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Abstract 

Congenital heart defects (CHD) are classified as acyanotic and cyanotic. In cyanotic 
CHD, a mixing of deoxygenated in oxygenated blood reduces arterial oxygenation 
and the child may be cyanotic, i.e., bluish. Many children with CHD need invasive 
treatment, either catheter procedures or cardiac surgery. Congenital cardiac surgery 
often aims to restore normal circulation and correct the defect as seen in vast majority 
of pulmonary atresia with ventricular septal defect (PA+VSD), but palliative surgery 
may also be needed or may be the only possible treatment strategy.  

 
Noxious trauma to the lung, such as cardiopulmonary bypass (CPB) and the 
reperfusion phase after congenital cardiac surgery, may promote excessive 
extravascular lung water (EVLW). In the mammalian lung, effective clearance of 
EVLW is essential in maintaining only a minimal layer of the epithelial lining liquid 
and warding off lung edema. In humans and animals, this clearance rests on active 
airway epithelial Na+ transport. Amiloride-sensitive epithelial Na+ channel (ENaC), 
together with basolateral Na-K-ATPase, allow the transcellular movement of Na+, 
which is followed by parallel osmotic movement of water. Airway epithelial Na+ ion 
and liquid transport is reduced by ambient hypoxia. Furthermore, arterial oxygen 
saturation level has correlated with airway epithelial Na+ transport in ambient 
hypoxia. Postoperative lung edema after congenital cardiac surgery has principally 
been assessed by chest radiography (CXR), which may be inaccurate and causes 
irradiation. Excessive EVLW promotes appearance of artifacts called B-lines in lung 
ultrasound (US), whereas lung compliance associates negatively with increased 
EVLW.  

 
The first aim of this thesis was to study the effect of chronic hypoxemia in ambient 
normoxia on lung liquid transport in children with CHD. We measured airway 
epithelial Na+ transport activity by nasal transepithelial potential difference (NPD) 
and Na+ transporter mRNA levels by quantitative reverse-transcriptase polymerase 
chain reaction (RT-qPCR). Second, feasibility of lung US and lung compliance in 
assessment of EVLW and in predicting short-term clinical outcome was tested after 
congenital cardiac surgery. EVLW was assessed with both CXR and lung US. Lung 
compliance was quantified as static compliance and as ventilator-derived dynamic 
compliance. Third, the long-term survival of a cyanotic CHD was retrospectively 
evaluated in patients with PA+VSD. 

 
According to our findings, the airway epithelial Na+ transport was impaired in 
profoundly hypoxemic children with cyanotic CHD. After congenital cardiac surgery, 
lung US B-line score and static lung compliance correlated with CXR lung edema 
assessment, unlike ventilator-derived dynamic lung compliance. The dynamic lung 
compliance values differed clearly from the static ones but these compliance values 
showed a moderate correlation with each other. However, ventilator-derived dynamic 
lung compliance may not reflect the state of lung parenchyma similar to static 
compliance. Furthermore, both early postoperative lung US B-line and CXR lung 
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edema scorings predicted short-term outcome interpreted as length of postoperative 
mechanical ventilation and intensive care. Among factors affecting the long-term 
survival of PA+VSD the primary anatomy of pulmonary circulation and achievement 
of repair were most important. 
 
In summary, our results emphasize the effect of postoperative pulmonary 
complications on short-term outcome after congenital cardiac surgery. Our data 
suggests that hypoxemia may attenuate the constitutional mechanism of the lung to 
prevent excessive lung liquid accumulation. To detect this, lung US can be used to 
complement CXR when assessing EVLW in children undergoing cardiac surgery. 
This may be particularly useful in profoundly hypoxemic children with cyanotic CHD 
and may promote early recognition of postoperative pulmonary complications. 
Although primary anatomical factors affect long-term outcome of PA+VSD, an 
important form of cyanotic heart disease, the treatment should aim for corrective 
surgery in all PA+VSD patients. 

 
,  
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Tiivistelmä 

Synnynnäiset sydämen rakenneviat voivat olla syanoottisia, joissa vähähappinen 
laskimoveri ja hapekas valtimoveri pääsevät sekoittumaan aiheuttaen valtimoveren 
happipitoisuuden alenemisen (hypoksemia). Tai viat voivat asyanoottisia, jolloin 
valtimoveren happipitoisuus on normaali. Merkittävä osa synnynnäisistä sydänvioista 
vaatii kajoavaa hoitoa joko kirurgisesti tai katetriteitse. Hoidon tavoitteena on usein 
normaalin verenkierron palauttaminen kuten on tässä kirjassa tarkemmin käsiteltävän 
syanoottisen synnynnäisen sydänvian, pulmonaaliatresia yhdistettynä 
kammioväliseinäaukkoon (PA+VSD), tapauksessakin. Kuitenkin osassa 
synnynnäisistä sydänvioista verenkierto voidaan korjata vain osittain palliatiivisen 
kirurgian keinoin. 

 
Normaalisti kaasuja vaihtavat ilmatiet sisältävät vain pienen määrän nestettä. 
Synnynnäisen sydänvian leikkaushoidon jälkeen hengitysteihin voi kertyä liiallista 
nestettä eli keuhkoödeemaa, joka hankaloittaa keuhkojen pääasiallista tehtävää eli 
kaasujen vaihtoa. Ylimääräisen keuhkonesteen kuljetus pois ilmatilasta perustuu 
hengitysteiden pintasolukon (epiteelin) aktiivisen Na+-ionien kuljetuksen 
aikaansaamaan osmoottiseen veden siirtymiseen. Aiemmin on kokeellisesti osoitettu, 
että ilman matala happipitoisuus (hypoksia) heikentää hengitystie-epiteliaalista Na+-
ionien kuljetusta ja keuhkonesteen poistumista. Lisäksi hypoksemian on osoitettu 
korreloivan hengitystie-epiteliaalisen Na+-ionien kuljetuksen kanssa korkeassa 
vähähappisessa ilmanalassa. Sydänleikkauksen jälkeen keuhkoödeeman 
kuvantaminen perustuu sydän-keuhkokuvaan (thorax-kuva), joka aiheuttaa säteilyä ja 
voi olla epätarkka. Keuhkojen ultraäänitutkimuksella todettavien ns. B-viivojen on 
todettu olevan merkki keuhkojen lisääntyneestä nestemäärästä. Ja toisaalta keuhkojen 
venyvyyttä kuvaavan keuhkokomplianssin on todettu heikentyvän keuhkojen 
nestemäärän lisääntyessä.  

 
Tutkimme sydänleikkaukseen saapuvilla lapsilla kroonisen hypoksemian vaikutusta 
hengitystie-epiteliaaliseen nesteen kuljetukseen ja mahdollisen sydänleikkauksen 
jälkeisen keuhkoödeeman kehittymiseen. Mittasimme nenäepiteelin ionien 
kuljetusaktiviteettia transepiteliaalisena potentiaalierona (NPD) ja Na+-ionikanavien 
lähetti-RNAn määriä RT-qPCR-tekniikalla. Sydänleikkauksen jälkeen teho-osastolla 
tutkittiin keuhkojen ultraäänen ja keuhkokomplianssin mahdollisuuksia 
keuhkoödeeman ja toisaalta leikkauksen jälkeisen lyhytaikaisennusteen arvioimisessa. 
Syanoottisen synnynnäisen sydänvian pitkäaikaisennustetta arvioitiin 
retrospektiivisesti kattavan PA+VSD-potilaiden pitkäaikaisseurannan perusteella. 
 
Osoitimme hengitystie-epiteliaalisen Na+-ionien kuljetuksen olevan heikentynyt 
hypoksemisilla syanoottista sydänvikaa sairastavilla lapsilla. Sydänleikkauksen 
jälkeinen keuhkojen ultraäänilöydös ja staattinen keuhkokomplianssi korreloivat 
thorax-kuvan nesteisyysarvion kanssa. Hengityskoneen automaattisesti määrittämä 
dynaaminen keuhkokomplianssi erosi staattisesta komplianssista huolimatta 
korrelaatiosta näiden komplianssiarvojen välillä, eikä korreloinut thorax-kuvan 
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nesteisyysarvion kanssa. Dynaaminen keuhkokomplianssi vaikuttaakin kuvaavan eri 
asiaa kuin staattinen keuhkokomplianssi, eikä sellaisenaan sovellu keuhkonesteen 
arvioimiseen. Leikkauksen jälkeinen thorax-kuvasta tai keuhkojen ultraäänestä tehty 
arvio keuhkojen nesteisyydestä oli itsenäinen leikkauksen jälkeiseen 
lyhytaikaisennusteen vaikuttava tekijä, päinvastoin kuin keuhkokomplianssi. 
PA+VSD –potilaiden pitkäaikaisennusteeseen puolestaan tärkeimpinä tekijöinä 
vaikuttivat alkuvaiheen keuhkoverenkierron anatomia ja onnistunut kirurginen 
korjaus. 
 
Tulokset korostavat sydänleikkauksen jälkeisten keuhkopulmien vaikutusta 
sydänleikkauksesta toipumiseen.  Havaintomme perusteella syanoottista synnynnäistä 
sydänvikaa sairastavilla lapsilla voi olla suurentunut riski sydänleikkauksen jälkeiselle 
keuhkoödeemalle ja keuhkonesteen määrää voidaan sydänleikatuilla lapsilla arvioida 
thorax-kuvan ohella myös keuhkojen ultraäänitutkimuksella. Keuhkovaurion 
aktiivinen kuvantaminen sydänleikkauksen jälkeen voi olla hyödyksi potilaan 
lyhytaikaisennusteen parantamisessa ja tehohoidon keston minimoimisessa. Vaikka 
keuhkoverenkierron anatomia vaikuttaa PA+VSD potilaiden ennusteeseen, on 
kirurgiseen korjaukseen pyrkiminen ensiarvoisen tärkeää ennusteen kannalta.  
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Abbreviations 

ACC  Aristotle comprehensive complexity 
ALI  acute lung injury 
AQP  aquaporin 
(A)RDS (acute/adult) respiratory distress syndrome 
AUC  area under the curve 
CFTR cystic fibrosis transmembrane conductance regulator 
CHD  congenital heart defect 
CK18  cytokeratin 18 
CPB  cardiopulmonary bypass 
Crs  respiratory system compliance 
CXR  chest radiography/ X-ray 
e.g.  exempli gratia 
ENaC epithelial sodium channel 
EVLW     extravascular lung water 
HAPE high altitude pulmonary edema 
HLHS hypoplastic left heart syndrome 
HR  heart rate 
i.e.  id est 
L-R  left to right 
LV  left ventricle 
MAPCA major aortopulmonary collateral artery 
mRNA messenger RNA 
NKCC Na-K-Cl cotransporter 
NPD  nasal transepithelial potential difference 
NYHA New York Heart Association 
PA+VSD pulmonary atresia with ventricular septal defect 
PICU  pediatric intensive care unit 
POD  postoperative day 
R-L  right to left 
ROC  receiver operating characteristic 
RR  respiratory rate 
RT-qPCR quantitative reverse-transcription polymerase chain reaction 
RV  right ventricle 
SpO2  arterial blood oxygen saturation level measured by pulse oximeter 
TGA  transposition of the great arteries 
TNPAI total neopulmonary arterial index 
TOF  tetralogy of Fallot 
TPDD transpulmonary double indicator dilution 
TPTD transpulmonary thermodilution 
US  ultrasound 
UVH  univentricular heart 
VSD  ventricular septal defect 



 

12   

1 Introduction 

The gas exchange in human bodies occurs in air-filled alveoli, which are surrounded 
by capillary vessels carrying oxygen bound to hemoglobin towards the heart and then 
to the entire body. The human fetus, however, receives oxygen through the umbilical 
vein, and the placenta serves as the organ for gas exchange. Nevertheless, the fetal 
lungs, through liquid and surfactant secretion, contribute significantly to fetal 
development of the respiratory system (Alcorn et al. 1977, Strang 1991).  
 
Adaptation to extrauterine life requires major cardiorespiratory adjustments at birth 
(Alvaro and Rigatto 2005). Furthermore, clearance of fetal lung liquid requires 
efficient airway epithelial liquid absorption induced by cathecolamines, 
glucocorticoids, and increased ambient oxygen level (Strang 1991). Postnatally, low 
ambient oxygen level (hypoxia) at high altitude and low arterial blood oxygen level 
(hypoxemia), on the contrary, associate with reduced airway epithelial liquid removal 
(Sartori et al. 2004, Su et al. 2016).  
 
Arterial blood oxygen levels rise to adult levels within several minutes after birth 
(Kamlin et al. 2006, Toth et al. 2002). However, in newborns facing problems in 
cardiorespiratory adjustments or clearance of fetal lung liquid, arterial blood oxygen 
saturation level measured by pulse oximeter (SpO2) may remain low. Newborns with 
congenital heart defects (CHD) may also have low SpO2, and without corrective 
surgery the growing child with cyanotic CHD may suffer from long-lasting 
hypoxemia and cyanosis, i.e., blueness.  
 
Since the cardiovascular and pulmonary systems closely interrelate, children with 
CHD may be especially sensitive to pulmonary pathologies, and respiratory-related 
complications are common after congenital cardiac surgery (Sata et al. 2012, Kanter 
et al. 1986). In particular, congenital cardiac surgery with cardiopulmonary bypass 
(CPB) causes an ischemia-reperfusion injury and inflammatory response leading to 
endothelial injury and increased capillary permeability and further to increased 
amounts of extravascular lung water (EVLW) (Apostolakis et al. 2010, 
Asimakopoulos et al. 1999a). 
 
This thesis hypothesized that chronic hypoxemia, similar to ambient hypoxia, may 
impair airway epithelial lung liquid clearance and may predispose children with 
cyanotic CHD to excessive EVLW after cardiac surgery. Furthermore, the thesis 
aimed to evaluate feasibility of postoperative lung ultrasound and lung compliance 
after congenital cardiac surgery through detection of abundance of EVLW (Barnas et 
al. 1992, Jambrik et al. 2010). Whether early postoperative sonographic and 
radiographic scorings of EVLW as well as lung compliance predict short-term 
outcome after congenital cardiac surgery was studied prospectively in children with 
CHD. Long-term outcome of cyanotic CHD requiring surgical treatment, instead, was 
studied retrospectively in patients with pulmonary atresia with ventricular septal 
defect (PA+VSD). 



2 Review of the literature 
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2 Review of the literature 

 Congenital heart defect  2.1

A congenital heart defect (CHD), considered as a structural abnormality of the heart 
and/or great vessels present from birth, forms the most common class of birth defect 
with an estimated incidence of 1% (Dolk et al. 2011, Hoffman and Kaplan 2002). 
Etiology of CHD is traditionally defined by interaction of multiple genes and 
environmental factors (Nora 1968). Both noninherited fetal exposures as well as 
specific genes essential for heart formation contribute to the etiology of CHD (Garg et 
al. 2003, Jenkins et al. 2007, Schott et al. 1998). However, chromosomal aneuploidies 
as well as single-gene defect associated with noncardiac malformations account for 
10%–15% of CHDs (van der Bom et al. 2011). 
 
Modern prenatal screening allows antenatal diagnosing of CHD. In Finland, prenatal 
screening for CHD is performed during the second trimester (Eik-Nes 2006, Autti-
Rämö et al. 2005). In reports from the last 15 years, prenatal CHD diagnosis has been 
possible in only one-third of cases, but advances in antenatal screenings have 
increased the antenatal diagnosis rates in recent years (Quartermain et al. 2015, Ojala 
et al. 2013). For example, in 2011, the antenatal diagnosis rate of univentricular heart 
(UVH) was 87% in Finland (Ojala et al. 2013). Furthermore, postnatal pulse oximetry 
screening used in addition to clinical examination in all Finnish childbirth hospitals 
has improved early diagnosis especially in critical duct-dependent CHD needing 
invasive treatment during the neonatal period (de-Wahl Granelli et al. 2009, Valmari 
2007, Ojala et al. 2015). Postnatally, echocardiography remains as the basis of CHD 
diagnostics, although other noninvasive diagnostic modalities and angiography are 
sometimes necessary for thorough evaluation. 

