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1 Introduction

In the past decade, there has been a wealth of data on nuclear matter at extremely high

temperatures from the experimental heavy-ion program at the Relativistic Heavy Ion Col-

lider (RHIC) and the Large Hadron Collider (LHC) [1–7]. To the surprise of many, hy-

drodynamic models are tremendously successful in describing and often predicting the

experimental measurements [8–16]. However, one of the key requirements for the success

of these hydrodynamic models is that the matter created after a relativistic ion collision

equilibrates quickly, on a time-scale of thydro ∼ 1 − 2 fm/c [13, 17]. It has been a long-

standing theoretical challenge to understand the pre-equilibrium physics that leads to this

time scale.

As a consequence, the search for a quantitative understanding of equilibration in gauge

theories at high temperature has spawned a new subfield of physics. Two branches of this

subfield have emerged, based on very different approaches. On the one hand, there is an

effort to understand equilibration based on a weakly coupled framework. This branch was

pioneered by the early parametric picture of the so-called “Bottom-up” thermalization [18],

and since then there has been a continuing effort to elevate the weak-coupling picture from

parametric estimates to a quantitative prescription by exploiting the scale separations pro-

vided by the weak coupling, admitting different effective theory descriptions [19–28]. While

the early parametric estimates were somewhat in tension with early thermalization [29],

the modern quantitative calculations are consistent with the fast thermalization [30, 31].

The weak coupling approach can be rigorously set up for any gauge theory (such as N = 4

SYM and QCD [19, 32]) whenever the coupling is small, but eventually will start to break

down as the coupling is increased.
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On the other hand, equilibration at strong coupling has been studied using the gauge/

gravity duality or holography [33], in which it is remarkably straightforward to study real

time dynamics for certain gauge theories (such as N = 4 SYM, but not QCD). In hologra-

phy the dynamics of the equilibration of the gauge theory is mapped onto the relaxation of

a black hole in an anti-de-Sitter (AdS) space-time with one extra dimension (see [34] for a

recent review). Early studies near equilibrium suggested the black hole relaxes fast, with

the characteristic time scale being 1/T , with T the temperature of the formed plasma [35].

In a non-linear setting the relaxation was pioneered by Chesler and Yaffe, who studied

the relaxation of a gauge theory on a non-trivial curved background space-time [36, 37].

This was later extended to studies of a gauge theory in flat space-time, prepared with a

wide variety of initial states [38–41], which always led to hydrodynamics within t < 1.2/T .

Lastly, many studies have been performed in colliding settings, mimicking heavy-ion col-

lisions more closely both in the longitudinal and transverse directions [40, 42–46], even

allowing for direct comparison with experimental data [47, 48].

For QCD at energy scales relevant for heavy-ion collisions the coupling constant is

presumably not very small, nor very large. This makes it very interesting to compare the

weakly and strongly coupled approaches, as they may bracket what happens in real heavy-

ion collisions. There are several reasons why this comparison is not straightforward. In

particular, the initial condition of the pre-equilibrium evolution at weak coupling is usually

described in terms of classical fields or distribution functions whereas at strong coupling the

initial condition has to be formulated in terms of fields in AdS space-time. In fact, it is not

straightforward to characterise a far-from-equilibrium state in terms that are well defined

and applicable in the both frameworks, which makes an apples-to-apples comparison of the

evolution non-trivial.

In this paper, we consider a setup which avoids the question of setting non-equilibrium

initial conditions and allows a clean apples-to-apples comparison of the non-equilibrium

evolution. We consider a system that is initially in thermal equilibrium but is subsequently

pushed out of equilibrium by an external force. In practice we accomplish this by changing

the metric rapidly with a pulse of curved space-time from a homogeneous Minkowski space

to an expanding space described by Milne coordinates. Finally, we compute the expectation

value of the stress-energy tensor and the entropy density in both systems, such that we

can follow how the system approaches a hydrodynamical description.

We find that at all values of the ’t Hooft coupling λ the system reaches hydrodynamical

flow. For small couplings this is preceded by a period of free-streaming type evolution which

becomes shorter and shorter as the coupling is increased. As the coupling is increased the

evolution starts to resemble the strongly coupled evolution. Indeed, for λ =∞, the system

is described by hydrodynamics very quickly after the pulse has ended, but the departure

from equilibrium does leave an imprint in non-equilibrium entropy production.

In section 2, we explain our setup for driving gauge theories out of equilibrium, includ-

ing a discussion on the evolution of the stress-energy tensor within hydrodynamics. For

this setup, we describe state-of-the-art weak and strong coupling calculations in section 3

and 4, and report our findings in section 5. A summary and the conclusions that we draw

from our findings can be found in section 6.
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2 A simple set-up for studying gauge theory equilibration

In the following, we consider a gauge theory initially in global equilibrium at the tempera-

ture Ti. We then consider this gauge theory to be placed into a space-time with coordinates

xa = (t, x, y, L) and line element

ds2 = −dt2 + dx2 + dy2 + g(t)dL2 (2.1)

with g(t) a function that smoothly transitions from g(t→ −∞) = 1 to g(t→∞)→ t2 at

late times t. This choice of metric tensor implies that for t → −∞, the gauge theory is

in global equilibrium at rest within a flat space-time, as outlined above. By contrast, at

late times, the gauge theory experiences stretching of (flat!) space-time in the longitudinal

direction z. This late-time behavior corresponds to the familiar Bjorken flow [49], since it is

just a coordinate transformation of a gauge theory expanding in the longitudinal direction

in Minkowski space. In between, the gauge theory experiences a dynamic, space-time pulse

that is driving it (far) from its original equilibrium state.

To be concrete, in the following we choose a one-parameter family of metric functions

given by the choice

g(t) =
1

eα(tTi−1) + 1
+

t2T 2
i

e−α(tTi−1) + 1
, (2.2)

with α a free parameter controlling the rapidity of the change from early to late time

behavior. It should be reiterated that for the choice of g(t) in eq. (2.2), the space-time is

flat up to exponentially small terms for all t except the region |tTi − 1| ∝ 1
α , where the

space-time is curved.

