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Abstract We study BIC-like model selection criteria and in partic-

ular, their refinements that include a constant term involving the Fisher

information matrix. We perform numerical simulations that enable in-

creasingly accurate approximation of this constant in the case of Bayesian

networks. We observe that for complex Bayesian network models, the

constant term is a negative number with a very large absolute value that

dominates the other terms for small and moderate sample sizes. For

networks with a fixed number of parameters, d, the leading term in the

complexity penalty, which is proportional to d, is the same. However, as

we show, the constant term can vary significantly depending on the net-

work structure even if the number of parameters is fixed. Based on our

experiments, we conjecture that the distribution of the nodes’ outdegree

is a key factor. Furthermore, we demonstrate that the constant term can

have a dramatic effect on model selection performance for small sample

sizes.

Keywords Model Selection, Bayesian Networks, Fisher Information

Approximation, NML, BIC.

§1 Introduction
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A Bayesian network encodes joint probability distributions of a set of

random variables via a directed acyclic graph (DAG). Bayesian networks with

different network topologies form a lattice-like hierarchy with both nested and

non-nested relations where the model complexity varies greatly. It therefore be-

comes imperative to regularize model complexity when learning the structure

from finite data. In this paper we study BIC-like model selection criteria that

can be derived via Laplace approximation, and their properties in the case of

Bayesian networks. Our main focus is on complexity regularization and in par-

ticular, the lower-order terms such as the constant term, log

∫
Θ

√
det I(θ) dθ,

which involves the Fisher information, I(θ).∗1 The omission of such terms in the

standard BIC formula can be justified by asymptotic arguments.

An approximation of the Bayes factor (or the marginal likelihood) by

Kass et al.5) under Jeffreys’ prior, where the constant term is retained, results

in a so called Fisher information approximation (FIA). We show that contrary

to what might be expected, namely that a more refined approximation such as

FIA should be better than a rough approximation such as BIC, FIA tends to

be extremely inaccurate for small and moderate sample sizes. In particular, we

observe that for complex Bayesian network models (with thousands or tens of

thousands of independent parameters), the constant term is a negative number

with a very large absolute value that dominates all the other terms in FIA

unless the sample size is greater than the number of parameters. The absolute

value of the term appears to grow rapidly with increasing model order, which

makes the FIA criterion favor complex models unless the sample size is extremely

large. Similar results have been reported for other model families such as the

exponential model by Navarro9) and Markov sources by Roos et al.15).

In this paper, we first review the FIA approximation and discuss its re-

lation to certain other model selection criteria. Even though there is no closed

form formula for the Fisher information integral under most model families, in-

cluding Bayesian networks, it can be estimated up to arbitrarily fine precision

using a Monte Carlo technique.13) Our main contributions include, first, an in-

vestigation on the effects of the network structure on the Fisher information

integral. Second, we carry out model selection experiments where we highlight

the complexity regularization behavior of various criteria. This leads to con-

clusions as to which of the criteria are safe and which should be avoided under

∗1 We denote the binary (base-2) logarithm by log and the natural logarithm by ln.
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given circumstances.

§2 The Fisher Information Approximation
In this section, we discuss what we call the Fisher information approx-

imation (FIA), and relate it to other model selection criteria. First, let us con-

sider the Bayes factor criterion before investigating asymptotic approximations.

The Bayes factor measures the ratio of marginal likelihoods between competing

models.

BF12 =
p(xn ; M1)

p(xn ; M2)
=

∫
ΘM1

p(xn ; θ1,M1) p(θ1) dθ1∫
ΘM2

p(xn ; θ2,M2) p(θ2) dθ2
, (1)

where p(θ1) and p(θ2) denote the parameter priors under the two models, M1

and M2, respectively.

The marginal likelihood has a built-in penalty for model complexity.10)

A closed form solution for the marginal likelihood is only available for a limited

set of model families when conjugate priors exist. For other model families, we

usually need to resort to sampling methods such as MCMC methods.3) Further-

more, even when an efficient formula for calculating Bayes factors is available,

like in the case of Bayesian networks discussed in this work, model selection

performance may be highly sensitive to the choice of the associated parameter

priors.18)

2.1 Approximate Marginal Likelihood
To avoid the selection of a specific prior and to obtain a more objective

method for model selection, we can use asymptotic (large-sample) approxima-

tions of the Bayes factor or the marginal likelihood such as the classic BIC

criterion.16) The BIC can be obtained via Laplace approximation, which in-

volves a Taylor expansion of the log-likelihood function around its maximum.

