude. The capabilities of the code are demonstrated by reproducing characteristics of the ion/ion

right-hand resonant beam instability, as well as key features of the collisionless bow shock and

magnetosheath in front of the Earth's magnetosphere in global five-dimensional (two in ordinary space,

three in velocity space) simulations. We find that Vlasiator reproduces the ion velocity distribution

functions with quality comparable to spacecraft observations.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Global modeling of the near-Earth space environment is

important for several reasons. First, global models provide infor-

mation on plasma processes in space and time, complementing

in situ observations and giving them a context. Second, accurate

modeling results of the near-Earth environment give feedback to

instrument developers, so that improved instrumentation can be

implemented for future missions. Third, simulations can also be

used to monitor quantities that are difficult to measure using

instrumentation; for example global energy flow between the

solar wind and the magnetosphere (Palmroth et al., 2003, 2004).

Finally, if computed in real-time, global simulations can be used to

monitor space weather conditions, giving warnings for different

stakeholders.

The above reasons for developing global simulations all in-

dicate that the simulation needs to be numerically accurate and

the model should describe the relevant physical phenomena. The

most popular solution so far has been to implement the magne-

tohydrodynamic (MHD) equations in a global computer simula-

tion. The level of numerical accuracy has been discussed mainly in

terms of the order of the solution (see the review by Ridley et al.,

2010), while the question remains as to whether the MHD model

itself is rich enough to be used as a basic tool for interpreting the

system. MHD has proven to give a good description on large scales

and where plasma can be described with one temperature (e.g.

Janhunen and Palmroth, 2001), while for example in the inner

magnetosphere its power to explain physical phenomena rapidly

decreases. This is also true for the ion foreshock which is the focus

of the simulations presented in this paper. Beyond-MHD ion

kinetics need to be modeled to describe collisionless interactions

of shock-reflected ion populations with the solar wind (Scholer

et al., 1993; Eastwood et al., 2005b).

Increasing computational resources enables new demanding

approaches to be considered, either based on coupling dedicated

models together (Tóth et al., 2012; Glocer et al., 2013), or by using

a more appropriate set of equations to be solved throughout the

system. The coupled approach may be quicker to implement if the

dedicated models exist. On the other hand, the interfaces between

the models may be problematic and in some cases the coupled

approach does not yield a better description of the entire near-

Earth space (e.g. Honkonen et al., 2013b). Therefore simulations

based on an improved description of plasma throughout the

system are a promising choice for developing new global models.

In the hybrid approach electrons are modeled as a fluid and

ions are described by a kinetic model. Typically hybrid approaches

are hybrid particle-in-cell (PIC) simulations, where ions are
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modeled with macroparticles for which plasma kinetic equations

are solved (Winske et al., 2003). Such efforts have been dedicated

to other solar system bodies (Brecht and Ferrante, 1991; Kallio and

Janhunen, 2002) as well as to the Earth's magnetosphere in two

spatial dimensions (Lin, 2003; Omidi et al., 2005; Blanco-Cano

et al., 2006; Omelchenko and Karimabadi, 2012) and occasionally

in three spatial dimensions (Lin and Wang, 2005). This approach

may yield solutions with an undesirable level of numerical noise,

especially when looking at ion velocity distribution functions.

Noise can be reduced by increasing the number of ions launched

in the simulation, but the computational demands increase rapidly

as the level of noise only goes down with the inverse of the square

root of the number of particles.

Another choice is not to model the ions as particles, but to use

Vlasov's equation and model directly the evolution of the six-

dimensional ion distribution function (three in ordinary space and

three in velocity space) yielding a hybrid-Vlasov approach. Hybrid-

Vlasov simulations require massive amounts of memory and

computations to propagate the ion distribution function. Due to

the computational complexity, the global hybrid-Vlasov approach

has not received a lot of attention in the past, while local

simulations have been implemented (Valentini et al., 2007, 2010;

Eliasson and Shukla, 2007). On the other hand, when successful on

a global scale, such a simulation will give an improved description

for the ion distribution function and remove the numerical noise

present in the previous hybrid-PIC approaches.

This paper presents the technical description and magneto-

spheric simulation results of Vlasiator (http://vlasiator.fmi.fi), a

self-consistent hybrid-Vlasov simulation code. While Vlasiator is

inherently six-dimensional, here we report simulations in a five-

dimensional global setup, comparable to Omidi et al. (2005),

reporting kinetic properties of the collisionless bow shock in the

ecliptic plane in two dimensions. This paper follows Palmroth et al.

(2013), presenting first test-particle simulation results in the

global scale on a coarse six-dimensional grid. An experimental

version of Vlasiator that runs on graphics processing units has also

been presented earlier (Sandroos et al., 2013). A verification study

of the code in simulations of plasma wave dispersion was

presented by Kempf et al. (2013) and a short presentation of first

magnetospheric simulation results is given in Pokhotelov et al.

(2013).

The paper is organized as follows: first, we describe the

numerical scheme for the self-consistent hybrid-Vlasov approach

in Section 2. In Section 3, we describe the sparse representation of

the distribution function which enables global simulations on

contemporary supercomputers and discuss the numerical diffu-

sion. A local simulation of the ion/ion right-hand resonant beam

instability is presented and compared to analytic results in Section

4. We then present the global magnetospheric case in Section 5,

where we simulate the Earth's magnetosheath and ion foreshock

for three different interplanetary magnetic field (IMF) conditions

in two ordinary space dimensions in the ecliptic plane, and three

dimensions in velocity space. Our results present the first uni-

formly discretized ion velocity distribution functions with quality

comparable to spacecraft measurements within the Earth's ion

foreshock (e.g. Kis et al., 2007) and in the magnetosheath (e.g.

Souček and Escoubet, 2011). We will show that the ion foreshock

includes the kinetic features present in Omidi et al. (2005), while

mirror mode structures in the magnetosheath display character-

istics present in Southwood and Kivelson (1993), Souček et al.

(2008), promising fruitful avenues for further global simulations.

2. Numerical scheme

The fundamental description of charged particle motion in an

electromagnetic field is given by Vlasov's equation

∂
∂ + ·∇ + ·∇ =
t
f t f t f tr v v r v a r v( , , ) ( , , ) ( , , ) 0,

(1)r v

where r and v are the spatial and velocity coordinates, f tr v( , , ) is

the six-dimensional phase-space density of a particle species with

mass m and charge q, and acceleration a is given by the Lorentz

force

= + ×q

m
a E v B( ),

(2)ION

where EION is the electric field affecting ions and B is the magnetic

field. Vlasov's equation is a six-dimensional advection equation.

An inherent assumption in Vlasov's equation is that the system is

collisionless, which is a good approximation in tenuous space

plasmas.

The bulk parameters of the plasma, such as the ion charge

density ρq and current density j
i
, are obtained as velocity mo-

ments of the ion velocity distribution function

∫ρ = q v f tr vd ( , , ), (3)q
3

∫= q v f tj v r vd ( , , ). (4)i
3

These also give the bulk velocity of ions,

ρ=V j / . (5)qi i

Vlasiator is a self-consistent hybrid-Vlasov code implementing

the Hall-less hybrid model introduced by Karimabadi et al. (2004),

with ions described by a distribution function propagated accord-

ing to Vlasov's equation. The magnetic field is updated using

Faraday's law:

∇ × = − ∂
∂tE B,

(6)OHM

and the system is closed by an ideal Ohm's law giving the electric

field:

= − ×E V B, (7)OHM i

where Vi is the ion bulk velocity given by Eq. (5). In the Lorentz

force entering Vlasov's equation (1) the electric field is given by

ρ
= − × + ×E V B j B

1
,

(8)
ION

q

i

where the second term on the right-hand side is the Hall term. The

Hall term needs to be included, otherwise the momentum equa-

tion is violated and no bulk force is exerted on the ions. The total

current density j is obtained from Ampère–Maxwell's law where

the displacement current has been neglected:

μ∇ × =B j. (9)0

2.1. Ion propagation

We propagate the distribution function with a finite volume

method (FVM). In FVM schemes the simulation domain is covered

with a mesh consisting of a finite number of cells. In Vlasiator we

have split the full six-dimensional mesh into ordinary and velocity

space. In ordinary space we use a three-dimensional Cartesian

mesh. We use the term spatial cell for cells in the ordinary space
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mesh. Each spatial cell contains the field variables (B, E). They are

stored on a staggered grid such that the face average of the

magnetic field is stored on the faces and the edge average of the

electric field is stored on the edges (Londrillo and del Zanna,

2004). Each spatial cell also contains a three-dimensional Carte-

sian velocity mesh where each velocity cell contains the volume

average
∼
f of the distribution function over the ordinary space

volume of the spatial cell, and the velocity space volume of the

velocity mesh cell:

∫
Δ Δ

=∼
f

r v
r v f tr v

1
d d ( , , ),

(10)3 3 cell

3 3

where Δ = Δ Δ Δr x y z3 and Δ = Δ Δ Δv v v vx y z
3 denote the phase-space

integration volumes, and Δx, Δ …y, are the sizes of the cell in each

coordinate direction. Hereafter and in Eq. (10) we are omitting the

coordinates tr v( , , ) in f and
∼
f whenever the meaning is clear. The

volume average
∼
f is propagated forward in time by calculating

fluxes at every cell face in each of the six dimensions. In the case of

Vlasov's equation the spatial F F F( , , )x y z and velocity F F F( , , )vx vy vz

fluxes take on particularly simple forms,

= fF v , (11)r

ρ μ
= − + ∇ × ×q

m
fF v V B B

1
,

(12)q

v i

0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

where we have substituted E and j by Eqs. (8) and (9) in the

Lorentz force. B is a volume average calculated from face averages

using divergence-free reconstruction polynomials given in Balsara

et al. (2009). The propagation of
∼
f is given by

+ Δ = − Δ
Δ + Δ −

− Δ
Δ + Δ − − ⋯ − Δ

Δ + Δ −

∼ ∼
f t t f t

t

x
F x x F x

t

y
F y y F y

t

v
F v v F v

( ) ( ) [ ( ) ( )]

[ ( ) ( )] [ ( ) ( )].
(13)

x x

y y
z

vz z z vz z

By construction the FVM scheme in Eq. (13) guarantees the

conservation of mass except at the boundaries of the simulation

domain.

We further split Eq. (13) into the spatial translation ST and

acceleration SA operators. ST propagates the distribution forward in

time in ordinary space using the fluxes in Eq. (11), and SA
propagates the distribution function forward in time in velocity

space using the fluxes defined in Eq. (12). Both operators propa-

gate the distribution function with a three-dimensional second-

order accurate wave-propagation method (Leveque, 1997;

Langseth and Leveque, 2000). The wave-propagation method is

based on solving one-dimensional Riemann problems at the cell

faces and applying flux limiters to suppress oscillations. Waves

emanating from the Riemann problems are further split by solving

Riemann problems in directions transverse to the wave propaga-

tion, and end up modifying fluxes on faces in transverse directions.

Each cell face can contribute to the flux in up to 18 adjacent cells.

We only add non-zero contributions to adjacent fluxes by identi-

fying the affected cells based on the acceleration or velocity

direction.

We use Strang (1968) splitting to propagate the six-dimen-

sional distribution with second-order accuracy in time

Δ+ Δ = Δ Δ∼ ∼
f t N t S

t
S t S

t
f( )

2
( )

2
(0).

(14)
T

N

A T
⎜ ⎟ ⎜ ⎟

⎡

⎣⎢
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦⎥

We use the leap-frog algorithm for the propagation so that two

translation half-steps are combined into one full timestep. To start

the simulation chain, we first translate the distribution function

forward by half a timestep,

+ Δ = Δ∼ ∼
f t t S t f t

1

2

1

2
( ).

(15)

r

T

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

After this, subsequent applications of the acceleration and transla-

tion operators propagate the distribution function forward by one

timestep Δt from + Δ∼
f t t( )
r 1

2
to + Δ∼

f t t( )
r 3

2
,

+ Δ = Δ + Δ∼ ∼
f t t S t f t t( ) ( ) ( ) (16)
v r

A
1

2

+ Δ = Δ + Δ∼ ∼
f t t S t f t t( ) ( ) ( ). (17)
r v3

2 T

The algorithm is stable as long as the timestep fulfills the

Courant–Friedrichs–Lewy (CFL) condition, so that the Courant

number is at most 1. The Courant number is for each dimension

given by

= Δ
ΔC
u t

s
,

(18)

where u corresponds to the velocity; vx, vy and vz in ordinary

space and ax, ay and az in velocity space. Δs corresponds to the size

of the simulation cell; Δx, Δy and Δz in ordinary space and Δvx, Δvy
and Δvz in velocity space. The timestep is dynamically adjusted so

that it fulfills the CFL condition and is not shorter than necessary.

The maximum velocity and the acceleration in all spatial cells are

tracked and the maximum Courant number in the whole system is

computed. If it falls outside of a user-specified range of Courant

numbers (here 0.7–0.8) the timestep is changed so that the

maximum Courant number falls into the middle of the range.

We also compute the maximum timestep allowed by the field

solver and set the timestep according to that solver if it is lower. To

change the timestep we propagate the distribution function using

a half-timestep propagation to a non-mixed state, change the

timestep to its new value, and return to the leap-frog integration

using another half-step. The timestep is only modified infre-

quently so the overhead is small. This dynamic timestep also

greatly helps with performance as we use optimal timesteps

throughout the simulation.

In simulations with strong local fields leading to high accel-

eration, e.g., Earth's dipole magnetic field, the timestep is limited

by the acceleration SA operator. To enable longer (global) timesteps

we split the propagation in velocity space into shorter substeps,

where the length of each substep is set according to the CFL

condition so that the Courant number of the substep is in the

middle of the allowed range. The magnetic field is constant during

the substepping, but the effective electric field does change as we

recompute the bulk velocity Vi in Eq. (12) after each substep. By

substepping the acceleration operator we can keep the global

timestep reasonable (of the order of 50 ms in global simulations),

which minimizes the total number of timesteps in a simulation.

The length of the substep is computed on a cell-by-cell basis, thus

substepping only happens close to Earth in magnetospheric

simulations. When we substep, the propagation of the distribution

function is not second-order accurate in time. As we only do it

close to Earth, the effect should be negligible in regions that we

investigate in this work. Also, as each timestep introduces addi-

tional numerical diffusion (see Section 3.2) the effective diffusion

is lower due to the smaller number of timesteps.

2.2. Field propagation

In Vlasiator the propagation of fields and ions is self-consistent.

The fields couple to the Vlasov solver through the magnetic field

which is used in the Lorentz force for the acceleration operator,

and the Vlasov solver on the other hand needs the values of ρq and
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Vi which are computed from the distribution function. The

magnetic field is propagated using the algorithm by Londrillo

and del Zanna (2004), which is a second-order accurate upwind

constrained transport method. The solver does not produce

divergence by construction, and the magnetic field is divergence-

free if the initial state and boundary conditions are divergence-

free. The magnetic and electric fields are stored on a staggered

grid, as described in the previous section. All reconstructions

between volume-, face- and edge-averaged values follow Balsara

et al. (2009). The face-averaged values of B are propagated forward

in time using the integral form of Faraday's law (Eq. (6))

∫ ∮∂
∂ · = − ·
t

B A E Sd d ,
(19)Cface

where the integral on the left-hand side is taken over a cell face

and the line integral is evaluated along the contour of that face.

Once E has been computed based on Ohm's law (Eq. (7)), it is easy

to propagate B using a discretized version of Eq. (19). When

computing each component of E on an edge, the solver computes

the candidate values on the four neighboring cells of the edge. In

the supermagnetosonic case, when the plasma velocity exceeds

the speed of the fast magnetosonic wave mode, the upwinded

value from one of the cells is used. In the submagnetosonic case

the value is computed as a weighted average of the electric field on

the four cells and a diffusive flux is added to stabilize the scheme.

For the time integration we use a second order Runge–Kutta

method. To propagate the field from t to + Δt t we need the ρq and

Vi values at both t and + Δt t/2. With the leap-frog algorithm we

do not have a real value for the distribution function at these

times; computing it would be expensive. Following Valentini et al.

(2007) we compute first-order accurate interpolations for the

distribution function and use these to compute the required

values:

= + + Δ∼ ∼ ∼
f t f t f t t( ) [ ( ) ( )] (20)

v r1

2

1

2

+ Δ = + Δ + + Δ∼ ∼ ∼
f t t f t t f t t( ) [ ( ) ( )]. (21)

v r1

2

1

2

1

2

The field solver also contributes to the dynamic computation of

the timestep. With our Ohm's law the fastest characteristic speed

is the speed of the fast magnetosonic wave mode and we use that

speed to compute the maximum timestep allowed by the field

solver. For the field solver we use Courant numbers between

0.4 and 0.5, as higher values cause numerical instability of the

scheme (Londrillo and del Zanna, 2004).

In Vlasiator the magnetic field has been split into a perturbed

field updated during the simulations, and a static background field.

The electric field is computed based on the total magnetic field

and all changes to the magnetic field are only added to the

perturbed part of the magnetic field. The background field must

be curl-free and thus the Hall term can be computed based on the

perturbed part only. This avoids numerical integration errors

arising from strong background field gradients. In magnetospheric

simulations the background field consists of the Earth's dipole, as

well as a constant IMF in all cells.