It is possible to study the time-evolution of the stress-energy tensor components (such

as the energy density) using hydrodynamic theory. The stress-energy tensor in hydrody-

namic theory is given in terms of a gradient expansion. For a conformal theory, the most

general stress tensor complete up to second order gradients in arbitrary d-dimensional

space-times is given by [50]

Tµν = εuµuν + P∆µν + πµν ,

πµν = −ησµν + ητπ

[
〈Dσµν〉 +

1

d− 1
σµν (∇ · u)

]
+ κ

[
R〈µν〉 − (d− 2)uαR

α<µν>βuβ

]
+λ1σ

<µ
λσ

ν>λ + λ2σ
<µ
λΩν>λ + λ3Ω

<µ
λΩν>λ ≡ πµνBRSSS , (2.3)

where ε, P = ε
d−1 are the energy density and pressure for a conformal theory, uµ is the fluid

four-velocity (normalized to uµuµ = −1), ∆µν = gµν + uµuν with gµν the metric tensor in

the mostly plus sign convention and Rµν , Rαµνβ are the Ricci and Riemann tensors for this

spacetime. Furthermore, the definition

A〈µν〉 ≡ 1

2
∆µα∆νβ (Aαβ +Aβα)− 1

d− 1
∆µν∆αβAαβ ≡ 〈Aµν〉

has been used to define e.g. σµν = 2〈∇µuν〉, where ∇µ is the covariant derivative for the

metric gµν . Moreover D ≡ uµ∇µ, and Ωµν = 1
2∆µα∆νβ (∇αuβ −∇βuα). The coefficients

η, τπ, λ1, λ2, λ3, κ are the first and second-order transport coefficients (material constants
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depending on the specific gauge theory and specific value of the coupling considered). In

the limit where all of these transport coefficients are set to zero, one recovers ideal fluid

dynamics, for which πµν = 0. In the limit where only the second-order transport coefficients

τπ, κ, λ1, λ2, λ3 are set to zero one recovers

πµν = −ησµν ≡ πµνNS , (2.4)

which is the constitutive relation of the relativistic Navier-Stokes equation. We will refer

to the equations (2.4) and the expression for Tµν as Navier-Stokes (NS) theory, while the

full set of equations (2.3) will be referred to as BRSSS in the following.

It turns out that as they stand, both the NS equations (2.4) and the BRSSS equa-

tions (2.3) would be acausal, as can be easily seen by working out the group velocity from

the dispersion relations [51]. It has proven very useful for practical applications to con-

sider the resummed version of the BRSSS constitutive equations (see e.g. [13, 16]). In the

following, however, there are no issues with causality, and we can limit our discussion to

the case of the un-resummed version of the BRSSS equations.

Let us now consider the case of d = 4 in the following. For the line element (2.1),

with the initial condition of global equilibrium at temperature Ti, one finds that the fluid

dynamic solution maintains the initial condition of vanishing spatial flow velocity, so that

uµ = (1,0). This implies ε = −T tt , and effective transverse and longitudinal pressures of

P⊥ ≡ T xx = T yy = P (1 + 2H), PL ≡ TLL = P (1− 4H), respectively, with H ≡ −πL
L

ε+P . For

later convenience, it is useful to define the pressure anisotropy as

PL
P⊥

=
1− 4H(t)

1 + 2H(t)
. (2.5)

The covariant conservation of the stress-energy tensor uµ∇νTµν = 0 leads to

∂t ln s = − g
′(t)

2g(t)
(1−H(t)) , (2.6)

where s = ε+P
T = 4ε

3T is the equilibrium entropy density and T (t) is the temperature. It is

convenient to express dynamic quantities with respect to their initial (global equilibrium)

values,
s(t)

si
≡ T 3(t)

T 3
i

,
ε(t)

εi
≡ T 4(t)

T 4
i

, etc. (2.7)

For ideal hydrodynamics (πµν = 0 and thus H = 0), the conservation of energy can be

solved analytically in closed form for an arbitrary metric function g(t):

sideal(t)

si
= g−1/2(t) ,

εideal(t)

εi
= g−2/3(t) ,

PL
P⊥

∣∣∣∣
ideal

= 1 . (2.8)

Plots of the ideal hydrodynamic solution for the metric function (2.2) will be shown in

section 5. For further reference, it is useful to define the concept of the total equilibrium

entropy Seq in the system, defined as

Seq
Seq,i

≡
∫
d3x
√
−detgµνs(t)∫
d3xsi

= g1/2(t)
s(t)

si
, (2.9)
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which for ideal hydrodynamics trivially becomes
Seq,ideal(t)

Seq,i
= 1. This just reflects the fact

that no entropy is created in ideal (inviscid) hydrodynamics. Note that the equilibrium

entropy thus defined will only correspond to the total system entropy if the system is close

to equilibrium. Otherwise, non-equilibrium (viscous) corrections to the equilibrium entropy

cannot be neglected (see e.g. the discussion in ref. [53]).

Including viscous corrections, one finds for Navier-Stokes hydrodynamics

HNS(t) =
2

3

η

s

g′(t)

g(t)T (t)
, (2.10)

which has to be solved together with (2.6). Using the fact that g(t) really is a function of

t Ti only, the equations of motion for Navier-Stokes become

∂t ln
s

si
= − g

′

2g

(
1− 2η

3s

g′

gTi

(
s

si

)−1/3)
. (2.11)

Going beyond Navier-Stokes, for the BRSSS equations it will be useful to define the

common parametrizations

τπ =
Cτη

sT
, λ1 =

Cλη
2

sT
, κ =

Cκs

T
. (2.12)

2.1 Hydrodynamic late time limit

In the late time limit, when g(t) ∝ t2, the Navier-Stokes equations (2.11) can be solved as

a gradient expansion around the ideal hydrodynamic solution. Assuming a constant value

of η
s , one finds

s(t)

si

∣∣∣∣
NS,tTi�1

=
χ

tTi

(
1− 2η

s

1

(tTi)2/3χ1/3

)
,

PL
P⊥

∣∣∣∣
NS,tTi�1

= 1− 8η

s

1

(tTi)2/3χ1/3
. (2.13)

Unlike solutions to the full evolution equations (2.11), which assume that Navier-Stokes

hydrodynamics is accurate through the entire time-evolution, the late-time solution (2.13)

is a universal solution to the system evolution for all initial conditions, and as such includes

an unknown constant χ. Comparing the total equilibrium entropy resulting from (2.13) to

that from ideal hydrodynamics, one can interpret

χ =
Seq(t→∞)

Seq,i
(2.14)

as the total amount of entropy produced.