 
CHDs are classified as acyanotic and cyanotic. In cyanotic CHD, arterial oxygen 
levels are reduced due to mixing of deoxygenated and oxygenated blood and the child 
may be cyanotic, i.e., bluish. In acyanotic CHD, instead, arterial oxygen levels are 
normal, and the defect may consist of an abnormal left to right (L-R) shunt within the 
heart or great vessels, or narrowed structures diminishing the systemic circulation, or 
regurgitations of the atrioventricular or semilunar valves (Table 1). However, without 
treatment, acyanotic CHD may transform to cyanotic due to excessive pulmonary 
blood flow leading to pulmonary hypertension evolving to right to left (R-L) shunting 
(i.e., Eisenmenger syndrome). 
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  Duct-dependent Non-duct-dependent 

Acyanotic 

L-R shunting  

Atrial septal defect 

Atrioventricular septal 
defect 

Patent ductus arteriosus 

VSD 

Obstructive defect 

Critical aortic stenosis a Aortic stenosis 

Critical coarctation of the aorta a Coarctation of the aorta 

Interrupted Aortic arch a Pulmonary stenosis 

Other  Vascular rings 

Cyanotic 

Reduced pulmonary 
blood flow 

PA+VSD b PA+VSD+MAPCAs 

PA+intact ventricular septum b TOF 

R-L shunting 

Critical Ebsteins anomaly b Ebsteins anomaly 

Critical pulmonary stenosis b 

HLHS a 

 

Tricuspid atresia b 

Separate circulations TGA a, b TGA+ASD/VSD 

Other UVH+ventricular outflow tract 
obstruction a or b 

Total anomalous 
pulmonary venous return 

Truncus arteriosus 

a	duct-dependent	systemic	circulation	
b duct-dependent pulmonary circulation 

2.1.1 Hypoxemia in cyanotic congenital heart defect 

In cyanotic CHD, reduced pulmonary blood flow capability causes drainage of 
deoxygenated venous blood to oxygenated systemic circulation through septal defects. 
Also, in transposition of the great arteries (TGA), mixture of parallel deoxygenated 
and oxygenated circulations by shunting is crucial for survival (Table 1). After birth, 
the cyanotic CHDs without any concomitant shunts remain dependent on fetal shunts, 
namely ductus arteriosus and foramen ovale. Thus, closure of these fetal routes may 
be incompatible with life in some cyanotic CHDs.  

 

Table 1. Examples of congenital heart defects 
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The level of systemic hypoxemia between different cyanotic CHDs varies from 
almost normal to profound (Figure 1). As newborns with tetralogy of fallot (TOF) 
may have SpO2 levels over 90% without repair, the ones with TGA may have SpO2 
below 60% prior to initial invasive intervention. Furthermore, there are a group of 
various CHDs that share the feature of only one ventricle being of adequate functional 
size, namely UVH. These children may remain profoundly hypoxemic until the age of 
2 to 3 years when the final stage of palliative surgery is performed and SpO2 levels 
usually rise over 90% (Jolley et al. 2015).  

 

Figure 1 SpO2 levels at high altitude measured in adultsa and infantsb compared with SpO2 
values typically seen in CHDs. Values between 6000m and 8000m are estimated 
SpO2 levels. (Gamponia et al. 1998, Grocott et al. 2009, Hackett and Roach 
1995, Niermeyer et al. 1993, Sartori et al. 2004). 

A progressive sudden fall in arterial oxygen level can cause severe symptoms as seen 
in critically ill patients as well as in mountain sickness at high altitude (Grocott et al. 
2007). But, in the case of chronic hypoxemia the human body may adapt. Delivery of 
oxygen to cells improves in response to hypoxia (Zhou et al. 2008). Most healthy 
humans living at high altitude can adapt nicely to their hypoxic environment, whereas 
some subjects may develop chronic mountain sickness with excessive hemopoiesis 
and polycythemia (Hainsworth and Drinkhill 2007). Similarly in chronically 
hypoxemic children with uncorrected cyanotic CHD, hemoglobin levels increase. In 
patients with cyanotic CHD, remarkable neovascularization may also develop to 
improve oxygenation (Duncan et al. 1999). Moreover, the vascular endothelial growth 
factor stimulating angiogenesis has been shown to be elevated and to correlate 
positively with SpO2 level in profoundly hypoxemic children with cyanotic CHD 
(Baghdady et al. 2010, Starnes et al. 2000). 

Sea level

3000 m

4000 m

5000 m

6000 m

7000 m

8000 m

Altitude SpO2 level Examples of CHD and typical SpO2 level

95-100%
Acyanotic CHD

9000 m 54% 
a

50%

87%‒90% b

87% 
b

72%‒79% a

75%

60%

TGA prior to any operation ≈ 60%‒70%

UVH after BDG 

PA+VSD±MAPCAs 
≈ 75%‒85%

TOF ≈ 85%‒95%

UVH after TCPC ≈ 90%‒95%

Mount Everest
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2.1.2 Pulmonary atresia with ventricular septal defect 

Pulmonary atresia with ventricular septal defect (PA+VSD) is an example of cyanotic 
CHD, and these patients often present with a profound hypoxemia. PA+VSD results 
from an error in the infundibular septum alignment during embryonic conotruncal 
heart development (Van Praagh et al. 1970) and is characterized by complete 
obstruction of the pulmonary RV outflow tract resulting in an absence of connection 
between right ventricle (RV) and pulmonary arteries. A ventricular septal defect 
(VSD) allos R-L shunting (Samanek and Voriskova 1999) (Figure 2).  

 

Figure 2 PA+VSD is a cyanotic congenital heart disease characterized by atresia of the 
pulmonary valve and artery, and a large VSD. The pulmonary blood supply is 
dependent on ductus arteriosus or MAPCAs or both.  

In PA+VSD, the anatomy and extent of pulmonary vasculature varies greatly, is 
determined during embryological development, and depends on timing of termination 
of antegrade pulmonary blood flow. In addition to echocardiography, a cardiac 
catheterization is often needed to clearly evaluate the pulmonary vasculature prior to 
determination of surgical strategy. Nowadays, three-dimensional magnetic resonance 
angiography and computed tomography are both comparable with cardiac 
catheterization when identifying pulmonary blood flow (Geva et al. 2002, Lin et al. 
2012).  
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Pulmonary blood flow in PA+VSD derives from systemic circulation, either from uni- 
or bilateral ductus arteriosus, major aortopulmonary collateral arteries (MAPCAs), or 
from both (Figure 2). MAPCAs exist in 31%‒38% of PA+VASD patients and are 
developed to compensate for the insufficient antenatal anterograde pulmonary blood 
flow and their embryologic origin varies (Hofbeck et al. 1991, Leonard et al. 2000, 
Rabinovitch et al. 1981). More recently, a study by Norgaard and colleagues 
suggested that all the MAPCAs are dilated bronchial arteries (Norgaard et al. 2006). 
The descending thoracic aorta serves as the origin for most MAPCAs, but they may 
originate also from the aortic arch, subclavian artery, distal thoracic aorta, internal 
mammary artery, and coronary arteries (Liao et al. 1985). In the presence of 
diminutive central pulmonary arteries and clinically significant MAPCAs, 
intrapulmonary arteries often become stenotic and hypoplastic due to decreased 
pulmonary blood flow (Amark et al. 2004, Haworth et al. 1981). However, when the 
pulmonary blood flow derives wholly from ductus arteriosus, the peripheral 
pulmonary blood flow and the distribution of the intrapulmonary arteries are usually 
normal (Amark et al. 2004). 

 Treatment of congenital heart defect 2.2

Although the mildest forms of CHD may need only to be observed and followed by a 
cardiologist, many children with CHD need invasive treatment, either catheter 
procedures or cardiac surgery. The type of CHD determines whether the invasive 
treatment requires surgery or catheter intervention, whether the procedure is 
corrective or palliative, whether neonatal procedures are needed, and whether only 
one procedure or a series of procedures is needed. Critical duct-dependent CHD needs 
invasive treatment during the first days of life (Table 1). 
 
Congenital cardiac surgery aims either to restore the normal circulation and correct 
the defect or to make circulation more appropriate by palliation. For instance, the 
majority of patients with PA+VSD, even with MAPCAs, are nowadays repaired 
(Amark et al. 2006, Cho et al. 2002). However, patients with UVH such as 
hypoplastic left heart syndrome (HLHS), generally go through a three-staged 
palliation in early childhood resulting in Fontan circulation, where the central and 
hepatic veins are directly connected to the pulmonary arteries (Jolley et al. 2015). The 
type of first operation in the newborn period varies and depends on the specific type 
of UVH defect. The first operation aims to complete a mixing of pulmonary and 
systemic circulations, avoidance of pulmonary venous congestion, unobstructed 
outflow to the systemic circulation, and a reliable but controlled source of pulmonary 
blood flow. The second operation, i.e., Glenn operation, is normally performed 
between the ages of three to six months, and aims to reduce volume load from a single 
ventricle by connecting the superior vena cava to the pulmonary artery. During the 
third and final stage, the inferior vena cava is connected directly to the pulmonary 
arteries by total cavopulmonary connection (TCPC), allowing all venous blood to 
complete pulmonary circulation through direct blood vessel connections. 
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Since more complex CHDs are operated on these days and survival of CHD has 
significantly improved, more children with CHD grow and achieve adulthood. This 
means the number of reoperations for residual defects, replacement of conduits, and 
late complications needing reoperations have also increased (Ong et al. 2013, Vida et 
al. 2007, Erikssen et al. 2015).  

2.2.1 Surgery of PA+VSD 

The aim in treating PA+VSD patients is to restore normal circulation with separated 
pulmonary and systemic circulations in series. Thus, the repair of PA+VSD comprises 
closure of VSD as well as extracardiac pulmonary blood supply and creation of a 
connection between the RV and pulmonary arteries. The first successful repair was 
reported in 1955 (Lillehei et al. 1955), after which a variety of surgical techniques 
have served to treat patients with PA+VSD. 

 
When ductus arteriosus solely supplies pulmonary blood flow, depending on the size 
of central pulmonary arteries, patients undergo either primary or staged repair. If 
central pulmonary arteries are considered diminutive and primary repair impossible, 
often a systemic-pulmonary artery shunt is created to improve the pulmonary 
circulation, native pulmonary vascular bed, and oxygenation.  

 
In the presence of MAPCAs and scanty central pulmonary arteries, surgical strategies 
are more complicated and the surgical treatment of PA+VSD with MAPCAs is a more 
debated topic. Traditionally, a staged repair with unifocalization of MAPCAs into 
pulmonary circulation has been a widely used surgical strategy (Duncan et al. 2003, 
Reddy et al. 1997, Song et al. 2009, Iyer and Mee 1991). Also a strategy of primary 
repair with unifocalization has revealed excellent short-term results (Davies et al. 
2009, Lofland 2000, Carrillo et al. 2015). However, a study from Melbourne reported 
that the majority of unifocalized MAPCAs may thrombose, develop stenosis, or fail to 
grow (dUdekem et al. 2005). Therefore, unifocalization has become a subject of 
controversy (Brizard et al. 2009, Malhotra and Hanley 2009), and a strategy focusing 
on augmenting blood flow within the native pulmonary arteries by systemic-
pulmonary artery shunting instead of unifocalizing MAPCAs has also been introduced 
(Brizard et al. 2009, Liavaa et al. 2012, Mumtaz et al. 2008, dUdekem et al. 2005).  

2.2.2 Grading the risk of morbidity after cardiac surgery 

Initially high postoperative mortality has dramatically decreased due to advances in 
surgical techniques, cardiopulmonary bypass (CPB), and postoperative intensive care. 
However, mortality and morbidity after heart surgery still exist (Erikssen et al. 2015). 
For some simple defects (e.g., atrial septal defect), surgery is relatively routine and 
risk-free, whereas surgery for other defects (e.g. UVH) includes a high risk for 
postoperative morbidity (Erikssen et al. 2015, Nieminen et al. 2001). In addition to 
the complexity of the operative method, depending on diagnosis and surgical 
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technique, procedure-independent factors such as neonatal age also contribute to the 
postoperative mortality and morbidity (Kang et al. 2004).  
 
Since many factors affect morbidity after congenital cardiac surgery, complexity-
adjusted scoring methods have been created to evaluate postoperative morbidity and 
to compare surgical results between surgical centers (Jenkins et al. 2002, Lacour-
Gayet et al. 2004). Aristotle basic score is a sum of three procedure-related factors: 
the potential for postoperative mortality, the potential for postoperative morbidity, and 
the technical difficulty of the procedure (Lacour-Gayet et al. 2004). Aristotle 
comprehensive complexity (ACC) scoring also takes into account patient 
characteristics such as prematurity and neurological impairment and has shown to 
strongly correlate with observed mortality and to predict postoperative outcome 
(Bojan et al. 2011a, Sata et al. 2012). Moreover, ACC scoring has predicted operative 
mortality and length of postoperative intensive care unit stay better than another risk 
scoring proposed for complexity assessment (Bojan et al. 2011b). 

 Lungs and congenital heart defect 2.3

The cardiovascular and pulmonary systems closely interrelate, which is clearly 
demonstrated at birth when the start of breathing and exposure to the ambient O2 
cause a significant decrease in pulmonary vascular resistance (Alvaro and Rigatto 
2005). Changes in intrathoracal pressure but also the transpulmonary pressure 
gradient (alveolar pressure–intrapleural pressure) and the resulting change in alveolar 
volume influence cardiovascular performance. While ventilation affects 
cardiovascular performance mainly through changes in RV and LV preload as well as 
afterload, the reverse is also true, as the pulmonary and systemic circulations in series 
impact respiratory function (Da Cruz et al. 2014). The interactions are clinically 
significant when treating children with CHD, particularly those who are mechanically 
ventilated.  

2.3.1 Respiratory morbidity in congenital heart defect  

Pulmonary pathology may occur in CHD patients for numerous reasons, particularly 
if CHD has been left uncorrected (Healy et al. 2012). Airway compression can be 
caused by massive cardiomegaly, dilated pulmonary arteries, left atrium enlargement, 
anomalous relation between tracheobronchial tree and vasculature, or by MAPCAs 
(Kussman et al. 2004). Excessive pulmonary blood flow due to L-R shunting on the 
one hand, and obstruction of pulmonary venous drainage on the other, elevate 
hydrostatic forces within the pulmonary capillaries, which may cause interstitial 
liquid accumulation and lung edema (Healy et al. 2012). Furthermore, decreased flow 
capacity of the pulmonary lymphatic system may predispose patients to lung edema 
(Healy et al. 2012). Permanently excessive pulmonary blood flow in various CHDs 
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may cause pulmonary hypertension (De Wolf 2009). In addition, children with CHD 
may be especially susceptible to respiratory tract infections (Healy et al. 2012).  
 
During the early postoperative phase after surgery for CHD, respiratory-related 
complications are common (Sata et al. 2012, Kanter et al. 1986). CPB-activated 
inflammatory response, anesthesia, ischemia-reperfusion injury, hypothermia, as well 
as hemodynamic instability, all associate with postoperative pulmonary dysfunction 
(Apostolakis et al. 2010). Pathophysiology behind pulmonary dysfunction includes 
increased pulmonary vascular resistance, decreased lung compliance, decreased 
functional residual capacity, increased ventilation-perfusion mismatch, interstitial 
edema, and reduced surfactant activity (Griese et al. 1999, Kozik and Tweddell 2006). 
Postoperative mechanical ventilation may also be prolonged due to both nosocomial 
pneumonia, reported in 10%‒22% of children after heart surgery, and respiratory 
complications caused by surgical trauma such as chylothorax and diaphragmatic 
paralysis (Chan et al. 2005, Fischer et al. 2000, Joho-Arreola et al. 2005, Tan et al. 
2004). Furthermore, both anesthesia and CPB predispose patients to atelectasis, which 
further reduces lung compliance and causes ventilation/perfusion mismatch 
(Lundquist et al. 1995, Magnusson et al. 1997).  