For instance, if we have a model M with dM free parameters, jointly denoted

by θ ∈ ΘM, and a data set xn with sample size n, the Laplace approximation

of the log-marginal likelihood is given by

log p(xn ; M) = log

∫
ΘM

p(xn ; θ,M) p(θ) dθ

= log p(xn ; θ̂(xn)) + log p(θ̂(xn))

+
dM
2

log(2π)− 1

2
log det Î(θ̂(xn)) + o(1),

(2)
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where p(θ) is the parameter prior, the maximum likelihood parameters are de-

noted by θ̂(xn), and Î(θ) is the empirical Fisher information matrix at θ. If the

distributions of model M are independent and identically distributed (i.i.d.),

by the law of large numbers, we have the average per-symbol empirical Fisher

information converging to its expectation I(θ̂(x)):

n−1Î(θ̂(xn))→ I(θ̂(xn)), where I(θ) = Eθ Î(θ). (3)

Then by simple manipulation, the fourth term in Eq. (2) can be approximated

as

1

2
log det Î(θ̂(xn)) =

dM
2

log n+
1

2
log det I(θ̂(xn)) + o(1). (4)

Finally, we can obtain the approximation of log marginal likelihood as

log p(xn ; M) = log p(xn ; θ̂(xn))− dM
2

log n

+ log p(θ̂(xn)) +
dM
2

log (2π)− 1

2
log det I(θ̂(xn)) + o(1).

(5)

When the sample size n increases, lower order terms that are independent of n

will eventually be dominated by the terms that grow with n. Therefore, for very

large sample sizes, we can omit the last four terms in Eq. (5) and change the

sign to obtain the familiar BIC criterion:

BIC(xn ; M) = − log p(xn ; θ̂M(xn)) +
dM
2

log n, (6)

To get a more precise approximation, we would need to include the

lower-order terms as well. However, they depend on the chosen prior. An often

quoted objective choice is the Jeffreys prior. The Jeffreys prior was initially pro-

posed to acquire an invariance property under reparameterization.4) Later stud-

ies have shown that the Jeffreys prior also has several minimax properties.1, 11)

For example, it achieves asymptotic minimax risk for model families with smooth

finite-dimensional parameters. This requirement is met in most of the cases for

Bayesian networks. However, when the maximum likelihood parameters lie on

the boundary of the parameter space, Jeffreys prior may fail to achieve the

asymptotic minimax property.21) In this work, for the sake of simplicity, we as-

sume that the necessary conditions are satisfied and ignore the boundary issues.

For further discussion on the regularity conditions and an alternative BIC-like

criterion, called NIP-BIC, refer to Ueno’s work for more details.20)
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The Jeffreys prior is proportional to the square root of the determinant

of the Fisher information matrix:

p(θ) = FII(M)−1
√

det I(θ). (7)

The normalizing term, which we call the Fisher information integral (FII), is

given by

FII(M) =

∫
ΘM

√
det I(θ) dθ.

Plugging Eq. (7) in Eq. (5), and dropping the o(1) terms, we get the Fisher

information approximation:

FIA(xn ; M) = log p(xn ; θ̂M(xn))− dM
2

log
n

2π
− log FII(M). (8)

For Bayesian networks, which is the model class studied in this work,

the Jeffreys prior has been derived by Kontkanen et al.7). Unfortunately, as

the authors showed, evaluating it is NP-hard. Therefore, it is unlikely that

an efficient formula for FII could be obtained for Bayesian networks. To get

around this difficulty, we introduce a way to approximate FII by first linking the

marginal likelihood to another model selection criterion via the FIA formula.

2.2 Approximations of the Normalized Maximum Likeli-
hood

The FIA formula is important not only because it approximates the

Bayesian marginal likelihood. It also coincides with the asymptotic form of the

normalized maximum likelihood (NML) model selection criterion.17) NML is a

modern form of the minimum description length (MDL) principle, which is an

information theoretic approach to select the model that has the shortest code

length for describing the information in the data.2, 12)

The NML model is defined as:

NML(xn ; M) =
p(xn ; θ̂M(xn))

CMn
, (9)

where the normalizing factor CMn is the sum of the maximum likelihoods over

all potential data sets:

CMn =
∑
xn

p(xn ; θ̂M(xn)). (10)
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NML provides a unique solution to minimize the worst case regret under log

loss for all possible distributions, and the constant logCMn is the minimax and

maximin regret, refer to the works by Shtarkov and Xie.17, 21)

As stated above, the logarithm of the NML probability shares the same

asymptotic expansion as the marginal likelihood under Jeffreys prior, given

by FIA. The regularity conditions required for this to hold are discussed by

Rissanen11). Therefore, we can combine Eq. (8) with Eq. (9) and obtain an

estimate of log FII(M) by:

log FII(M) = logCMn −
dM
2

log
n

2π
+ o(1), (11)

However, the normalizing constant, CMn also lacks a closed form solution for most

of model families and therefore, its value can be calculated efficiently only for a

restricted set of model families such as the Bernoulli and multinomial models.6)

For other cases, one possible solution is to use factorized variants of NML, which

approximate the formula by factorizing it as a product of locally minimax opti-

mal models.14) The study by Silander et al.19) proves that for Bayesian networks,

the factorized NML (fNML) is asymptotically equivalent to BIC, but their em-

pirical experiments suggest that it leads to improved model selection accuracy

for finite samples. In this work, we provide further evidence about the behavior

of fNML.