3. Numerical implementation

Vlasiator is a hybrid-Vlasov code that is targeting global

magnetospheric simulations. Simulating global events using a

static discretization requires on the order of 1000 cells in each

ordinary space dimension, and on the order of 100 cells in each

velocity space dimension, giving in total 1015 phase-space cells for

the full six-dimensional distribution function. As a first step we

have targeted five-dimensional simulations (two spatial

coordinates, three velocity coordinates) comprising on the order of

1012 phase-space cells. To enable these simulations we have

developed a sparse representation of the distribution function

that reduces the number of cells by up to two orders of magnitude

(see Section 3.1). Additionally Vlasiator has to be able to efficiently

utilize large supercomputers and clusters. To achieve good scal-

ability we have implemented a two-level parallelization scheme.

On the first level we use the MPI-based DCCRG grid library

(Honkonen et al., 2013a) to implement the parallel three-dimen-

sional ordinary space grid. The second parallelization level is done

by threading the computation of each MPI process using OpenMP.

In the field solver we have threaded computation by threading all

major loops over spatial cells. When propagating the ion distribu-

tion function we have threaded the computation over the velocity

space grid. This approach gives us good scaling to tens of

thousands of cores. The large global simulations presented here

have been performed on 16,384 cores on Hermit (Cray XE6), based

in Germany at the High Performance Computing Center Stuttgart

(HLRS).

3.1. Sparse velocity grid

The main computational load in a hybrid-Vlasov simulation is

due to the six-dimensional distribution function. A typical ion

population is localized in velocity space, for example a Maxwellian

distribution, and a large portion of velocity space is effectively

empty. A key technique for enabling large-scale global simulations

in Vlasiator is the sparse velocity grid where the empty cells do

not exist. As we neither propagate nor store the effectively empty

velocity cells we save memory, I/O and computational resources.

We have divided the velocity grid into velocity blocks comprising

4 �4 �4 velocity cells. The sparse representation is done at this

level; either a block exists with all of its 64 velocity cells, or it does

not exist at all. In the sparse representation we define that a block

has content if any of its 64 velocity cells has a density above a user-

specified threshold value. A velocity block exists if it has content,

or if it is a neighbor to a block with content in any of the six

dimensions. Neighbors are here defined in the sense of the

minimum neighborhood needed by the solvers. In velocity space

we include all 26 nearest neighbors, while in ordinary space we

include up to second-nearest neighbors in the 6 face-normal

directions and nearest neighbors in all other directions

(Sandroos et al., 2013). We can optionally also add the second-

nearest neighbors in velocity space, but typically this is not done.

The neighbors are included as the distribution function in content-

blocks needs neighboring velocity cells to which it can flow,

otherwise the extent of the distribution function could not change.

Analytically Vlasov's equation conserves mass, as does our

propagation algorithm in the limit of an infinite velocity space. A

sparse velocity grid does not preserve all moments of the dis-

tribution function perfectly, but the impact is minimal with low

enough threshold values. The losses come both from fluxes that

flow out through the outer faces of the grid, as well as losses when

a block is removed if it does not fulfill any existence criteria. Of

these losses, the loss through the outer faces in velocity space

dominates.

To quantify the losses we take the dispersion test presented in

Kempf et al. (2013) and simulate it over five ion gyroperiods with

different threshold values. Additionally we also test the effect of

changing the neighborhood size for block creation in velocity

space. This decreases the losses as the outer boundary faces are

farther away from the significant parts of the distribution function.

In Fig. 1 the relative losses are plotted as a function of the

threshold relative to the maximum velocity cell distribution

function value for the initial state. In the range of relative thresh-

olds between 10�4 and 10�5 the losses are of the order of 0.001%
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of the total number density; larger thresholds show much larger

losses while further reduction of the threshold value has very

minor impact. Given the computational gain of using the sparse

velocity space description, the sacrifice of mass conservation at

such a low level is deemed beneficial. By adding an extra layer of

blocks, we can further decrease losses by one order of magnitude.

Fig. 1 shows the absolute value of the losses; in the usable range

for the thresholds the losses can also be negative which implies

that matter is created. The reason for this behavior lies in the

shape of the distribution function. The use of flux limiters to

ensure stability even when high gradients are present causes the

distribution function to form a region of negative density on its

outer edge, and the negative losses that occur for small threshold

values are due to the boundary being inside this region.

In Fig. 2 the fill ratio, meaning the fraction of blocks which exist

out of the maximal velocity space, is shown. Using a relative

threshold lower than 10�5, or including second-nearest neighbors,

only moderately decreases losses, while the number of blocks and

thus the computational load increases significantly. In the simula-

tions presented here we have used a threshold close to 10�5 and

only included nearest neighbors as that gives a good balance

between accuracy and performance.

The amount of saved resources depends on the actual limits of

the velocity space, but for our simulations the code is at least an

order of magnitude faster and the reduced memory load also

enables us to run on less cores than otherwise. In the global

magnetospheric simulation presented in Section 5 the fill ratio is

on average 1.0%, reducing memory and computational load by up

to 100 times. Typically up to 10% of simulation time is spent in

computations related to the sparse representation, which is a

small cost compared to the performance benefit. The code is also

more robust as we can use a very large velocity space and there is

no risk of the distribution function reaching the boundary.

3.2. Diffusion

Numerical diffusion in velocity space artificially enhances the

thermal pressure of plasma during gyromotion. The numerical

diffusion can be reduced by increasing the resolution in velocity

space (e.g. Umeda et al., 2010). Various flux/slope limiters can be

used to mitigate the numerical diffusion of hybrid-Vlasov schemes

(Sandroos et al., 2013). Here the monotonized central (MC) limiter

(van Leer, 1977) has been used since it does not distort the shape

of the original Maxwellian distribution. More aggressive limiters

such as superbee or Sweby (Roe, 1986; Sweby, 1984) can reduce

the diffusion more efficiently even for low velocity resolution but

their applicability for kinetic plasma simulations is questionable as

they tend to distort the shape by flattening the top and steepening

the edges of the distribution function.

In Fig. 3 we have plotted the artificial increase in temperature

for a Maxwellian ion distribution function with a bulk velocity

=V 500 km/si , number density = −n 10 mi
6 3 and temperature

=T 10 Ki
5 . This distribution is propagated in a magnetic field of

strength 5 nT with a timestep of 0.05 s. These parameters are

chosen to match the values we use for the solar wind in one of the

global simulations in Section 5. The system is homogeneous in

ordinary space and the diffusion stems purely from gyromotion in

velocity space. For our solver which is second order accurate in

space, the numerical heating is reduced by a factor of almost 4 by

doubling the velocity resolution. Due to limited computational

resources the choice of velocity resolution is a compromise

between feasibility of the simulations and the level of artificial

heating. In this work the choice was 20 km/s for the global

simulations. At this resolution the temperature of the solar wind

impinging on the different parts of the bow shock does not differ

substantially. In the 45° IMF simulation (see Section 5), the plasma

hitting the nose of the shock has been propagated 5500 timesteps

and has a temperature of 4.8�105 K, while plasma hitting the

outermost flanks has been propagated 14,000 steps and has a

temperature of 8.4�105 K. The temperature is significantly higher

Fig. 1. The absolute value of the mass loss relative to total mass after simulating the

dispersion test (Section 3.1 and Kempf et al., 2013) for five gyroperiods. It is plotted

as a function of the sparsity threshold relative to the maximum value of the

distribution function. Two cases are plotted, one including nearest neighbors in

velocity space, another one also including second-nearest neighbors.

Fig. 2. The fill ratio of the sparse velocity space after simulating the dispersion test

(Section 3.1 and Kempf et al., 2013) for five gyroperiods. It is plotted as a function of

the sparsity threshold relative to the maximum value of the distribution function.

Two cases are plotted, one including nearest neighbors in velocity space, another

one also including second-nearest neighbors.

Fig. 3. Relative increase of temperature Ti for a Maxwellian distribution function

(initially =V 500 km/si , = −n 10 mi
6 3, =T 10 Ki0

5 ) propagated with 0.05 s timesteps

in a magnetic field with a strength of 5 nT.
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than at the solar wind inflow boundary (100,000 K), but the

relative increase across the foreshock region is deemed acceptable.

3.3. Boundary conditions

Both in ordinary and velocity space the simulation has a

maximum extent, and the outer faces of the simulation box have

a boundary condition. In velocity space the boundary condition is

an outflow condition, and if the distribution function hits the limit

of the velocity space the simulation loses matter. To avoid this, the

maximum velocity limits are set to large values based on a

conservative estimation of the largest possible velocities for the

particular simulation case.

In ordinary space Vlasiator supports periodic boundaries used

in the dispersion test in Section 3.1 and in the z-direction in the

global simulation. It also supports the three distinct boundaries

found in a magnetospheric simulation: (1) sunward boundary of

the simulation from which the solar wind flows into the simula-

tion, (2) inner boundary of the simulation which surrounds the

Earth at a user-defined distance from the Earth's center and

(3) outflow boundary conditions.

At the solar wind boundary a static Maxwellian ion velocity

distribution is set in all cells, and that distribution function is

unchanged throughout the simulation. The temperature and

velocity of the solar wind are set through the width and location

of the Maxwellian distribution. Vlasiator does not have divergence

removal, therefore we should not introduce magnetic field diver-

gence at the solar wind boundary. To set an IMF we simply add a

constant magnetic field to the background field in all cells

including the boundary cells. The dipole has a much stronger

value close to the Earth, thus the additional contribution of the

IMF is small there. At the inner boundary the distribution function

is set to a stationary state and the perturbed magnetic field is set

to zero. This inner boundary is far from being realistic with respect

to the actual inner magnetosphere and can be viewed as a first

implementation that enables studies of phenomena, such as the

ion foreshock, which are located far from the inner boundary. At

the outflow boundary each cell copies from its nearest normal

neighbor cell the distribution function, and its magnetic field

value. This allows plasma to flow out of the system.

4. Ion/ion right-hand resonant beam instability

Under favorable IMF conditions the Earth's bow shock reflects

incoming particles which will stream back along the magnetic

field, forming the ion foreshock (e.g. Eastwood et al., 2005b). This

can lead to ion/ion beam instabilities which grow and generate

waves in the foreshock region. We investigate the ion/ion right-

hand resonant beam instability in the regime relevant to the global

magnetospheric simulations presented in Section 5 and in

Pokhotelov et al. (2013).

When the thermal speeds vth are small compared to the beam

speed vb, we are in the cool beam regime. When additionally the

Alfvén speed vA is small ⪡v vA b, the maximum growth rate γm of the

right-hand resonant ion/ion beam instability can be given as

γ
ω

≈ n

n2
,

(22)

m

ci

b

e

1/3⎛

⎝
⎜

⎞

⎠
⎟

where ωci is the ion cyclotron frequency, nb is the beam number

density, nc is the core number density and = +n n ne c b is the

electron or total ion number density (Gary, 1978, 1991; Gary et al.,

1984). According to Gary (1978) this approximation is matching

numerical results best in the range < <− −n n10 / 103
b c

1. In addition

the results in Gary et al. (1984) show that the wave number and

the growth rate of the fastest-growing mode also depend on the

beam speed relative to the Alfvén speed.

The simulation used to compare with this analytic result is one-

dimensional with fully periodic boundary conditions. The simula-

tion box has a length of 10 Earth radii (RE), 70 spatial cells and

20 km/s velocity space resolution, to match the parameters of the

simulations presented in Section 5. The simulation box is aligned

with the uniform magnetic field Bx of 5 nT. The orthogonal

magnetic field component Bz only has small random perturbations

(<1% amplitude). The ion distribution consists of a core Maxwel-

lian with = × −n 1.0 10 mc
6 3 number density, 1.0�105 K tempera-

ture and 500 km/s bulk velocity along the magnetic field as well as

a beamwith 1.0�105 K temperature and 500 km/s bulk velocity in

the opposite direction. The beam density is varied between

5.0�102 m�3 and 2.0�104 m�3. We have =v 41 km/sth ,

=v 109 km/sA and =v 1000 km/sb , thus we are in the regime of

Eq. (22) ⪡ ⪡v v v v( , )th b A b .

In the simulation, the fastest-growing mode has the wave

number m¼5, that is a wavelength of 2 RE, and a period close to

30 s (or a frequency of ω ω= 0.44m ci). In Fig. 4 we show the analytic

result from Eq. (22) for the growth rate of the ion/ion right-hand

resonant beam instability together with the Vlasiator simulation

results. It is obvious that the growth rates are not as high as the

analytic maximum rate. This arises for one part from the fact that

the wave length is constrained to be an integer fraction of the box

size. Additionally, Eq. (22) is derived under the assumption that

γ ω≈
m m, which is not a very accurate approximation in the present

case. However the dependency of the growth rate on the beam-to-

total number density ratio is reproduced quite accurately. The

comparison with the top right and bottom left panels in Fig. 1 of

Gary et al. (1984), which are the two closest to the case simulated

here, shows that their growth rates in numerical computations

based on linear Vlasov theory are lower than the analytic result

too and close to our results.

5. Global magnetospheric simulations

The global magnetospheric simulation is set up to cover the

region of near-Earth space from the inner boundary (defined at 6

RE radial distance) to the solar wind thus covering the dayside part

of the Earth's magnetosphere, the magnetosheath, the bow shock

and the foreshock region. The Geocentric Solar Ecliptic (GSE)

coordinate system is used with its x-axis pointing from the Earth

towards the Sun, its y-axis in the ecliptic plane pointing towards

dusk and its z-axis perpendicular to the ecliptic plane. Table 1

specifies the parameters for the three different simulations

Fig. 4. Growth rate of the ion/ion right-hand resonant beam instability. The

analytic solution corresponds to Equation (22), the simulation results correspond

to the parameters presented in Section 4.
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presented in this section. The simulation box is shifted in each

simulation to capture the ion foreshock region. The spatial

resolution of the simulations is 0.13 RE, while the velocity space

has a resolution of 20 km/s, and its range in all three velocity

dimensions is from �2000 km/s to 2000 km/s. The spatial resolu-

tion was limited by the computational demands of the approach,

and it is coarser than the ion skin depth and the ion gyroradius.

The Earth's magnetic dipole is directed along the z-axis, and has a

strength of 8.0�1022 Am2. The simulations are set up with

constant typical solar wind conditions given in Table 1. In the

three simulations the IMF is pointing at 0°, 30°, and 45° angle with

respect to the x-axis. To initialize the simulation, the IMF compo-

nents are set over the entire simulation box (see Section 3.3).

Fig. 5 presents an overview of the 45° IMF orientation simula-

tion, representing a typical Parker spiral condition. The bow shock

has two distinct regions: the quasi-perpendicular shock region in

the dusk sector and the quasi-parallel shock region in the dawn

sector. The ion foreshock boundary is clearly seen as a line

separating the regions of quasi-parallel and quasi-perpendicular

Table 1

Three global magnetospheric simulations presented in this paper. The IMF angle is

with respect to the x-axis.

IMF Solar wind Simulation box

Angle | |B (nT) V (km/s) −n (cm )i
3 T (K)i x-axis (RE) y-axis (RE)

0° 5.0 700 2 �10 to 70 �40 to 40

30° 4.0 700 2 �10 to 70 �60 to 40

45° 5.0 500 1 �20 to 40 �67 to 52

Fig. 5. The ion foreshock simulated with Vlasiator in two spatial and three velocity dimensions for 45° IMF orientation. Top-left: number density (cm�3); top-right: magnetic

field magnitude (nT); bottom: the velocity distribution functions (s3 m�6) at the location of crosses. The velocity distribution is shown as a two-dimensional cut through the

(vx–vy) plane. The symmetry axis of the distribution function is along the magnetic field. The white dots refer to the position for which Fig. 8 is computed.
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bow shock. While the quasi-perpendicular bow shock is unable to

reflect particles into the solar wind, the quasi-parallel bow shock is

characterized by reflected populations of ions accelerated by the

shock and streaming back against the incoming solar wind. In the

simulation, this region is characterized by ion distributions known

as intermediate type distributions (Fuselier, 1995) with the in-

coming solar wind (Maxwellian distribution) combined with a

cap-shaped population of backstreaming ions. This type of ion

distributions is typically associated with quasi-monochromatic

foreshock waves routinely observed in the ion foreshock known

as 30 s waves (Le and Russell, 1994) believed to be generated by

the backstreaming shock-energized ion population via ion/ion

resonance interaction (Gary, 1991). Multi-spacecraft analysis using

Cluster satellites shows these waves to be compressional magne-

tosonic modes with periods close to 30 s and wavelengths of ∼ R1 E

propagating both parallel as well as obliquely with respect to the

background magnetic field with angles up to 30° (Russell, 1988;

Eastwood et al., 2004, 2005a).