2.3.2 Postoperative lung injury and lung edema  

Normally, the alveoli are coated with a thin film of liquid, which ensures optimal gas 
exchange through diffusion. The excessive accumulation of EVLW may result from 
increased capillary permeability, capillary hydrostatic pressure, or from both (Ware 
and Matthay 2005).  
 
Surgery on intracardiac defects requires usage of CPB. Inflammatory response to CPB 
causes the release of various inflammatory mediators and endotoxins, which lead to 
endothelial injury and increased capillary permeability (Asimakopoulos et al. 1999a). 
These pathological changes further induce leakage of liquid and proteins from 
capillaries into interstitium and increased amounts of EVLW (Apostolakis et al. 2010, 
Asimakopoulos et al. 1999a). Furthermore, CPB causes lung ischemia-reperfusion 
process, which may further promote postoperative lung injury and edema 
(Apostolakis et al. 2010). Elevated hydrostatic forces within the pulmonary capillaries 
may further increase accumulation of EVLW (Healy et al. 2012, Vincent et al. 1984). 
In addition, particularly in PA+VSD, a development of postoperative pulmonary 
reperfusion injury after unifocalization, presenting often unilaterally, has also been 
suggested to associate with severity of stenosis and bilateral unifocalization (Maskatia 
et al. 2012). 
 
Modern CPB and attempts to limit the trauma caused by cardiac surgery aim to limit 
the inflammatory process by improving biocompatibility of the extracorporeal circuit, 
hemodynamic stability by adequate perfusion and hemofiltration, and suppression of 
inflammatory response with corticosteroids (Apostolakis et al. 2010, Huang et al. 
2003, Keski-Nisula et al. 2013, Maharaj and Laffey 2004). In addition, a delayed 
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sternal closure improves postoperative hemodynamic and respiratory stability in 
neonates, who are especially susceptible to CPB (Odim et al. 1989). 
 
Despite attempts to limit inflammatory response, it occurs to some extent in all 
patients predisposing to respiratory impairment, which is still a recognized 
postoperative complication after heart surgery and CPB (Taggart et al. 1993, 
Apostolakis et al. 2010). However, only a minority of patients suffer from lung edema 
and acute (or adult) respiratory distress syndrome (ARDS), which is the most severe 
form of pulmonary injury (Asimakopoulos et al. 1999a). ARDS has been reported in 
1% of patients after CPB (Asimakopoulos et al. 1999b, Christenson et al. 1996, 
Messent et al. 1992). 

 Lung liquid and edema clearance 2.4

The optimal balance between drive of liquid toward the interstitium and removal 
mechanisms of EVLW is necessary for maintenance of an optimal amount of alveolar 
liquid. In healthy lungs, accumulation of excessive EVLW is prevented by notable 
capacitance of interstitium, tight alveolar epithelial barrier preventing liquid leakage 
from interstitium, removal of liquid from alveolar spaces airway by active epithelial 
ion transport, and an efficient pulmonary lymphatic system (Miserocchi 2009, 
Bronicki and Penny 2014).  

2.4.1 Ion transport and osmotically driven lung edema clearance 

Effective lung liquid absorption depends on ion transport, and especially on transport 
of sodium ions (Na+) (Matthay et al. 1982). Osmotically driven movement of water 
follows positively charged Na+ (Eaton et al. 2009, Matalon et al. 2015) (Figure 3).  
 
The amiloride-sensitive epithelial sodium channel (ENaC) is a crucial apical route for 
Na+ (Figure 3). In addition to ENaC, amiloride-insensitive Na+ channels exist and 
they contribute 20%–40% of airway epithelial Na+ transport (Folkesson and Matthay 
2006, OBrodovich et al. 2008). Basolateral Na-K-ATPase plays an essential role in 
creating an electrochemical gradient resulting in Na+ entry into the cells (Matthay et 
al. 2002, Folkesson and Matthay 2006) (Figure 3).  
 
Transport of chloride ions is required to maintain electrochemical balance at the 
airway epithelium (Eaton et al. 2009, Matalon et al. 2015) (Figure 3). Diversity of Cl- 
channels present at airway epithelium, such as Na-K-Cl-cotransporter (NKCC), 
HCO3

-/ Cl- exchangers, and apically situated Ca2+-activated ion channels (Hollenhorst 
et al. 2011). Chloride secretion, however, is largely mediated by the apically located 
cAMP-dependent cystic fibrosis transmembrane conductance regulator (CFTR) 
channel (Mall and Galietta 2015). Through negative regulation of ENaC by CFTR, 
and vice versa, the CFTR channel also may have a role in lung liquid clearance 
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(Donaldson et al. 2002, Fang et al. 2006, Mall et al. 2004). Moreover, airway 
epithelial Cl- secretion may contribute to cardiogenic hydrostatic lung edema 
(Solymosi et al. 2013). 
 

 

Figure 3 Airway epithelial liquid transport rests on active Na+ transport through 
amiloride-sensitive ENaC channels and amiloride-insensitive Na+ channels, 
followed by osmotically driven movement of water through paracellular pores 
and aquaporin channels (AQP). Gradient formed by basolateral Na-K-ATPase 
activates apical Na+ transport, whereas Cl- transport maintains 
electroneutrality. 

Na+ transport-driven liquid absorption maintains EVLW at a minimal level in a 
healthy state, but the role of effective liquid absorption increases when excessive 
EVLW arises (Ware and Matthay 2001, Berthiaume and Matthay 2007). The role of 
EVLW absorption is vital in the lungs of newborns at birth when respiration begins 
and fetal lung liquid has to be removed (Strang 1991). Furthermore, deficiency in 
lung liquid absorption associates with two main entities of neonatal lung disease, 
namely respiratory distress syndrome (RDS) and transient tachypnea of a newborn 
(TTN) (Helve et al. 2009). Defective airway epithelial ion and liquid transport also 
contributes to ARDS, acute lung injury (ALI), high altitude pulmonary edema 
(HAPE), and systemic inflammatory response (Eisenhut and Wallace 2011, Mac 
Sweeney et al. 2011, Ware and Matthay 2001). Furthermore, in patients with severe 
hydrostatic pulmonary edema, intact alveolar liquid clearance has been associated 
with improved short-term outcome interpreted as length of mechanical ventilation and 
hospital mortality (Verghese et al. 1999). An analogous observation in patients with 
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post-lung transplant reperfusion injury showed association between intact alveolar 
liquid clearance and clinical outcomes (Ware et al. 1999). 

 
In studying airway epithelial Na+ transport and EVLW absorption in humans, 
proximal airway epithelium is commonly used to assess phenomena in distal airways 
(Barker et al. 1997, Fajac et al. 1998, Mac Sweeney et al. 2011). In humans, nasal 
epithelial potential difference (NPD) has served as a measure of airway epithelial ion 
transport activity and is widely used when studying airway epithelial ion transport in 
pulmonary diseases such as cystic fibrosis (Knowles et al. 1981, Sermet-Gaudelus 
2010). 

2.4.2 ENaC 

ENaC is expressed at the apical membrane of various Na+ transporting epithelia 
including lung, kidney, and colon (Rossier et al. 1994). In the airways, ENaC is 
expressed throughout and on the alveolar level on both alveolar type I and type II 
cells (Eaton et al. 2009, Johnson et al. 2006). Four ENaC subunits do exist (α, β, γ, 
and δ) (Canessa et al. 1994, Ji et al. 2012). According to prevailing views, three 
homologous subunits (α, β, and γ) make up the most essential and highly Na+ ion 
selective ENaC channel in the airway epithelium, whereas other combinations of 
subunits form channels with reduced selectivity for Na+ ions (Ji et al. 2006, 
McNicholas and Canessa 1997, Canessa et al. 1994, Fyfe and Canessa 1998). 
 
The pore-forming α-ENaC has been shown to be the most crucial subunit. In contrast 
to β- and γ-ENaC knockout mice showing only decreased airway liquid absorption, α-
ENaC knockout mice are unable to clear their lungs from liquid and die soon after 
birth (Hummler et al. 1996, Barker et al. 1998, McDonald et al. 1999). Furthermore, 
the role of α- and β-ENaC in lung liquid removal has also been shown in the lungs of 
mature rodents (Li and Folkesson 2006). All three subunits are needed to achieve 
maximal selectivity for Na+ over other cations, as well as required for maximal lung 
liquid absorption (Barker et al. 1998, Fyfe and Canessa 1998, Hummler et al. 1996, 
McDonald et al. 1999).  
 
The rate-limiting role of ENaC for lung liquid transport has been explicitly 
demonstrated in newborn guinea pigs, which presented with respiratory distress and 
excessive accumulation of EVLW after instillation of amiloride into the airways 
(OBrodovich et al. 1990). Also, in preterm infants with RDS, impaired airway 
epithelial ENaC activity as well as decrease in β-ENaC protein in tracheal aspirates 
has been demonstrated (Barker et al. 1997, Li et al. 2009). In addition, at least two 
genetic polyformisms of α-ENaC might increase susceptibility to RDS (Li et al. 
2015).   
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2.4.3 Na-K-ATPase 

Airway epithelial Na-K-ATPase consists of α- and β-subunits in a 1:1 ratio. Both 
subunits have several isoforms and α1-, α2-, and β1-subunits have been demonstrated 
to exist in the airway epithelium (Johnson et al. 2002, Li et al. 2009, Sznajder et al. 
2002). In the epithelial cell basal membrane, the α-subunit forms a channel pore 
exchanging intracellular Na+ for extracellular K+ in a 3:2 ratio, whereas the role of β-
subunit is more regulatory (Chow and Forte 1995, Sznajder et al. 2002). The essential 
role of Na-K-ATPase on airway liquid transport has been demonstrated in resected 
human lung, where Na-K-ATPase-blockage caused almost 50% decrease in alveolar 
liquid clearance (Sakuma et al. 1994). 

2.4.4 Regulation of airway epithelial Na+ transport 

The regulation of ion transport and thus airway liquid reabsorption is diverse. 
Circulating hormones such as glucocorticoids, inflammatory mediators, oxygen level, 
transmitters interacting with G-protein coupled receptors (e.g. adrenergic, 
dopaminergic, and purinergic agents), as well as reactive oxygen and nitrogen species 
regulate Na+ transport in the airways (Eaton et al. 2009). Glucocorticoids and β2-
agonist, however, are the regulators with the most potential in enhancing airway 
epithelial Na+ transport during pathological liquid accumulation (Berthiaume and 
Matthay 2007, Helve et al. 2009). 

 
Research showing that antenatal glucocorticoids reduce the incidence of RDS in 
preterm infants underlines the effect of glucocorticoids on airway epithelial Na+ and 
liquid transport during pathological lung liquid removal (Roberts and Dalziel 2006). 
The use of dexamethasone to reduce the incidence of HAPE in HAPE-prone adults, 
instead, is an example of glucocorticoids potential in treating both pathological liquid 
accumulation and removal (Maggiorini et al. 2006). Glucocorticoids enhance airway 
epithelial Na+ transport on transcriptional, translational, and posttranslational levels 
(Eaton et al. 2009, Helve et al. 2009). Diversity of in vitro studies have suggested 
both ENaC and Na-K-ATPase to be influenced at all three levels of regulation 
(Champigny et al. 1994, Itani et al. 2002, Lazrak et al. 2000, Barquin et al. 1997). The 
effects of glucocorticoids are mediated through cytosolic glucocorticoid receptor 
complexes, which by binding on glucocorticoid response elements of genetic DNA, 
alter gene transcription and translation of various steroid-induced proteins (Eaton et 
al. 2009, Ma and Eaton 2005, Pochynyuk et al. 2006). For instance, serum- and 
glucocorticoid-inducible kinase 1 (SGK1) mediates increase in the number of ENaC 
and Na-K-ATPase channels on the plasma membrane and activate individual channels 
through activation of upstream activators and inactivation of downstream effectors 
such as the neural precursor cell expressed, developmentally down-regulated 4-2 
(Nedd4-2) (Loffing et al. 2006, Snyder et al. 2002).  
 
β2-agonists accelerate airway Na+ transport in vitro (Planes et al. 2002), elevate lung 
liquid clearance in adult sheep (Berthiaume et al. 1987), raise alveolar liquid 
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clearance ex vivo in resected human lung (Sakuma et al. 1997), and enhance the 
reabsorption of lung edema in animals predisposed to hypoxia or lung injury (Saldias 
et al. 2000, Vivona et al. 2001). However, in humans the potential of β2-agonists in 
enhancing airway epithelial Na+ and liquid transport during pathological liquid 
accumulation has proved contradictory (Perkins et al. 2014, Sartori et al. 2002). 
Although intravenous salbutamol has reduced the amount of EVLW in patients with 
ALI/ARDS, in randomized clinical trials on patients with ALI/ARDS, neither 
aerosolized nor intravenous β2-agonists improved clinical outcomes (Gao Smith et al. 
2012, Matthay et al. 2011, Perkins et al. 2006). On the contrary, in the BALTI-2 
study, intravenous salbutamol impaired outcome (Gao Smith et al. 2012). These 
contradictory findings may result from difficulty in identifying patients with impaired 
airway epithelial Na+ transport potentially benefitting from β2-agonists but also from 
variable etiology of ARDS between the studies (Uhlig et al. 2014, Mac Sweeney et al. 
2011). The putative influence of β2-agonists on ENaC and Na-K-ATPase is 
transcriptional, translational, as well as posttranslational (Dagenais et al. 2001, 
Looney et al. 2005, Rahman et al. 2010, Sznajder et al. 2002, Thomas et al. 2004). 
Thus the mechanisms for how the β2-agonists improve airway epithelial Na+ transport 
are various and include diversity of intracellular signaling pathways (Sznajder et al. 
2002).  

2.4.5 Oxygen and lung liquid clearance 

The airway epithelial ion transport and EVLW absorption respond to both increasing 
and decreasing oxygen levels. The rise in ambient oxygen level enhances ENaC and 
Na-K-ATPase activity in the in vitro studies mimicking the substantial increase in 
alveolar oxygen concentration at birth (Pitkanen et al. 1996, Ramminger et al. 2002, 
Thome et al. 2003, Baines et al. 2001).  
 
As for the decreased oxygen levels, hypoxia attenuates activity of ENaC and Na-K-
ATPase both in vitro and in animals in vivo (Carpenter et al. 2003, Mairbaurl et al. 
2002, Planes et al. 2002, Tomlinson et al. 1999, Zhou et al. 2008). However, in vitro 
effects of hypoxia on mRNA and protein levels of Na+ transporters depend on degree 
of hypoxia as well as length of exposure (Planes et al. 1997, Planes et al. 2002, 
Wodopia et al. 2000). The decrease in mRNA and protein levels may need prolonged 
exposure to hypoxia (Folkesson and Matthay 2006).  
 
Based on in vivo studies on rodents, the putative effect of hypoxia is also related to 
decreased activity of Na+ transporters and not only to reduced transcription or 
translation of Na+ transporters (Carpenter et al. 2003, Vivona et al. 2001). However, 
the mechanisms of how hypoxia regulates ENaC and Na-K-ATPase are considered 
mainly transcriptional (Matthay et al. 2002). Rafii and colleagues have suggested 
nuclear factor κΒ with transcription sites in the α-ENaC promoter region and 
superoxide scavenger to have a role in this regulation (Rafii et al. 1998). Furthermore, 
there may be other O2-responsive genes affecting ENaC transcription through their 
metabolic products. Posttranslational effects of hypoxia, instead, result from 
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internalization and recycling of both ENaC and Na-K-ATPase channels from the cell 
membrane (Rotin et al. 2001, Carpenter et al. 2003, Planes et al. 2002, Vivona et al. 
2001). Furthermore, reactive oxygen species (ROS) and increased intracellular Ca2+ 

have a role in endocytosis of Na-K-ATPase (Dada et al. 2003, Gusarova et al. 2011, 
Planes et al. 1996). 
 