Similarly, one can also go beyond Navier-Stokes and solve the BRSSS equations of

motion using a gradient expansion. One finds

s(t)

si

∣∣∣∣
BRSSS,tTi�1

=
χ

tTi

(
1− 2η

s

1

(tTi)2/3χ1/3
+

2η2(2 + Cλ − Cτ )

3s2(tTi)4/3χ2/3

)
, (2.15)

where it should be noted that the constant Cκ does not enter the result because the space-

time is flat for g(t)→ t2 at late times. In a similar fashion one finds

PL
PT

∣∣∣∣
BRSSS,tTi�1

= 1− 8η

s

1

(tTi)2/3χ1/3
+

16η2(3 + Cλ − Cτ )

3s2(tTi)4/3χ2/3
. (2.16)
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3 Gauge theory dynamics from a weak coupling approach

In the non-interacting limit λ → 0, the system is described by non-interacting free-

streaming particles whose evolution is given by the collisionless transport equation for

the on-shell particle distribution f

pµ∂µf − Γiαβp
αpβ

∂f

∂pi
= 0, (3.1)

where the summation of i goes over the spatial coordinates x, y and L. The transport

equation with the initial condition and metric we have chosen, becomes

∂tf −
g′

g
pL

∂f

∂pL
= 0 . (3.2)

Eq. (3.2) can be solved analytically for arbitrary metric function g(t) using the method

of characteristics, and one obtains f = f(px, py, pLg(t)) (cf. ref. [54]). With an initially

thermal system with temperature Ti, a full solution to the free-streaming evolution of

bosons is thus given by

f =
1

exp

[√
(px)2+(py)2+g2(t) (pL)2

Ti

]
− 1

. (3.3)

The solution (3.3) can be brought into the form f =
∑∞

n=1 exp

[
−

n

√
p2

(
1+ξ(t)

(
pL

|p|

)2)
Ti

]
,

where

ξ(t) = g(t)− 1 (3.4)

is the anisotropy parameter defined in ref. [55]. This identification allows direct connection

to anisotropic plasma physics literature, and in particular leads to the expressions for the

energy density and pressure anisotropy [56]:

εFS(t)

εi
=

1

2

(
1

1 + ξ(t)
+

arctan
√
ξ(t)√

ξ(t)

)
,

PL(t)

P⊥(t)

∣∣∣∣
FS

= 2
(1 + ξ(t)) εFS(t)

εi
− 1

1− (1− ξ2(t)) εFS(t)
εi

, (3.5)

for a system of free-streaming (FS) particles experiencing arbitrary metric perturbations of

the form (2.1). In the late-time limit, these lead to the following expressions for equilibrium

entropy and pressure anisotropy

sFS,tTi�1(t)

si
=

(
π

4tTi

)4/3

,
PL(t)

P⊥(t)

∣∣∣∣
FS,tTi�1

=
2

(tTi)2
, (3.6)

which upon comparison with eqs. (2.13) imply that the system never reaches equilibrium.

Thus, free-streaming (non-interacting) evolution is the opposite extreme to ideal hydrody-

namic evolution, and one expects these two extreme cases to bound the system evolution

for any interaction strength λ ∈ (0,∞).

– 6 –
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For numerical purposes, it is useful to work with rescaled longitudinal momentum

pz =
√
g(t)pL such that f(t, px, py, pL) → f̂(t, px, py, pz) = f̂(t, px, py,

√
gpL). There is a

Jacobian

∂ f |pL
∂t

=
∂ f̂
∣∣∣
pL

∂t
=
∂ f̂
∣∣∣
pz

∂t
+
∂f

∂pz
pL∂

√
g(t)

∂t

associated with this transformation (cf. ref. [57]) which gives rise to the rescaled equation

∂tf̂ −
g′

2g
pz
∂f̂

∂pz
= 0 . (3.7)

(It is easy to check this new form by using the free-streaming solution (3.3), or simply

putting f̂ ∝ (px)2 + (py)2 + g(pz)2). Since it is of no importance, we denote f̂ → f in the

following even though it is a distribution evaluated at constant pz, not constant pL.

At small but finite coupling, most of the modes can still be described by a transport

equation, which due to collisions among particles will now be of the form (3.2), but with

a non-vanishing right-hand side. We will restrict our weak coupling simulations to SU(N)

gauge theory. Then assuming that the non-equilibrium distributions are not spin polarized,

the transport equation for the spin (and color) independent distribution function of gauge

bosons can be written in a form where the right hand side contains two effective collision

terms that contribute to leading order in λ [19], one describing elastic (2 ↔ 2), and the

other inelastic (1↔ 2) particle interactions:

∂tf −
g′

2g
pz
∂f

∂pz
= −C2↔2 − C1↔2

a . (3.8)

The collision operators read

C2↔2[f ](p) =
1

4|p|ν

∫
kp′k′

|M(p,k;p′,k′)|2(2π)4δ(4)(P +K − P ′ −K ′)

×
{
f(p)f(k)[1 + f(p′)][1 + f(k′)]− f(p′)f(k′)[1 + f(p)][1 + f(k)]

}
(3.9)

and

C1↔2[f ](p) =
(2π)3

2|p|2ν

∫ ∞
0

dp′dk′δ(|p| − p′ − q′)γ(p; p′p̂, k′p̂)

×
{
f(p)[1 + f(p′p̂)][1 + f(k′p̂)]− f(p′p̂)f(k′p̂)[1 + f(p)]

}
+

(2π)3

|p|2ν

∫ ∞
0

dp′dkδ(|p|+ k − p′)γ(p′p̂;p, kp̂)

×
{
f(p)f(kp̂)[1 + f(p′p̂)]− f(p′p̂)[1 + f(p)][1 + f(kp̂)]

}
, (3.10)

where ν = 2dA is the number of degrees of freedom. Here |M|2 and γ are effective ma-

trix elements for elastic scattering and collinear splitting, respectively. Both of them

have non-trivial structure arising from the soft and collinear divergences of the under-

lying processes which are regulated dynamically by in-medium physics. The soft t and

u channel divergences present in vacuum are regulated by physics of screening at scale