Fig. 5 shows an example of an intermediate type ion distribu-

tion (point D), and a ring distribution (point B) at the foreshock

boundary. The backstreaming ion populations appear to be more

diffused deeper in the foreshock near the bowshock (point C),

which is generally consistent with observational statistics

(Fuselier, 1995). Associated wave structures are visible throughout

the dawn (quasi-parallel) region of the foreshock. The magne-

tosheath in this simulation is formed behind the bow shock and

consists of highly anisotropic shock-energized plasma. A typical

ion distribution from the magnetosheath (point A) is presented in

Fig. 5. It appears as a gyrotropic bi-Maxwellian with substantially

higher temperature in the direction transverse to the background

magnetic field. Such ion distributions are known to be subject to

the mirror mode instability as well as to the ion-cyclotron

instability (Southwood and Kivelson, 1993). Mirror mode struc-

tures with spatial scales of few ion inertial lengths are routinely

observed across the Earth's magnetosheath (Souček et al., 2008)

and characterized by an anti-correlation between plasma density

and total magnetic field. Magnetosheath structures seen in Fig. 5

demonstrate strong anti-correlation between total magnetic field

and density and can be interpreted as large scale mirror modes

(Pokhotelov et al., 2013). Smaller scale ion-cyclotron Alfvénic

waves also routinely observed in the magnetosheath do not

appear in this simulation, likely due to insufficient spatial

resolution.

Fig. 6 shows an overview of the two other global simulations

presented in this paper, the top row showing the radial and the

bottom row the 30° case. The left panels give the number density,

while the right panels show the magnetic field color-coded for the

simulation in question. The white lines refer to Fig. 7, while the

Fig. 6. The ion foreshock simulated with Vlasiator in two spatial and three velocity dimensions for 0° IMF orientation (top row) and 30° IMF orientation (bottom row). Left:

number density (cm�3); right: magnetic field magnitude (nT). The white dots refer to the position for which Fig. 8 is computed.
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dots refer to Fig. 8. For the radial case, the foreshock forms within

a large area surrounding the bow shock, extending from the sub-

solar point to the flanks. The wave structure within the foreshock

appears similarly compressional as in Fig. 5, and also exhibits a

structure along the direction perpendicular with respect of the

IMF. There are both parallel and oblique waves within the fore-

shock as also evident in observations (Russell, 1988; Eastwood

et al., 2004, 2005a). In the 30° case, on the other hand, the

foreshock forms in the dusk part of the flank, as expected from

the IMF direction and the waves are again compressional.

To investigate the wave properties in more detail, in Fig. 7 we

present the number density and magnetic field along a cut parallel

to the magnetic field within the foreshock in each of three

simulations. Fig. 7a, b refers to the radial case, 7c, d to the 30°

case, and 7e, f to the 45° case, respectively. Fig. 7 indicates that in

each simulation, the waves appear to be quasi-monochromatic

compressional oscillations. In the radial case, the wave magnitude

is about 10% of the background value for both the density and the

magnetic field, consistent with theoretical predictions for the fast

magnetosonic perturbations in the MHD limit (Le and Russell,

1994). The wavelength is about 1–2 RE. For the 30° case (Fig. 7c

and d), the wave magnitude in magnetic field is again about 10%

while the density perturbation is somewhat larger, about 15–20%,

reflecting possibly the small changes in the input solar wind

conditions (Table 1) compared to the radial case. The 30° case

exhibits also a larger wavelength, above 3 RE, than compared to

the radial case, and the number of waves along the cut through the

parallel direction is therefore smaller. The 45° case shows smaller

and larger amplitude waves depending on the location within the

foreshock, and the amplitudes are around 10%. The wavelength is

about 1–2 RE. Interestingly, the wave pattern close to the bow

shock is different in nature compared to the compressional waves

a

b

c

d

e

f

Fig. 7. The number density and magnetic field along a line parallel to the magnetic field (see Figs. 5 and 6). The panels (a) and (b) show results for the 0° IMF, (c) and (d) for

the 30° IMF, and (e) and (f) for the 45° IMF simulation.
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appearing around 15 RE distance from the bow shock surface. In all

three cases, the wave patters steepen towards the bow shock

surface.

To investigate the wave period, we present in Fig. 8 one-

dimensional data taken from a fixed position in space, plotted

against time of the simulation. Fig. 8a and b is for the radial case,

while Fig. 8c, d and e, f is for 30° and 45° cases, respectively, and

again number density and magnetic field are presented. Fig. 8

corroborates the compressional nature of the wave field, while

interesting deviations from this are also present (e.g., in the 30°

case around 980 s, where the density and the magnetic field are

uncorrelated). The periods of the waves range from around 20 s in

the radial case to about 30 s in the 30° case and slightly above 30 s

in the 45° case.

6. Conclusions and summary

In this paper we present a self-consistent hybrid-Vlasov simu-

lation code, Vlasiator, that has been designed for global magneto-

spheric simulations. It uses a second-order accurate finite volume

method to solve Vlasov's equation and supports full six-dimen-

sional cases (three spatial and three velocity coordinates). The

method uses the Strang splitting to separate propagation in

ordinary and velocity spaces, and is based on a three-dimensional

wave-propagation algorithm. The field solver is a second-order

accurate upwind constrained transport method, which is diver-

gence-conserving by construction.

Vlasiator is parallelized with MPI and OpenMP to scale to high-

end supercomputers in order to run the simulations on length

scales comparable to the Earth's magnetosphere. An important

a

b

c

d

e

f

Fig. 8. The number density and magnetic field for a fixed point in space as a function of time. The points in the three simulations are marked in Figs. 5 and 6 with a white dot.

The panels (a) and (b) show results for the 0° IMF, (c) and (d) for the 30° IMF, and (e) and (f) for the 45° IMF simulation.
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algorithmic improvement has been done to increase performance:

the distribution function is described with a sparse grid in velocity

space. Additionally the velocity space propagation is substepped,

as the strong magnetic fields close to Earth are limiting the

timesteps to very small values. These techniques improve the

performance of the simulation by two to three orders of

magnitude.

Overall, numerical modeling of Vlasov's equation with finite

volume methods looks very promising. The results presented here

as well as in Kempf et al. (2013) show that the simulation

reproduces known analytic solutions with good accuracy. The

comparison of the ion/ion right-hand resonant beam instability

growth rate in the cool beam regime in Vlasiator to analytical

results shows a good match. The absolute values are not matched

exactly because of the finite simulation box size and the approx-

imations leading to the analytic expression but the dependency of

the growth rate on the relative beam density is well-reproduced.

The values obtained also match well published numerical results.

In this paper we have included results from three 5-dimen-

sional magnetospheric simulations. The results here as well as in

Pokhotelov et al. (2013) show that Vlasiator is robust, and can be

used for global five-dimensional simulations (two in ordinary

space, three in velocity space). The results suggest that Vlasiator

is able to reproduce the key features of solar wind–magnetosphere

interactions such as the collisionless bow shock, the ion foreshock

and the magnetosheath. Characteristics of the backstreaming ion

populations and associated electromagnetic waves are in agree-

ment with the properties of ion velocity distribution functions and

compressional magnetosonic waves propagating both obliquely

and parallel with respect of the background magnetic field

typically observed in the Earth's ion foreshock region (Russell,

1988; Eastwood et al., 2004, 2005a). Our results show that the

foreshock waves have amplitudes around 10–20% with respect to

the background value, depending on the simulation in question.

Observational results also indicate that the foreshock waves can

appear with a variable amount of compression (see e.g. a review

Russell, 1988). The wavelengths vary from 1 RE to above 3 RE while

the periods vary from 20 s to above 30 s, indicating a good match

to observations (Eastwood et al., 2005a). Earlier hybrid simulations

of the ion foreshock dynamics (Omidi et al., 2005; Blanco-Cano

et al., 2006) reproduced similar quasi-monochromatic wave struc-

tures across the ion foreshock that, however, had mainly non-

compressive Alfvénic nature, in contrast to the results shown here.

Other types of wave structures known to exist in the ion foreshock,

such as steepened nonlinear shocklets (Le and Russell, 1994)

believed to be associated with gyrating ion distributions

(Fuselier, 1995; Meziane et al., 2001) have been simulated earlier

by Omidi et al. (2005) and Blanco-Cano et al. (2006) but do not

appear in our simulations, possibly due to the simulation box not

being large enough for the high-amplitude nonlinear structures to

evolve before the foreshock structures get advected by the solar

wind flow into the bow shock. The absence of shocklets can be also

attributed to the simplified ideal Ohm's law used here (e.g.,

absence of the Hall term and electron pressure gradient term). In

the magnetosheath region the simulations presented here as well

as in Pokhotelov et al. (2013) reproduce highly anisotropic bi-

Maxwellian distributions and associated mirror mode structures.

Such anisotropic distributions and large scale mirror mode struc-

tures are routinely observed deep in the magnetosheath (Souček

and Escoubet, 2011; Souček et al., 2008). Other instabilities that

are responsible for the generation of smaller scale ion cyclotron

waves observed in the magnetosheath are not resolved in the

current simulations due to insufficient spatial resolution.

The hybrid-Vlasov model is similar to a hybrid-PIC model, and

our global simulations demonstrate qualitative agreement with

global simulations of the collisionless bow shock with hybrid-PIC

codes. The most striking difference with respect to hybrid-PIC

simulations is that hybrid-Vlasov velocity distribution functions

appear as uniformly discretized functions similar to those seen in

experimental data in contrast to spiky distributions derived from

hybrid-PIC simulations. The more tenuous parts of phase space are

well resolved in this model. This also means that quantities

derived from the distribution function, such as density, also exhibit

no visible noise in real space. The drawback of the approach is that

it is computationally more demanding when run at comparable

spatial resolution. In a particle simulation one typically has only a

few hundreds of particles per spatial cell, while our simulations

have on average more than 105 velocity cells to properly resolve

the distribution function. Compared to fluid approaches (MHD)

the approach is computationally orders of magnitude more de-

manding, but on the other hand the Vlasiator can simulate kinetic

physics that cannot be reproduced with fluid models.

The current simulations represent the first use of a hybrid-

Vlasov scheme for global magnetospheric simulations and thus no

attempt was made to reach the ion gyroscales or the ion inertial

scales in ordinary space. This was mostly due to the computational

demands of the version of the code used for this work. These

simulations required a few million processor core hours. Such

attempts would also require implementation of a generalized

Ohm's law with Hall and electron pressure gradient terms of

appropriate accuracy to properly resolve the physics at these

scales. However we show that a number of well-known features

of the collisionless bow shock and the ion foreshock can be

simulated using the ideal Ohm's law and without resolving all

the kinetic scales. The velocity space resolution (20 km/s) was

selected to limit numerical diffusion, and to properly resolve

details in the magnetosheath distributions and the backstreaming

populations (Fig. 5). The resolution is insufficient for properly

resolving the initial solarwind, and numerical diffusion heats the

solar wind up to a temperature of 4.8�105 K at the nose of the

bowshock. With a higher initial temperature the solar wind would

also have been properly resolved throughout the system.

The aim for Vlasiator is to perform similar simulations at

resolutions comparable to ion inertial length scales, with im-

proved physical description of the system. The physical description

will be improved by adding further terms to Ohm's law as well as

by adding a time-varying solar wind to enable event simulations.

Ion inertial length scales are on the order of 200 km and this

implies a four- to five-fold increase in ordinary space resolution

compared to the simulations presented here. There are multiple

avenues for further increasing the performance of Vlasiator to

enable these simulations, and ion inertial scale simulations appear

feasible. Some options include (1) semi-Lagrangian solver for

propagating the distribution function (Zerroukat and Allen, 2012)

allowing longer time-steps and thus removing the need to substep

velocity space propagation, combined with higher order recon-

structions (White and Adcroft, 2008) to reduce the diffusivity of

the approach, (2) adaptive mesh refinement in all six dimensions

(Arslanbekov et al., 2013) which could enable fully six-dimen-

sional simulations with kinetic scales in selected regions of space,

(3) sub-cycling the propagation in regions of space close to Earth

and finally (4) continue to scale the code to even larger super-

computers. It can be noted that the fastest available machines at

the moment have a peak performance more than 200 times larger

than the resources used here, and the performance of these

machines continues to follow an exponential growth path.

The performance and the physical results prove that Vlasiator is

a viable platform for global magnetospheric physics, and even at

this early stage it promises key benefits in the form of noise-free

velocity distribution functions where even the tenuous regions are

well-defined.
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Abstract We present the ion distribution functions in the ion foreshock upstream of the terrestrial bow

shock obtained with Vlasiator, a new hybrid-Vlasov simulation geared toward large-scale simulations of the

Earth’s magnetosphere (http://vlasiator.fmi.fi). They are compared with the distribution functions measured

by the multispacecraft Time History of Events and Macroscale Interactions during Substorms (THEMIS)

mission. The known types of ion distributions in the foreshock are well reproduced by the hybrid-Vlasov

model. We show that Vlasiator reproduces the decrease of the backstreaming beam speed with increasing

distance from the foreshock edge, as well as the beam speed increase and density decrease with increasing

radial distance from the bow shock, which have been reported before and are visible in the THEMIS data

presented here. We also discuss the process by which wave-particle interactions cause intermediate

foreshock distributions to lose their gyrotropy. This paper demonstrates the strength of the hybrid-Vlasov

approach which lies in producing uniformly sampled ion distribution functions with good resolution

in velocity space, at every spatial grid point of the simulation and at any instant. The limitations of the

hybrid-Vlasov approach are also discussed.

1. Introduction

The supermagnetosonic solar wind flow impinging the Earth’s magnetic field creates the bow shock. At this

boundary, the plasma is compressed and heated while slowing down to submagnetosonic flow speeds. In

fluid theory no information can travel upstream of a shock, but kinetic processes can cause particles to be

reflected back off a collisionless shock and propagate upstream along the magnetic field lines. The upstream

region magnetically connected to the bow shock where reflected particle populations can interact with the

solar wind population is called the foreshock [e.g., Eastwood et al., 2005a].

The foreshock can be separated into two regions conditioned by the ability of reflected particles to escape

upstream from the bow shock or not. In the region where the angle �Bn between the interplanetarymagnetic

field (IMF) and the bow shock normal direction is too high, the reflected particles do not have enough energy

topropagateupstreamalong the IMF lines and they are immediately advectedback into the shockby the solar

wind. In this region the foreshock is restricted to the collisionless bow shock foot [e.g., Paschmann et al., 1982].

When �Bn is low enough, reflected ions with sufficient energy parallel to the IMF can propagate upstream

into the solar wind and generate waves and instabilities [e.g., Bavassano-Cattaneo et al., 1983; Sanderson

et al., 1983; Thomsen et al., 1985; Fuselier et al., 1987;Wilson et al., 2009, 2012]. In all but radial IMF conditions

the solarwindflowhas a component normal to themagnetic field line,which causes the edgeof the foreshock

to be deflected downstream toward the shock. This is much more pronounced for ions as they have a lower

parallel velocity than electrons, and thus, the electron foreshock edge is almost along the IMF whereas the

ion foreshock edge is bent toward the bow shock.

The instabilities triggered by the backstreaming ions have a finite growth time; therefore, there is a region at

the foreshock edge where backstreaming ions are present, but the instabilities have not yet grown to gen-

erate significant ultralow frequency (ULF) waves. The region where ULF waves are present is called the ULF

foreshock, and it is delimited in the upstream direction by the ULF foreshock boundary. A variety of ULF wave

modes can develop in the foreshock, including 1 Hz waves, 3 s waves, compressive sinusoidal waves with

periods of about 30 s, and steepened shocklets. See, for example, the review given by Le and Russell [1994].
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Early observations led to a categorization of backstreaming ions into reflected and diffusepopulations [Gosling

et al., 1978; Bonifazi et al., 1980], but quickly a third category, intermediatepopulations, was identified [Bonifazi

and Moreno, 1981]. The reflected ions, more commonly called field-aligned beams (FABs) in recent literature,

exhibit a narrow pitch angle distribution collimated along the magnetic field direction and streaming back

with respect to the solar wind. Diffuse ion distributions are characterized by a wide pitch angle distribution

and a broad energy distribution. Intermediate distributions are field aligned similarly to the FABs, but they

have a kidney-bean or crescent shape which is concave towards the solar wind core distribution, in a cut

plane including the mean backstreaming velocity and magnetic field vectors. Further types of ion distribu-

tions have also been observed. Gyrating ions have a narrow gyrotropic ring-shaped distribution centered on

the magnetic field direction, and gyrophase bunched distributions have a nonzero mean velocity component

orthogonal to the field direction. For a review of ion distribution types in the foreshock, see, for example,

Fuselier [1994].

Simulations of collisionless shocks have been performed for a long time to help interpret the observations

and to test theories. The dimensionality and complexity of collisionless shock simulations have increased in

pace with the available computing power. Early simulations were one dimensional in space and used hybrid

particle-in-cell (hybrid-PIC) algorithms [e.g., Leroy et al., 1982]. They soon moved to full particle simulations

[e.g., LembègeandDawson, 1987] and increased in dimensionality to 2-D hybrid- and full-PIC simulations [e.g.,

Lembège and Savoini, 1992; Savoini et al., 2010, 2013], gaining in complexity and detail of the physical descrip-

tion at large scales [e.g., Lin, 2003; Omidi et al., 2005; Blanco-Cano et al., 2006a] as well as for local kinetic

processes [e.g., Ofman and Gedalin, 2013a, 2013b] and even reaching three spatial dimensions for hybrid-PIC

simulations of the magnetosphere [e.g., Lin and Wang, 2005]. PIC-based methods suffer from the statistical

noise inherent to the random sampling of the particle distribution injected in the simulation and the low

number of particles that can feasibly be simulated. This statistical noise is practically unimportant when com-

puting global quantities or moments of the particle velocity distributions, but it becomes more prominent

when considering the velocity distributions themselves. Apart from spatial or temporal averaging, oneway to

alleviate this is to use algorithms based on Vlasov’s equation, which are, however, significantly more compu-

tationally intensive. As a consequence, hybrid-Vlasov models have been used for local foreshock simulations

in one spatial dimension [e.g., Eliasson and Shukla, 2007], but they have not been considered feasible in this

context in higher dimensions so far because of the lack of achievable resolution.