However, instead of resorting to factorized NML variants, where no nu-

merical guarantees about the approximation error are known, we estimate NML

by Monte Carlo sampling in the same fashion as Roos13). The obtained estimates

can be shown to be consistent as the number of simulated samples is increased.

Hence they provide a sound approach for approximating NML and thereby also

the FII constant: once we have obtained an estimate of the NML normalizing

term for a given (large) sample size, we deduct other terms as in Eq. (8) to

approximate log FII(M). After that, by plugging in the approximated value of

log FII(M) in Eq. (11), we can calculate FIA for any sample size without having

to repeat the sampling procedure.

2.3 A Lower Bound on the Approximation Error
While the purpose of this paper is to explore the behavior of the Fisher

information approximation numerically, the link between the FIA and NML

immediately leads to a simple upper bound on the normalizing term in NML,

which further leads to a theoretical observation about the approximation error
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of FIA in the finite alphabet case.

Because CMn is defined as the sum of maximized likelihoods over all

possible data sets, and because in the discrete case the likelihood is always at

most one, an upper bound for logCMn is obtained as

logCMn ≤ nl log |X |, (12)

where |X | ≥ 2 is the alphabet size, which we assume to be the same for all

variables for the sake of simplicity.

This rather trivial upper bound was already pointed out by Roos13),

and it is illustrated in Fig. 1 below. Together with the fact that the leading

term of logCn agrees with that of the BIC penalty, the upper bound implies

that the behavior of logCn has two characteristics: first, for small sample sizes,

it is sandwiched between zero and the linear upper bound, and second, it will

eventually grow at a logarithmic rate like BIC. For complex models, the constant

factor in the logarithmic term,
dM
2

log
n

2π
, is so large that no approximation of

the same analytic form as FIA can be accurate for both small and large sample

sizes.

We can quantify the mismatch between FIA and NML in terms of the

following proposition.

Proposition 2.1

Let each model be over l ≥ 1 variables with alphabet size |X | ≥ 2.

a) The maximum discrepancy between FIA and NML has the following lower

bound:

max
n
|FIA(xn ; M)− log NML(xn ; M)| ≥ η, (13)

where

η =
d

4
log

⌊
d

2l ln 2 log |X |

⌋
− d

4 ln 2

b) If the number of free parameters is greater than d > κ l ln |X |, where

κ = 2(e+ 1) ≈ 7.444, the difference is non-zero for some sample size, i.e.,

η > 0.

c) For any two models, Mi and Mj , on the same set of variables with

di > dj > κ l ln |X |, the respective lower bounds satisfy ηi > ηj .
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Note that the discrepancy is a constant for all xn with a given sample

size n since the first term that depends on the actual sample is the same in both

FIA and NML.

Proof We start by proving part (a). Since the data-dependent first term

cancels, we only need to consider the difference

FIA(xn ; M)− log NML(xn ; M) =
d

2
log

n

2π
+ log FII(M)− logCn.

We discuss two cases depending on the value of log FII(M).

Case I : Assume that log FII(M) ≥ −η +
d

2
log 2π. By (12), the difference is

greater than or equal to

d

2
log

n

2π
+ log FII(M)− nl log |X |. (14)

The difference (14) can be maximized by setting its derivative with re-

spect to n to zero, which may give a non-integer solution. Let n′ be the greatest

integer than is less than or equal to the root of the derivative:

n′ =

⌊
d

2l ln 2 log |X |

⌋
≤ d

2l ln 2 log |X |
.

Plugging n′ into the formula for the difference, and applying the assumption in

Case I, we then obtain

d

2
log

n′

2π
+ log FII(M)− n′l log |X |

≥ d

2
log

⌊
d

2l ln 2 log |X |

⌋
− d

2
log 2π − η +

d

2
log 2π − d

2 ln 2

=
d

2
log

⌊
d

2l ln 2 log |X |

⌋
− d

4
log

⌊
d

2l ln 2 log |X |

⌋
+

d

4 ln 2
− d

2 ln 2
= η,

which concludes Case I.

Case II : Assume now that log FII(M) < −η +
d

2
log 2π. By definition, we have

logCMn ≥ 0 for all models M and all n ≥ 1. Letting the sample size be n = 1,

we thus have

−d
2

log
1

2π
− log FII(M) + logCM1 ≥ d

2
log 2π − log FII(M).
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By the assumption in Case II, we now get

max
n

∣∣∣∣d2 log
n

2π
+ log FII(M)− logCMn

∣∣∣∣ ≥ d

2
log 2π − log FII(M) > η.

Combining the two cases, inequality (13) holds for all values of log FII(M), so

part (a) is complete.