– 7 –
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m2 = 2λ
∫ d3p

(2π)3
f(p)/|p|, whereas the collinear singularity in splitting term gets regu-

lated through physics of Landau-Pomeranchuk-Migdal suppression [58–60]. In practice

these effects are included by performing Hard-Loop and ladder resummations in the re-

quired kinematic regions. A detailed discussion of effective matrix elements can be found

in [19, 24, 31]. In the current work we will restrict ourselves to isotropic screening ap-

proximation introduced in [31], such that our description is strictly accurate to leading

order in λ only when the system is isotropic PL/PT ' 1. For anisotropic systems the

prescription gives a description that is accurate to leading logarithm order. For systems

with PL/PT − 1 & λ1/3 certain plasma unstable modes may start to give a parametrically

leading order contribution [21], which are neglected in the isotropic screening approxima-

tion. Even though the effect of the plasma instabilities is parametrically a leading order

contribution, classical Yang-Mills simulations suggest that their numerical effect is still

negligible [26, 61]. Within this approximation the effective matrix element |M|2 reads

|M|2 = 8λ2ν

(
9

4
+

(s− t)2

ū2
+

(u− s)2

t̄2
+

(t− u)2

s2

)
, (3.11)

where the t̄ and ū are regulated Mandestam variables. For t → 0, the matrix element

is proportional to ∝ 1/(q2)2 where q = |p′ − p| is the momentum transfer in the elastic

collision. In the isotropic screening approximation we regulate the soft t-channel (and

similarly for the u-channel) divergence by replacing

q2t̄→
(
q2 + 2ξ20m

2
)
t (3.12)

in the denominator of the divergent terms. The coefficient ξ0 = e5/6/
√

8 is chosen such

that the collision term reproduces the drag and momentum diffusion properties of the soft

scattering at leading order [24].

The effective splitting rate γ is given by

γ(pp̂; p′p̂, k′p̂) =
p4 + p′4 + k′4

p3p′3k′3
νλ

4(2π)3

∫
d2h

(2π)2
2h · ReF,

where the equation for F accounts for splitting due to multiple scatterings with transverse

momentum exchange q, and momentum non-collinearity h = p× k

2h = iδE(h)F(h)+
λT∗
2

∫
d2q⊥
(2π)2

A(q⊥)
[
3F(h)−F(h−pq⊥)− F(h− kq⊥)− F(h+p′q⊥)

]
.

with T∗ = λ
m2

∫ d3p
(2π)3

fp(1 + fp), and δE = m2/p′ + m2/k′ − m2/p + h2/2pk′p′. In the

isotropic screening approximation

A(q⊥) =

(
1

q2
⊥
− 1

q2
⊥ + 2m2

)
.

This integral equation is most conveniently solved by the powerful numerical method in-

troduced in [62].
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Note that both |M |2 and γ are proportional to ν so that dependence on the number of

colors Nc enters only though the definition of the ’t Hooft coupling λ = g2Nc. Therefore

the evolution of distribution functions are independent of Nc to the order considered here.

In order to numerically solve the transport equation, we impose an azimuthal symmetry

to the distribution function so that it becomes a function of the absolute value of momentum

p = |p| and the polar angle x = cos(p̂ · ẑ), that is f(p) = f(x, p). We then discretize the

continuous distribution f(x, p) by introducing a 2-dimensional grid {xi, pj} in x and p

labeled by the indices i and j. In our implementation we choose to keep track of the

number densities nij near the grid points and define a discretized variable

nij =

∫
d3p

(2π)3
f(x, p)wij(x, p) , (3.13)

where we have also defined the 2-dimensional wedge function wij which is centered around

the grid point labelled by indices i and j

wij(x, p) = wi(x)wj(p) (3.14)

wa(z) =
za+1 − z
za+1 − za

θ(z − za)θ(za+1 − z) +
z − za−1
za − za−1

θ(za − z)θ(z − za−1), a = i, j.

(3.15)

In terms of discretized number densities the transport equation reads

dnij
dt

+ Cexp
ij = −C2↔2

ij − C1↔2
ij , (3.16)

where C2↔2
ij and C1↔2

ij are the discretized collision operators and Cexp
ij is the discretized

version of the derivative arising from the non-trivial metric.

We have a freedom in choosing the discretization Cexp
ij . In continuum, the evolution of

local energy density and particle number density due to the non-trivial metric is exactly

related to the components of the energy momentum tensor by partial integration identities.

In the absence of interactions the time evolution of the energy and number densities are

2g

g′
dε

dt
= ν

2g

g′

∫
d3p

(2π)3
p∂tf = −ν

∫
d3p

(2π)3
ppz∂pzf = −ν

∫
d3p

(2π)3
(p+

(pz)2

p
) = −(ε+ PL);

(3.17)

2g

g′
dn

dt
= ν

2g

g′

∫
d3p

(2π)3
∂tf = ν

∫
d3p

(2π)3
pz∂pzf = −n. (3.18)

Both collisional terms conserve energy density exactly and therefore eq. (3.17) holds also in

the presence of interactions. Inelastic processes on the other hand change particle number

and eq. (3.18) receives a contribution from C1↔2 in the interacting case. In our numerical

implementation we choose to discretize Cexp
ij so that it exactly reproduces eqs. (3.17), (3.18).

In terms of discretized quantities the different integral moments read

n = ν
∑
ij

nij , ε = ν
∑
ij

pjnij and PL = ν
∑
ij

x2i p
2
j

pj
nij , (3.19)
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and we can write the first order discretized derivative operator as

2g

g′
Cexp
ij ≡ nijx

2
i

[
pj

pj − pj−1

]
− ni,j+1x

2
i

[
pj+1

pj+1 − pj

]
(3.20)

+ nij

[
(xi−1 − x3i−1)
xi − xi−1

]
− ni+1,j

[
(xi − x3i )
xi+1 − xi

]
− nij . (3.21)

The distribution function itself is needed to compute the Bose enhancement factors

in eqs. (3.9) and (3.10). In terms of the discretized quantity, the distribution function is

approximated by f̃ which is defined by

4πp2

(2π)3
f̃(x, p) ≡

∑
ij

nijwij(x, p)

vij
, (3.22)

vij =

∫
d3p

(2π)3
wij(x, p). (3.23)

In terms of discretized variables, the collision terms then read

C1↔2
ij =

vi
ν

∫ ∞
0

dp

∫ p/2

0
dp′
∫ ∞
0

dk′δ(p− p′ − k′)[4πγ(p; p′, k′)]

×
{
f̃(xi, p)[1 + f̃(xi, p

′)][1 + f̃(xi, k
′)]− f̃(xi, p

′)f̃(xi, k
′)[1 + f̃(xi, p)]

}
×
[
wij(xi, p)− wij(xi, p′)− wij(xi, k′)

]
(3.24)

with vi =
∫ 1
0 dxwi(x) and

C2↔2
ij =

1

8ν

∫
dΓPS |M|2{f̃(xp, p)f̃(xk, k)[1 + f̃(xp′ , p

′)][1 + f̃(xk′ , k
′)]

− f̃(xp, p)f̃(xk, k)[1 + f̃(xp′ , p
′)][1 + f̃(xk′ , k

′)]}
×
[
wij(xp, p) + wij(xk, k)− wij(xp′ , p′)− wij(xk′ , k′)