In humans, and particularly in HAPE-prone subjects, exposure to ambient hypoxia at 
high altitude decreases airway epithelial Na+ transport measured by NPD and Na-K-
ATPase but not ENaC mRNA levels (Mairbaurl et al. 2003a, Sartori et al. 2004). 
Although a decrease in NPD at high altitude also relate to the profound arterial 
hypoxemia in HAPE-prone subjects (Sartori et al. 2004), the effects of chronic, long-
lasting hypoxemia on airway epithelial Na+ transport remain unknown. 

 
Hypoxia also affects airway epithelial Cl- transport by reducing NKCC activity and 
protein levels in vitro and CFTR mRNA levels in humans (Mairbaurl et al. 2003a, 
Mairbaurl et al. 1997, Wodopia et al. 2000). However, increased Cl- secretion has 
been observed by NPD measurement in humans exposed to hypoxia at high altitude 
(Mairbaurl et al. 2003b, Mason et al. 2003). 

 Lung edema assessment after cardiac surgery in children 2.5

After congenital cardiac surgery, evaluation of the pulmonary system rests mainly on 
physical examination, assessment of oxygenation and tissue perfusion, and on 
repeated chest radiographs. All these methods, however, assess EVLW indirectly and 
inaccurately (Lange and Schuster 1999). In critically ill patients, an abundance of 
EVLW has been related to outcome (Eisenberg et al. 1987, Kor et al. 2015, Phillips et 
al. 2008, Sakka et al. 2002). Thus, precise measuring of EVLW could be useful in 
pediatric intensive care (PICU) after congenital cardiac surgery.   
 
The methods for measuring EVLW with the best repeatability and accuracy are the 
most difficult and most expensive to apply in clinical practice (Lange and Schuster 
1999). The gold standard for measuring EVLW accurately is gravimetry (Collins et al. 
1985, Julien et al. 1984, Nusmeier et al. 2014). However, the gravimetric technique 
comparing the wet and dry weight of the lungs is only possible postmortem. In 
clinical use, invasive transpulmonary double indicator dilution (TPDD) and 
transpulmonary thermodilution (TPTD) techniques are precise methods to measure 
EVLW and both have been validated against the gravimetric technique (Katzenelson 
et al. 2004, Mihm et al. 1987, Nusmeier et al. 2014). However, in CHD patients with 
intracardiac shunt, the methods based on the dilution techniques are not reliable 
(Giraud et al. 2010, Keller et al. 2011).  

 
The degree of EVLW can be assessed by diversity of imaging techniques. Computed 
tomography, nuclear magnetic resonance, positron emission tomography, 
radiography, and ultrasound may all serve as tools in assessing EVLW (Jambrik et al. 
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2010, Lange and Schuster 1999). However, only ultrasound and chest radiographs 
(CXR) are practical in daily bedside evaluation. 

2.5.1 Chest radiograph 

In clinical practice, CXR is a principal method to assess postoperative EVLW and 
lung edema after surgery for CHD. In CXR, septal lines, peribronchial cuffing, 
ground glass attenuation, or consolidation of airspaces are signs of excessive EVLW 
(Gluecker et al. 1999). Various scoring systems to assess EVLW from CXR have 
been introduced (Anderson et al. 1995, Lemson et al. 2010, Maskatia et al. 2012, 
Ware et al. 2012, Sibbald et al. 1983). However, the use of CXR to assess EVLW 
may be inaccurate in intensive care units where portable radiographs are used 
(Halperin et al. 1985).  

 
CXR scorings assessing EVLW have correlated moderately with total excised lung 
weight (Ware et al. 2012), and with TPDD and TPTD measurements in adults (Brown 
et al. 2013, Halperin et al. 1985). In critically ill children, however, CXR showed no 
correlation with EVLW measured with the TPTD method (Lemson et al. 2010). 
Moreover, growing children are especially susceptible to radiation, and excessive 
radiation should be restricted in children with CHD, who are exposed to numerous X-
rays through the years of follow-up (Ait-Ali et al. 2010). 

2.5.2 Lung ultrasound 

Traditionally, the lungs have not been imaged with ultrasound (US), since ultrasound 
signals from medical US devices cannot reflect from aerated lung tissue to form a 
realistic image. In the lung, US waveform signals are reflected from air-filled lung 
parenchyma creating artifacts, and from the superficial structures of the chest wall 
creating a lucid image (Targhetta et al. 1994). Normal lung parenchyma generates 
horizontal multiple artifacts (A-lines), which have been suggested to be multiplicative 
echoes of visceral pleura, whereas vertical artifacts (B-lines) associate with interstitial 
lung pathology (Lichtenstein et al. 1997, Lichtenstein et al. 2009) (Figure 4). 
However, sporadic B-lines may also appear in healthy lungs (Caiulo et al. 2011, 
Reissig and Kroegel 2003). 
 
The B-lines have been suggested to originate from the interfaces formed by liquid-
filled and expanded interstitial alveolar septae as well as tissue with reduced aeration 
by reverberation or ring-down mechanism (Lichtenstein et al. 1997, Soldati et al. 
2009, Volpicelli et al. 2012).  
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Figure 4 Schematic explanations (A, B) of the formation of US image (C) as longitudinal 
scans of normal lung (1.), and of lung with interstitial pathology such as lung 
edema (2.). US of normal lung shows multiplicative echoes of visceral pleura 
(upward arrow) as horizontal multiple artifacts (A-lines, downward arrows), 
whereas B-lines (dashed downward arrow associate with interstitial lung 
pathology such as lung edema). 

The number of B-lines correlates strongly with the amount of EVLW determined by 
gravimetry in animals (Jambrik et al. 2010). In humans, B-lines correlate moderately 
or strongly (r2 varying from 0.18 to 0.83) with EVLW measured by the TPTD method 
(Agricola et al. 2005, Bataille et al. 2015, Volpicelli et al. 2013, Enghard et al. 2015). 
In comparison to other imaging methods in adults with lung edema, B-lines correlate 
moderately with EVLW findings of CXR and strongly with EVLW findings of CT 
(Agricola et al. 2005, Baldi et al. 2013, Jambrik et al. 2004, Volpicelli et al. 2008, 
Volpicelli et al. 2006). In addition, lung US has successfully assessed change in 
EVLW in decompensated heart failure patients undergoing treatment, in patients 
undergoing hemodialysis, and in patients developing or recovering from high altitude 
pulmonary edema (HAPE) (Fagenholz et al. 2007, Noble et al. 2009, Pratali et al. 
2010, Vitturi et al. 2014, Volpicelli et al. 2008). However, in children with CHD, only 
a case report of sonographic assessment of lung injury after a congenital cardiac 
surgery has been published (Biasucci et al. 2014).  
 
In addition to lung edema, B-lines have been demonstrated in a diversity of interstitial 
lung pathologies. Although the B-lines may not differentiate between causes of 
interstitial lung pathologies (Lichtenstein et al. 1997, Martelius et al. 2015a, Soldati et 
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al. 2009, Volpicelli et al. 2012), interstitial pathologies other than lung edema, such as 
interstitial pneumonia and sarcoidosis, rarely exist after surgery for CHD. Focal B-
lines may be seen in other pulmonary pathologies occasionally present after cardiac 
surgery, namely atelectasis and pneumonia (Acosta et al. 2014, Caiulo et al. 2013, 
Reissig and Copetti 2014, Volpicelli et al. 2012). However, in contrast to lung edema 
in atelectasis and pneumonia, subpleural consolidations typically occur instead of, or 
in addition to, B-lines (Acosta et al. 2014, Copetti and Cattarossi 2008, Gehmacher et 
al. 1995). Pneumothorax, instead, creates quite opposite US findings than lung edema, 
such as absence of B-lines and disappearance of lung sliding (Lichtenstein et al. 2000, 
Lichtenstein and Menu 1995). 

 Lung compliance after cardiac surgery in children 2.6

Lung compliance is a sign of the elasticity of the lungs, which is calculated as the 
ratio of change in volume to change in pressure i.e. inverse of the elastance. The 
higher the compliance, the better the ability of lungs to stretch and expand. Low 
compliance instead indicates stiffness of lungs due to various causes such as lung 
edema (Barnas et al. 1992, Barnas et al. 1994). Since lung compliance demonstrates 
hysteresis, compliance is affected by its previous value and thus varies between 
inspiration and expiration (Escolar and Escolar 2004). At moderate lung volumes lung 
compliance is higher than at very low or very high volumes. Accordingly, ideal 
mechanical ventilation attempts to keep the lung volume above functional residual 
capacity all the time and to optimize gas-exchange with the least disturbance to 
hemodynamics by controlling positive-end expiratory pressure (PEEP), peak airway 
pressures, and tidal volumes. 
 
In children with CHD, lung compliance may be reduced due to increased pulmonary 
blood flow and pulmonary arterial pressure (Matthews et al. 2009, Matthews et al. 
2007, Yau et al. 1996). Furthermore, cardiac surgery and CPB may reduce lung 
compliance by causing edema and inadequate lung aeration (Barnas et al. 1994, 
Lanteri et al. 1995, Polese et al. 1999, Su et al. 2003). This seems to take place in 
children with normal or reduced pulmonary blood flow, in whom CPB primarily 
reduces lung compliance (Habre et al. 2004, Lanteri et al. 1995, Stayer et al. 2004). 
However, in children with increased pulmonary blood flow, the beneficial effects of 
corrective cardiac surgery may surpass the negative effects of CPB on lung mechanics 
(Habre et al. 2004, Lanteri et al. 1995).  

2.6.1 Methods to measure lung compliance 

Since measuring real lung compliance requires esophagus pressure measurement as an 
estimate of pleural pressure, respiratory system compliance (Crs) is often measured 
instead. Although the Crs also includes compliance of the chest wall, Crs equals lung 
compliance in small children with highly elastic chest wall (Papastamelos et al. 1995). 
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Static compliance is measured in static airways without airflow. For discontinuing 
airflow, airways are occluded for a time that allows the equilibration of pressure 
throughout the airways. For single occlusion technique (SOT), airways are occluded 
once at the end of inspiration and Crs is calculated based on pressure level measured 
at the occlusion and volume extrapolated from passive flow-volume curve during the 
next expiration (Stocks et al. 1996). For multiple occlusion technique (MOT), airways 
are occluded several times at different points of expiration and Crs is calculated from 
volume-pressure plot (Gappa et al. 2001). In double occlusion technique (DOT), 
breathing is twice interrupted within the same expiration and Crs is calculated as the 
difference between the two pressure-volume pairs (Goetz et al. 2001). Compared with 
other occlusion techniques, DOT is not affected by airway resistance like SOT or by 
end-expiratory level like MOT (Goetz et al. 2001).  
 
Dynamic compliance instead is measured during airflow. The gold standard method 
for dynamic lung compliance measurement requires estimation of pleural pressure 
from esophagus pressure changes (Gerhardt et al. 1989, Stocks et al. 1996).  
 
Neither dynamic lung compliance measurement requiring esophagus pressure 
measurement nor static Crs measurements with occlusions are suitable for clinical 
practice in pediatric intensive care after cardiac surgery. Nowadays, however, modern 
ventilators without esophageal pressure monitoring continuously measure expiratory 
dynamic Crs, but these data are not routinely used in pediatric intensive care 
(Macnaughton 2006). Ventilator-derived dynamic compliance measurement shows a 
strong correlation with static compliance in neonates and adults with severe 
respiratory failure (Kugelman et al. 1995, Ranieri et al. 1994, Storme et al. 1992). 
Furthermore, dynamic lung mechanics may be useful in optimizing ventilator 
management in critically ill patients (Macnaughton 2006, Stenqvist et al. 2008).  

 Outcome of congenital heart defect 2.7

Natural survival of CHD depends on severity of a CHD (Samanek 1992). Before 
congenital cardiac surgery began, survival of complex CHD was poor and only 
patients with mild lesions did survive. In a study from 1950ies 60% of children with 
CHD died by the end of the first year of life without surgery (Macmahon et al. 1953). 
However, this material may have lacked surviving children with undiagnosed milder 
lesions (Macmahon et al. 1953). In fact, the natural survival of simple CHD may be 
difficult to define.  
 
As for PA+VSD patients without surgery, 1-year, 10-year, and 30-year survival rates 
have been demonstrated to be 50%, 8%, and 3%, respectively (Bertranou et al. 1978). 
Natural risk of PA+VSD patients dying soon after birth may be explained by the 
physiologic closure of ductus arteriosus (Bertranou et al. 1978). However, in rare 
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cases optimal collateral pulmonary circulation may have resulted in survival even into 
adulthood (Smitherman et al. 1975). 
 
Advances in diagnostics, treatment, and follow-up of CHD patients have decreased 
the mortality rates significantly (Erikssen et al. 2015, Izukawa et al. 1979, Raissadati 
et al. 2016). Significant improvement has been detected even in the 21st century based 
on data from United States showing that mortality in children with CHD decreased a 
further 21% from 1999 to 2006 (Gilboa et al. 2010). Although survival of patients 
with CHD has improved, their survival, apart from successfully repaired patients with 
simpler defects, is still poorer compared with the general population (Nieminen et al. 
2007, Raissadati et al. 2016, Sairanen et al. 2005). Moreover, the children with more 
complex defects and in need of surgery early in their life still have increased risk for 
mortality and morbidity (Padley et al. 2011, Bojan et al. 2011a). A relatively recent 
study with extensive follow-up, also including patients born in the 21st century, 
estimated 10-year survival of PA+VSD patients to be 71% from first operation 
(Amark et al. 2006).  
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3 Aims of the study 

This study aimed to find factors affecting lung edema clearance as well as evaluate 
factors predicting survival in CHD and especially in cyanotic CHD. Furthermore, we 
aimed to find new methods to assess lung edema and pulmonary recovery after 
congenital cardiac surgery. The general purpose of this thesis was, by increasing 
knowledge on an important aspect of pulmonary physiology, to improve evaluation of 
respiratory system in patients with CHD in need of cardiac surgery. 
 
Specifically, the aims were to study: 

1) The effect of chronic hypoxemia on airway epithelial Na+ transport in children 
with CHD (I). 

2) The feasibility and usefulness of lung US in estimating EVLW in children 
after congenital cardiac surgery (II). 

3) The role of ventilator-derived dynamic Crs in assessing lung mechanics early 
after congenital cardiac surgery (III). 

4) The role of early postoperative sonographic and radiographic scorings of 
EVLW as well as lung compliance in predicting short-term outcome after 
congenital cardiac surgery (II, III). 

5) The long-term outcome and treatment of patients with a severe cyanotic CHD, 
PA+VSD, born in Finland between 1970 and 2007, as well as the factors 
affecting outcome and treatment of these patients (IV).  
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4 Patients and methods 

The ethics committee of the Helsinki University Central Hospital approved the 
studies. For Studies I–III, the parents of the children provided their written informed 
consent.  

 Patients 4.1

4.1.1 Studies I‒III 

We recruited 137 children previously scheduled for cardiac catheterization or surgery 
due to different types of CHD or acquired heart disease between December 2010 and 
March 2013 (Table 2). None of the children had signs or symptoms of respiratory 
tract infection within the last two weeks, symptomatic asthma, cystic fibrosis, or other 
primary pulmonary disease.  