Part (b) follows from the assumption that d > κ l ln |X | by direct ma-

nipulation of the expression for η. Likewise, part (c) follows by noting that as

long as the first term in η, which is increasing in d, dominates the second term,

which is decreasing in d, the sum increases.

§3 Numerical Values of the Lower-Order Terms

In this section we present some properties of log FII(M) that are impor-

tant to the model selection behavior of the FIA formula. We use Monte Carlo

sampling to approximate the NML normalizer logCMn for Bayesian networks.

3.1 Monte Carlo Approximation of NML
For Bayesian networks, there is no efficient way to compute the exact

value of logCMn . We need to consider other approximate methods such as the

Monte Carlo sampling method introduced by Roos13). Based on the law of

large numbers, the sample average is guaranteed to converge to the mean if the

sampling size is large. By sampling m data sets {xn1 , . . . , xnm} from distribution

q(·), we have a consistent importance sampling estimator for CMn as:

1

m

m∑
t=1

p(xnt ; θ̂M(xnt ))

q(xnt )

a.s.−→ CMn as m→∞. (15)

In principle, any proposal distribution q with full support will guarantee

convergence. However, the shape of q significantly affects the rate of convergence

and the variance of the estimator. We need to choose a sampling distribution

q that is similar to the target distribution. Following Roos13), we use the sam-

pling distribution by drawing each set of the parameters independently from the

Dirichlet distribution Dir(
1

2
,

1

2
, . . . ,

1

2
), which results in the Krichevsky-Trofimov

universal model (K-T model).8) It has been proved that the K-T model is asymp-

totically equivalent to NML as long as the parameters are not on the boundary.
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3.2 Numerical Values of log FII(M)
We first study the numerical values of the Fisher information integral,

followed by a numerical evaluation of the accuracy of the Fisher information

approximation.

For each combination of maximum indegree, number of nodes, and al-

phabet size, which together determine the number of parameters, we generate

100 Bayesian networks randomly. We estimate the logCMn under different sam-

ple sizes to show how the logCMn curve relates to the BIC curve and its upper

bound. Note that while the main determinant of the model complexity, as mea-

sured by logCMn , is the number of parameters, these different Bayesian network

models usually have somewhat different complexities. As we will see, however,

the variance among networks with a fixed number of parameters is relatively

small compared to the differences between networks with a different number of

parameters.

As an example, we show the results of Bayesian networks with l = 20

nodes, alphabet size |X | = 4, and indegree of each node k = 3, 4, 5, 6 subject

to the acyclicity condition. All estimates of logCMn under each sample size are

calculated separately for 100 different Bayesian networks to obtain the mean

and the variance. (The variance is due to both the aforementioned differences

between different model structures as well as the noise inherent to the Monte

Carlo technique.)

Figure 1 shows that for small sample sizes, the upper bound in Eq. (12)

tightly squeezes logCMn towards zero. On the other hand, up to constant terms,

logCMn shares the same asymptotic form with the BIC (Eq. (6) and Eq. (11)).

As the sample size increases, the slope of the logCMn curve will tend to the

slope of
dM
2

log n. In terms of the graph, where the sample size is shown on a

logarithmic scale, the logCMn curve becomes a straight line that is parallel to

the corresponding BIC curve. The difference between the curves tends to the

constant log FII(M) − dM
2

log 2π. The figure suggests that the constant grows

rapidly as the model order is increased.

If the sample size is small, the sum of the lower-order terms may be a very

important part that should not be ignored. For example, Fig. 1 shows that for

Bayesian networks with 20 nodes, alphabet size |X | = 4 and maximum indegree

k = 6, when the sample size is n = 1000, the sum of the lower-order terms

amounts to a number less than −800, 000. This is because logCMn is restricted
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Fig. 1 Estimates of logCM
n by Monte Carlo sampling for Bayesian networks with l = 20

nodes and alphabet size |X | = 4, labeled by the model complexity (indegree) k = {3, . . . , 6},

as a function of sample size n = 1, 10, . . . , 108 (in log-scale). The black lines connect the mean

values and the error bars indicate the standard error of the mean, σ/
√
m, where σ is the

standard deviation of the values over m = 100 random repetitions. The red curve shows the

upper bound nl log |X |. The straight blue lines are BIC complexity penalties over different k.

by its upper bound to be relatively close to zero but the term
dM
2

log n is larger

than 800, 000.

3.3 Accuracy of FIA with Small Samples
We next look into the accuracy of FIA as an approximation of logCMn

when the sample size is small. Here we estimate logCMn by the Monte Carlo

sampling method for both small and large sample sizes. We show the estimated

values for a set of nested Bayesian networks of 20 nodes. The models are nested in

the sense that simpler (less edges) Bayesian networks are obtained by removing

edges from a complex (k = 8), randomly generated Bayesian network. We

simulate m = 100 data sets in each case and take the average to estimate the
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logCMn value. On the other hand, we also estimate the constant term log FII(M)

(by Eq. (11)) for the same networks using a sample size of 109 to make sure that

the term o(1) becomes negligible, and plug in the resulting constant into the

FIA formula for the smaller sample sizes. Table 1 lists related quantities for

Bayesian networks with 20 nodes and alphabet size |X | ∈ {2, 4}, when sample

sizes are 103 or 105 and maximum indegrees are from one to eight.