]
. (3.25)

Because our interpolation with the wedge functions exactly reproduces linear functions,∑
ij wij(x, p)p = p, the discretized collision kernels exactly conserve energy. The integral

over the phase space of 2↔ 2 scatterings reads∫
dΓPS ≡

1

211π7

∫ ∞
0

dq

∫ q

−q
dω

∫ ∞
(q−ω)/2

dp

∫ ∞
(q+ω)/2

dk

∫ 1

−1
dxq

∫ 2π

0
dφpqdφkq,

with p′ = p+w and k′ = k−w. In terms of these coordinates, the angles of incoming and

outgoing momenta needed for the arguments of the occupation numbers are given by

x{p} = − sin θ{p}q cosφ{p}q

√
1− x2q + cos θ{p}qxq , (3.26)

where {p} = p, k, p′, k′ with cosφp′q = cosφpq, cosφk′q = cosφkq. The cosines appearing in

the previous formula are given by

cos θpq =
ω

q
+

t

2pq
, cos θkq =

ω

q
− t

2kq
, (3.27)

cos θp′q =
ω

q
− t

2p′q
, cos θk′q =

ω

q
+

t

2k′q
, (3.28)
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and t ≡ ω2 − q2. The effective matrix element |M|2 depends also on Mandelstam s and u

which in terms of the integration variables read

s =
−t
2q2

{
(p+ p′)(k + k′) + q2 − cos(φkq − φpq)

√
(4pp′ + t)(4kk′ + t)

}
(3.29)

u = −t− s. (3.30)

In our numerical implementation, we start with the initial condition f(p) = 1/(ep/Ti−1)

at some early time ti < 0. We then use a simple time stepping algorithm to determine the

distribution function at later times by iterating

nij(t+ ∆t) = nij(t)−∆t
(
Cexp
ij + C2↔2

ij + C1↔2
ij

)
. (3.31)

In order to evaluate the collision terms, we first measure at each timestep the values of the

thermal mass m and the effective temperature T∗

m2 = λ
∑
ij

nij
pj
, T∗ =

λ

2m2

∑
ij

nij(1 + f̃(xi, pj)) (3.32)

and then estimate the collision kernels C2↔2
ij and C1↔2

ij by Monte Carlo sampling the phase

space integrals. We have found that it is essential to use importance sampling that reflects

the important regions in the phase space. In particular we sample the integral over q with

the weight dq/q2 that accounts for the soft divergence in |M|2, whereas the soft divergence

appearing in C1↔2
ij is ameliorated by sampling the p′ integral with the weight dp′/p′.

4 Gauge theory dynamics from a strong coupling approach

At strong coupling we use holography to study the process described in section 2. This is

done in the simplest version of holography, which allows to describe processes in N = 4

super-Yang-Mills theory (SYM) through dynamics of Einstein gravity in 5 dimensional

anti-de-Sitter (AdS) spacetime. We are hence led to solving Einstein’s equations in AdS,

whereby the non-trivial geometry (eq. (2.1)) corresponds to non-trivial boundary condi-

tions on AdS. The starting condition with a thermal state corresponds to a black brane

geometry in AdS.

In this paper we will use the characteristic formulation of Einstein’s equations, first

introduced in [63–65], and later extended to AdS in [36, 37]. The essential ingredient of this

formulation is the metric ansatz, which is written in null coordinates and has the spatial

determinant (S) factored out:

ds2 = 2dtdr −Adt2 + S2eBdx2 + S2eBdy2 + S2e−2BdL2 , (4.1)

where A, S and B are functions of time t and the AdS radial coordinate r. This coordinate
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choice for the metric makes the Einstein equations particularly simple [36]:

0 = S′′ + 1
2B
′2 S , (4.2a)

0 = S (Ṡ)′ + 2S′ Ṡ − 2S2 , (4.2b)

0 = S (Ḃ)′ + 3
2

(
S′Ḃ +B′ Ṡ

)
, (4.2c)

0 = A′′ + 3B′Ḃ − 12S′ Ṡ/S2 + 4 , (4.2d)

0 = S̈ + 1
2

(
Ḃ2 S −A′ Ṡ

)
, (4.2e)

where

h′ ≡ ∂rh and ḣ ≡ ∂th+ 1
2A∂rh (4.3)

denote derivatives along the ingoing and outgoing radial null geodesics, respectively. As

can be seen, given some initial metric, specified in our case by the field B(r, t = t0), we can

integrate the first four equations successively, after which we have obtained ∂tB(r, t = t0),

which allows to step forward in time.

These integrations require boundary conditions, which we obtain from the near-

boundary analysis of the Einstein equations. For this we need to specify the metric of

the boundary of AdS, which according to the AdS/CFT dictionary should equal the metric

of the CFT. This means that S2eB = r2 and S2e−2B = g(t)r2 to leading order in r, which

results in the following asymptotic forms:

A(r, t) = r2+
(g′)2−2gg′′

6g2
+

288a4g
4+log(r)

(
8g′′′g2g′−4g2 (g′′)2+7 (g′)4)−12g (g′)2 g′′

)
288g4r2

+O
(
r−3
)
, (4.4)

B(r, t) = − log(g)

3
− g′

3gr
+

3 (g′)2 − 2gg′′

24g2r2
+

3g′′′g2 − (g′)3 − 4gg′g′′

108g3r3

+
576b4g

4 + log(r)
(

34g′′′g2g′ − 12g′′′′g3 + 28g2 (g′′)2 + 35 (g′)4 − 84g (g′)2 g′′
)

576g4r4

+O
(
r−5
)
, (4.5)

S(r, t) = 6
√
gr +

g′

6g5/6
− (g′)2

36g11/6r
+

4 (g′)3 − 3gg′g′′

324g17/6r2

+
72g′′′g2g′ − 36g2 (g′′)2 − 65 (g′)4 − 12g (g′)2 g′′

31104g23/6r3
+O

(
r−4
)
, (4.6)

where g(t) is given by eq. (2.2), and a4(t) and b4(t) depend on the complete bulk dynamics

and cannot be fixed by a near-boundary analysis. In our actual computation we computed

the log(r) terms to a high order (O(r−8) for B(r, t)) to deal with these analytically and

thereby stabilize our numerics. Note that we fixed the remaining gauge freedom of r →
r + ξ(t) in these expansions by the leading term in S. We later used this gauge freedom

ξ(t) to fix our coordinates such that the apparent horizon starts and remains at r = 1.