Table 2. Features of the study patients 

 
Study I 

n=99 

Study II 

n=61 

Study III 

n=50 

Type of congenital heart defect    

Acyanotic  38 (38%) a 22 (36%) 22 (44%) 

Cyanotic 55 (56%) b 39 (64%) 28 (56%) 

Cyanotic after repair 6 (6%) 0 (0%) 0 (0%) 

Procedures    

Open-heart surgery 58 (58%) 60 (98%) 48 (96%) 

Surgery through thoracotomy 1 (1%) 1 (2%) 2 (4%) 

Diagnostic/electrophysiologic/  
interventional catheterization 

40 (40%) 0 (0%) 0 (0%) 

a Including 3 patients with arrhythmia and 2 with acquired heart disease [Kawasaki (n=1), 
Hypertrophic cardiomyopathy (n=1)] 
b 39 patients with profound hypoxemia (SpO2 ≤ 85%)	

4.1.2 Study IV 

The study population comprised 109 children with PA+VSD with or without 
MAPCAs. PA+VSD patients with other major cardiac abnormalities were not 
included in the study. The patients were born in Finland from 1970 to 2007 and 
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treated at the Children’s Hospital, Helsinki University Hospital. Since 1995, all 
pediatric cardiac surgery in Finland has been centralized to the Children’s Hospital, 
and even before this, all corrective surgeries and the vast majority of palliative 
surgeries for children with CHD were performed at this hospital. Thus, all PA+VSD 
patients born in Finland between 1995 and 2007 and the majority of patients born 
between 1970 and 1994 were included in our study. 

 Clinical data collection 4.2

The medical records and operative reports of all studies were retrospectively reviewed 
to collect the required clinical data.  

 
For Studies I‒III, the complexity of care and potential for postoperative morbidity 
was defined according to the Aristotle scoring (Lacour-Gayet et al. 2004). In addition, 
the 24-hour fluid balance for the first three postoperative days was collected for Study 
II. 

 
For Study IV, the last follow-up of all study patients was obtained from their patient 
records, and the causes and dates of death were obtained from Statistics Finland 
through December 2011. In Study IV, repair was defined as closure of septal defects, 
reconstruction of a connection between the right ventricle and pulmonary arteries, and 
elimination of extracardiac pulmonary blood supply. 

4.2.1 Angiograms 

For Study IV, the first angiograms and preoperative angiograms prior to repair 
attempt were analyzed when available. Analysis of a total of 119 angiograms was 
either from nitrocellulose film (n=55), videotape (n=36), or from digital data (n=28). 
 
From each angiogram, presence of pulmonary artery confluence, blood flow to each 
lung segment, and the McGoon index were evaluated. To calculate the McGoon 
index, the combined diameter of the left and right pulmonary arteries at hilar level 
was divided by the diameter of the descending aorta just above the diaphragm 
(McGoon et al. 1975). In addition, for patients with MAPCAs, we calculated from the 
first angiogram a total neopulmonary arterial index (TNPAI). TNPAI was calculated 
as follows: TNPAI=combined cross-sectional area of left and right pulmonary arteries 
at hilar level and of MAPCAs / the body surface area. All four authors of Study IV 
independently measured the vessel sizes for calculating McGoon and TNPAI indexes, 
and the average of these four measurements was used as a single item of data.  
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 Expression of epithelial sodium transporters 4.3

4.3.1 Sample collection and quantification of mRNA 

Nasal epithelial scrape samples for Study I were collected from patients under general 
anesthesia before the cardiac procedure. A Rhino-Probe (Arlington Scientific, 
Springville, UT, USA) served to gather the samples by abrasion of the epithelium of 
the nostril free of endotracheal or nasogastric tubes. Samples were immediately mixed 
into a lysis buffer (RNeasy kit, Qiagen, Valencia, CA, USA) containing beta-
mercaptoethanol. Samples were stored at -80 °C until RNA was purified with an 
RNeasy Kit. The sample RNA content and purity were determined 
spectrophotometrically with a NanoDrop (Thermo Fisher Scientific Inc, Wilmington, 
DE, USA). 

4.3.2 Quantitative reverse-transcriptase PCR 

In Study I, we performed reverse transcription of 60 ng RNA to cDNA in 20 µl 
triplicate reactions with a TATAA GrandScript cDNA Synthesis Kit (TATAA 
Biocenter, Gothenburg, Sweden) according to the manufacturers instructions. We 
analyzed 20-µl real-time polymerase chain reactions (PCR) with 2 µl of reverse-
transcribed RNA as a template using the ABI Prism 7900 Sequence Detection System 
according to the TaqMan Universal PCR Master Mix protocol (Applied Biosystems, 
Foster City, CA, USA). The primer concentration was 900 nM for TaqMan pre-
developed assays (ENaC subunits: SCNN1A, SCNN1B, SCNN1G, and α1-Na-K-
ATPase: ATP1A1), and 400 nM for cytokeratin 18 (CK18) and β1-Na-K-ATPase 
(ATP1B1). The probe concentration was 250 nM for SCNN1A, SCNN1B, SCNN1G, 
and ATP1A1, and 200 nM for CK18 and ATP1B1. The primers and probes for CK18 
and β1-Na-K-ATPase were designed with Primer Blast 
(http://www.ncbi.nlm.nih.gov/tools/primer-blast/) and Beacon designer (PREMIER 
Biosoft) software and validated in compliance with standard recommendations by 
TATAA Biocenter (Gothenburg, Sweden) (Bustin et al. 2009). The sequences for 
CK18 primers were ACTGGAGCCATTACTTCAAGATCA (Fw) and 
GCAAGACGGGCATT-GTCAA (Rv), and for the probe, 
ACCTGAGGGCTCAGATCTTCGCAAAT. The sequences for ATP1B1 primers 
were CCATCAGTGAATTTAAGCCCACATA (Fw) and 
TGGGATCATTAGGACGAAAGGAAA (Rv), and for the probe, 
TGGCCCCGCCAGGATTAACACAGA.  

 
The dilution series of the pooled nasal epithelium cell sample served to validate the 
efficiencies of qPCR-reactions. Any possible contamination of samples with genomic 
DNA was assessed with a minus-RT control. Furthermore, a no template control 
(NTC) was used as a control for extraneous nucleic acid contamination. We omitted 
samples that contained less than 5 ng/µl RNA in the scrape samples or were 
contaminated with genomic DNA. Gene expressions were quantified relatively with 
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the -ΔΔCq method, where the gene expression ratio of a target gene to a reference 
gene in a test sample was calculated relative to the calibrator sample. One nasal 
scrape sample served as calibrator sample throughout the experiments, and 
epithelially expressed CK18 served as an endogenous reference gene.  

 Transepithelial nasal potential difference 4.4

For Study I, we used the nasal respiratory epithelium as a surrogate for more distal 
airways and measured NPD, which represents the electrochemical gradient formed by 
ion transport across the cell membrane (Mac Sweeney et al. 2011). A single operator 
(A.K.) performed the measurements before the cardiac procedure, according to the 
method established first by Alton and colleagues, with some modifications (Alton et 
al. 1990, Helve et al. 2005, Sermet-Gaudelus et al. 2010). Prior to the study, 30 
measurements were performed on healthy adult volunteers to ensure the safety of the 
method. 
 
During the measurement, the patients lay supine under general anesthesia and were 
monitored according to routine anesthetic care. A high input impedance (108-1012 
ohm), low resistance voltmeter (Logan-Sinclair, Rochester, UK) linked to a computer 
served to measure the NPD between the two Ag/AgCl electrodes. The reference 
electrode was placed on slightly abraded skin facilitating electrical contact with the 
subepithelial (basolateral) space. The probing electrode was connected to the nasal 
epithelium via a sterile, double-lumen nasal catheter (Marquat Génie Médical, Boissy 
Saint Léger, France) filled with diluted electrode gel.  

 
Prior to the NPD measurement, reliability of the system was assessed by confirming 
that the palm skin potential was more negative than -30 mV and circuit offset less 
than ± 5 mV. The NPD was measured along the floor of the nostril free of 
endotracheal or nasogastric tubes, and the catheter was secured at the point of 
maximal NPD. Ringers solution was perfused through the other lumen of the catheter, 
and basal NPD was recorded. The perfusion of Ringers solution with amiloride (10-4 
M) later served to determine the portion of amiloride-sensitive NPD (ΔAmi) and the 
residual NPD after amiloride perfusion equaled amiloride-insensitive NPD. Finally, 
the perfusion of low Cl- solution with amiloride (10-4 M) and isoproterenol (10-5 M) 
stimulated Cl- secretion (ΔLowCl--Iso) (Sermet-Gaudelus et al. 2010) (Figure 5). The 
Ringers solution contained 140 mmol/L NaCl, 6 mmol/L KCl, 1 mmol/L MgCl2, 2 
mmol/L CaCl2, and 10 mmol/L HEPES (4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid). The low Cl- solution contained 140 mmol/L Na+-
gluconate, 6 mmol/L K+-gluconate, 1 mmol/L MgCl2, 2 mmol/L CaCl2, and 10 
mmol/L HEPES. Solutions pH 7.4 was accomplished with NaOH. Each perfusion at a 
rate of 1 ml/min was continued for a minimum two minutes and until steady NPD was 
achieved for 30 seconds.  
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A measurement was discarded if the amiloride response was negative or technical 
problems occurred (drift, unstable N-PD values, problems with the device). Of 95 
NPD measurements, 77 (81%) succeeded. 

 

 

Figure 5 Diagram of NPD measurement. The final individual value for each solution was 
determined as a mean NPD value for the last 30 seconds of the perfusion. The 
measurements had to be interrupted at the onset of surgery. Therefore, the value 
of ΔLowCl--Iso was calculated as a mean NPD value of 1.5 to 2 minutes from the 
beginning of perfusion. 

 Imaging studies 4.5

4.5.1 Lung ultrasound 

The lung US technique for assessing EVLW content in Study II was adapted from a 
previous study (Copetti et al. 2008b). We performed lung US using the MyLab30CV 
device with a 10‒18 MHz linear transducer (Esaote, Genoa, Italy). At each US 
examination, lasting 3–8 minutes, six video clips of 3 seconds were stored. The 6-
region lung US was performed along three intercostal spaces at right and left sides 
(Figure 6). 
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Figure 6 The lung ultrasound protocol comprised video clips taken horizontally along 
three intercostal spaces bilaterally [anterior upper chest (A), anterior lower 
chest (B), and lateral chest approximately halfway between lower costal margin 
and the axillary pit (C)].  

We defined B-lines in US clips as uninterrupted vertical echogenic artifacts arising 
from the pleura, traversing the sliding horizontal artifacts, and continuing to the edge 
of the screen. Each video clip was scored according to a 5-step scale (0=no artifact, 
1=B-lines in <25% of surface area, 2=25%‒50%, 3=50%‒75%, and 4=75%‒100%) 
by a pediatric radiologist blinded to the clinical data. For each patient and time point, 
a mean score of the six views (the B-line score) was calculated. In addition, 20 video 
clips were analyzed for interobserver agreement by a second pediatric radiologist.   

4.5.2 Chest radiography 

CXRs were taken as part of routine follow-up in children undergoing surgery for 
CHD. For Studies I‒III, CXRs taken 1‒6 hours postoperatively were retrospectively 
analyzed to assess EVLW content. In addition, CXRs taken preoperatively and on 
first postoperative day (POD1) were analyzed for Study I, and CXRs taken daily from 
first to fifth postoperative day (POD5) were analyzed for Study II. 

 
The technique to estimate EVLW content from CXR was adapted from previous 
studies (Anderson et al. 1995, Maskatia et al. 2012). A pediatric radiologist, blinded 
to patient data, scored all CXRs on a 4-step scale. On each CXR, the right upper lobe, 
right middle lobe, right lower lobe, left upper lobe, lingula, and left lower lobe were 
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scored separately (0=normal lung, 1=minimal opacity not obscuring lung vessels, 
2=opacity partially obscuring lung vessels, 3=opacity totally obscuring lung vessels). 
For each CXR, a mean lung edema score (CXR LE score) of the areas was calculated. 
A second pediatric radiologist analyzed 20 CXRs for evaluation of interobserver 
agreement. 

 Lung compliance 4.6

During Crs measurements, the patients were mechanically normoventilated under 
general anesthesia. The use of cuffed tubes (cuff pressure ≥30 cmH2O) prevented 
endotracheal tube leak (Main et al. 2001). Both static and dynamic Crs values were 
reported as values proportional to weight [ml/kPa/kg]. 

4.6.1 Static respiratory system compliance 

For Studies II and III, static expiratory Crs was measured by the DOT with a 
computerized pulmonary function-testing device (Labmanager 4-521; Erich Jaeger 
GmbH, Hoechberg, Germany). For the static Crs measurement, breathing was twice 
interrupted within the same expiration for a time that allowed the equilibration of 
pressure in the respiratory system (Goetz et al. 2001). A minimum of three double 
occlusions with a minimum of ten respiratory cycles between each measurement was 
performed on each patient. Length of occlusions ranged between 100–800 ms, and 
lengths of acceptable pressure plateaus were ≥70 ms. Plateau was defined as a period 
with standard deviation (SD) of airway pressure level being below 10 Pa. 

 
During static Crs measurement, all children were under general anesthesia and had 
stable heart rate (HR) and respiratory rate (RR) without eye, body, or accessory 
respiratory muscle movement. Thus, we considered a patients physiological state to 
correspond to deep non-rapid eye movement (NREM) sleep (Helve et al. 2006, Pratl 
et al. 1999). 

4.6.2 Dynamic respiratory system compliance 

For Study IV, dynamic Crs was measured by the Servo-i ventilator (Maquet, Rastatt, 
Germany). The SERVO-i calculated the expiratory dynamic Crs for each breath as 
follows: dynamic Crs=expiratory tidal volume/ (end inspiratory pressure – PEEP), the 
formula being comparable to other ventilators. The average value of dynamic Crs for 
a 15-minute period coinciding with the static Crs measurement was recorded. 

 
In a subset of 12 patients, we retrospectively recorded dynamic Crs, which was stored 
by the PICU monitoring system in 2-minute intervals. In this subset, we studied the 
effects of sleep stage (REM vs. NREM) and spontaneous respiratory efforts by 
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identifying and comparing dynamic Crs of 30-minute periods with stable HR (SD 
1.2%) and RR (SD 1.7%), and with irregular HR (SD 4.2%) and RR (SD 14.6%) 
within 8 hours from static Crs measurement. 

 Statistical methods 4.7

Statistics were analyzed with SPSS 21.0 and 22.0 (IBM Corp., Armonk, NY, USA) 
and Prism 5.0 (GraphPad Software, La Jolla, CA, USA). For all analyses, the level of 
statistical significance was set at 0.05.  
 
Normality of variables on a continuous scale was assessed visually and by 
Kolmogorov-Smirnov test. Between-groups comparisons of qualitative variables (n 
with percentages) were performed with the chi square test, and comparisons of 
continuous variables [median with interquartile range (IQR), or mean ± standard 
deviation (SD), as appropriate] were performed with t test or Mann-Whitney U-test. 
Comparisons within groups were performed with Wilcoxon matched-pairs test. 
Associations were examined with Pearsons test and linear regression. Spearmans test 
was used for studying association between skewed data or data including outliers. 
Partial correlation was used to study association with a covariate taken into account. 
Correlations were reported as coefficients of determination (r2). 
 
In Study II, we performed multivariable linear regression analyses to find independent 
predictors of short-term outcome. In these multivariable analyses, short-term outcome 
served as the dependent variable, and length of perfusion, presence of postoperative 
complications, and B-line score (Model 1) or CXR LE score (Model 2) were the 
independent variables. In addition, unpublished results of the predictive value of B-
line and CXR LE score by receiver operating characteristic (ROC) curve analyses are 
provided. For these ROC curves, area under curve (AUC) comparisons were 
performed (Hanley and McNeil 1983). To determine interobserver variability of the 
B-line scores and CXR LE scores, we calculated the ratio (difference/average) of the 
scores obtained by both pediatric radiologists and presented these data as percentages. 
Furthermore, for unpublished comparisons of early postoperative B-line and CXR 
scorings, we rescaled CXR LE scores to the same scale as the B-line score (0–4). 