Based on Table 1, a significant observation is that when the model is

very complex, for instance, when |X | = 4 and k ≥ 6, the log FII(M) is a negative

number with very large absolute value (less than −106). However, the absolute

values of the term
dM
2

log
n

2π
, as shown in the third row of Table 1 are much

smaller than log FII(M) for small sample sizes. Therefore, the term
dM
2

log
n

2π

is dominated by log FII(M), which results in negative values of the sum. For

example, as shown in the fourth row of Table 1, for sample size n = 103, this

is the case for alphabet size |X | = 4, with maximum indegree k ≥ 4; and for

alphabet size |X | = 2, with maximum indegree k = 8. When the sample size

increases to n = 105, for some simpler networks like |X | = 2, and k ≤ 5, the

values of logCMn and the sum are fairly close to each other. But for the most

complex networks when |X | = 4 and k ≥ 7, sample sizes as large as 105 are still

far from enough to even make the sum positive. The more complex the model,

the larger sample size that we need to get sensible complexity penalties.

Due to the properties discussed above, the model selection by FIA fails

under several conditions. For example, with |X | = 2 and sample size n = 103,

the FIA penalty for Bayesian networks with maximum indegree k = 6 is larger

than for k = 7. Because the simpler network is a subset of the more complex

one, the maximum likelihood value for the network with k = 7 is always higher

or equal to that for the model with k = 7. Therefore, the FIA criterion will

select the Bayesian network with k = 7 rather than the one with k = 6, no

matter what the data are. For sample size n = 105 the problem does not occur

when the alphabet size of |X | = 2 but with |X | = 4, the same problem occurs

for k ≥ 7 even with sample size n = 105. The rule of thumb that one should

have more samples than there are free parameters in the model seems to hold

quite well in these situations.

The above observations underline the importance of paying attention to

the potential problems due to the o(1) terms involved in the approximations for

small and moderate sample sizes. Curiously enough, the BIC formula, which is
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Table 1 The logCM
n estimates based on FIA (the fourth row) or Monte Carlo sampling

(the fifth row), the Fisher information integral log FII and the higher order term
d

2
log

n

2π
for Bayesian networks with indegree k = {1, . . . , 8}, alphabet size |X | = {2, 4} with number

of nodes l = 20 and sample size n ∈ {103, 105}. Values that are based on Monte Carlo

approximation are reported with four significant digits

|X | = 2,n = 103

k 1 2 3 4 5 6 7 8

log FII -22.88 -37.57 -96.27 -349.9 -1004 -2565 -6488 -14330

dM 39 75 143 271 511 959 1791 3327
dM
2

log
n

2π
142.6 274.3 523.0 991.1 1869 3507 6550 12167

sum 119.8 236.7 426.7 641.2 864.1 941.7 61.45∗∗ -2163∗

logCn 179.5 298.9 481.2 711.0 1092 1565 2056 2698

|X | = 2, n = 105

k 1 2 3 4 5 6 7 8

log FII -22.88 -37.57 -96.27 -349.9 -1004 -2565 -6488 -14330

dM 39 75 143 271 511 959 1791 3327
dM
2

log
n

2π
272.2 523.4 998.0 1891 3566 6693 12500 23219

sum 249.3 485.9 901.7 1541 2562 4128 6011 8889

logCn 308.0 542.4 941.8 1545 2608 4204 6390 10270

|X | = 4, n = 103

k 1 2 3 4 5 6 7 8

log FII -86.96 -1123 -8211 -48710 -239000 -1135000 -5105000 -21230000

dM 231 879 3327 12543 47103 176127 655359 2424831
dM
2

log
n

2π
844.8 3215 12167 45872 172263 644122 2396742 8867956

sum 757.8 2092 3956 -2840∗ -66720∗ -490700∗ -2709000∗ -12360000∗

logCn 832.4 2289 5522 10300 16880 21070 23050 24500

|X | = 4, n = 105

k 1 2 3 4 5 6 7 8

log FII -86.96 -1123 -8211 -48710 -239000 -1135000 -5105000 -21230000

dM 231 879 3327 12543 47103 176127 655359 2424831
dM
2

log
n

2π
1612 6135 23219 87539 328735 1229203 4573798 16923071

sum 1525 5012 15010 38830 89750 94330 -531500∗ -4308000∗

logCn 1582 5059 15310 41370 112500 261100 494000 858900

*) logCMn approximations by FIA with negative values

**) logCMn approximations by FIA with a changing order
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based on omitting all O(1) terms does not have a similar problem; we will return

to this point in the model selection comparisons in Sec. 6.