Formally, the stress tensor of our SYM theory is equal to the variation of the AdS

action with respect to the boundary metric. This, however, is divergent, and just as in the
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SYM theory this has to be renormalized by adding appropriate counter-terms to the action.

This procedure is known as holographic renormalization, and is carried out in [66, 67]. In

our case this leads to:

ε =
N2

c

2π2

(
− 3a4

4
−

(
(g′)

2 − 2gg′′
)2

768g4
+ µεSD

)
, (4.7)

P⊥=
N2

c

2π2

(
− a4

4
+b4+

608g′′′g2g′+4g2
(
107 (g′′)

2−48g′′′′g
)
+515 (g′)

4−1388g (g′)
2
g′′

6912g4
+µPSD,⊥

)
,

PL=
N2

c

2π2

(
− a4

4
−2b4+

−1168g′′′g2g′+384g′′′′g3−844g2
(
g′′
)2−979(g′)4+2668g(g′)2g′′

6912g4
+µPSD,L

)
,

where the terms proportional to µ depend on the renormalization scheme, i.e. due to the

presence of the conformal anomaly when the boundary metric is curved it is possible to

add finite counterterms to the action, with a coefficient µ that needs to be fixed by a choice

of scheme [66–68]. For our metric these are given by:

εSD =
8g′′′g2g′ − 4g2 (g′′)2 + 7 (g′)4 − 12g (g′)2 g′′

384g4
, (4.8)

P⊥ =
−20g′′′g2g′ + 8g′′′′g3 − 20g2 (g′′)2 − 21 (g′)4 + 52g (g′)2 g′′

384g4
, (4.9)

PSD,L =
48g′′′g2g′ + 4g2

(
9 (g′′)2 − 4g′′′′g

)
+ 49 (g′)4 − 116g (g′)2 g′′

384g3
. (4.10)

Note, however, that these terms are absent in the case where the boundary metric is flat

(when g(t) = 1 or when g(t) ∝ t2), so that these terms are only important around our

pulse, near tTini ' 1. Also, all contributions are fourth order in derivatives, which is why

we did not have to take the scheme dependence into account when considering 2nd order

hydrodynamics in section 2.

We are now able to numerically solve the Einstein equations (see also [69, 70] for a more

detailed discussion), where we started our evolution at t Tini = −10, with A = r2−(πT )4/r2,

S = r and B = 0. As already alluded to, the near-boundary behavior of the metric

functions is handled analytically, where we subtracted many of the logarithmic terms for

increased stability. The spatial discretization is then done using spectral elements [71],

using 6 domains with 15 grid points, and for time stepping we used an explicit Adams-

Bashforth scheme.1

Finally, having obtained the full AdS metric, we can extract the normalizable modes

of the metric (a4(t) and b4(t)) to obtain the expectation value of the SYM stress tensor.

As an illustration of the scheme dependence presented above we plot ε and PL in figure 1,

for several values of µ and for α = 8. The choice of scheme is clearly important around

t Tini, but is unimportant in the expanding regime after the pulse (with g(t) ∝ t2). For

1The Mathematica code to evolve an evolution as described is available upon request at wilke@mit.edu;

alternatively, simpler versions can be found at sites.google.com/site/wilkevanderschee.
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Figure 1. For the energy density and transverse pressure we illustrate for α = 8 in eq. (2.2) the

renormalization scheme dependence present for the expectation value of stress-energy tensors of

QFTs living in an even-dimensional curved spacetime. Clearly, the pressure oscillates wildly during

the period where the boundary metric is curved (as also noted in [36]), but these oscillations are

mostly due to scheme dependence. We therefore focus on the times after the pulse (t Ti & 1.4),

where this ambiguity does not arise, and present results for the choice of µ = −2.

this particular boundary metric a reasonable choice is µ = −2, which leads to the mildest

oscillations possible (though for different α different µ would be preferred in that sense).

For the results to be presented in the next section we hence used µ = −2.

Lastly, as in the hydrodynamic and weak coupling approaches, we also kept track of

a measure of entropy. Here we used the area density (S3) of the apparent horizon, which

location is given by Ṡ(t, rAH) = 0. While this measure depends on the time slicing of

the AdS metric, it can be determined locally in time (as opposed to the event horizon,

which depends on the full future spacetime). Also, this time slicing ambiguity in the

definition of the entropy can be compared with similar ambiguities in a field theory far-

from-equilibrium [72].

5 Results

As described in the introduction, the system is prepared in a thermal initial state at time

t0 < 0 and then subjected to the boundary metric pulse of eq. (2.1). For weak coupling

λ = O(1), the evolution of the system is solved using the kinetic theory methods described

in section 3, while for strong coupling λ→∞, gauge gravity methods described in section 4

were used. In figure 2, the time evolution of the energy density is shown for the case of a

pulse profile given by eq. (2.2) with α = 8. As expected, the energy density of the system

drops at late times consistent with the expansion of the system. For decreasing values of

the coupling λ ∼ 1, the kinetic theory simulation approaches the analytic free-streaming

result given in eq. (3.5). For strong coupling λ→∞, the result is somewhat closer to the

analytic ideal hydrodynamics result eq. (2.8) than the kinetic theory result for intermediate

coupling λ = 10, but does not coincide with the ideal hydrodynamic result since viscous

corrections do not vanish even for λ =∞.
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Figure 2. Time evolution of the energy density from kinetic theory (λ = 2, 5, 10) and the

gauge/gravity duality (λ = ∞). For reference, the analytic results for non-interacting particles

(λ = 0, “free-streaming”) and ideal hydrodynamics (“ideal hydro”) are also plotted.
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Figure 3. Time evolution of the total system equilibrium entropy (left) and pressure anisotropy

(right). Shown are results from kinetic theory (λ = 5, 10) and gauge/gravity duality (λ = ∞).

For reference, the analytic results for non-interacting particles (λ = 0, “free-streaming”), ideal

hydrodynamics (“ideal hydro”) as well as the late-time gradient expansion to first-order (NS) and

second order (BRSSS) hydrodynamics with transport coefficients from table 1 are also shown.

This difference to ideal hydrodynamics is highlighted when plotting the total equilib-

rium entropy and pressure anisotropy, defined in eqs. (2.9), (2.5), as done in figure 3. In

this figure, results for λ = 5, 10,∞ are plotted along with the ideal hydrodynamics and

free-streaming results. For the equilibrium entropy one finds that with the exception of the

non-interacting case (free-streaming), all curves tend to a constant value for t→∞, which

quantifies the amount of entropy production during the evolution process. Determining the

asymptotic value of entropy corresponds to fixing the parameter χ in eqs. (2.13), (2.15).