 
In Study IV, survival of patients was estimated with the Kaplan-Meier method and 
compared by log-rank analysis. To further analyze the effect of various variables on 
survival, we applied univariate Cox proportional hazard model for regression 
analyses. In the multivariate Cox proportional hazard model, we included all 
significant variables in the univariate models. 
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5 Discussion of the results 

 Patients and congenital cardiac surgery 5.1

5.1.1 Clinical characteristics (I‒III) 

The patient characteristics for Studies I‒III are presented in Table 3. Studies I‒III 
included patients undergoing congenital cardiac surgery. In addition, Study I included 
40 patients undergoing cardiac catheterization. None of the study patients died within 
30 days of operation or during hospital admission related to the Studies I‒III.  

 
Study I 

n=99 

Study II 

n=61 

Study III 

n=50 

Male sex 48 (48%) 35 (57%) 27 (54%) 

Age in months  9.9 (3.9‒36.3) 4.4 (0.4–21.0) 4.6 (1.4–10.7) 

Weight in kg 7.9 (5.4‒13.0) 5.3 (3.5–11.2) 5.9 (4.3–9.4) 

ACC score 9 (6.8–10) a 10 (7–11) 8.8 (6.0–11.0) 

Length of cardiopulmonary 
bypass [min] b 

93 (57–165) a 103 (57–161) 82 (54–148) 

Length of aortic cross-
clamping [min] 

44 (14‒95) a 43 (17–93) 46 (16–93) 

Delayed sternal closure  13 (22%) a 15 (25%) 7 (14%) 

Days on mechanical ventilation 1 (0.5‒4) a b 2 (0.5–4) b 1 (0.5–3) 

Days in PICU postoperatively 4 (2‒6) a b 4 (2–7) b 3 (2–6) 

Data presented as n (%) or median with IQR as appropriate 
a Data of 59 patients with heart surgery 
b The patient who remained dependent on mechanical ventilation and intensive care for more than 
30 days was excluded as an outlier from analysis 

In studies of 1400–2300 patients looking at the validity of ACC scoring, the median 
length of PICU stay has been 3 days (IQR 2–6) and the median ACC scoring 7.9 ±2.7 
(Bojan et al. 2011a, Photiadis et al. 2011). Since these values are comparable to our 
materials (Table 3), Studies I‒III may be generalized to other patient populations with 
CHD undergoing cardiac surgery. 

Table 3. Patient characteristics in Studies I‒III 
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5.1.2 Morphology of PA+VSD (IV) 

Of the 109 patients in Study IV, 66 (61%) had simple PA+VSD without MAPCAs, 
and 97 (89%) had confluent pulmonary arteries (Table 4). Pulmonary artery 
confluence was more often present in patients with simple PA+VSD (Table 4). This 
finding corresponds to previous reports showing that in PA+VSD patients confluent 
central pulmonary arteries exist up to 90%, but in only two-thirds when MAPCAs 
exist (Liao et al. 1985, Davis et al. 1978). According to another view, a confluence 
should always exist at birth but the pulmonary arteries continue to atrophy and 
disappear later in life due to minimal or even absent blood flow, which could be 
prevented by early creation of a systemic-pulmonary artery shunt (Liavaa et al. 2012).  

 Simple   

n=66 

MAPCAs 

n=43 

p 

Male gender 33 (50%) 26 (60%) 0.28 

Birth weight in kilograms 2.86 ± 0.83 3.09 ± 0.73 0.15 

Associated cardiac findings a 27 (41) 17 (40) 0.89 

Comorbidities b 24 (36) 15 (35) 0.88 

Presence of pulmonary artery 
confluence 66 (100) 31 (72) <0.0001 

Pulmonary blood supply solely from 
MAPCAs  16 (37%)  

Lung segments supplied by native PAs c 19.8 ± 0.9 5.4 ± 6.1 <0.0001 

Hypoperfused lung segments c 0.3 ± 1.0 1.7 ± 2.2 0.007 

Surgery 66 (100%) 40 (93%) 0.06 

Repair 42 (64%) 12 (28%) 0.0003 

RV-PA connection with septal 
fenestration 4 (6%) 17 (39%) <0.0001 

Other palliative procedures 20 (30%) 11 (26%) 0.83 

Data presented as n (%), median with IQR or mean ±SD, as appropriate 
a Right-sided aortic arch (n = 27), left superior vena cava (n = 7), atrial septal defect (n = 5), 
abnormal coronary arteries (n = 4) 
b 22q11.2 –deletion (n = 12), Extracardiac anomaly (n = 12), Lissencephaly (n = 1), Mayer-
Rokitansky-Küster-Hauser syndrome (n=1), Mucolipidosis II (n = 1), other genetic syndromes 
(n = 4), Trisomy 21 (n = 2), unconfirmed but strongly suspected other syndromes (n = 4), and 
VACTERL (vertebral defects, anal atresia, cardiac defects, tracheo-esophageal fistula, renal 
anomalies, and limb anomalies) (n = 2) 
c Data from 1st available angiograms 

 
 

Table 4. Patient characteristics and operations in Study IV 
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Consistent with a previous study describing the initial morphology of PA+VSD 
(Amark et al. 2006), our results revealed that the patients with simple PA+VSD had a 
higher McGoon index, more lung segments indicative of perfusion by native 
pulmonary arteries, and fewer hypoperfused lung segments than did the patients with 
MAPCAs (Table 4). These differences were found in the primary angiograms prior to 
any surgery and in the preoperative angiograms prior to repair attempt. 

5.1.3 Surgical repair of PA+VSD (IV) 

Staged repair has been a primary strategy in Helsinki Children’s Hospital. The 
patients have typically undergone a repair when the McGoon index has been 1.5 or 
above. At repair, a postoperative RV/LV systolic pressure ratio up to 85% has been 
accepted in hemodynamically stable patients.  
 
Half of the study patients achieved a repair, and less than 10% of them had a single-
stage repair. Although repair rate in Study IV is higher than in studies with earlier 
follow-up period (Hofbeck et al. 1991, Dinarevic et al. 1995), it is lower than in more 
recent reports (Amark et al. 2006, Cho et al. 2002) (Figure 7). However, in a report by 
Cho and colleagues, the repair rate was reduced from 70% to 60% by excluding the 
repaired patients in whom the VSD had to be reopened (Cho et al. 2002). In addition 
to some differences in repair definition, the institutional and national differences in 
the selection criteria for repair may have influenced the disparity in repair rates. 

  

Figure 7 Repair rates in reports including PA+VSD patients both with and without 
MAPCAs. * p=0.0003. 
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Of the patients with simple PA+VSD, 64% were repaired compared with 28% of the 
patients with MAPCAs (Figure 7). Some most recent reports of PA+VSD patients 
with MAPCAs have shown up to 90% repair rates (Brizard et al. 2009, Liavaa et al. 
2012, Malthotra et al. 2009). However, no long-term survival data exist yet from the 
tertiary centers demonstrating these exceptionally high repair rates. 
 
In addition to absence of MAPCAs, other anatomical factors—namely presence of 
pulmonary artery confluence, higher McGoon index, and higher number of lung 
segments supplied by true pulmonary arteries—increased the probability of repair in 
Study IV. These findings support a previous suggestion that a more complex anatomy 
is a risk factor for remaining palliated (Hofbeck et al. 1991). Although the presence of 
MAPCAs decreased the probability of repair, the size of MAPCAs assessed by 
TNPAI index had no effect on achievement of repair. Therefore in the initial 
assessment of PA+VSD patients, assessing size of native pulmonary arteries and 
presence of MAPCAs, rather than size of MAPCAs, seems most crucial.  
 
In addition to anatomic factors, consistent with a Canadian report from Amark and 
colleagues, we found a later birth year to increase the probability of achieving repair 
(Amark et al. 2006).  

5.1.4 Palliative surgery of PA+VSD (IV) 

Half of the study patients remained palliated (Table 4). Of these, 38% had repair 
attempts resulting in the creation of a connection between RV and pulmonary arteries 
with septal fenestration, 18% were deemed unsuitable for repair, and 44% died before 
their treatment strategy was chosen or a previously planned repair was achieved.  
 
Even diminutive central PAs have shown to enlarge after placement of systemic-
pulmonary artery shunt (dUdekem et al. 2005, Kim et al. 2015, Liavaa et al. 2012, 
Mumtaz et al. 2008). Accordingly, we evaluated growth of pulmonary arteries by 
McGoon index from both first and preoperative angiograms prior to repair of 40 
patients. Of these patients, 85% received a systemic-pulmonary artery shunt between 
the angiograms. In the patients receiving a shunt, we could detect enlargement of 
central pulmonary arteries (Table 5). However, the size of central pulmonary arteries 
in angiograms may be affected by transient flow and thus an increase in McGoon 
index may not only reflect the vessel growth.  
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Although we could not assess effect of palliative operations on size of MAPCAs, we 
found patients with MAPCAs to have more hypoperfused lung segments than patients 
without. This may support previous findings that MAPCAs may have poor growth 
potential, tendency to stenose, and that MAPCAs may not support development of 
biologically competent pulmonary circulation (dUdekem et al. 2005, Norgaard et al. 
2006). 

 Airway epithelial ion transport (I) 5.2

The amiloride-sensitive fraction constitutes 60%–80% of airway epithelial Na+ 
transport (OBrodovich et al. 2008). In our NPD measurements, 52% of the NPD was 
amiloride-sensitive, which is consistent with previous NPD measurements in adults 
exposed to hypoxia at high altitude (Maggiorini et al. 2006, Sartori et al. 2002, Sartori 
et al. 2004). Furthermore, the basal NPD values of the normoxemic patients (SpO2 ≥ 
95%) were comparable to previously reported values in healthy subjects (Su et al. 
2016).  
 
The α-ENaC mRNA levels showed a weak to moderate correlation with basal NPD 
(r2=0.12, p=0.01) and amiloride-sensitive NPD (r2=0.10, p=0.01). Since 
posttranslational alterations crucially influence electrical ENaC activity, these 
correlations are reasonable. However, in contrast to previous findings in healthy 
adults, we found no significant correlation between γ-ENaC mRNA levels and NPD 
values (Otulakowski et al. 1998). The lack of correlation between other than α-ENaC 
subunit mRNAs and amiloride-sensitive NPD may emphasize the major functional 
role of α-subunit to function of ENaC (Hummler et al. 1996). 

Table 5. Size of central pulmonary arteries assessed by McGoon index 

McGoon index at angiogram 

 

 
First available Preoperative prior to 

repair p a 

Simple PA+VSD 1.50 (1.11‒1.77) 1.78 (1.39‒2.00) 0.001 

PA+VSD+MAPCAs 0.75 (0.09‒1.09) 1.41 (1.05‒1.60) 0.001 

p b 
<0.0001 0.005  

Shunt between 
angiograms 1.12 (0.76‒1.47) 1.58 (1.25‒2.01) <0.0001 

No shunt 0.87 (0.31‒1.42) 1.06 (0.36‒1.54) 0.23 

a Paired comparison between first available angiogram and preoperative angiogram prior to 
repair attempt 
b Comparison between simple PA+VSD and PA+VSD+MAPCAs 
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5.2.1 Effect of hypoxemia on airway epithelial ion transport activity 

The decrease in airway epithelial Na+ transport in hypoxic environments has been 
thought to result from the effects of ambient hypoxia (Zhou et al. 2008). However, the 
decreased airway epithelial Na+ transport in rats and humans has been demonstrated 
not only in ambient hypoxia but also in the presence of systemic hypoxemia 
(Carpenter et al. 2003, Sartori et al. 2004). However, Study I, was the first study to 
examine the association between chronic, profound hypoxemia and airway epithelial 
Na+ transport in humans. 
 
In Study I, at room air the basal NPD and amiloride-sensitive NPD were lower in the 
profoundly hypoxemic patients with cyanotic CHD (SpO2 ≤ 85%) than in the patients 
with acyanotic CHD and normal SpO2 levels (Figure 8). Furthermore, amiloride-
sensitive NPD constituted 36% of the baseline NPD in profoundly hypoxemic patients 
compared with 57% in normoxemic patients (p=0.007). Consistent with a recent 
meta-analysis demonstrating a correlation between SpO2 and amiloride-sensitive NPD 
both in HAPE as well as in RDS (Su et al. 2016), children with CHD showed a 
moderate correlation between SpO2 and the amiloride-sensitive NPD (r2=0.37, 
p=0.001). Accordingly, not only hypoxia but also hypoxemia affects airway epithelial 
Na+ transport, particularly with ENaC-associated Na+ transport. 

 
A previous study showed impaired amiloride-insensitive Na+ transport in HAPE-
prone adults in a hypoxic environment (Sartori et al. 2004). In contrast to this finding, 
in Study I no difference in amiloride-insensitive NPD occurred between profoundly 
hypoxemic and normoxemic patients. However, in profoundly hypoxemic children, 
age positively correlated with amiloride-insensitive NPD (r2=0.21, p=0.01) and basal 
NPD (r2=0.21, p=0.01). Thus, the longer the children had been hypoxemic the higher 
the amiloride-insensitive and basal NPD were. Whether this rise compensates for the 
reduced amiloride-sensitive NPD in prolonged severe hypoxemia remains unclear. 
However, a heart-failure model has demonstrated a compensatory role of amiloride-
insensitive Na transport+ in response to lung edema liquid (Rafii et al. 2002). 
 
Response to a low Cl- solution was reduced in the profoundly hypoxemic children 
compared with normoxemic patients in Study I (Figure 8). Also, critically ill children 
with lung edema due to meningococcal septicemia have shown reduced Cl- transport 
(Eisenhut et al. 2006). In contrast to our findings in hypoxemic children, exposure to 
hypoxia in adults at high altitude has been described to increase Cl- secretion. 
However, this increase at high altitude may result from liquid secretion due to 
epithelial dryness and low temperature (Rennolds et al. 2008, Mairbaurl et al. 2003b). 
Moreover, the role of Cl- secretion in airway epithelium is crucial for mucus 
composition, but on the alveolar level, Cl- transport contributes also to liquid 
absorption (Fang et al. 2006, Jiang et al. 1993, Quinton 1990). Thus, the role of Cl- 
flux-contributed NPD may be less significant than Na+ flux in assessing distal airway 
liquid transport (Su et al. 2016). 
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Figure 8 Comparisons of NPD values between normoxemic patients (SpO2 ≥ 95%) with 
acyanotic CHD or acquired heart disease and profoundly hypoxemic patients 
with cyanotic CHD (SpO2 ≤ 85%). 

5.2.2 Effect of hypoxemia on airway epithelial Na+ transporter 
expression 

Consistent with studies in rats exposed to hypoxia (Carpenter et al. 2003, Vivona et 
al. 2001), in Study I the β- or γ-ENaC subunit mRNA expressions were not reduced in 
profoundly hypoxemic (SpO2 ≤ 85%) patients when compared with normoxemic 
patients (Figure 9). The α-ENaC mRNA levels also did not show a difference between 
profoundly hypoxemic and normoxemic patients. This finding in Study I, however, 
contradicts a study in rats reporting increased α-ENaC mRNA levels in response to 
hypoxia (Vivona et al. 2001). Instead, our observations in cyanotic CHD with chronic 
hypoxemia support another finding in animals that hypoxia effects are related to 
decreased Na+ transport activity rather than to the changes in Na+ transporter mRNA 
expressions (Carpenter et al. 2003).  
 
Although hypoxia reduces the activity of Na-K-ATPase both in vitro and in animals 
in vivo, the effects on mRNA levels have been somewhat contradictory (Carpenter et 
al. 2003, Mairbaurl et al. 2002, Planes et al. 2002, Tomlinson et al. 1999, Zhou et al. 
2008, Vivona et al. 2001). In line with a previous study on rats demonstrating 
increased β1-Na-K-ATPase mRNA levels as well as a trend toward increased α1-Na-
K-ATPase mRNA levels (Carpenter et al. 2003, Vivona et al. 2001), our study 
revealed significantly higher α1-Na-K-ATPase mRNA expression in the profoundly 
hypoxemic compared with the normoxemic patients (Figure 9). Based on Study I 
findings the role of increased Na,K,ATPase expression in profound hypoxemia may 
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compensate for a reduction in amiloride-sensitive airway epithelial Na+ transport 
activity. Our findings, somewhat contradict a previous study showing decreased α1- 
and β1-Na,K,ATPase mRNA levels in HAPE-prone subjects exposed to hypoxia at 
high altitude (Mairbaurl et al. 2003a). However, the latter measurements were 
performed after a short-term exposure to hypoxia and postulates regarding chronic 
compensatory changes may not be applicable.  
 