In this paper we present the ion distribution functions in the foreshock which have been simulated using

the hybrid-Vlasov model Vlasiator [Palmroth et al., 2013; Pokhotelov et al., 2013; Kempf et al., 2013; von Alfthan

et al., 2014] (see also http://vlasiator.fmi.fi). We use the simulation first presented by Pokhotelov et al. [2013],

where the model was used to simulate the Earth’s magnetosheath, bow shock, and foreshock in two spatial

and three velocity dimensions in the equatorial plane with a realistic strength of the magnetic dipole field.

The hybrid-Vlasov approach ensures a uniform sampling of the ion distribution function in all spatial and

velocity dimensions, as the full three-dimensional ion velocity distribution function is propagated in each real

space cell. This relieves from the statistical noise due to the low number of superparticles that can be injected

into hybrid- or full-PIC simulations, however, at a high computational cost. The unprecedented description

allows to draw a complete snapshot picture of the ion distribution types encountered in thewhole foreshock.

These results are compared to the ion distributions measured by the Time History of Events and Macroscale

Interactionsduring Substorms (THEMIS)multispacecraftmission [Angelopoulos, 2008], showing agoodmatch

of the simulationand theobserveddata, thus validating thenovel Vlasiator code. This simulationalso supports

the view drawn from observations by Meziane et al. [2001] that foreshock ULF waves are the consequence

of ion beam instabilities generated by backstreaming ion populations reflected by the shock and that the

gyrophase bunched ion distributions seen in regions with strong ULFwaves are the result of beamdisruption

by the waves.

The article is structured as follows: we introduce the simulation and themeasurements used in section 2, then

present themodeled gyrotropic and gyrophase bunched ion distributions in sections 3 and 4 before compar-

ing them to spacecraft data in section 5. A discussion of the results is given in section 6, including a discussion

of the limitations of the hybrid-Vlasov approach with respect to hybrid-PIC modeling, and conclusions are

drawn in section 7.
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2. Methods
2.1. Global Magnetospheric Hybrid-Vlasov Simulation

The hybrid-Vlasov simulation code Vlasiator [von Alfthan et al., 2014] uses a finite volume approach to

propagate the ion distribution function following Vlasov’s equation

�
�t
f (r, v, t) + v ⋅ ∇rf (r, v, t) + a ⋅ ∇vf (r, v, t) = 0, (1)

where r and v are the spatial and velocity coordinates, f (r, v, t) is the six-dimensional phase space density of

a particle species with massm and charge q, and a is the Lorentz force per unit mass

a = q

m
(E + v × B), (2)

where E is the electric field and B is the magnetic field. Vlasov’s equation is coupled to Maxwell’s equations in

which the displacement current in Ampère-Maxwell’s law (5) is neglected:

∇ × E = − �
�t
B, (3)

∇ ⋅ B = 0, and (4)

∇ × B = �0j, (5)

where �0 is the permeability of free space and j the total current density. The system is closedwith Ohm’s law,

which takes the ideal magnetohydrodynamic (MHD) form

E = −Vi × B, (6)

where the ion velocity Vi is obtained from moments of the ion distribution. This closure neglects electron

inertia. Note also that the electric field in equation (6) for the field propagation does not include the Hall term

j×B∕�q (�q: charge density). This imposes a restriction on the possiblewavemodes in themodel, as, for exam-

ple, the parallel-propagating low-frequencywavemodes donot split into the electron and ionwhistlermodes

[Kempf et al., 2013]. The implementation and use of further terms in Ohm’s law are planned in future simula-

tions with better spatial resolution (see the discussion in section 6). The electric field used in the Lorentz force

accelerating the ions includes the Hall term to ensure momentum conservation, thus making the algorithm

a proper Hall-less hybrid model [Karimabadi et al., 2004].

The simulation used in this work covers the region of near-Earth space from the inner boundary (at 6 Earth

radii (RE) radial distance from the origin) to the solar wind, thus covering the dayside and some of the night-

side magnetosphere, the magnetosheath, the bow shock, and the foreshock region. The Geocentric Solar

Ecliptic (GSE) coordinate system is used (XGSE axis pointing from the Earth toward the Sun, YGSE axis in the

ecliptic plane pointing toward dusk, and ZGSE axis perpendicular to the ecliptic plane). The simulation box is

shifted toward the Sun extending from −20 to 40 RE along XGSE and from −67 to 52 RE along YGSE. The grid

dimensions are 450 and 900 simulation cells along the XGSE and YGSE, respectively, thus making the spatial

resolution 0.13 RE . The velocity space has a resolution of 20 km/s, and its maximal extent in all three velocity

dimensions is from −2000 km/s to 2000 km/s. Due to a sparse representation in velocity space the distribu-

tion function is not propagated and saved in the whole velocity space: only the parts which are above a set

threshold (1.0 ⋅ 10−15 m−6 s3) are. This effectively means that the low-density high-energy tails of ion distribu-

tions are truncated, albeit at a level more than 6 orders of magnitude below the peak solar wind phase space

density. The coordinate system used in the plots of the simulated distribution functions (Figures 2 to 10) is

such that the velocity Z axis is parallel to the local magnetic field direction. The Earth’s magnetic dipole is

directed alongZGSE (no tilt) andhas a strengthof 8.0⋅1022 Am
2. The simulation is runwith constantMaxwellian

upstream solar wind conditions (VSW = 500 km∕s, nSW = 106 m−3, Ti = 105 K) and an IMF of 5 nT magnitude

pointing at an angle of 45◦ with respect to the XGSE axis (IMF By = −Bx = 3.5nT), which corresponds to an out-
ward Parker spiral condition. The simulation is initializedwith aMaxwellian background population of density

n0 = 105 m−3 and temperature Ti flowing at VSW, and the Earth’s dipole field as well as the IMF in the whole

simulation volume. The solar wind flows in with the density nSW from the upstream boundary (+XGSE) while
the initial n0 density background flushes through the simulation box and the other three outer boundaries
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Figure 1. Color code: ion number density (m−3) in the foreshock and magnetosheath regions of the simulation. Black
line: foreshock edge, upstream of which the ion distribution consists only of the solar wind Maxwellian distribution.
White plus signs and letters: location of the distribution function types presented in sections 3 and 4 and the
corresponding Figures 2 to 10. Coordinates: XGSE − YGSE (horizontal-vertical) plane, scaled in Earth radii (RE ).

are outflow boundaries. The inner boundary has perfect conductor conditions for the fields and maintains a

static Maxwellian ion distribution. We present in this study the overview and classification of ion distributions

obtained in the foreshock after a simulation time of 1000 s (≈ 76 solar wind ion gyroperiods). This simulation

took a fewmillion core hours to compute with an average of 24,000 cores on Hermit at the High Performance

Computing Center Stuttgart (HLRS), Stuttgart, Germany.

Figure 1 shows the foreshock region of the simulation. The color code gives the ion number density. The black

line delimits the ion foreshock; upstream of it the ion distribution consists only of the solar wind Maxwellian

distribution. In the region of the bow shock at values of YGSE larger than 10 RE , �Bn is so high that no ions can be
reflected far off the bow shock. The region where YGSE < 10 RE is pervaded with backstreaming ions reflected

by the bow shock, causing ion beam instabilities which generate compressive ULF waves, as showcased by

the color-coded number density. Thesewaves have periods of around 30 s andwavelengths of some 2 RE (not

shown). The foreshock waves are advected by the solar wind into the bow shock, making the shock surface

much less smooth and steady than in the quasi-perpendicular region. The region with ULF waves ends at the

ULF foreshock boundary in the upstream direction, where then begins a region of the foreshock where back-

streaming ions flow but no waves have been generated yet due to the finite growth rate of the instabilities.

That region ends at the ion foreshock edge marked by the black line. Downstream of the bow shock, marked

by a steep increase in density, the magnetosheath is well developed in the simulation, but it is not cov-

ered in this work. The white crosses and letters refer to the locations of the ion distributions presented in

sections 3 and 4.

2.2. THEMISMeasurements andMethods

We compare the simulation results with observations from the triaxial fluxgate magnetometer (FGM) [Auster

et al., 2008] and electrostatic analyzer (ESA) [McFadden et al., 2008] on the THEMIS spacecraft. The mag-

netometer provides vector measurements of the magnetic field with 3 s time resolution. ESA provides

three-dimensional ion distribution functions in the 5 eV to 25 keV range as rapidly as once every 3 s. We fit

bi-Maxwellians to the various observed FABs to estimate their densities, perpendicular/parallel temperatures,

and bulk velocities. This may not capture the full complexity of the ion distributions, but it has been found

sufficient to compare with the simulated ion distributions presented in this work.

We use three methods to identify intervals when the THEMIS spacecraft were located within the foreshock.

First, we calculate whether or not the observed interplanetary magnetic field orientation would connect an

observer at the spacecraft location to the bow shock, the location of which is determined from the model
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Figure 2. Simulated field-aligned beam (FAB) distribution, location A in Figure 1. (left) Three-dimensional isosurface plot
and (right) two-dimensional projected isocontour plot. Axes scaled in 1000 km/s, Z axis parallel to the local magnetic
field orientation.

of Jeřáb et al. [2005] for the prevailing solar wind conditions. Second, we interpret intense high-frequency

magnetic field and density perturbations as evidence for fast mode waves in the ion foreshock [Paschmann

et al., 1979; Hoppe and Russell, 1983]. Finally, we use observations of suprathermal diffuse and backstreaming

ions to identify the ion foreshock.

3. Gyrotropic Ion Distributions in the Simulation

In this and thenext sectionwepresent the iondistribution function types seen in thehybrid-Vlasov simulation

and illustrated in Figures 2 to 10. In all of these figures, on the left the phase space density isosurface at a value

of 1.0 ⋅ 10−15 m−6s3 is plotted in a coordinate systemwhere the magnetic field is parallel to the vertical/Z axis

of the velocity space. On the right, the distribution has been projected onto a Cartesian plane containing the

parallel/Z direction and isocontour lines ranging from 1.0 ⋅ 10−15 to 1.0 ⋅ 10−9 m−6s3 are shown. The locations

from which the example distributions were taken are shown in Figure 1 (labels A to I). We first focus here on

the various types of near-gyrotropic ion distributions reproduced in the global magnetospheric simulation.

3.1. FAB/Ring BeamDistributions

Field-aligned beam distributions are characterized by a pitch angle distribution well collimated along the

magnetic field direction. In the simulation they are present in a narrow region between the ULF foreshock

boundary and the ion foreshock edge, where the instability due to the backstreaming population has not

yet grown to generate ULF waves disrupting the gyrotropic distributions. An example of such a distribution

function from location A in Figure 1 is shown in Figure 2.

At the upstream edge of this region, that is at the very outer edge of the ion foreshock, the distributions

lack zero pitch angle ions and have a ring structure centered on the magnetic field direction, as shown in

Figure 3 with the distribution from location B. Given their location at the edge of the ion foreshock, these ring

Figure 3. Simulated ring beam distribution, location B in Figure 1. (left) Three-dimensional isosurface plot and
(right) two-dimensional projected isocontour plot. Axes scaled in 1000 km/s, Z axis parallel to the local magnetic
field orientation.
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Figure 4. Simulated diffuse distribution, location C in Figure 1. (left) Three-dimensional isosurface plot and
(right) two-dimensional projected isocontour plot. Axes scaled in 1000 km/s, Z axis parallel to the local magnetic
field orientation.

beamsoriginate in thequasi-perpendicular regionof thebowshock.AsdiscussedbyMöbiusetal. [2001]based

on observations with the Cluster spacecraft, strong ring beam distributions of specularly reflected ions are

observed in the quasi-perpendicular region. While these ions usually propagate downstream, a small fraction

can have sufficient energy to escape upstream and form the ring beams shown here.

3.2. Diffuse Distributions

Diffuse distributions can be recognized by their pitch angle distribution and their temperature. The pitch

angles cover more than 90◦, and sometimes the distribution even surrounds the solar wind core completely.

In addition to this, diffuse distributions are significantly wider and the energy falls off slower than for the core

distribution. This type of distribution exists in the simulation in regions deep in the foreshock (i.e., far from the

foreshock edge) within a few RE of the bow shock. Figure 4 shows a diffuse distribution from location C.

3.3. Intermediate Distributions

Between the two extremes of FAB and diffuse distributions one can identify a broad category of intermedi-

ate ion distributions. Although the transition is smooth, one can separate them from the distribution types

presented above. On the one hand, intermediate distributions are distinct fromFABs in that they have a curva-

ture concave toward the solar wind core distribution. These distributions have been called crescent- or kidney

bean-shaped [e.g., Thomsen et al., 1985; Kis et al., 2007] based on planar cuts or projections used in space-

craft and simulation data representations, but we prefer the term cap-shaped distributions, which obviously

matches the three-dimensional distributions we show here (example in Figure 5, location D in Figure 1). On

the other hand, intermediate distributions have only backstreaming ions (pitch angle< 90◦) unlike the diffuse

distributions and their energy distribution is narrower, criteria which allow to separate both types.

Figure 5. Simulated intermediate distribution, location D in Figure 1. (left) Three-dimensional isosurface plot and
(right) two-dimensional projected isocontour plot. Axes scaled in 1000 km/s, Z axis parallel to the local magnetic
field orientation.
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Figure 6. Simulated partial ring beam distribution, location E in Figure 1. (left) Three-dimensional isosurface plot and
(right) two-dimensional projected isocontour plot. Axes scaled in 1000 km/s, Z axis parallel to the local magnetic field
orientation.

4. Gyrophase Bunched Ion Distributions in the Simulation

All the distribution types presented so far have one common characteristic: they are very close to gyrotropic.

Whenever this rotational symmetry with respect to the magnetic field direction is broken, one can term the

distribution gyrophase bunched. We illustrate here some types of such distributions seen in the simulation.

4.1. Partial Ring BeamDistributions

At the upstream edge of the ring beam region is a narrow band with increasingly partial ring beam distribu-

tions until no beam remains in the solar wind. This is a purely geometrical effect due to the gyroradius of the

ions in the ring beam [e.g., Schwartz et al., 2000]. The transition layer at the edge of the ring beam region is

one gyrodiameter wide, and it can only be reached by ions in a fraction of the full 2� gyrophase range.

The width of the transition in the simulation is ∼3000 km (not shown), consistent with the gyrating speed

of the ring beams of ∼750 km/s (see Figure 3) yielding a gyroradius of ∼1500 km. The same geometrical

effect is the cause of the simultaneous observation of FAB and gyrophase bunched distributions at the

transition between a region of gyrophase bunched distributions and FABs [Meziane et al., 2004, especially

Figure 4 therein].

This is a fundamental difference with the disrupted distributions presented and discussed in sections 4.3 and

6.3, respectively, for which the loss of gyrotropy is due to ULF wave interaction. Figure 6 taken from location

E in Figure 1 shows a partial ring beam distribution.

4.2. Multiple Cap Distributions

In rare cases one can findmultiple cap distributions in some location (Figure 7, location F). Either each cap can

have the same symmetry axis or their rotational symmetry axes have different orientations. Such distributions

appear in the central and downstream parts of the foreshock, far from the foreshock edge, but they are not

restricted to a given region.

Figure 7. Simulated multiple cap distribution, location F in Figure 1. (left) Three-dimensional isosurface plot and
(right) two-dimensional projected isocontour plot. Axes scaled in 1000 km/s, Z axis parallel to the local magnetic
field orientation.
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Figure 8. Simulated lightly disturbed cap distribution, location G in Figure 1. (left) Three-dimensional isosurface plot
and (right) two-dimensional projected isocontour plot. Axes scaled in 1000 km/s, Z axis parallel to the local magnetic
field orientation.

4.3. Disrupted Cap Distributions

The interaction of the backstreaming ion population with the ULF waves in the foreshock leads to a loss

of gyrotropy of the intermediate or cap distributions. Such disrupted cap distributions are seen in the sim-

ulation only in regions where ULF waves are present. The disruptions have a wide range, from the cap

being off-centered with respect to the magnetic field direction to the formation of large gaps in gyrophase.

Figures 8 and 9 (locations G andH) show two such stages of disruption. A particularly striking type of distribu-

tions seen in the simulation we termed spiral or corkscrew distributions owing to their characteristic spiraling

shape around the magnetic field direction (Figure 10, location I). A discussion of the disruption of gyrotropic

distributions by the ULF waves is presented in section 6.3.