§4 Beyond the Number of Parameters
In this section, we focus on how the network structures influence the

log FII(M) term and result in different FIA penalties. In particular, we illustrate

how the numerical values of log FII(M) differ when the number of parameters in

the model is fixed. We design three sets of networks with different characteristics.

In Set 1, we compare networks where groups of five nodes are linked either as a

sequence or a tree structure with increasing branching factor. This leads to an

observation that a star-like structure where a group of five nodes are linked to all

other nodes has smaller complexity than other structures where the outdegree

distribution is more uniform.

In Set 2, we have a number of binary trees with a fixed outdegree (two).

The trees differ in terms of how balanced they are. Here we observe that all

binary trees have very similar values of the constant term, log FII(M). Last, we

compare three distinct categories of networks in Set 3. These include two types

of grid-like networks, a star-like network, a second order Markov chain, and a

hybrid between a star and a chain. The outcome of this experiment agrees with

the observation in the first set, namely that a large maximum outdegree, such as

in the star-like structure, appears to lead to small values of the constant term.

However, there is no clear difference in the values of the constant term between

a second order Markov chain and the grid structures.

The three sets of networks are depicted in Fig. 2. They are described in

more detail in the following three subsections, together with observations made

by evaluating the constants. The log FII(M) estimates were obtained by the

above Monte Carlo technique by generating m = 100 random data sets for each

network. We use the sample size 109, which we found to be well sufficient to

guarantee convergence of the constant term log FII(M) in all cases below.

4.1 Set 1: From a Chain to a Five-Star Network
In Set 1, each network has 45 nodes corresponding to random variables

with alphabet size |X | = 4. For each network, there is a root group consisting of

five nodes that have no parents, and eight child groups, each of which consists

of five nodes that each have five parent nodes. Thus, all eight networks have the

same number of parameters, dM = 5 × 3 + 8 × 5 × 45 × 3 = 122895. Network
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Network 1.a Network 1.b Network 1.h

Network 2.a Network 2.b Network 2.f

Network 3.a Network 3.b

��������

��������

Network 3.c

�������� ��������

Network 3.d

�������� ��������

Network 3.e

Fig. 2 Set 1: All five nodes in each parent group enclosed by a frame are parents of all

five nodes in the child group. All networks have 9 × 5 = 45 nodes. The networks range from

Network 1.a (a “five-chain”) where each group is a parent of one other group, to Network 1.h

(a “five-star”) where the root group is a parent of all the other groups. Set 2: Binary trees

from the “caterpillar-tree” (Network 2.a) to the balanced binary tree (Network 2.f). Set 3:

Network 3.a is a square grid of size 8× 8 and Network 3.b is a so called “polar grid” with the

same number of nodes and the same number of parameters. Network 3.c is a “twin-star” with

two node in the middle. Network 3.d is a “star-chain” hybrid between a first order Markov

chain and a star. Network 3.e is a second order Markov chain. Note that in Networks 3.c–3.e,

there is a group of 14 nodes with only one parent each, which keeps the number of parameters

the same as for the other networks in Set 3.
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Fig. 3 Estimates of log FII(M) for the three sets of Bayesian network structures in Sec. 4.

The red dots show the mean values and the error bars indicate the standard error of the mean

over m = 100 random data sets.

1.a has a chain-like structure where the groups are parents of each other in a

sequential ordering, and thus, each node except nodes in the last child group have

five children, i.e., their outdegree equals five. In Network 1.b, each group has two

child groups except those at the bottom level of the tree-like arrangement, and

in Network 1.c, each group has three child groups, etc. At the other extreme,

the groups in Network 1.h are organized in a star-like arrangement, which we

call a “five-star” network.

Table 3a and Fig. 3a show log FII(M) and logCMn for the eight Bayesian

networks. In this set of networks, we investigate how the maximum outdegree
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Table 2 The normalizing term logCM
n and the Fisher information integral log FII estimates

based on Monte Carlo sampling for three sets of Bayesian networks in Sec. 4 with sample size

109. All values are reported with four significant digits

Network id 1.a 1.b 1.c 1.d 1.e 1.f 1.g 1.h

log FII -534800 -597600 -657200 -709600 -755600 -837200 -861700 -901600

logCn 1139000 1077000 1017000 964500 918600 837000 812000 773000

(a) Set 1

Network id 2.a 2.b 2.c 2.d 2.e 2.f

log FII -421.3 -418.1 -423.3 -422.5 -419.4 -419.4

logCn 20220 20220 20220 20220 20220 20220

(b) Set 2

Network id 3.a 3.b 3.c 3.d 3.e

log FII -2431 -2911 -5858 -4486 -2656

logCn 31940 31460 28510 29880 31710

(c) Set 3

affects the constants. It can be seen quite clearly that logCMn and log FII(M)

decrease as the maximum outdegree increases. Network 1.h (“five-star”), is the

least complex one among Set 1.