 

 

Figure 9 Comparison of Na+ transporter subunit mRNA levels between normoxemic 
patients (SpO2 ≥ 95%) with acyanotic CHD or acquired heart disease and 
profoundly hypoxemic patients with cyanotic CHD (SpO2 ≤ 85%). 
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 Postoperative imaging of EVLW (I-III) 5.3

In analyzing EVLW, we focused on early postoperative images because excessive 
EVLW typically accumulates early after CPB (Asada and Yamaguchi 1971). This 
assumption is supported by the Study II finding, which shows that early postoperative 
B-line and CXR LE scorings correlate with perfusion time and aortic cross-clamping 
time (Table 6). Moreover, this finding emphasizes the importance of CPB in initiating 
noxious physiologic cascades leading to excessive EVLW and pulmonary dysfunction 
(Asimakopoulos et al. 1999a). In fact, the complexity of care and potential for 
postoperative morbidity according to the ACC scoring also correlated with both B-
line and CXR LE scores early postoperatively (Table 6). 

 Early postoperative 

B-line score CXR LE score 

r2 p r2 p 

ACC score 0.09 0.03 0.11 0.016 

Patient age 0.25 a 0.0001 0.17 a 0.001 

Length of perfusion 0.11 0.016 0.13 0.007 

Length of aortic cross-clamping 0.14 0.007 0.16 0.003 

a a negative correlation 
Children with critical CHD are often operated on at a younger age and may thus 
require more complex surgery. In Study II, patient age correlated negatively with both 
early postoperative lung US B-line and with CXR LE scorings (Table 6) suggesting 
that cardiac surgery and CPB may give rise to EVLW especially in younger children. 
This susceptibility may result from differences in inflammatory profiles in neonates 
compared with older children as well as from higher vulnerability of infant lung for 
ischemia-reperfusion (Ashraf et al. 1997, Qiu et al. 2008).  
 
In study I, only in the profoundly hypoxemic patients did CXR LE scoring increase 
from preoperative to early postoperative (p=0.0004) and to CXR taken on the POD1 
(p<0.0001). Also, the correlation between CXR LE score and length of perfusion was 
found, in particular, in the profoundly hypoxemic patients (r2=0.17, p=0.04). These 
findings emphasize that after open-heart surgery profoundly hypoxemic patients may 
be particularly susceptible to excessive EVLW induced by pulmonary reperfusion 
injury and CPB.  
 
The association between airway epithelial Na+ transport and postoperative lung edema 
is emphasized by our finding, which demonstrates a weak negative correlation 
between early postoperative CXR LE score and preoperative α-ENaC mRNA level 

Table 6. Correlation of early postoperative (1‒6 hours postoperatively) B-line 
score/chest radiography lung edema score and patient-related factors 
and CPB data 
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(r2=0.10, p=0.03, n=48) and α1-Na-K-ATPase mRNA level (r2=0.12, p=0.02, n=45) 
(Kaskinen A. et al, unpublished results). However, other Na+ transporter subunit 
mRNA levels or any NPD variables showed no correlation with CXR LE score early 
postoperatively or on the POD1 (data not shown) (Kaskinen A. et al, unpublished 
results). 

5.3.1 Postoperative lung ultrasound 

Study II revealed a correlation between B-line scores and CXR LE scores 1‒6 hours 
postoperatively, but also on POD1 and on POD4 (Table 7). The correlations found 
correspond to previous studies in adults showing coefficients of determinations 
between 0.38 and 0.61 (Agricola et al. 2005, Jambrik et al. 2004, Volpicelli et al. 
2008).  

 n r2 (95% CI) p 

1‒6 hours postoperatively 55 0.41 (0.21–0.61) <0.0001 

POD1 53 0.15 (0.02–0.36) 0.004 

POD2 34 0.02 (-0.04–0.20) 0.44 

POD3 21 0.02 (-0.09–0.30) 0.51 

POD4 24 0.28 (0.03–0.59) 0.008 

POD5 15 0.04 (-0.12–0.42) 0.45 

 

Study II, contrary to other findings on adult patients undergoing hemodialysis (Noble 
et al. 2009), demonstrated no correlation between B-line scoring and patient fluid 
balance during POD1, POD2, or POD3. Compared with patients undergoing 
hemodialysis in need of eliminating extra fluid from the body, in PICU, postoperative 
fluid management aims at avoiding excessive fluid load. In addition, the patients 
having longer perfusion and aortic cross-clamping, and thus a greater expected risk 
for reperfusion-induced lung injury, had postoperatively more abundant B-lines in the 
lung US (Table 6). Thus, we suggest that the B-lines resulted from increased EVLW 
due to reasons other than fluid overload. In addition, although both lung US and CXR 
assess indirectly lung edema, EVLW in adults measured by TPTD technique has 
showed a stronger correlation with US-based EVLW assessment than with CXR 
(Brown et al. 2013, Enghard et al. 2015). 
 
Alveolar flooding begins only when EVLW has doubled (Bongard et al. 1984). A 
clinically valuable imaging method would detect changes below this threshold. CXR 
densitometry in dogs has invariably recognized a 35% increase in EVLW as definitive 

Table 7. Correlation between B-line scores and chest radiography lung edema 
scores 
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edema (Snashall et al. 1981). B-lines, however, may appear early and precede the 
radiologic signs of increased EVLW (Jambrik et al. 2004, Lichtenstein et al. 1997). 
Consistent with these suggestions, the B-line score was significantly higher than the 
rescaled CXR lung edema score 1–6 hours postoperatively [1.00 (0.50‒1.33) vs. 0.63 
(0.42‒1.04), p=0.004)] (Kaskinen A. et al, unpublished results).  
 
Although lung US protocols with 28 scans have been used in adults, in neonates 6-
region scans have been implemented for practical reasons (Agricola et al. 2005, 
Copetti et al. 2008a, Jambrik et al. 2004, Martelius et al. 2013). We found all six 
scanning windows of lung US accessible in children of different sizes and also in 
patients with delayed sternal closure. We also found lung US easy to learn. This 
observation is in line with a study showing lung US as equally reliable whether done 
by experienced echocardiographer or a beginner in the field of US (Bedetti et al. 
2006). Accordingly, the 6-region lung US is practical in PICU after congenital cardiac 
surgery and simple to use by a clinician, who may use US findings while determining 
treatment decisions.  
 
To study the repeatability of 6-region lung US B-line score, we studied the 
interobserver agreement of B-line scoring. The interobserver correlation was strong 
for B-line scores (r2=0.73) but only moderate for CXR LE scores (r2=0.33). Also, 
previously reported interobserver correlations of lung US scorings have been shown 
to be strong, and coefficients of determinations as high as 0.86‒0.92 have been 
reported (Bedetti et al. 2006, Martelius et al. 2013).  

 Postoperative lung compliance (II, III) 5.4

The repeated static Crs measurements in each patient showed high consistency with 
standard deviation of 4.1% in Study II and 5.6% in Study III. This excellent 
consistency between repeated measurements emphasizes the accuracy and validity of 
the static Crs values and further justifies their comparison with ventilator-derived 
dynamic Crs (Gappa et al. 2001). Furthermore, Crs did not differ between patients 
with open or closed sternum. This finding supports the assumption that in young 
children the naturally elastic chest wall has only minimal effect on Crs (Papastamelos 
et al. 1995). Proportioning Crs values by weight may have resulted in patient age 
showing only a weak correlation with static Crs (r2=0.12, p=0.01) but not with 
dynamic Crs (r2=0.03, p=0.23) (Kaskinen et al. unpublished results).  

 
A positive correlation between dynamic and static Crs was moderate (r2=0.32, 
p<0.0001) and less remarkable than in previous studies on patients with respiratory 
failure or test animals predisposed to lung injury (Kugelman et al. 1995, Ranieri et al. 
1994, Storme et al. 1992, Suarez-Sipmann et al. 2007). This disparity in correlations 
may result partly from differences in patient materials or Crs measurement methods. 
Compared with the previous human studies, our patients after congenital cardiac 
surgery had no other reason for respiratory failure, major inflammatory disease, or 
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primary pulmonary disease, and thus were more homogenous in terms of their 
pulmonary state. Furthermore, we used the double-occlusion method rather than the 
SOT, which is affected by airway and tube resistance (Kugelman et al. 1995, Ranieri 
et al. 1994, Storme et al. 1992). Despite the correlation, static compliance was 48% 
higher than dynamic (p<0.0001), which is consistent with previous studies and may 
result from the effect of airway and tube resistance on dynamic lung mechanics 
(Kugelman et al. 1995, Stenqvist et al. 2008). Accordingly, dynamic Crs may reflect 
different phenomena than static Crs.  
 
In Study III, early postoperative static Crs was 7.4 ± 2.4 ml/kPa/kg, which is lower 
than reported in sleeping healthy full-term infants (Katier et al. 2005, Lodrup Carlsen 
et al. 1994). Since age has some effect on Crs, values were compared with previous 
studies also in a subset of patients younger than one year of age, who also had lower 
static Crs (6.9 ml/kPa/kg) than in the previous studies (Katier et al. 2005, Lodrup 
Carlsen et al. 1994). In patients with L-R shunt defects, early postoperative static Crs 
showed no difference from other CHD (7.6 ± 2.7 vs. 7.3 ± 2.2 ml/kPa/kg, 
respectively, p=0.89) (Kaskinen et al. unpublished results). Similarly, no difference 
occurred in dynamic Crs between patients with L-R shunt and other CHD (5.1 ± 2.4 
vs. 5.0 ± 1.3 ml/kPa/kg, respectively, p=0.62) (Kaskinen et al. unpublished results). 
Nor did length of perfusion, aortic cross-clamping, or ACC score correlate with 
dynamic or static Crs in Study III. These findings contrast with previous studies 
showing that both CPB and cardiac surgery as well as increased pulmonary blood 
flow may reduce lung compliance (Lanteri et al. 1995, Matthews et al. 2009, 
Matthews et al. 2007). However, in children with increased pulmonary blood flow, 
the beneficial effects of corrective cardiac surgery may surpass the harmful effects of 
CPB on lung mechanics, whereas in children with normal or reduced pulmonary 
blood flow CPB primarily reduces Crs (Habre et al. 2004, Lanteri et al. 1995, Stayer 
et al. 2004).  
 
Based on previous findings demonstrating that a decrease in Crs reflects an increase 
in EVLW in pigs and that lung compliance correlates with EVLW measured by TPTD 
in mechanically ventilated adults postoperatively, we hypothesized that a correlation 
would also exist between the Crs and B-line scorings as well as CXR LE scorings 
(Gargani et al. 2007, Oshima et al. 2008). In Study III, static Crs, unlike dynamic, 
showed a negative correlation with CXR lung edema scoring (r2=0.25, p=0.0002) 
(Figure 10). The association between CXR findings and lung compliance in Study III 
is in line with previous studies showing negative correlation between CXR 
vasculature gradings and compliance (Howlett 1972, Matthews et al. 2007). Since 
only static Crs correlated with CXR LE scoring, static Crs may reflect the state of 
lung parenchyma better than ventilator-derived dynamic Crs. This also may result 
from the fact that airway resistance affects dynamic Crs unlike static Crs measured by 
DOT. Disappointingly, but consistent with our previous study on healthy neonates 
(Martelius et al. 2015b), we found no correlation between postoperative static Crs and 
the B-line score in Study II (Figure 10). However, a finding that early postoperative 
static Crs was 26% lower (p=0.02) in patients with a B-line score at or above the 
median demonstrates some association between B-line score and static Crs.   
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Figure 10 Early postoperative static Crs correlated with CXR LE scoring (r2=0.25, 
p=0.0002, n=50) (A) but not with lung US B-line scoring (r2=0.13, p=0.08, 
n=24) (B). 

 Predicting short-term outcome after cardiac surgery (II, III) 5.5

In line with previous studies on children undergoing CPB and congenital cardiac 
surgery (Brown et al. 2003, Bojan et al. 2011b, Bojan et al. 2011a), in Study II the 
higher operative complexity assessed by ACC scoring, increased perfusion time, 
aortic cross-clamp time, and postoperative complications was associated with a longer 
stay at PICU postoperatively (Table 8). We also found these factors to associate with 
the length of mechanical ventilation (Table 8). Also in accordance with previous 
studies (Brown et al. 2003, Fischer et al. 2000, Padley et al. 2011), younger age was 
associated with both a longer need for mechanical ventilation and a longer 
postoperative PICU stay (Table 8). 
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 Length of 

Mechanical ventilation 

r2,, p 

PICU stay 

r2,, p 

ACC score 0.24, <0.0001 0.28, <0.0001 

Patient age 0.11 a, 0.008 0.12 a, 0.007 

Perfusion time 0.49, <0.0001 0.49, <0.0001 

Aortic cross-clamp time 0.45, 0.49, <0.0001 0.43, 0.49, <0.0001 

Major postop. complications a p=0.02 b p=0.001 b 

Lung US B-line score 0.29, <0.0001 0.22, 0.0003 

CXR LE score 0.26, <0.0001 0.21, 0.0004 

a a negative correlation 
b Length of mechanical ventilation and PICU stay in patients with major postoperative 
complications was 4 (1‒7) days and 6 (4‒11) days compared with 1 (0.5‒4) days and 3 (2‒6) 
days in patients without  major postoperative complications, respectively. 

Abundance of EVLW determined by TPTD method has shown to predict risk for 
clinically significant lung edema and short-term outcome in ARDS (Kor et al. 2015, 
Phillips et al. 2008, Sakka et al. 2002). Also, a case report of a child with lung injury 
after congenital cardiac surgery showed a decrease in B-lines synchronous with 
recovery (Biasucci et al. 2014). Furthermore, pulmonary complications in general 
delay recovery of children after congenital cardiac surgery (Bandla et al. 1999, 
Fischer et al. 2000). We found early postoperative B-line and CXR scoring to 
correlate with length of mechanical ventilation and PICU stay (Table 8). In harmony 
with this, the patients with a B-line score or a CXR LE score at or above the median 
had a longer time on mechanical ventilation and stayed postoperatively longer in 
PICU. Accordingly, early postoperative B-line score as well as CXR LE score play a 
role in predicting short-term outcome after heart surgery for CHD. 
 
Lung compliance in predicting outcome has been shown to be inconsistent. In 
children treated at PICU for various reasons and in adults with acute lung injury, Crs 
has associated with short-term outcome (Greenough et al. 1999, Nuckton et al. 2002, 
Seeley et al. 2011). In preterm infants, however, dynamic compliance by esophagus 
method has not predicted successful extubation (Veness-Meehan et al. 1990). In 
Study III, neither dynamic nor static Crs predicted the length of mechanical 
ventilation and PICU stay after congenital cardiac surgery. 
 
To find prognostic factors independently predicting short-term outcome, we 
performed a multivariable analysis (Table 9). In addition to B-line or CXR LE scores, 
the length of perfusion and presence of postoperative complications were included as 

Table 8. Correlation between perioperative factors, B-line score, CXR LE score, 
and short-term outcome 
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independent variables, since they have been shown predictive after congenital cardiac 
surgery (Brown et al. 2003). Length of perfusion independently predicted the short-
term outcomes, whereas postoperative complications predicted only length of PICU 
stay (Table 9). The lung US B-line score independently predicted both length of 
mechanical ventilation and PICU stay, as did the CXR LE score (Table 9). 
Consequently, lungs in general, and particularly excessive EVLW, are a potential 
factor in complicating postoperative recovery after congenital cardiac surgery.  