5. THEMIS Observations of Foreshock Ion Distributions

This section presents examples of ion distributions observed with THEMIS within the foreshock.

5.1. Distribution Functions Under Similar Upstream Conditions

To facilitate comparisons with the simulation results, we selected temporally separated events in which the

observed solar wind parameters resembled those used in the simulations. In particular, we selected distri-

butions observed when the IMF had a Parker spiral orientation, i.e., lay near the ecliptic plane and made an

angle of ∼45◦ with the XGSE axis. The projections of THEMIS locations onto the XGSE-YGSE plane are shown by

colored symbols in Figure 11. Solid lines define estimated ion foreshock edge locations for each distribution;

corresponding IMF orientations are plotted in dashed lines.

Table 1 lists the solar wind parameters for five THEMIS B and C events satisfying this condition. Figure 12

shows the corresponding ion distributions. Figure 12 (top panels) show 2-D contours of constant phase space

density, while Figure 12 (bottompanels) show cuts through the distribution functions along velocities parallel

and perpendicular to the ambient magnetic field direction.

Figure 9. Simulated strongly disturbed cap distribution, location H in Figure 1. (left) Three-dimensional isosurface plot
and (right) two-dimensional projected isocontour plot. Axes scaled in 1000 km/s, Z axis parallel to the local magnetic
field orientation.
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Figure 10. Simulated spiral distribution, location I in Figure 1. (left) Three-dimensional isosurface plot and (right)
two-dimensional projected isocontour plot. Axes scaled in 1000 km/s, Z axis parallel to the local magnetic field
orientation.

The high-density core of the distribution function situated near the origin represents the incident solar wind

population. Particle populations at higher velocities represent various categories of reflected ion populations.

The FABs presented in Figures 12a–12d arewell separated from the solarwind populations. Each of these FABs

exhibits a clear temperature anisotropy. The distribution seen in Figure 12e differs from the others in that it

was taken near the terminator deep within the ion foreshock.

A comparison of the predicted and observed ion velocity distributions shows many similar features. The dis-

tributions presented in Figure 12 can be directly compared to the simulated FAB, ring beam, and diffuse

distributions (Figures 2 to 4). The distributions 12b and 12d are intermediate, while the narrower 12a and 12c

are FABs. The distribution 12e ismore diffuse.We show the beamparallel drift velocity normalized to the solar

wind speed versus the distance of the spacecraft from the ion foreshock edge in Figure 13.

5.2. Case Study: Radial Evolution of Distribution Functions

Wealso present a case study of an event on 10 July 2007when all THEMIS spacecraft were in the ion foreshock

andmovingearthward. Theprojectionsof the spacecraft locations into theXGSE-YGSE planeare shown together

with an estimated ion foreshock edge and modeled bow shock locations in Figure 14. The IMF direction is

shown by dotted lines. Distribution functions taken in those locations from simultaneous measurements are

presented in Figure 15.

By fitting bi-Maxwellians to the observed FABs, we estimate their parameters. Since all five spacecraft are

at nearly the same distance from the ion foreshock edge, we present the dependence of beam density and
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Figure 11. Projections of THEMIS locations onto the XGSE-YGSE plane shown together with bow shock and
magnetopause modeled boundaries and estimated foreshock edges. Numbers 1–5 correspond to the row number in
Table 1.
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Table 1. Parameters of the THEMIS Events Selected to Correspond to the Simulated Solar Wind Conditionsa

Date and IMF Cone BXYZ |B| VX N Distance to

S/c Time Angle (nT) (nT) (km/s) (cm−3) Foreshock Edge (RE )

1 THB 6 September 2008 0148 43◦ [4.9; −3.5; 2.8] 7 −483 2 11.9

2 THC 6 September 2008 0200 46◦ [4; −4.1; −0.04] 6 −454 3 9

3 THB 6 September 2008 0201 45◦ [4.1; −4.1; 0.4] 6 −472 3 11.9

4 THC 8 September 2008 1429 41◦ [2.9; −2.5; −0.4] 4 −512 2 7.5

5 THC 31 October 2008 1903 47◦ [1.9; −1.3; 1.5] 3 −544 2 19.5

aTHB, THEMIS B; THC, THEMIS C.

Figure 12. (a–e) THEMIS ion velocity distributions for the locations in Figure 11. (top) The contour plots show contours of
constant phase space density (red is high). Colored arrows show the Sun direction (magenta) and solar wind flow (black).
B0 is the unit vector in the direction of the magnetic field. (bottom) Cuts of distribution functions along coordinate axes
with one-count level (green).
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Figure 13. Backstreaming beam parallel drift speed normalized to the solar wind speed for the distributions presented
in Figure 12. THB: red triangle; THC: green asterisk.

parallel drift velocity at each spacecraft normalized to the solar wind density and speed, respectively, at the

radial distance of the spacecraft in Figure 16.

We observe a decrease of the beam density associated with an increase in the beam parallel drift velocity.

Analysis of the distributions in Figure 15 reveals that this increase in the beam velocity is caused by the loss

of slower ions at larger distances from the bow shock, leading to a relatively greater portion of fast ions and

thus to an increase in the mean drift velocity.

6. Discussion
6.1. Beam Speed Versus Foreshock Edge Distance

Aspointedout by Pokhotelov etal. [2013] about this simulation, the foreshock iondistributions show theprop-

erty that the backstreaming velocity relative to the incoming solar wind velocity is highest at the upstream

foreshock edge and decreases gradually the deeper (i.e., farther away from the foreshock edge) one goes into

the foreshock, at the same time as the distributions seen change from ring beams/FABs to more diffuse dis-

tributions. Bonifazi and Moreno [1981] reported average ratios of beam to solar wind speed of 2.0, 1.75, and

1.18 for FABs, intermediate, and diffuse distributions, respectively, and more recently Meziane et al. [2004],

Eastwood et al. [2005b], and Kis et al. [2007] reported similar values from Cluster observations.
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Figure 14. Projections of THEMIS locations onto the XGSE-YGSE plane shown together with the bow shock modeled
boundary and the estimated foreshock edge.

KEMPF ET AL. FORESHOCK ION DISTRIBUTIONS 11



Journal of Geophysical Research: Space Physics 10.1002/2014JA020519

Figure 15. (a–e) THEMIS ion velocity distributions for the locations of Figure 14. Same format as in Figure 12.

In Figure 17b we show the ratio of the backstreaming population’s bulk speed to the solar wind speed in the

simulation’s foreshock region, alongwith the foreshock edge’s and the presented distributions’ locations. The

solar wind core population is considered to be all velocity space cells within a sphere encompassing the pop-

ulation in velocity space, while the beam population consists of all velocity space cells outside of that sphere.
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Figure 16. Radial dependence of beam parameters for the distributions of Figure 15: (a) beam density and (b) beam par-
allel drift velocity normalized to solar wind speed. THEMIS A (THA): black square; THB: red triangle; THC: green asterisk;
THD: light blue plus sign; THE: blue diamond.

The bulk speeds are then calculated as moments taken over each population separately. The solar wind and

beam speeds are taken in the simulation frame, which can be considered similar to a spacecraft frame as a

spacecraft velocity would be much smaller than the solar wind and beam speeds seen in the foreshock. In

Figure 13 we show the same speed ratio as a function of the distance to the foreshock edge obtained from

the THEMIS distributions at the locations of Figure 11.

It is obvious that indeed the fastest beam speeds occur close to the foreshock edge and that deeper in the

foreshock thebackstreaming ions are slower. This is related to the reflection efficiencyof thebowshock,which

depends on �Bn: at the foreshock edge �Bn is large while still enabling reflection, resulting in high reflected

beam speeds whereas deeper in the foreshock �Bn and the reflected beam speed both decrease. The relative

beam speed as a function of the foreshock edge distance obtained in the simulation corresponds well with

the observational results reported earlier and those presented here.

6.2. BeamDensity and Speed Versus Radial Distance

Another point of comparison we present here is the dependence of the ion beam density and speed on the

radial distance from the bow shock. The observational case study in section 5.2 shows that the beam density

relative to the solar wind core population density is decreasing by a factor of ∼10 while the distance from

the bow shock increases by a few RE . This is consistent with previous observations. For example, Bonifazi et al.

[1983] reported in a statistical study that the density of the diffuse ion population decreases by a factor of∼3

Figure 17. Color code: (a) ratio of the backstreaming beam density to the solar wind density and (b) ratio of the back-
streaming beam velocity to the solar wind velocity (simulation frame) in the foreshock region of the simulation. Same
format as in Figure 1. Note that the sheath region (ion density ni > 2 nSW) has been cut out with respect to that figure.
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within 3 RE , and more recently Kis et al. [2004] reported energy-dependent e-folding distances of the diffuse

ion density ranging from 0.5 RE at 11 keV to ∼3 RE at ∼30 keV, which is comparable to the scales observed in

Figure 16a. In Figure 17a we show the simulated ratio of the beam density to the core density. The beam and

core populations have been separated in the sameway as explained above for the speed ratio. The simulated

beam densities decrease similarly by a factor of ∼10 within a few RE from the bow shock while they do not

decrease as strongly any more further out radially in the foreshock.

The observed beam speed as a function of radial distance is shown in Figure 16b. A similar increase of beam

speed with radial distance is visible in the simulation (Figure 17b) in the region of FAB distributions close to

the foreshock edge (within∼10 RE), but it disappears deeper in the foreshock. Both thebeamdensity decrease

and beam velocity increase with increasing distance from the source have been observed in THEMIS data and

reported by Wilson et al. [2013] for FABs upstream of short large-amplitude magnetic structures (SLAMS) in

the foreshock. Although these FABs are from a different source, the processes leading to their formation are

very similar.

Our results demonstrate the good correspondence between the simulation and observations of the depen-

dence of the backstreaming beam density and to a lesser extent of the beam speed on the radial distance

from the bow shock.

6.3. Evolution of Backstreaming Populations in the Foreshock

The current work presents the types of ion distribution functions in the terrestrial foreshock as simulatedwith

the hybrid-Vlasov code Vlasiator and compares them to spacecraft observations. Although we do not aim to

explain the spatial and temporal evolution of the distributions nor to identify all formationmechanisms, some

leads for further studies can be identified.

Gurgiolo et al. [1983] proposed amechanism bywhich a part of the incoming solar wind distribution is specu-

larly reflected. It is gyrating and thus nongyrotropic initially, it propagates anddevelops into a spiral (or helical)

and multipeaked structure in phase space [Gurgiolo et al., 1983, Figures 2 and 3]. The similarity with spiral

distributions seen in our magnetospheric simulation led us to investigate whether this mechanism is a

possible source. We tried to reproduce Gurgiolo et al.’s mechanism in one-dimensional local simulations,

where a solar wind and a lower-density beam distribution (both isotropic and Maxwellian) counterstream. It

was not possible to obtain distributions similar to that proposed model, neither with field-aligned nor with

gyrating beams, even with perpendicular speeds of the same order as the core-to-beam drift speed.

We performed an additional local simulation to investigate themechanisms leading fromgyrotropic interme-

diate distributions to nongyrotropic ones. A Maxwellian core distribution and a Maxwellian backstreaming

beam with 1% of the core density, both with densities and temperatures similar to the ones obtained in the

global simulation, are propagated in a one-dimensional box with periodic boundary conditions.

The run is initialized with only the main longitudinal magnetic field component. The wave-generating beam

instability grows self-consistently. In order for the instability to grow in a shorter run time, random noise with

amaximum amplitude of 0.5%of the longitudinal magnetic field strength is included in the transversal direc-

tions at the initial state. A lower level of seed noise does not affect the result, only resulting in a longer growth

time of the instability to the same amplitude.

Figure 18 shows the result of this local simulation. Figure 18 (top left) shows the initial distribution function set

throughout the simulation box. Figure 18 (top right) shows the distribution function, and Figure 18 (bottom)

shows the transversal magnetic field components after ∼10 gyroperiods.

The initially isotropic beam distribution interacts with the growing wave. It loses its gyrotropy and becomes

spiral shaped. We also performed simulations with anisotropic bi-Maxwellian backstreaming beams mimick-

ing foreshock cap distributions, but it was found that the results are robust and do not deviate significantly

from the simpler case of an isotropic Maxwellian beam.

This local simulation leads to distributions similar to the gyrophase bunched ones seen in the ion foreshock of

the global magnetospheric simulation. Additionally, the local instability simulations presented by vonAlfthan

et al. [2014] show that the source of the compressive ULF waves seen in the foreshock of the simulation is

the ion/ion right-hand resonant beam instability. We therefore come to a conclusion similar to the one drawn

by Meziane et al. [2001] from the observation of gyrating ion distributions and ULF waves in the terrestrial

foreshock. The more likely scenario is

KEMPF ET AL. FORESHOCK ION DISTRIBUTIONS 14



Journal of Geophysical Research: Space Physics 10.1002/2014JA020519

-0.4

-0.2

 0

 0.2

 0.4

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

B
 (

n
T

)

Distance (RE)

By
Bz

Figure 18. Local simulation of the loss of gyrotropy of a backstreaming beam through wave interaction. (top)
Three-dimensional ion distribution function isosurface plots, axes scaled in 1000 km/s, Z axis parallel to the local mag-
netic field orientation. (left) Initial state and (right) state after ∼10 gyroperiods. (bottom) Transversal magnetic field
components after ∼10 gyroperiods.

1. The ULF waves are generated by the backstreaming ring beam/FAB distributions via the ion/ion right-hand

resonant beam instability with the solar wind core distribution;

2. The beam is disrupted by wave-particle interaction leading to the formation of increasingly strongly

gyrophase bunched distributions.

Itwill be the subject of futurework to identify andbetter characterize themechanisms at play in the foreshock,

using test or tracer particles within the hybrid-Vlasov simulation to track the origin of various distribution

function features.

6.4. Performance of the Hybrid-VlasovModel

It should be pointed out that the global magnetospheric simulation gives an idealized picture of the fore-

shock in several respects. The ideal MHD Ohm’s law closure of the hybrid-Vlasov model limits wave-particle

interactions so that less wave modes are present. For example, the low-frequency parallel-propagating MHD

Alfvén wave mode is not split into the electron and ion whistler modes [Kempf et al., 2013]. It is, however, not

a concern because the spatial resolution of the global magnetospheric simulation would not allow to resolve

the whistler modes.

The limited resolution in space and in velocity, dictated by the computational size of the problem, also limits

the phenomena that can be resolved. For instance, the full steepening of foreshock ULF waves into shocklets

or short large-amplitude magnetic structures (SLAMS) at quasi-parallel shocks seen in PIC simulations [e.g.,

Scholer et al., 2003; Tsubouchi and Lembège, 2004] is not reproduced in our simulation. The foreshock waves

do grow in amplitude toward the bow shock but not strongly enough to form shocklets or SLAMS. This is the

result of a lack of spatial resolution to resolve steep profiles down to ion scales and of too strong numerical

diffusion arising from the low resolution.

As explained in section 2, thedistribution function is not savedbelowa set phase spacedensity threshold. This

threshold is, however, more than 6 orders of magnitude below the solar wind core population’s peak phase

space density, an amplitude comparable to the range covered by the THEMIS observations presented (Figures

12 and 15 herein). As shown by vonAlfthan et al. [2014], the resulting departure from exactmass conservation

is kept at a reasonably low level. The present work shows that this does not impact adversely the features of

the ion foreshock velocity distributions either.
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In this run the smooth upstream conditions differ from the observed turbulent and dynamic solar wind con-

ditions: all fluctuations seen in the foreshock in the simulation (in Figure 1 as well as in Pokhotelov et al. [2013])

originate in the ion/ion beam instabilities due to the ions that are reflected at the bow shock and stream back

along the magnetic field. The absence of solar wind turbulence here facilitates the propagation of reflected

ion beamswith little perturbation until their disruption by the instability-generatedULFwaves. Thus, this sim-

ulation does not properly model the inherent statistical noise and turbulence level of real solar wind plasma.

In that sense, the velocity distribution functions are overly idealized in comparison to spacecraft data. The

good correspondence of the simulation and observations, however, indicates that kinetic physics at large spa-

tial and time scales is sufficient to interpret the features of the ion distributions and their evolution in the

foreshock depicted in this work.

To the extent possible, comparisons with ion distributions in hybrid- or full-PIC simulations of bow shocks

show agreement with the distribution types and locations in this work. For example, distribution b) in Figure

2 of Savoini et al. [2013] has a lower beam speed farther away from the foreshock edge than distribution a).

They can, respectively, be compared to the intermediate and FAB distributions (Figures 5 and 2 herein). The

latter even exhibits a ring structure similar to Figure 3 herein. The ion distributions in Figure 3 of Blanco-Cano

et al. [2006a] and distribution A in Figure 2 of Blanco-Cano et al. [2006b] also compare well with the same

FAB and intermediate distributions from Vlasiator. Distribution B in the latter could be compared to the dis-

rupted distributions (Figures 8 and 9 herein), distributions C and D are more difficult to associate. In Figure 2

ofWang et al. [2009] the distributions are rather perturbed, so that they can be associated with the strongly

disrupted distribution (Figure 9 herein). Distribution B also resembles a diffuse distribution (Figure 4 herein)

since it shows particles streaming ahead of the core population. Although the resolution is not fully sufficient,

distribution A shows features reminiscent of the spiral or multiple cap distributions (Figures 7 and 10 herein).