For the pressure anisotropy we clearly see that the systems equilibrate towards isotropy,

which allows us to define an isotropization time tiso as the last time when PL/PT = 0.8.

– 15 –



J
H
E
P
0
4
(
2
0
1
6
)
0
3
1

Both panels in figure 3 also include the curves which follow from late time hydro-

dynamics, both for first order (“NS”) and second-order (“BRSSS”) hydrodynamics, as

given by eqs. (2.13) and (2.16) respectively, whereby we use the transport coefficients from

table 1.2 While the evolution for λ = 5 and 10 shows that at sufficiently early times the

hydrodynamic and kinetic results are clearly different, it is somewhat surprising to see that

for λ =∞, there seems to be almost perfect matching after the metric pulse has passed at

tTi ' 1. This seems to indicate that for λ = ∞, the system never actually leaves thermal

equilibrium for the type of perturbation studied here (cf. the discussion in ref. [74]).

In order to quantitatively study how well the system is described by hydrodynamics

we define the first (tNS), and second order (tBRSSS) hydrodynamization times as the

time when the first or second order late time hydrodynamic result agrees with the PL/PT
within some fiducial range. As the deviations are not monotonic, we also demand that the

hydrodynamical expression is within the fiducial range at all later times, whereby we take

this range to be 5%. We report the values of all times and transport coefficients mentioned

above in table 1. We now first explore the scaling with λ of the various quantities extracted,

after which we plot a (rescaled) version of figure 3 in figure 8, in order to highlight the

observed trends.

In figure 4 the η/s values are plotted as a function of the coupling λ. We find that the

analytic leading-log formula of weak coupling SU(3) from ref. [73],

η

s

∣∣∣
SU(3),λ�1

=
34.784

λ2 log
[
4.789/

√
λ
]

accurately captures the kinetic theory result up to λ . 5. The kinetic theory results from

table 1 nicely connect to the N = 4 SYM result for λ→∞ using the empirical interpolation

formula
η

s
' 0.08 + 22λ−1.6 . (5.1)

However, the result for N = 4 SYM including strong coupling corrections from ref. [76],

η

s

∣∣∣
N=4,λ�1

=
1

4π

(
1 + 15ζ(3)λ−3/2

)
≈ 0.08 + 1.4λ−3/2 ,

significantly underestimates the slope of the kinetic theory η/s values for λ > 10. This

behavior has been discussed before in ref. [32], where it was suggested to change the

identification of λ when comparing N = 4 SYM to pure Yang-Mills or QCD.

At weak coupling we may estimate the parametric dependence of the equilibration

process as a function λ or η/s. If the coupling is sufficiently small, the system exhibits

large scale separations admitting us to parametrically model the evolution as a three stage

process:

2The values of η/s in table 1 have been extracted from the late behaviour of stress-energy tensor in

our current setup. The values agree with the original calculation of [73] within 10%. The two calculations

differ from each other in the way the soft divergence is regulated. Both of these calculations are accurate to

leading order but differ at subleading orders in λ, and therefore correspond to different possible definitions

of leading order. The small discrepancy between two results can be understood as an estimate of the

systematic theory uncertainty introduced in the kinetic theory at finite λ.
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Figure 4. Shear viscosity over entropy density for weakly coupled SU(3) [73], for strongly coupled

N = 4 SYM [75, 76], compared to the values in table 1 and the empirical interpolation formula (5.1).

See text for details.

λ = 1.0 λ = 2.0 λ = 3.0 λ = 4.0 λ = 5.0 λ = 7.5 λ = 10.0 λ = ∞
η/s 24.7 7.84 4.09 2.59 1.81 0.966 0.624 0.0796

Cτ 5.4 5.3 5.3 5.2 5.2 5.2 5.1 2.6

Cλ 4.5 4.3 4.3 4.2 4.2 4.1 4.1 2

tiso(η/s)
−4/3 176 174 176 178 178 180 181 142

tNSTi 6740 387 204 126.5 83 37 21 2.1

tBRSSSTi 7596 418 120 73 48 23 13.5 1.7

χ 6.29 4.00 3.13 2.66 2.36 1.97 1.71 1.20

Table 1. Summary of transport parameters and derived quantities for SU(N) gauge theory for

various values of λ as well as for N = 4 SYM for λ = ∞. The η/s values are extracted from the

late time behaviour of the energy momentum tensor, while the second order parameters are taken

from refs. [77–79]. χ = Seq(t→∞)/Seq,i is the total (original plus viscously produced) entropy and

tiso is the isotropization time. tNS,BRSSS refer to equilibration times from first and second-order

hydrodynamics, respectively (see text for details).

• at early times tTi < 1, the system is in thermal equilibrium,

• for 1 < tTi < teqTi the system exhibits free streaming behaviour and is highly

anisotropic PL � P⊥,

• and for t > teq the system has re-equilibrated and follows inviscid hydrodynamics

with PL = PT .
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We expect the system to smoothly change its behaviour from free streaming type evolution

to hydrodynamical evolution in the time scale determined by the transport mean free time,

teq ∼ 1/λ2T (teq).3 Naively the parametric dependence of this equation is ∝ λ−2, however

the expansion reduces the local energy density of the system and therefore also the target

temperature T (teq) to which the system aspires to thermalize. For a freely streaming

anisotropic system the energy density evolves as ε(t) ∼ εi/(Tit), and therefore the target

temperature at time t is T (t) ∼ T 3/4
i t−1/4. Solving now self-consistently the condition that

the system time be of the same order of magnitude as the transport mean free time leads to

Titeq ∼ λ−8/3 ∼ (η/s)4/3, T (teq) ∼ λ2/3Ti ∼ (η/s)−1/3Ti (5.2)

and for the total entropy generation during the second stage

χ ∼ Titeq.
T (teq)3

T 3
i

∼ 1

λ2/3
∼ (η/s)1/3 , (5.3)

where η/s ∝ λ−2 was used.

At strong coupling one has η
s � 1, and as a consequence the viscous entropy production

can be calculated from the full hydrodynamic evolution equations (2.11) in an arbitrary

background g(t). Specifically, when solving eq. (2.11) perturbatively in η
s � 1, one finds

χ = 1 +
η

3s

∫ ∞
−∞

dt

Ti

(
g′(t)

g

)2

g1/6(t) ' 1 + 2.0
η

s
, (5.4)

where the specific form of g(t) from eq. (2.2) with α = 8 was used to calculate the numerical

value of 2.0 in eq. (5.4).