4.2 Set 2: Binary Trees
We compare six binary trees (Networks 2.a, . . . , 2.f) with 127 nodes and

alphabet size |X | = 4 in Set 2. For all the binary trees in this set, there are two

children for each parent and each child has exactly one parent. Therefore, all the

trees have the same number of parameters. We restrict the maximum number of

nodes in a layer to {2, 4, 8, . . . , 64} in Network 2.a to 2.f , respectively. In other

words, we have a set of binary trees from the least balanced (the “caterpillar-

tree”, 2.a) with depth 64 to the balanced binary tree with depth seven (2.f).

We estimate log FII(M) in the same way as for Set 1 in Sec. 4.1 with

100 randomly generated data sets for each binary tree and list the corresponding

values in Table 3b. For all different types of trees in this data set, the values

of log FII(M) as well as logCMn are almost the same. This is in line with the

conjecture that the complexity term is affected by the outdegree distribution

rather than, for instance, the diameter of the network (measured by the longest
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path between any two nodes).

4.3 Set 3: Grids, Chains and Stars
In this set of Bayesian networks, we compare three categories of net-

works: two different grids, a star-like network, a second order Markov chain,

and a hybrid between a chain and a star. We show the structures of networks

in Fig. 2, networks {3.a, . . . , 3.e}. The total number of nodes in each network

is 64 and as for the above networks, the alphabet size is |X | = 4. The numbers

of parameters for all networks are the same as well. Networks 3.a and 3.b are

a square grid and a so called polar grid, respectively. Network 3.c (“twin-star”)

has two nodes in the middle that are parents to all the other nodes except a

group of 13 nodes, whose only parent is one of the middle nodes. This is to

ensure that the number of parameters is the same as in the grid structures.

Networks 3.d and 3.e contain a sequence where each node, except the first, is

a child of the previous node. In Network 3.d, the last 49 nodes have also the

root node as their second parent, while in Network 3.e, the last 49 nodes have a

second order Markov chain structure, where node i has nodes i− 1 and i− 2 as

parents. The group of 14 nodes shown separately in the diagrams have only one

parent in order to guarantee the same number of parameters for all networks in

Set 3. Network 3.d is a hybrid between a chain and a star (a “star-chain”) since

it contains a first order Markov chain as well as a star component as subgraphs.

We show the estimated values of log FII(M) in Table 3c and Fig. 3c.

It is quite apparent that the least complex models are the twin-star (3.c) and

the star-chain (3.d). These two network include one or more nodes with large

outdegree whereas Networks 3.a, 3.b and 3.e have a more uniform outdegree

distribution. There is a slight difference between the complexity of polar grid

network (3.b) and Networks 3.a and 3.e — the polar grid is less complex than the

other two — which can be explained by noting that the central node in the polar

grid has outdegree 14, which is more than the maximum degree in the square

grid (2) or the Markov chain (2) but less than that of the twin-star (maximum

outdegree 62) or the star-chain (63).

§5 Model Selection Simulations
In the above, we already made some remarks on the likely consequences

of the identified properties of FIA to model selection performance. In this sec-

tion, we perform a set of simulation experiments to investigate them in detail.
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We focus in particular on complexity regularization in Bayesian networks. We

consider networks with l = 20 and l = 40 discrete-valued nodes. The alphabet

size of each node is varied to be |X | = 2 or |X | = 4.

In each simulation, we restrict the model comparison to a set of eight

network topologies that are obtained by constructing a random DAG with each

node’s indegree k = 8 (subject to the acyclicity condition) and removing edges

from it to obtain DAGs with maximum indegrees k = 7, . . . , 1. Such a compari-

son is admittedly atypical since most practical scenarios involve several possible

network topologies with the same maximum indegree, whereas we only consider

one topology for each value of k. We adopt the present methodology for the

purpose of highlighting the complexity regularization aspect and in order to be

able to estimate the FII term accurately for each individual Baysian network

model.∗2

Within each group of Bayesian networks, we compare FIA with other

model selection criteria of varying levels of approximation, including BIC by

Schwarz16), and fNML by Silander et al.19). To obtain a measure of the ideal

performance, we also include the Bayes factor based on the “true” prior. In

practice, the true prior is obviously not known in advance, and therefore, the

Bayes factor criterion should be taken simply as a yardstick against which to

compare the other methods. The effect of using different priors in Bayes factors

has been studied by Silander et al.18).

We perform the comparison for sample sizes 10, 100, . . . , 106. For each

sample size we draw 100 random data sets from the true network, and apply the

different criteria to select one of the eight possible network structures. We show

the results as percentages of correctly identified models in Figs 4 and 5. For

the Bayesian networks with alphabet size |X | = 2 (for both l = 20 and l = 40),

sample size 104 is enough for FIA to achieve nearly 100% accuracy. But for the

cases when |X | = 4, FIA needs n ≥ 106 to achieve good performance. Most

of the failures are caused by selecting the most complex models with maximum

indegree k = 8: see the bottom panels of each figure to verify that when the true

model is k = 8, FIA achieves 100% accuracy just because it always favors the

most complex model available unless the sample size is large enough to avoid

the reversed complexity penalty phenomenon discussed in the previous section.