The novelty of the hybrid-Vlasov approach lies in the high-resolution ion velocity distributions obtained at

every spatial cell and at any instant in a snapshot fashion without the statistical noise inherent to hybrid-

or full-PIC simulations. This allows detailed studies of processes affecting the ion distributions as there is no

need for time integrations or integration volumes larger than one grid cell to obtain detailed ion distributions.

A downside of this method is that the origin of a particular part of a distribution function cannot be traced

directly unless analyzing carefully distributions at all places and times, which is impractical because of limited

disk storage capacities. Thedevelopmentplans for Vlasiator includeusing tracer particles in future simulations

to circumvent this inconvenience.

Themajor drawback of the hybrid-Vlasovmodel in comparison to hybrid-PIC is the computational size. Recent

large-scale simulations such as those presented by Karimabadi et al. [2014] are run with a few hundred par-

ticles per spatial cell (200 in that study), typically on a few hundred cores. On the other hand, the velocity

space distribution in each spatial cell in the magnetospheric simulation in this work consisted of an average

of approximately 200,000 velocity space cells and it used up to 24,000 cores.With these significant differences

in mind, it is clear that hybrid-PIC and hybrid-Vlasov simulations have respective strengths and weaknesses,

making them complementary tools for plasma physics research.

7. Conclusions

By demonstrating that the code reproduces well the types of ion distribution functions observed in the ter-

restrial ion foreshock, this work gives an observational validation of Vlasiator. Field-aligned beams and ring

beams are seen at the upstream edge of the foreshock, while deeper in the foreshock (i.e., farther away

from the foreshock edge), intermediate distributions dominate, which get eventually disrupted by the ULF

waves present to becomegyrophasebunched.Wefind that our simulation supports the scenario proposedby

Meziane et al. [2001], in which shock-reflected field-aligned beams generate ULF waves by a resonant ion/ion

beam instability, which in turn disrupt the beam or intermediate distributions and cause them to become

gyrophase bunched. Diffuse distributions are present close to the bow shock in the deep foreshock regions.

The decrease of the backstreaming beam speed with increasing distance to the foreshock edge, which is

related to the reflection efficiency of the bow shock decreasingwith decreasing �Bn, has been reported obser-
vationally before [Bonifazi andMoreno, 1981;Meziane et al., 2004; Eastwood et al., 2005b]. It is well reproduced

by Vlasiator and readily seen in the spacecraft data presented here. The decrease of the beam density and
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increase of the beam speedwith increasing radial distance from the bow shock also correspondwell between

the simulation and THEMIS observations.

The computational cost of hybrid-Vlasov simulations implies significant limitations, in terms of dimensionality

as well as the spatial and velocity resolutions. By nature of the model, the history of the distribution func-

tions cannot be followed as easily aswith particles either. Nevertheless, the simulated ion distributions shown

in this work are in good agreement with those produced by other codes and especially PIC algorithms [e.g.,

Blanco-Cano et al., 2006a; Savoini et al., 2013], which provides a verification of Vlasiator. Despite the large com-

puting requirements, it is clear that a major strength of the hybrid-Vlasov approach lies in the outstanding

quality of the ion distribution functions obtained.
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Abstract. We present a scenario resulting in time-dependent
behaviour of the bow shock and transient, local ion re-
flection under unchanging solar wind conditions. Dayside
magnetopause reconnection produces flux transfer events
driving fast-mode wave fronts in the magnetosheath. These
fronts push out the bow shock surface due to their in-
creased downstream pressure. The resulting bow shock de-
formations lead to a configuration favourable to localized
ion reflection and thus the formation of transient, travelling
foreshock-like field-aligned ion beams. This is identified in
two-dimensional global magnetospheric hybrid-Vlasov sim-
ulations of the Earth’s magnetosphere performed using the
Vlasiator model (http://vlasiator.fmi.fi). We also present ob-
servational data showing the occurrence of dayside recon-
nection and flux transfer events at the same time as Geo-
tail observations of transient foreshock-like field-aligned ion
beams. The spacecraft is located well upstream of the fore-
shock edge and the bow shock, during a steady southward
interplanetary magnetic field and in the absence of any so-
lar wind or interplanetary magnetic field perturbations. This
indicates the formation of such localized ion foreshocks.

Keywords. Interplanetary physics (planetary bow shocks)
– magnetospheric physics (magnetosheath; solar wind–
magnetosphere interactions)

1 Introduction

The super-Alfvénic solar wind impinging upon the geomag-
netic field is slowed down and diverted around the Earth by
the bow shock which forms upstream of our planet. Most of
the plasma is abruptly compressed and heated by the shock
while being transported downstream into the magnetosheath.
There, it flows along the magnetopause surface, which delim-
its the magnetosphere, that is, the magnetic cavity in which
the Earth is situated.

Fluid theories such as ideal magnetohydrodynamics imply
that no wave or matter can travel upstream from a shock.
However, it is well-known observationally and explained
by kinetic plasma theory that, given a high enough Mach
number and a small enough angle θB−n between the up-
stream magnetic field (B) and the shock normal direction
(n) (θB−n / 40–60◦, e.g. Greenstadt et al., 1980; Schwartz
et al., 1983), a fraction of the incoming ions is reflected by
the shock surface and streams back along the magnetic field
direction. The region where such a backstreaming ion pop-
ulation exists is called the ion foreshock. It is the stage for
a variety of plasma beam instabilities generating waves and
has been studied observationally as well as in simulations
for several decades (e.g. Bavassano-Cattaneo et al., 1983;
Sanderson et al., 1983; Thomsen et al., 1983; Fuselier et al.,
1987; Le and Russell, 1992; Eastwood et al., 2005b; Burgess
et al., 2012; Wilson et al., 2013). The value of θB−n allow-
ing the reflection of particles is dependent on several factors,
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among which most notably is the assumed reflection mecha-
nism, as the results of Greenstadt et al. (1980), for example,
show.

The bow shock under steady solar wind conditions is gen-
erally assumed to be a simple surface such as a paraboloid
with a dawn–dusk asymmetry primarily due to the Earth’s
orbital motion. This follows from fluid dynamical consid-
erations, numerical simulations as well as statistical stud-
ies of spacecraft observations. The inherently local nature of
spacecraft measurements compared to the spatial scale of the
bow shock, even in the case of spacecraft constellations such
as Cluster (Escoubet et al., 1997), Time History of Events
and Macroscale Interactions during Substorms (THEMIS;
Angelopoulos, 2008) or the Magnetospheric Multi-Scale
(MMS; Burch et al., 2016a) missions, does not allow us
to determine the global shape of the bow shock surface at
a given instant in time. Statistical studies are the method
of choice (e.g. Merka et al., 2005; Meziane et al., 2014).
Thus it is also usually assumed that under steady conditions,
the ion foreshock is located in the solar wind volume mag-
netically connected to the bow shock surface region where
θB−n/ 50◦. Depending on the orientation of the interplan-
etary magnetic field (IMF), this can be one or two compact
regions in space.

Another tenet of ideal magnetohydrodynamics is the con-
servation of magnetic field line topology, which is a good as-
sumption on large scales or in collisional plasma but breaks
down on smaller scales when strong magnetic field gradi-
ents are present. Through the kinetic process of magnetic re-
connection, antiparallel magnetic field lines rearrange their
topology while strongly accelerating inflowing plasma out
of the reconnection region (see, e.g., reviews by Zweibel
and Yamada, 2009, and Treumann and Baumjohann, 2013,
and references therein). A prime example of magnetic re-
connection in near-Earth space occurs at the magnetopause
in the subsolar region, when inflowing southward IMF re-
connects with the northward-oriented geomagnetic field lines
(e.g. Phan et al., 2000; Paschmann, 2008; Dunlop et al.,
2011). This phenomenon drives global magnetospheric dy-
namics as first proposed by Dungey (1961), and therefore it
is key to space weather studies (e.g. Cassak, 2016; Burch
et al., 2016b).

The topological reconfiguration of magnetic field lines at
the magnetopause can lead to the formation of well-delimited
structures called flux transfer events (FTEs). The classic pic-
ture of an FTE is that of a magnetic flux tube connected
both to the magnetosheath and the magnetosphere, but its
topology can be more complex. FTEs were first observed by
Russell and Elphic (1978, 1979) and Haerendel et al. (1978)
(who termed the process magnetic flux erosion) and subse-
quently much studied in space and ground observations as
well as simulations (e.g. Kawano and Russell, 1997; Wild
et al., 2001, 2003; McWilliams et al., 2004; Fear et al., 2009;
Eastwood et al., 2016; Hasegawa et al., 2016; Milan et al.,
2016). FTEs travel downstream along the magnetopause with

the magnetosheath plasma and are recognized by their signa-
ture in magnetic field measurements, such as the bipolar de-
flection of the component normal to their axis in the case of
a flux rope or magnetic island (e.g. Omidi and Sibeck, 2007;
Dorelli and Bhattacharjee, 2009; Sibeck and Omidi, 2012;
Eastwood et al., 2012). Their signatures also include pole-
ward moving auroral forms (PMAFs) and their equivalent
in radar observations named poleward moving radar auroral
forms (PMRAFs), which result from poleward ionospheric
flows. Oscillations can also be observed by ground magne-
tometers (e.g. Øieroset et al., 1996; Milan et al., 2000; Pang
et al., 2009). Although their role is crucial in the solar wind–
magnetosphere interaction, allowing plasma exchange along
the reconnected magnetic field lines, FTEs have not so far
been thought to be the direct cause of significant upstream
effects.

In this work, we propose a scenario by which dayside mag-
netopause reconnection generates FTEs, which in turn cause
steepening fast magnetosonic bow and stern waves to prop-
agate throughout the magnetosheath. The increased pressure
behind the steepened wave fronts causes the bow shock to
bulge outward in an area travelling along the bow shock sur-
face. The geometry at the edge of such a bulge can lead θB−n

to become smaller than∼ 50◦ in a well-delimited region, de-
tached from the “regular” foreshock, upstream of which a
beam of reflected ions generates a local, transient and travel-
ling foreshock. This chain of processes has first been identi-
fied in a two-dimensional polar-plane hybrid-Vlasov simula-
tion of steady southward IMF interacting with an Earth-like
dipolar magnetic field. The simulation was performed using
the Vlasiator model (http://vlasiator.fmi.fi). We also present
observational data supporting the scenario. Geotail space-
craft observations show the existence of short foreshock-like
ion beams during steady southward IMF, in a region well-
detached from both the bow shock and the regular ion fore-
shock region and in the absence of any IMF fluctuations, thus
excluding a momentary transit of the spacecraft through the
regular foreshock due to a change in IMF orientation. Simul-
taneously, the signatures of FTEs moving poleward are found
in ground magnetometer and SuperDARN (Super Dual Au-
roral Radar Network) radar data.

Section 2 describes the simulation and the observa-
tional methods. The scenario of magnetopause–bow-shock–
foreshock interaction is detailed in Sect. 3, while the ground
and spacecraft observations are presented in Sect. 4. The re-
sults are then discussed in Sect. 5 before the conclusions are
given in Sect. 6.

2 Methods

2.1 Hybrid-Vlasov simulation

The hybrid-Vlasov model Vlasiator has been developed with
the aim of producing global magnetospheric simulations
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of the Earth’s magnetosphere including kinetic physics be-
yond magnetohydrodynamics while avoiding the limitations
due to the statistical sampling inherent to particle-in-cell
approaches (von Alfthan et al., 2014). Vlasiator has been
used to study amongst other things the magnetosheath and
the foreshock in equatorial plane simulations of the terres-
trial magnetosphere (Pokhotelov et al., 2013; Kempf et al.,
2015; Palmroth et al., 2015; Hoilijoki et al., 2016). It solves
Vlasov’s equation to propagate the ion (proton) velocity dis-
tribution function in up to three spatial and three velocity di-
mensions. The equation system is closed via Ampère’s and
Faraday’s laws as well as a generalized Ohm’s law includ-
ing the Hall term (see von Alfthan et al., 2014, and Palmroth
et al., 2015, for more details).

The simulation used in this study is two-dimensional in
the polar x–z plane and three-dimensional in velocity space.
It covers both the dayside and the nightside magnetosphere.
The spatial coordinates are similar to the Geocentric Solar
Magnetospheric (GSM) coordinate system with the x axis
pointing from the Earth towards the Sun and the z axis or-
thogonal to the x axis and parallel to the geomagnetic dipole
field axis (no dipole tilt). We use a two-dimensional line
dipole centred at the origin and scaled to match the geomag-
netic dipole strength in the same way as is done by Daldorff
et al. (2014). The steady solar wind has a proton density of
1× 106 m−3, an inflow temperature of 0.5 MK and a veloc-
ity of −750 km s−1 purely along the x axis. The constant
and purely southward IMF has an intensity of 5 nT. The up-
stream boundary maintains a constant field and a Maxwellian
velocity distribution; the three other outer boundaries have
copy conditions ensuring proper outflow. The inner bound-
ary, which is set at a distance of 30 000 km (∼ 5 Earth radii,
RE) around the origin, enforces a static Maxwellian veloc-
ity distribution and perfect conductor field boundary condi-
tions. The out-of-plane direction is treated periodically. The
boundaries are located at 47RE from the origin in each di-
rection. Since this study concentrates on dayside phenomena,
the nightside is not shown in this work. The spatial resolution
is 300 km or 0.047RE or 1.3 solar wind ion inertial lengths
and the velocity space extends from−4000 to+4000 km s−1

in all three dimensions with a resolution of 30 km s−1 or 0.33
solar wind ion thermal speeds. The phase space density spar-
sity threshold is 10−15 m−6 s3 (see von Alfthan et al., 2014,
and Kempf et al., 2015, for details on the sparse phase space
strategy used in Vlasiator).

The simulation has been run for over 1850 s or 140 so-
lar wind proton gyroperiods, and it reaches a steady state on
the dayside after less than 900s or 70 gyroperiods. The bow
shock and the magnetopause form as expected and there is a
foreshock at high latitudes both in the Northern and Southern
hemispheres. The magnetosheath is pervaded by anisotropy-
driven waves, most notably mirror-mode waves as has been
demonstrated by Hoilijoki et al. (2016). Figure 1 shows an
overview of the simulation setup after 1150 s of simulated
time. The magnetopause–magnetosheath–bow-shock struc-

Figure 1. Colour code: plasma number density (protons m−3) after
1150s of simulation time. Contour lines: magnetic field lines. A
large magnetic island is prominent at (+6,−7)RE; another one is
in the southern cusp region and a series of smaller magnetic islands
is visible at the dayside magnetopause northward of the equator.

ture is clear, and a large magnetic island can be recognized
due to its high density at the position (+6,−7)RE. A smaller
magnetic island is in the southern polar cusp region, while a
series of even smaller islands is also visible along the day-
side magnetopause boundary northward of the equator. The
animation provided in the Supplement to this work shows
the time evolution of the ion number density and the parallel
temperature for the same spatial extents as Fig. 1 and with
the same colour scales as Figs. 1 and 5a.

2.2 Spacecraft and ground measurements

We first use solar wind densities, velocities and the IMF
one-minute averaged data from NASA/GSFC’s OMNI data
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set accessed through CDAweb (Coordinated Data Analysis
Web) to identify suitable intervals of stable solar wind and
steady southward IMF conditions.

We also use in situ spacecraft measurements from Geotail
in this study. The ion velocity distribution measurements are
taken from the Low Energy Particle instrument (LEP; Mukai
et al., 1994). During the event presented in Sect. 4.3, LEP
was in the EA (energy-per-charge analyser) mode, which is
not well-suited to properly measure the cold core solar wind
ion population but does not impact the quality of suprather-
mal ion measurements. Editor-B data are available for that
event, meaning that only two-dimensional velocity distri-
butions are available. These projected distributions are pro-
duced using data from all three-dimensional channels (LEP
instrument team, personal communication, 26 August 2016).
They are provided in Geocentric Solar Ecliptic (GSE) co-
ordinates (xGSE-axis pointing from the Earth towards the
Sun, yGSE-axis in the ecliptic plane pointing towards dusk
and zGSE-axis perpendicular to the ecliptic plane). Magnetic
field measurements are from the Magnetic Field Measure-
ment fluxgate magnetometers (MGF; Kokubun et al., 1994).

The following measurements from the Wind spacecraft are
used: solar wind data from its Solar Wind Experiment (SWE;
Ogilvie et al., 1995), IMF data from its Magnetic Fields
Investigation (MFI; Lepping et al., 1995), moments from
its 3-D Plasma and Energetic Particle Analyzer (3-DP; Lin
et al., 1995) as well as densities retrieved from the electron
plasma frequency measured by the radio and plasma wave
instrument (WAVES; Bougeret et al., 1995). The following
datasets from the Advanced Composition Explorer (ACE)
spacecraft are used: IMF measurements from the Magnetic
Fields Experiment (MAG; Smith et al., 1998) and ion mo-
ments from the Solar Wind Electron Proton Alpha Monitor
(SWEPAM; McComas et al., 1998).