Based on the weak and strong coupling results in eqs. (5.3), (5.4) for χ, a model

function that obeys both these limits is given by

χ '
(

1 + 7.0
η

s

)1/3
, (5.5)

where the value 7.0 was adjusted to match the results for χ at weak coupling.

In figure 5 we compare the total entropy generation χ for the weak and strong coupling

simulations. We first note that all points follow a monotonous growing curve. The paramet-

ric model with (η/s)1/3 describes well the scaling of all the kinetic theory points. Extrap-

olating the model to smaller values eventually predicts isentropic evolution for η/s ≈ 0.13

when the duration of the second stage goes to zero, thereby clearly signalling the break-

down of the weak coupling picture. It is quite intriguing that the value where the weak

coupling theory predicts its own failure happens to be surprisingly close to the strong cou-

pling value of η/s = 0.08. Unlike the parametric model, strong coupling saturates the

interactions and the entropy generation remains finite and positive, as born out by the

interpolation function (5.5).

3For very small values of λ a large scale separation develops between Ti and T (teq) and this esti-

mate should be replaced with the LPM suppressed rate (Ti/T )1/2/λ2T leading to slightly different power

laws [21, 31]. Here, in the numerical simulations we do not probe small enough values of λ for this to be

numerically relevant.
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Figure 5. Scaling of the total entropy production during the non-equilibrium evolution. The

dashed line corresponds to a parametric expectation based on weak coupling picture χ ∝ (η/s)1/3,

while the strong coupling expectation predicts χ − 1 ∝ η/s. The empirical result from (5.5) (full

line) satisfies both limits.

Next, we study the isotropization times by plotting the anisotropy ratio PL/PT in

figure 6 as function of the rescaled time variable (η/s)−4/3Tit. Upon rescaling, all the

kinetic theory simulations approximately collapse onto a single curve, and thus all approach

isotropy at same rescaled time. This approach to isotropy can be seen to be governed by

viscous hydrodynamics, whereby from (2.16) it is clear that

PL
PT

∣∣∣∣
NS,tTi�1

= 1− 8η

s

1

(tTi)2/3χ1/3
≈ 1− 8

1

((η/s)−4/3tTi)2/3

(
η/s

1 + 7η/s

)1/9

. (5.6)

where we used eq. (5.5). For large viscosity this formula simplifies, which explains why the

weak coupling evolutions follow the universal attractor shown in figure 6. Eq. (5.6) can be

solved for our fiducial value of 0.8 to give

Titiso ≈ 154 . . . 183 (η/s)4/3, (5.7)

for a viscosity between 1/4π and ∞, which compares well with our numerical results as

shown in figure 7.

Lastly, we focus on hydrodynamization times in figures 8 and 9. Figure 8 shows the

deviation of PL from the late time hydro prediction of eqs. (2.13), (2.16) normalized by

the transverse pressure. On the one hand, we again observe that the strong coupling

simulation is well described by hydrodynamics immediately after the metric pulse has

passed. On the other hand we see that the kinetic theory simulations exhibit a breakdown

from hydrodynamics roughly at the same time scale of Tit ∼ 40(η/s)4/3. We note that the

correspondence with hydrodynamics is slightly improved when the second order coefficients

are taken into account, in particular at larger couplings. We note that the exact values

of the hydrodynamization times can depend quite strongly on the fiducial range due to
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Figure 6. Pressure anistropy with time rescaled by the weak coupling estimate for the thermal-

ization time. All the simulations, including λ =∞, follow a universal attractor, given by eq. (5.6),

towards thermal equilibrium.
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Figure 7. Isotropization time defined by the condition PL/PT = 0.8 as a function of η/s.

The parametric model tisoTi ∝ (η/s)4/3 describes the kinetic theory values extremely well and

extrapolates to the strong coupling value within 25%.

the non-monotonic approach to hydrodynamics. Nevertheless, the overall scaling thyd ∝
(η/s)4/3 remains present even when varying the range.

We have not yet commented on the generality of our results for different values of α

in our metric pulse. We verified that for α = 4 our results change by less than 1%. For

significantly faster pulses with α� 8, however, the calculation starts to differ because of the

Hawking radiation generated by the pulse. For α = 16 this leads for instance to χ = 1.28

as compared to χ = 1.20 for α = 8 for λ = ∞. For the weak coupling framework we did

not include Hawking radiation, which is indeed not needed for the profiles we considered.
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including the first (left) or the second (right) order terms in the hydrodynamical expansion.
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Figure 9. Hydrodynamization times as defined by the time when the late time hydrodynamics of

eqs. (2.13), (2.16) reproduce the PL/PT ratio of the simulation within 5%. The circles correspond

to the Navier-Stokes whereas the crosses are second order BRSSS.

6 Conclusions

In the present work we have presented a detailed and consistent comparison of the equi-

libration process of a gauge theory at strong and weak coupling using the same set-up

and analysis procedure. Our main conclusion is that while there certainly are differences

in the thermalization of these two very different theories, there are also some surprising

similarities.

We find that the weak coupling thermalization process can be characterized with a

simple parametric picture predicting the dependence of of thermalization time and en-

tropy production as a function of the coupling constant λ, or equivalently η/s ∝ λ−2.

Furthermore, extrapolating the powerlaw model to strong couplings where the parametric

picture fails, it is surprising that we still found qualitative agreement even to strong cou-

pling simulations. While at the quantitative level this may be a numerical coincidence, it

demonstrates the overall similarities of the thermalization processes both at weak and at

strong coupling.
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The present study is probably too simplistic to be directly applicably for heavy-ion

phenomenology. However, it provides evidence that treating weak and strong coupling equi-

libration on the same footing can lead to simple power-law results that smoothly interpolate

between weak and strong coupling. Such interpolation functions may be used to effectively

estimate viscosity, equilibration time and viscous entropy production (among others) at in-

termediate values of the coupling where neither the kinetic nor the gauge/gravity approach

are applicable. For instance, for our gauge theory with λ ' 20, our present study would

predict η/s ' 0.3, a hydrodynamization time of τTi ' 7 and a viscous entropy produc-

tion χ − 1 of approximately 40 percent. By repeating our methodological approach for a

setup applicable to heavy-ion collisions, our goal for future work is to obtain similar quan-

titative predictions that would then be directly testable when confronted with precision

experimental data.
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