 
Based on our statistical multivariable analyses, both the model with B-line score and 
with CXR LE score could be used in predicting short-term outcome after congenital 
cardiac surgery. Both models had equal statistical significance in predicting length of 
mechanical ventilation and length of postoperative PICU stay (Table 9). We further 
analyzed and compared the predictive value of B-line and CXR LE scores on short-
term outcome by using ROC curves (Kaskinen A. et al., unpublished results). The 
AUC of B-line score and CXR LE scores showed no difference in determining PICU 
stay or mechanical ventilation lasting over median (Figure 11). The great variability 

Table 9. Multivariable linear regression analyses predicting short-term outcome 
after congenital cardiac surgery. 

Length of mechanical ventilation 

  Length of 
perfusion 

Major postop. 
complications 

B-line 
score 

CXR LE 
score r2, p a 

Model 1 b Betad 0.57 0.08 0.36  0.60, 
<0.0001 pe <0.0001 0.43 0.001  

Model 2 c Betad 0.54 0.15  0.32 0.59, 
<0.0001 pe <0.0001 0.13  0.002 

Length of PICU stay 

  Length of 
perfusion 

Major postop. 
complications 

B-line 
score 

CXR 
LE 

score 
r2, p a 

Model 1 b Betad 0.55 0.20 0.24  0.59, 
<0.0001 pe <0.0001 0.04 0.02  

Model 2 c Betad 0.52 0.26  0.26 0.60, 
<0.0001 pe <0.0001 0.009  0.009 

a coefficient of determination and p-value for a model 
b Model 1 includes length of perfusion, presence of major postoperative complications and early 
postoperative B-line score as dependent variables 
c  Model 2 includes length of perfusion, presence of major postoperative complications and early 
postoperative CXR LE score as dependent variables 
d standardized beta 
e p-value for a variable in a model 
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of CHDs and patient characteristics prevent straightforward prediction of short-term 
outcome such as length of PICU stay by statistical models. However, to assess 
postoperative risks influencing resource management, it would be important to 
identify easily measurable factors predicting postoperative morbidity. 
 

 

Figure 11 ROC curves of B-line score and CXR LE score in determining longer than 
median PICU stay (A, C) and mechanical ventilation (B, D). The area under 
curve (AUC) of B-line score and CXR LE score showed no difference in 
determining PICU stay (p=0.48) or mechanical ventilation (p=0.25) lasting over 
median. 

The early postoperative B-line score was higher in the patients with delayed sternal 
closure than those with primary sternal closure (p=0.002). As for CXR, early 
postoperative CXR LE scoring was also higher in patients with delayed sternal 
closure (p=0.005). Although a higher amount of EVLW postoperatively was 
associated with delayed sternal closure, our retrospective comparisons did not reveal 
the value of either B-line or CXR LE scorings in predicting the optimal timing for the 
sternal closure.  
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 Long-term outcome of PA+VSD (IV) 5.6

The follow-up of PA+VSD patients extended 41 years from 1970 and the median 
follow-up time was 11.4 years (range 0.01–41.77 years). This long follow-up is an 
important merit of our study because previous studies have either had a shorter 
follow-up (Amark et al. 2006, Cho et al. 2002) or have focused on only PA+VSD 
patients with MAPCAs (dUdekem et al. 2005).  

5.6.1 Incidence and diagnosis of PA+VSD 

The incidence of PA+VSD in Finland was 6.1 per 100 000 live births, which is in line 
with previously reported incidence values of 4.2 to 10 per 100 000 live births (Fyler 
1980, Leonard et al. 2000, Samanek and Voriskova 1999).  

 
Consistent with a previous report (Dinarevic et al. 1995), no difference in age at 
postnatal diagnosis occurred between patients with or without MAPCAs in Study IV. 
However, 95% of patients born between 1995 and 2007 were diagnosed before the 
age of two weeks compared with 72% of patients born between 1970 and 1994 
(p=0.004). This finding may indicate that the support and consult services of the 
childbirth hospitals from the tertiary care have significantly improved, resulting in 
earlier diagnosis of PA+VSD in more recent years. The antenatal CHD diagnostics in 
Finland have further improved after 2010 when our own domestic guidelines for fetal 
morphology screening took effect and made the national Fetal Cardiology Program 
(established in 1999) more effective. In Study IV, antenatal diagnosis occurred in only 
5% of the patients and thus the effect of antenatal diagnosis on treatment and survival 
of PA+VSD patient could not be studied. However, other recently published results 
have shown a high degree of accuracy for prenatal echocardiographic diagnosis of 
PA+VSD, although the correct assessment of central pulmonary arteries and 
MAPCAs is still challenging (Vesel et al. 2006). The improvements in prenatal 
diagnostics may affect the incidence of PA+VSD in the future since, according to a 
recent meta-analysis, 46% of PA+VSD pregnancies are terminated (Zhao et al. 2016). 

5.6.2 Overall outcome of PA+VSD 

The Kaplan-Meier estimated overall survival in Study IV corresponded to previous 
reports with comparable follow-up periods (Amark et al. 2006, Dinarevic et al. 1995, 
Leonard et al. 2000) (Figure 12).  
 
The factors significantly affecting survival were the primary size of central pulmonary 
arteries (HR 0.60, 95% CI 0.45–0.82 per 0.5 McGoon units, p=0.001) and 
achievement of successful repair (HR 0.07, 95% CI 0.03–0.17, p<0.0001) (IV, Table 
3 & Figure 2).  
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Figure 12 The modern long-term survival of PA+VSD is significantly better than natural 
survival reported by Bertranou and colleagues in 1978 (Bertranou et al. 1978).   

5.6.3 Outcome of PA+VSD after repair 

After successful repair, the survival of patients was excellent and was comparable to 
previous series (Amark et al. 2006, Chen et al. 2012, Cho et al. 2002, Dinarevic et al. 
1995) (Figure 13). The NYHA class in surviving repaired patients was 1.3 ± 0.5 at the 
latest follow-up visit, which was a median 18.6 (10.7–23.7) years after repair. Also, 
the postoperative RV/LV systolic pressure ratios remained at acceptable levels. 
Kaplan-Meier estimated freedom from reintervention after repair was 86%, 57%, and 
33% at 1, 10, and 20 years after repair, respectively. A perioperative RV/LV systolic 
pressure ratio above 50% increased the probability of surgery or catheter-based 
reintervention in multivariable Cox regression analysis (IV, Table 4).  
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Figure 13 Survival after repair compared with previous reports (Amark et al. 2006, Cho et 
al. 2002).   

5.6.4 Outcome of palliated PA+VSD patients 

The palliated patients had Kaplan-Meier estimated survival rates of 55%, 34%, 20%, 
and 15% at 1, 10, 20, and 30 years of age, respectively. Compared with previous 
reports, these survival rates of Study IV are somewhat disappointing (Cho et al. 
2002). However, in our series the palliated patients who underwent incomplete repair 
attempts with a connection between RV and pulmonary arteries but who had to be left 
with septal fenestration had better survival than the rest of the palliated patients (IV, 
Figure 2). Therefore, despite failure to close VSD at repair being considered as a risk 
factor for mortality (Carotti et al. 2010, Davies et al. 2009), repair attempts resulting 
in creation of a connection between RV and pulmonary arteries with septal 
fenestration should be considered as a partial success when treating PA+VSD. For the 
patients with MAPCAs, reconstruction of RV-outflow tract with septal fenestration 
was performed more often than for patients without MAPCAs. This may lead to the 
result that the survival of palliated patients in our series was better in the presence of 
MAPCAs, a finding contradicting the report of Cho and colleagues (Cho et al. 2002). 
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 Methodological considerations  5.7

Study I lacked airway epithelial ion transport activity measurements and Na+ 
transporter mRNA levels from distal airway epithelium, since distal airway 
measurements would have been invasive. However, in humans, proximal airway 
epithelium is commonly used to assess phenomena in distal airways (Barker et al. 
1997, Fajac et al. 1998, Mac Sweeney et al. 2011). That epithelial ion transport of the 
proximal airway associates with Crs in newborns and ENaC mRNA expression in 
adults further justifies the usage of proximal airway as a surrogate for more distal 
airways (Helve et al. 2005, Otulakowski et al. 1998). From nasal epithelial cell 
samples only mRNA levels were measured. Thus, whether protein translation of Na+ 
transporters is affected by chronic hypoxemia in CHD remains unknown. 
 
In Study II, improvement of postoperative clinical condition after POD1 caused a 
natural decrease in number of lung US examinations available for analysis (Table 7). 
This may have contributed to a lack of correlation between B-line and CXR LE scores 
during POD2, POD3, and POD5. In addition, there are certain limitations in 
comparing lung US B-line score with CXR LE score in assessment of EVLW. First, 
although CXR scorings in adults have correlated moderately with EVLW measured 
with dilution techniques (Brown et al. 2013, Halperin et al. 1985), similar correlation 
has lacked in critically ill children (Lemson et al. 2010). Second, in Study II the 
interobserver correlation of CXR LE score was only moderate (r2=0.33), which 
emphasizes that interpretation of CXR despite standardization may remain, at least 
partly, subjective in nature. Third, intravascular filling may interfere with EVLW 
grading of CXR, unlike with lung US (Lange and Schuster 1999). Despite these 
limitations, comparison of lung US B-line score with CXR was important, since CXR 
is still used as the principal imaging method in clinical practice when assessing 
EVLW and lung edema after congenital cardiac surgery.  
 
In Studies II and III, only sporadic postoperative Crs values were measured. 
Therefore, the interesting comparison of the preoperative and postoperative values as 
well as analysis of postoperative variation in Crs was impossible. In Study II, the 
number of postoperative static Crs measurements was limited due to early 
postoperative extubations and was thus smaller than in Study III. This may have 
resulted in no correlation existing between static Crs and CXR LE score in Study II.  
 
No power calculations were made to study the factors predicting short-term outcome 
after congenital cardiac surgery. Since the length of mechanical ventilation and PICU 
stay are related to multiple factors during the postoperative course after congenital 
cardiac surgery (Brown et al. 2003), higher number of Crs values in Study III may 
have been needed to reach statistical significance in predicting short-term outcome.  
 
Limitations of Study IV were related to the retrospective nature of the study. Changes 
and progress in pre-, peri-, and postoperative care of PA+VSD during the extensive 
follow-up of Study IV may have complicated precise analysis of factors affecting 
survival. Furthermore, many of the factors affecting survival and achievement of 
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repair are interrelated. For example, the presence of MAPCAs and birth year affected 
probability of achieving repair but lacked an effect on survival. In addition, the 
limited number of angiograms available may have affected the analyses concerning 
McGoon and TNPAI indexes as well as perfusion of lung segments. Angiograms of 
79 (72%) patients were available, but angiograms existed for only 54% of the patients 
with MAPCAs. Furthermore, there was no possibility to evaluate peripheral 
intrapulmonary perfusion reliably. Thus, despite beneficial for the central pulmonary 
arteries, the systemic–pulmonary artery shunts ability to promote growth of peripheral 
intrapulmonary vessels remained undocumented. 

 Future perspectives  5.8

The Study II findings indicating that the early postoperative assessment of EVLW 
both by lung US and CXR predicted short-term outcome emphasize the role of lungs 
as a potential source of complications after congenital cardiac surgery. Thus, 
postoperative pulmonary pathology, and lung edema in particular, is an interesting 
area of future studies in children with CHD. 

 
In Study I, we showed that profoundly hypoxemic children with cyanotic CHD have 
impaired airway epithelial Na+ transport, which may result from posttranscriptional 
mechanisms of hypoxemia. However, the specific posttranscriptional and 
posttranslational mechanisms causing this impairment warrant further studies. Since 
β2-agonists have shown to enhance airway epithelial Na+ transport, these drugs may 
have potential in promoting postoperative lung liquid removal after congenital cardiac 
surgery, especially in those with impaired airway epithelial Na+ transport. 
Furthermore, the role of glucocorticoids, which are often combined with open-heart 
surgery to suppress inflammatory response, is largely unknown in postoperative lung 
liquid removal after congenital cardiac surgery. 

 
Based on the Study II findings, lung US may complement CXR in assessment of 
EVLW and lung edema in children after congenital cardiac surgery. Whether lung US 
could potentially replace some postoperative CXRs or treatment decisions could be 
based on lung US needs further systematic studies. Since CXR has limitations in 
assessment of EVLW, comparison of lung US B-line score with precise measurement 
of EVLW such as TPTD in children undergoing congenital cardiac surgery is needed. 
However, the effect of intracardiac shunts on reliability of TPTD method should be 
carefully taken into account (Keller et al. 2011). In addition to blinded analysis of 
lung US, open comparison with other imaging techniques would also provide more 
knowledge on the significance of lung ultrasound as a diagnostic tool after congenital 
cardiac surgery. Other postoperative pulmonary complications such as pneumonia, 
pneumothorax, and atelectasis have also been detected and assessed by lung US. 
Thus, lung US may also have potential for wider use than congenital cardiac surgery 
in children. Finally, the postoperative dynamic variation of B-line score in various 
CHDs is also an important and interesting area of future investigation.  
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Study III demonstrated that ventilator-derived dynamic lung compliance reflects 
different phenomena than static lung compliance and may not be ideal tool to reflect 
the state of lung parenchyma, unlike static Crs. However, it remains to be shown 
whether continuous ventilator-derived dynamic compliance proves useful in 
monitoring of the patient after congenital cardiac surgery. In addition, the 
postoperative variation of dynamic Crs and its association with short-term outcome 
needs systematic investigation. The role of Crs values, later during the postoperative 
course, in predicting short-term outcome would be interesting. Another important area 
for future research would be to study whether postoperative treatment decisions such 
as timing of sternal closure or ventilator management optimization could be based on 
ventilator-derived dynamic Crs or on lung US findings.  
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6 Conclusions 

This thesis focused on factors affecting EVLW clearance and methods to assess 
EVLW after congenital cardiac surgery in children. In addition, we studied factors 
affecting postoperative short-term outcome in CHD in general and long-term outcome 
in a particular cyanotic CHD, namely PA+VSD. The main findings include: 
  

1. The airway epithelial Na+ transport and particularly amiloride-sensitive Na+ 
transport was impaired in profoundly hypoxemic children with cyanotic CHD. 
Posttranscriptional mechanisms may cause this impairment, since no ENaC-
subunit mRNA expressions were attenuated in profoundly hypoxemic patients. 
After open-heart surgery, profoundly hypoxemic patients may be particularly 
susceptible to excessive EVLW induced by CPB and pulmonary reperfusion 
injury. 

 
2. Lung US B-line score correlated with radiographic EVLW assessment, and 

interpretation of lung US had less interobserver variation than CXR. Lung US 
as a radiation-free and easy bedside tool may complement chest radiography 
in assessment of EVLW in children after congenital cardiac surgery. 

 
3. Static Crs associates with US and CXR assessment of EVLW early after 

congenital cardiac surgery. Despite reasonable correlation between the 
dynamic and static Crs, the values do differ and these measurements reflect 
different phenomena. Ventilator-derived dynamic lung compliance may not 
reflect the state of lung parenchyma similar to static compliance.  
 

4. After congenital cardiac surgery, both early postoperative lung US B-line and 
CXR lung edema scorings independently predicted short-term outcome 
interpreted as length of postoperative mechanical ventilation and intensive 
care. Identifying measurable factors predicting postoperative short-term 
outcome and morbidity may promote resource management and early 
recognition of postoperative complications.  

 
5. The most significant factors affecting long-term survival of PA+VSD were the 

primary anatomy of pulmonary circulation and achievement of repair. Thus 
the initial evaluation of pulmonary circulation has a crucial role in determining 
the treatment strategy of PA+VSD, which should actively aim at surgical 
correction. However, palliative surgery also has a role in treating PA+VSD, 
since systemic-pulmonary artery shunt is advantageous for the growth of the 
central pulmonary arteries, and reconstruction of RV-outflow tract with septal 
fenestration improves survival. 
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