∗2 Based on the observations in Sec. 4, which make it clear that Bayesian networks with
a fixed number of parameters can have large differences in FII values, we evaluate the
constants for individual networks instead of using the same complexity penalty for all
networks with a fixed number of parameters.
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Fig. 4 Model selection experiments for selecting Bayesian networks with 20 nodes and max-

imum indegree k = {1, . . . , 8}. Bars show percentages of correctly identified models by four

different criteria as a function of sample size n = {10, 102, . . . , 106}. For the left plots, we have

alphabet size |X | = 2, and for the right ones we have |X | = 4. Four criteria, from left to right

at each sample size, are: FIA (Fisher information approximation) by Eq. (8), BIC by Eq. (6),

fsNML (factorized sequential NML) by Silander et al.19), and BF (Bayes factor with “true”

prior).
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Fig. 5 Model selection experiments with the same settings for Bayesian networks with 40

nodes. (cont’d from Fig. 4)
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On the contrary, the BIC criterion works better than FIA except when

the true model is the most complex one. Its accuracy decreases when the max-

imum indegree of the true model increases. For networks with |X | = 4 and

k = 8, the BIC criterion fails even when the sample size reaches 106. Based

on Table 1, we can see that BIC puts unnecessary large penalties to complex

models. Therefore, it tends to select simple models. On the other hand, we note

that the fNML criterion performs almost as well as the Bayes factor criterion

with the true prior.

§6 Conclusions
In this study, we used a Monte Carlo approach to evaluate the con-

stant term log FII(M) in the complexity of Bayesian network models. The main

contributions are i) the constant term can be very large compared to the asymp-

totically leading term that is proportional to the number of parameters; ii) the

constant term can be used to investigate the differences in the complexity of

individual networks beyond the number of parameters.

Concerning the first of the above contributions, it turned out that the

constant log FII(M) tends to make the Fisher information approximation of

marginal likelihood or the NML criterion break down when the sample size is

less than the number of parameters. In terms of the second contribution, our

experiments suggest a conjecture that the outdegree distribution of the nodes

in a Bayesian network structure is a key factor in determining the value of

log FII(M). The difference in log FII(M) of networks with the same number of

parameters can be non-trivial and have interesting consequences on the appro-

priate complexity penalization.

Our model selection experiment further indicates that while the FIA

model selection criterion may be unreliable when applied to complex Bayesian

network models, the NML criterion and Bayes factors are nevertheless reliable

and applicable even for small sample sizes. Indeed, the experiments also show

that another kind of (non-asymptotic) approximation of NML, the fNML crite-

rion, behaves almost as well as Bayes factor with the true prior. A remarkable

fact is that a very rough approximation (of the Bayes factor as well as the NML),

namely the classic BIC criterion where all O(1) terms are ignored, was in our

experiments actually never worse and often much better than the FIA criterion

where the asymptotic formula is truncated only at the o(1) term.

Comparing FIA penalties with logCMn makes it clear that the o(1) term
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in Eq. (8) is also an essential part when the sample size is small, which leads to

huge differences between the FIA penalty and logCMn . Similar results are also

reported in the early work by Navarro 9) for an exponential model and by Roos

et al. 15) for Markov sources. Based on the simulation experiment, we suggest

that including the constant term alone may actually be dangerous, and in case

useful asymptotic formulas are sought after, one should consider more refined

approximations that also include o(1) terms. As a rule of thumb, situations

where a FIA type approximation can be considered “safe” seem to be those

where the sample size exceeds the number of parameters in any of the models

being compared.

It is important to note that the goal of this study was not to evaluate

the model selection performance of a criterion where the constant FII term is

obtained by Monte Carlo techniques. Such a criterion may not be very practical

since for complex networks, the sample size at which the o(1) term becomes

negligible can be enormous, and drawing a sufficient number of random data

sets from each of the candidate models would be time consuming. Instead, we

wanted to illustrate the performance of the FIA criterion, independently of the

method by which the FII term is obtained. In other words, we wanted to find

out whether evaluating the FII term via an approximate analytic formula, for

example, would lead to a useful model selection criterion. The answer turns out

to be negative unless the model complexity is severly restricted or the sample

size is extremely large. Hence, studying analytic approximations without paying

close attention to the o(1) terms is likely to be of limited interest.

In the future, it will be interesting to extend the scope of this study to

other model classes such as generalized linear models with continuous parameters

to see if the problem of FIA for small sample sizes also applies to them. To

address the small sample issues related to FIA, we may also try to analytically

break down the o(1) term to obtain more reliable approximations. A closer study

for the performance of FIA and related model selection criteria in general can

then be done in these two directions.
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