Ground-based ionospheric backscatter data from Super-
DARN (Greenwald et al., 1995) as well as ground magne-
tometer data from the International Monitor for Auroral Ge-
omagnetic Effects (IMAGE, http://space.fmi.fi/image, Tan-
skanen, 2009) are used. Additionally, we use the electrojet
activity auroral electrojet (AE) indices provided by the Uni-
versity of Kyoto through the World Data Center for Geomag-
netism (Davis and Sugiura, 1966).

3 Magnetopause–bow-shock–foreshock interaction
scenario

The scenario proposed in this work has been identified in the
simulation presented in Sect. 2.1. We describe the scenario
here in Sect. 3 in a narrative fashion and present the corre-
sponding observations in Sect. 4. Limitations are discussed
in Sect. 5.
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Figure 2. (a) Close-up view of the large magnetic island from Fig. 1
travelling tailward along the magnetopause. Colour code: plasma
number density, protons m−3. Contour lines: magnetic field lines.
Arrows: rotated coordinate system (N,Y,T ) with N normal to the
magnetopause and T parallel to it. (b) Magnetic field evolution at
a virtual spacecraft located at the white cross in panel (a), in sim-
ulation (GSM) and (c) rotated coordinates. The grey vertical bar
indicates the time of panel (a) and Fig. 1. The characteristic bipo-
lar signature of the passing magnetic island is obvious in the BN
component.

3.1 Magnetopause reconnection

Under steady southward IMF, magnetic reconnection occurs
typically along a line at the equator on the magnetopause
(e.g. Trattner et al., 2007; Dunlop et al., 2011; Hoilijoki et al.,
2014). In the present simulation, the position of the X-line is
not stable in time and multiple reconnection sites can coex-
ist at any given time on the magnetopause. Reconnected field
lines form magnetic islands in the exhaust regions of recon-
nection sites, which grow and travel downstream (poleward)
along the magnetopause. This continuously ongoing process
is prominent in the animation provided in the Supplement.
The magnetic islands can be seen as the two-dimensional
equivalents of FTEs, that is, cuts through an out-of-plane
flux rope. A more detailed analysis of the propagation of the
magnetic islands and the location and intensity of magnetic
reconnection is the subject of a separate study.

Figure 2 shows such a magnetic island and time series
of the magnetic field components seen at a virtual space-
craft over which the magnetic island flows. The magnetic
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Figure 3. (a) Example of bow (black dashed) and stern (white dash–dotted) fast wave fronts driven by a magnetic island (density peak at
(2,−9)RE; colour code: plasma number density; protons m−3; simulation time 1340 s). The bow wave accelerates particles ahead of it, as
can be seen in the (b) two-dimensional projected isocontour and (c) three-dimensional isocontour plots of the ion velocity distribution (phase
space density in s3 m−6; 3-D isocontour at 1× 10−15 s3 m−6) taken at the location of the white cross. The core population with very low
drift velocity (blue, pink and grey isocontours, centre and top right part of the 3-D isocontour) is preceded by an accelerated population in
the −Vx and −Vz direction. The white arrow shows the location of the profiles shown in Fig. 4.

field components are shown both in the simulation coordi-
nates and in a coordinate system (N,Y,T ) rotated by 150◦ in
the plane of the simulation so that N points in the direction
normal to the magnetopause and T points along the magne-
topause. The strong bipolar fluctuation in the BN component
is characteristic of the passage of a magnetic island.

3.2 Magnetosheath waves and bow shock perturbations

Figure 3a shows a magnetic island in the southern cusp re-
gion. The increased dynamic pressure of the magnetic is-
lands with respect to the surrounding magnetosheath plasma
drives bow waves ahead of the islands. These fast magne-
tosonic waves propagate throughout the magnetosheath and
steepen to almost form fast forward shocks. In some cases,
strong magnetic islands can also be followed by a fast re-
verse wave front, but these stern waves are less steep than
the bow wave fronts. Both the bow and stern fast mode waves
are visible in Fig. 3a. The profiles of plasma density, velocity
and temperature perpendicular to the magnetic field as well
as the magnetic field intensity show clearly the steep corre-
lated increase corresponding to the fast forward wave front in
Fig. 4a–d. The forward wave fronts are steep enough to re-
flect ions much in the way a shock can accelerate ions to gen-
erate upstream foreshock populations. Figure 3b and c shows
the two- and three-dimensional velocity distribution function
isocontours at the location of the white cross in Fig. 3a. The
accelerated ions are clearly visible ahead of the core popu-
lation in the −Vx and −Vz direction. The structure is also
readily visible in the profile of the temperature parallel to the
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Figure 4. Cut across the bow wave front along the white arrow in
Fig. 3 showing (a) the plasma density and (b) velocity, (c) the tem-
perature parallel and perpendicular to the magnetic field, and (d) the
magnetic field intensity. The correlated jump in all these parameters
at the abscissa 2RE characterizes the steep fast forward wave front.
Note the fast wave signature in the perpendicular temperature while
the parallel temperature is much more sensitive to the particle beam
accelerated ahead of the wave front.
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Figure 5. (a) Colour code: temperature (K) parallel to the magnetic field in a region presenting a local foreshock at 1548.5s simulation
time. This variable is sensitive to the presence of an ion beam, hence the choice to bring out the local foreshock. The continuous white
isocontour curve shows where the ion density is 2× 106 m−3 (twice the solar wind density), thus indicating the bow shock location. The
dashed white curve would show the approximate position of the bow shock were it not for the increased pressure due to a fast wave front
in the magnetosheath. The continuous and dashed segments indicate the normal direction for each of these curves. θB−n: 41◦ and 54◦;
thus the angle between both is 13◦. (b) Two-dimensional projected isocontour and (c) three-dimensional isocontour plots of the ion velocity
distribution (phase space density in s3 m−6; 3-D isocontour at 1× 10−15 s3 m−6) at the location of the white cross. The field-aligned beam
is prominent and directly comparable to Figs. 2 and 6 in the work by Kempf et al. (2015).

magnetic field in Fig. 4c; the steep increase in the parallel
temperature from 7 to 14 MK is the direct signature of the
presence of an accelerated ion population upstream of the
wave front in addition to the background magnetosheath ion
population. The increased parallel temperature ahead of the
wave fronts is visible too in the right panel of the animation
provided in the Supplement.

Downstream of the fast magnetosonic waves, the mag-
netosheath plasma has higher thermal, dynamic and mag-
netic pressure. The straightforward consequence of this phe-
nomenon is – considering the pressure balance when the
wave fronts reach the bow shock – that the bow shock is
pushed outwards against the solar wind, forming a local-
ized bulge corresponding to the region of enhanced magne-
tosheath pressure.

3.3 Local foreshocks

Figure 5a shows the detailed view of a small region of the
bow shock south of the subsolar point. When the angle be-
tween the shock normal and the upstream magnetic field
θB−n is lower than ∼ 50◦, incoming particles with suffi-
cient energy can be accelerated back upstream and form a
foreshock. Consequently, when the bow shock bulge caused
by the fast-wave-mediated pressure increase is pronounced

enough, the region of the bulge with θB−n/ 50◦ is the source
of a separate ion beam propagating upstream along the IMF
direction. This is of course only the case when the bulge has
not yet travelled into the region where the mean θB−n is al-
lowing ion reflection anyway. The spatial extent in the di-
rection parallel to the bow shock surface is limited to the
corresponding patch of favourable θB−n, and this localized
foreshock travels along with the driving magnetosheath wave
front until it merges with the regular foreshock further down-
stream. Due to its being a travelling and transient ion beam,
the expected beam instabilities do not have time to grow to
form ultra low-frequency (ULF) waves as in the regular fore-
shock (see, e.g., von Alfthan et al., 2014; Palmroth et al.,
2015). This means that the typical ULF wave signature char-
acteristic of the regular foreshock is absent from this struc-
ture.

Figure 5a shows an example of a localized foreshock
driven by a magnetosheath wave. The colour code in the
figure shows the temperature parallel to the magnetic field,
which is sensitive to the presence of a field-aligned ion
beam. The white contour curve is set at a plasma density of
2×106 m−3 (twice the solar wind density), which highlights
the position and shape of the bow shock. The dashed curve
would indicate the approximate location of the bow shock
were it not for the pressure increase in the magnetosheath
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Figure 6. Energy–time spectrogram of the simulated local fore-
shock crossing event at the location marked in Fig. 5. The grey
vertical bar indicates the time of Fig. 5. The velocity distribution
has been split into four sectors (sunward, southward, tailward and
northward in the simulation/polar plane, ± 45� from the +x, �z,
�x and +z direction respectively), two of which are plotted here.
(a) The dense tailward population at an energy of a few kiloelec-
tronvolt is the solar wind core. (b) The local foreshock beam forms
the population at a few tens of kiloelectronvolt in the southward sec-
tor and lasts almost 70s. Thus the expected observational signature
is that of a field-aligned beam with a duration of the order of 1 min.

after the passage of a fast forward wave front. The continu-
ous and dashed segments indicate the local direction normal
to the respective curve. Their �B�n is respectively 41� and
54�. The ion beam is generated by solar wind ions refl ected
at the foot of the bow shock bulge where �B�n is favourable.
Beyond �3RE(xGSM), the regular foreshock is also visible
upstream of the bow shock as a region of increased parallel
temperature. The fact that the density and parallel tempera-
ture increases due to the bow shock do not coincide, illus-
trates that the shock primarily heats plasma in the perpen-
dicular direction. Isotropization of the velocity distribution
happens further downstream in the magnetosheath.

The animation provided in the Supplement to this work
shows that such local foreshocks occur both north and south
of the ecliptic whenever favourable �B�n conditions are met
at the foot of a bow shock perturbation.

Figure 5b–c shows the ion velocity distribution function
corresponding to a field-aligned beam population, which is
similar to the distribution expected at the edge of the regular
foreshock upstream of the ULF foreshock boundary (Kempf
et al., 2015). The density of the beam is of the order of 1 % of
the infl owing density as in the regular foreshock (not shown).
Figure 6 shows an energy–time spectrogram for the tailward
and southward sectors of the velocity distribution. The tail-
ward part contains the cold solar wind core population, while
the southward sector, in the direction of the field-aligned
beam, indicates the typical signature expected when a local
foreshock crosses an upstream spacecraft. The timescale of a
local foreshock crossing is on the order of 1 min in the simu-
lation (almost 70s in Fig. 6), but this value can vary depend-
ing on the geometry of the event. Other factors affecting the
observational signatures are discussed in Sect. 5.

4 Spacecraft and ground observations

In Sect. 3 we present a scenario based on a global hybrid-
Vlasov simulation, in which dayside reconnection eventually
leads to the formation of local, transient foreshock-like struc-
tures upstream of the terrestrial bow shock and outside of
the region where the angle between the shock normal and
the IMF (�B�n) would normally be favourable for ion re-
fl ection. In this section, we present observational data from
an event on 30 August 2004 which supports the interpre-
tation of the simulation. While Geotail observed transient
field-aligned ion beams in the solar wind upstream of the
bow shock and the foreshock between 08:09 and 08:24 UT,
ground-based SuperDARN radar data and IMAGE magne-
tometer data indicate that dayside reconnection was active
and producing FTEs.

4.1 Upstream pristine solar wind conditions

The OMNI data set (from ACE) containing the upstream
magnetic field, ion velocity, ion density and ion tempera-
ture on 30 August 2004 is plotted in Fig. 7. It shows that
the IMF turned south at about 05:00 UT and Bz remained
strongly negative around �10nT for most of the day until
about 22:00 UT. The velocity and temperature of the solar
wind remained stable around 480–490 km s�1 and 104 K re-
spectively between 08:00 and 19:00 UT, while Bz slowly de-
creased from �8 to �11nT and the density slowly increased
from about 5 to 10cm�3.

4.2 Ground observations

The strong southward Bz component of the IMF is the
cause of strong magnetic reconnection at the dayside mag-
netopause, which in turn is known to produce numerous
FTEs (e.g. Kawano and Russell, 1997). Global activity in-
dices clearly indicate ongoing magnetic reconnection during
the event. The prolonged period of southward IMF triggered
a geomagnetic storm and the increased levels of magnetic
reconnection both on the dayside and the nightside are re-
fl ected in the AE indices, which started picking up between
05:00 and 06:00 UT and reached levels above AE = 500nT
after 08:00 UT.

Evidence for continuous FTE activity during the period
06:00 to 10:00 UT is observed by two SuperDARN radars
in the Southern Hemisphere, presented in Fig. 8. The Ker-
guelen and Syowa East radars were observing backscatter
from the pre-noon and noon region during this period. Fig-
ure 8a–c show the Kerguelen line-of-sight velocity data at
07:08, 07:32 and 08:22 UT. Three regions of backscatter are
labelled A to C. In the polar cap (A), 1 kms�1 fl ows away
from the radar (antisunwards) are observed, 700ms�1 fl ows
away from the radar (polewards) are seen entering the polar
cap near noon (B), and 700ms�1 fl ows towards the radar
(sunwards) are seen in the return fl ow region (C). As the
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Figure 7. Upstream solar wind observations between 04:00 and 22:00 UT on 30 August 2004, from the OMNI dataset with 1min time
resolution. (a) Magnetic field. (b) Velocity. (c) Ion number density. (d) Ion temperature. The grey box shows the interval of the event
presented in Fig. 11 and Sect. 4.3.

Earth rotates the look direction of the radar changes, but
these backscatter regions continue to be observed. Range–
time plots show that these backscatter regions are quasi-
periodically pulsed with periods near 10–15 min, the ex-
pected signature of pulsed reconnection (e.g. Provan et al.,
1998; Milan et al., 1999a, 2000; Wild et al., 2001). This is
seen as poleward-moving enhancements in the backscatter
power in the polar cap fl ows of region A in Fig. 8f. It is
also observed as pulses of backscatter and fl ow in the re-
turn fl ow region, as first discussed by Milan et al. (1999b),
that is, pulsed fl ows observed moving towards the Kergue-
len radar (i.e. sunwards) in the return fl ow backscatter re-
gion C (Fig. 8e) and pulsing moving away from the Syowa
East radar (also sunwards), in backscatter collocated with re-
gion C (Fig. 8i).

IMAGE magnetometers also observed signatures that
could be interpreted as FTE activity. Figure 9a shows the
ionospheric equivalent current density at 110 km altitude in
the Northern Hemisphere at 08:15 UT. The equivalent current
density was derived from 10s IMAGE magnetometer data

using spherical elementary current systems (SECS; Amm,
1997; Amm and Viljanen, 1999). Before applying the SECS
method, a baseline was subtracted from the variometer data
following van de Kamp (2013). The Jeq data are presented as
a function of Altitude Adjusted Corrected Geogmagnetic Co-
ordinates (AACGM; Shepherd, 2014) latitude and longitude,
which at the given UT correspond to 09:05–11:09 magnetic
local time (MLT). The plot has been rotated such that local
noon is at the top. The plot shows eastward and equatorward
equivalent current density vectors in the poleward part of the
IMAGE field of view. If gradients of the ionospheric conduc-
tances are vanishingly small or aligned with the electric field
in a large enough area, the equivalent current equals the Hall
current, which fl ows antiparallel to the ionospheric E × B

drift. According to Weygand et al. (2012), this is often a good
approximation. Thus, the equatorward equivalent current in
Fig. 9a may indicate poleward plasma fl ow entering the polar
cap.

Figure 9b shows a
∣∣Jeq

∣∣ keogram, that is, latitude profiles
of | Jeq | along 105� longitude presented as a function of time
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Figure 8. (a–c) Line-of-sight velocities (blue towards the radar, red away from the radar) from the Kerguelen SuperDARN radar in the
Southern Hemisphere, at 07:08, 07:32 and 08:22 UT. Grey regions are ground scatter. The data are presented in geomagnetic latitude and
magnetic local time coordinates, with dotted circles indicating geomagnetic latitudes of 60, 70 and 80◦ and dotted lines showing local time
meridians with local noon at the top. The outline of the radar field of view is shown by dashed lines, as is the field of view of the Syowa East
radar. Grey circles indicated the expected locations of the poleward and equatorward edges of the auroral oval. Three regions of backscatter
are indicated by the letters A, B and C. (d–i) Backscatter power and line-of-sight velocity from beams 0 and 13 of the Kerguelen radar and
beam 9 of the Syowa East radar. Regions of backscatter are also labelled A to C.

between 06:00 and 10:00 UT. The vertical lines indicate the
interval 08:09–08:24 UT during which Geotail observed the
ion beam signature. The occurrence of the

∣∣Jeq
∣∣ intensifica-

tions observed by IMAGE between 70 and 75◦ latitude be-
fore about 09:00 UT roughly agrees in time with the South-
ern Hemisphere FTE signatures observed by SuperDARN.

One of the intensifications occurred during the interval when
Geotail observed the ion beam signature.

4.3 Geotail observations

On 30 August 2004, Geotail was located on the dayside
of the Earth and upstream of the bow shock in the so-
lar wind. Between about 08:00 and 08:30 UT, Geotail was
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Figure 9. (a) Ionospheric equivalent current density at 110km alti-
tude (Jeq, arrows;

∣∣Jeq
∣∣, colour) in the Northern Hemisphere on 30

August 2004 at 08:15 UT, derived from 10s IMAGE magnetometer
(squares) data. The data are presented as a function of geomagnetic
(AACGM) latitude and longitude, which at the given time corre-
spond to 09:05–11:09 MLT. The plot has been rotated such that lo-
cal noon is at the top. (b)

∣∣Jeq
∣∣ keogram (latitude profiles along

105◦ longitude presented as a function of time between 06:00 and
10:00 UT). The vertical lines indicate the interval (08:09–08:24 UT)
during which Geotail observed the ion beam signature.

located at (17.6,23.0,−9.2)RE in GSM coordinates and
(17.6,24.5,3.6)RE in GSE coordinates. The location of
Geotail with respect to a model bow shock and ion foreshock
edge is shown in Fig. 10 (details of the bow shock and fore-
shock models are given in Sect. 5.1). Geotail/MGF observed
stable IMF with BGSM = (7,5,−9)nT, as shown in Fig. 11c.
No perturbations of the magnetic field are seen which would
modify its orientation, thus altering the magnetic connection
to the bow shock and the location of the foreshock. Small-
amplitude regular fluctuations are visible throughout, which

(a) (b)

Figure 10. (a) Plot showing the location of Geotail at 08:16:10 UT
on 30 August 2004 with respect to the bow shock following the
model by Merka et al. (2005) and the foreshock edge assuming that
the maximum θB−n for ion reflection is 60◦ and the reflected ions
have twice the solar wind speed (in the solar wind frame). (b) x–z
slice at the y coordinate of Geotail showing the spacecraft and the
bow shock location. (Plots in GSE coordinates.)

coincide with Geotail’s nominal spin rate of 20 rpm. They are
therefore likely a residual from the data calibration process.

The energy–time spectrograms from the Geotail/LEP in-
strument for the ions flying in the tailward and duskward di-
rections are shown in Fig. 11a and b. Only two-dimensional
projected ion velocity distributions in the ecliptic plane are
available from LEP for this event, hence the choice of sec-
tors. The tailward sector is dominated by the steady cold
and dense solar wind core population just below 1keV. Be-
tween about 08:09 and 08:24 UT (time delimited by the black
dotted lines in Fig. 11) the duskward sector exhibits several
occurrences of an ion population at energies of a few kilo-
electronvolt reminiscent of the signature of foreshock field-
aligned beam ions. The presence of a beam in this sector is
consistent with the significant By component of the IMF.

In contrast to regular foreshock field-aligned beams, this
beam is transient and appears several times after 08:10 UT
for one to a few minutes without correlation with changes
in the magnetic field direction, as can be seen by comparing
panels a–c in Fig. 11. Panel d shows the velocity and number
density of the ions from the OMNI data set with a 1min time
resolution. The velocity is stable and varies only by about
1 %, while the density fluctuates between 4.5 and 5.5cm−3

but without correlating with the transient beam event. We
choose the OMNI density and velocity data because the den-
sities reported by Geotail/LEP do not seem to be consistent.
This is likely due to the fact that LEP is in EA mode and
not in SW (solar wind analyser) mode, which would have
ensured a better measurement of the solar wind core popu-
lation. To ensure that the choice of the OMNI data is sensi-
ble, we compare shifted ACE and Wind magnetic field mea-
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Figure 11. Geotail/LEP energy–time spectrogram on 30 August 2004 between 07:48 and 08:47 UT, for the (a) tailward and (b) duskward
sectors (± 45� from the +x and +y direction respectively), extracted from the two-dimensional reduced velocity distribution in the GSE
ecliptic plane. The tailward sector shows the cold and dense solar wind core population just below 1keV. The duskward sector shows the
signature of a transient beam whose density peaks several times between 08:09 and 08:24 UT (time delimited by the black dotted lines).
(c) Geotail/MGF magnetic field in GSM coordinates. The magnetic field components and thus its orientation are stable during the event.
The short-period oscillations coincide with Geotail’s nominal spin rate of 20 rpm. (d) OMNI plasma number density and velocity. The grey
continuous bars indicate the time at which the velocity distribution shown in Fig. 12 is measured.

surements to the Geotail/MGF data to check that the OMNI
propagation algorithm is successful. We then check that the
densities and velocities from ACE and Wind are similar to
each other and to the OMNI dataset. Since this is the case
and the OMNI values are similarly stable to the ACE (which
was used to produce the OMNI dataset) and Wind data at a
higher time resolution, we conclude that the OMNI dataset is
reliable and sufficient here. LEP being in EA mode instead
of SW affects the quality of the measurement for the core
population but not for the beam, which is of prime interest
here.

Figure 12 shows the projected two-dimensional veloc-
ity distribution in the Vx–Vy GSE plane measured by the
Geotail/LEP between 08:16:10 and 08:16:22 UT (time de-
limited by the grey continuous bars in Fig. 11). The so-
lar wind core population is prominent in the lower left at
Vx ��400kms�1, while a typical field-aligned beam fl ows
back upstream along the magnetic field with positive Vx and
Vy components. The black arrow points in the average direc-
tion of the magnetic field in the x–y GSE plane during the
time interval, and the grey dots indicate all measurements
taken at an 8Hz cadence by the MGF instrument during the
same time. Their close grouping once more indicates the sta-
bility of the magnetic field direction.

It is worth noting that while exactly similar magnetic
field and solar wind conditions prevail in the 10 min pre-

ceding the event, no such field-aligned beam is seen before
08:10 UT. Additional ion beams are visible between 08:24
and 08:40 UT, but in their case the infl uence of magnetic
field perturbations observed simultaneously cannot be con-
clusively ruled out.

5 Discussion

In Sect. 4 we present Geotail observations of transient field-
aligned ion beams upstream of the Earth’s bow shock, while
ground-based SuperDARN radar data and IMAGE magne-
tometer data show that pulsed dayside reconnection produc-
ing FTEs was occurring at the same time. This matches the
observational signatures expected from the scenario drawn in
Sect. 3 based on a global magnetospheric simulation. In this
Sect. 5 we first investigate the position of Geotail with re-
spect to the regular foreshock, and we then discuss the more
general factors which might affect the interpretation of the
simulation and the measurements.

5.1 Position of Geotail relative to the regular foreshock

It is important to ascertain that Geotail is not too close to
the bow shock or to the foreshock. Indeed if it were in the
vicinity of either, it could observe for example shock foot
ion populations or the edge of field-aligned beam populations
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Beam

Core

Figure 12. Coloured dots: Two-dimensional reduced ion velocity
distribution in GSE coordinates measured by Geotail/LEP between
08:16:10 and 08:16:22 UT. The cold solar wind core fl ows with
Vx ��400kms�1, and the hotter field-aligned beam propagates
in the opposite direction. Black arrow: averaged magnetic field di-
rection in the x–y GSE plane measured by Geotail/MGF during the
interval. Grey dots: all individual Geotail/MGF measurements taken
at 8Hz cadence. The stability of the orientation of the magnetic field
is remarkable.

from the foreshock, which would look very similar to the
signature expected from a local foreshock.

We use the bow shock model from Merka et al. (2005)
with the OMNI solar wind parameters and the Geotail/MGF
observed magnetic field as inputs to determine the expected
bow shock shape and position. As a first approach we deter-
mine the position of the expected ion foreshock edge. We
trace the observed magnetic field to find the locus on the
bow shock surface where �B�n = 60�, and then we trace the
trajectories of ions refl ected from there with twice the so-
lar wind infl ow speed in the solar wind rest frame. This is
typical of field-aligned beams in the foreshock (e.g. Green-
stadt et al., 1980; Eastwood et al., 2005a; Kis et al., 2007).
From this modelling we determine that Geotail is 3–5RE
away from the foreshock edge and 9–10RE clear of the bow
shock during the event between 08:09 and 08:24 UT, whence
we could conclude that the spacecraft is well beyond reach
of bow shock foot or foreshock edge ions. The result of this
analysis is what is presented in Fig. 10.

However, as can readily be estimated from the observed
velocity distribution shown in Fig. 12, the beam is signifi-
cantly faster in the solar wind rest frame than twice the solar
wind infl ow velocity in the spacecraft frame. To get a bet-
ter estimate of whether Geotail is within reach of the regular
foreshock, we consider the trajectory of foreshock ions as-
suming adiabatic refl ection at the bow shock (Schwartz et al.,
1983; Liu et al., 2016). Adiabatic refl ection and not specular
refl ection is assumed because it yields higher beam speeds
and would thus be more likely to reach the spacecraft. In-
coming ions at velocity V impinge on the bow shock, which

has a local normal vector n, and are refl ected with a velocity

V r = �V + 2V HT, (1)

where

V HT =
n × (V × B)

n · B
(2)

is the de Hoffmann–Teller velocity of the bow shock
(De Hoffmann and Teller, 1950) and B is the IMF.

The validity of the assumption that ions are refl ected adia-
batically can be checked against the simulation. In Fig. 5a
we have �B�n = 41� at the foot of the local foreshock,
the solar wind velocity is �750kms�1 purely along the
x axis, and the IMF is constant and purely southward at
5nT. With those parameters, Eqs. (1) and (2) yield V sim

r =

(�750,0,1725(6)kms�1. This does indeed correspond to
the beam velocity as shown by the projected velocity distri-
bution function in Fig. 5b, confirming the assumed adiabatic
refl ection process.

To check whether Geotail observed adiabatically refl ected
ions from the regular foreshock, we trace the observed beam
from Geotail back to the bow shock along the IMF direc-
tion and invert Eq. (1) to reconstruct the solar wind veloc-
ity vector V�that would yield the measured beam velocity
with the assumed model bow shock. For the observed beam
(Fig. 12), the resulting solar wind velocity vector would have
the components V�= (�557,�602,317)kms�1 in GSE co-
ordinates, which is obviously not in accordance with the ob-
served solar wind (Figs. 7b and 11d). Having thus ascertained
that in these solar wind and IMF conditions the observed
beam cannot have been refl ected adiabatically from the mod-
elled bow shock, we perturb the model bow shock until the
adiabatically refl ected ion trajectory matches the observed
beam. When n is rotated towards B by an angle of 15�, the
adiabatically refl ected ion beam does indeed hit Geotail. This
value is remarkably close to the angle of 13�between the un-
perturbed and perturbed bow shock normals at the foot of the
local foreshock in the global simulation (Fig. 5a). It has to
be noted though that the beam velocities obtained with this
approach do not agree well with the observed ones (recon-
structed velocity 688kms�1, observed velocity 885kms�1

in the spacecraft frame), which means that the refl ection and
acceleration process and their geometry are probably more
complex than the simple adiabatic refl ection we assume here.

In summary this analysis demonstrates that Geotail is out
of reach for adiabatically refl ected field-aligned beam ions
originating from the unperturbed foreshock under the pre-
vailing solar wind and IMF conditions. By introducing an ad
hoc local perturbation of the bow shock normal of 15�, we
recover a beam direction consistent with the Geotail obser-
vations, which is similar to the bow shock perturbation seen
in the global simulation.
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5.2 Estimating the propagation direction of the
perturbation

Assuming that three-dimensional velocity distribution mea-
surements were available with a high cadence, it would be
possible to estimate the direction and speed of propaga-
tion of the field-aligned ion beam. Indeed at the edge of an
ion beam, non-gyrotropic partial ring or beam distributions
are observed in a region of one gyrodiameter width (e.g.
Schwartz et al., 2000; Kempf et al., 2015). Timing the tran-
sition from a partial to a full gyrotropic beam and back on
each side of the beam passage across the spacecraft yields an
approximate beam propagation speed since the gyrodiame-
ter of the ions is known. Furthermore, the gyrophase of the
ions at the very edge of the beam indicates on which side
of the spacecraft the beam is located, so that the incoming
and outgoing edges yield an estimate of the beam edge ori-
entation. However the lack of knowledge of the shape of the
beam complicates the matter to some extent. For the event
presented in Sect. 4, such estimates are not feasible with the
Geotail data available and the comparison of the event tim-
ings in the absence of a more detailed knowledge of the shape
of the bow shock perturbation and beam is of no use.

5.3 Simulation model limitations

The main limitation of the simulation presented is its two-
dimensionality. Due to this configuration, all inflowing mag-
netic flux is forced to reconnect at the magnetopause and can-
not flow past without reconnecting, unlike in three dimen-
sions. This forces magnetic reconnection to be strong and
occur all the time at the magnetopause. Further, this likely
means that the magnetic islands carry more momentum and
thus drive stronger bow and stern waves into the magne-
tosheath than they would in three dimensions.

Additionally, the steady solar wind conditions in the sim-
ulation preclude any upstream turbulence, yielding a smooth
bow shock and no more downstream turbulence than the
anisotropy-driven wave activity in the magnetosheath. There-
fore the magnetic-island-driven fast waves can propagate rel-
atively unhindered in the magnetosheath and the localized
field-aligned beam is also very prominent in the solar wind.
More realistic turbulent conditions would certainly yield less
conspicuous signatures.

Nevertheless, none of these limitations mean that the fully
three-dimensional and turbulent case could not exhibit tran-
sient local foreshocks, they might only be more difficult to
detect and distinguish from other sources of bow shock and
foreshock perturbations or ion beams.

5.4 Observational limitations

The long chain of phenomena from the magnetopause
through the magnetosheath and bow shock to the foreshock,
constituting the scenario presented in this work, makes it

daunting to observe the whole cascade of a single event in
space and time. This would require the fortuitous availability
of adequate measurement data firstly at the magnetopause to
identify FTEs, secondly in the magnetosheath to single out
steepened fast wave fronts, and thirdly upstream in a narrow
region close to but definitively more than one ion gyrora-
dius away form both the bow shock foot and the regular fore-
shock edge, all of this during a stable southward IMF stretch
and in the absence of any magnetic field fluctuations which
could either drive an ion beam or produce a regular fore-
shock crossing at the upstream spacecraft instead. No suit-
able spacecraft were located in the magnetosheath or at the
magnetopause during the Geotail event presented above so
that a direct observation of fast-mode magnetosheath wave
fronts is not possible in this case.

As shown in Sect. 4, transient foreshock-like ion beams
upstream but well-separated from both the bow shock and
the foreshock are observed. At the same time, ground-based
measurements confirm that dayside reconnection was oc-
curring and producing FTEs propagating towards the poles.
Without adequate magnetosheath observations, it is not pos-
sible to claim with certainty that the complete scenario
mapped in Sect. 3 holds. Yet the observations are consistent
with the first and the last part of the story, namely that while
dayside reconnection is active and pulsed, a localized change
in the bow shock shape causes localized ion reflection and
the formation of a transient, local foreshock. It cannot be ex-
cluded that sources other than FTE-driven fast waves exist,
but it is unlikely there would be distinctive features helping
to tell them apart purely based on the observation of the ion
beam without other measurements, from within the magne-
tosheath for example. Such putative sources could include
unpredicted magnetosheath waves interacting with the bow
shock or very localized solar wind transients not observed by
the upstream spacecraft. Finally, we note that the presented
scenario offers an alternative mechanism to explain transient
foreshock encounters that may have been interpreted previ-
ously as foreshock skimmings due to a change in the mag-
netic connection of the spacecraft to the bow shock.

6 Conclusions

Global hybrid-Vlasov simulations of the terrestrial magneto-
sphere in the polar plane under constant southward IMF show
that the two-dimensional equivalents of flux transfer events,
formed by dayside magnetopause reconnection, drive steep-
ening bow and stern fast-mode waves in the magnetosheath.
The increased pressure behind the wave fronts causes the
bow shock to bulge out, inducing favourable ion reflection
conditions which can result in the generation of local, tran-
sient foreshock-like field-aligned ion beams upstream of the
bow shock. The two-dimensionality of the simulation exac-
erbates the phenomena, but the scenario would be entirely
similar in three dimensions.

www.ann-geophys.net/34/943/2016/ Ann. Geophys., 34, 943–959, 2016



956 Y. Pfau-Kempf et al.: Transient local foreshocks

Ground-based and spacecraft observations support this
scenario. During an extended period of stable southward
IMF, we observe ionospheric signatures of dayside reconnec-
tion and flux transfer events in SuperDARN radar data and
IMAGE magnetometer data. Simultaneously, using Geotail
magnetic field and ion velocity distribution measurements we
observe the expected signature of an ion beam detached both
from the bow shock and the regular foreshock and not linked
to any upstream magnetic field fluctuation. Further observa-
tions especially in the magnetosheath are needed though to
confirm that indeed fast-mode waves lead to bow shock de-
formations generating localized, transient field-aligned ion
beams.

7 Data availability

The simulation dataset is available on request from the
Vlasiator team (http://vlasiator.fmi.fi, von Alfthan et al.,
2014). IMAGE magnetometer data are available from http:
//www.space.fmi.fi/image (Tanskanen, 2009). The AACGM
software is available from http://engineering.dartmouth.edu/
superdarn/aacgm.html (Shepherd, 2014). The SuperDARN
data can be accessed from the SuperDARN data portal hosted
by Virginia Tech at http://vt.superdarn.org (Greenwald et al.,
1995).

The Supplement related to this article is available online
at doi:10.5194/angeo-34-943-2016-supplement.
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