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Abstract Measurements of charged jet production as a
function of centrality are presented for p–Pb collisions
recorded at

√
sNN = 5.02 TeV with the ALICE detector. Cen-

trality classes are determined via the energy deposit in neu-
tron calorimeters at zero degree, close to the beam direction,
to minimise dynamical biases of the selection. The corre-
sponding number of participants or binary nucleon–nucleon
collisions is determined based on the particle production in
the Pb-going rapidity region. Jets have been reconstructed
in the central rapidity region from charged particles with
the anti-kT algorithm for resolution parameters R = 0.2 and
R = 0.4 in the transverse momentum range 20 to 120 GeV/c.
The reconstructed jet momentum and yields have been cor-
rected for detector effects and underlying-event background.
In the five centrality bins considered, the charged jet pro-
duction in p–Pb collisions is consistent with the produc-
tion expected from binary scaling from pp collisions. The
ratio of jet yields reconstructed with the two different reso-
lution parameters is also independent of the centrality selec-
tion, demonstrating the absence of major modifications of
the radial jet structure in the reported centrality classes.

1 Introduction

The measurement of benchmark processes in proton–nucleus
collisions plays a crucial role for the interpretation of
nucleus–nucleus collision data, where one expects to cre-
ate a system with high temperature in which the elemen-
tary constituents of hadronic matter, quarks and gluons, are
deconfined for a short time: the quark-gluon plasma (QGP)
[1]. Proton–lead collisions are important to investigate cold
nuclear initial and final state effects, in particular to disen-
tangle them from effects of the hot medium created in the
final state of Pb–Pb collisions [2].

See Appendix A for the list of collaboration members.
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The study of hard parton scatterings and their subsequent
fragmentation via reconstructed jets plays a crucial role in
the characterisation of the hot and dense medium produced
in Pb–Pb collisions while jet measurements in p–Pb and
pp collisions provide allow to constrain the impact of cold
nuclear matter effects in heavy-ion collisions. In the initial
state, the nuclear parton distribution functions can be modi-
fied with respect to the quark and gluon distributions in free
nucleons, e.g. via shadowing effects and gluon saturation
[2,3]. In addition, jet production may be influenced, already
in p–Pb collisions, by multiple scattering of partons and
hadronic re-interaction in the initial and final state [4,5].

In the absence of any modification in the initial state, the
partonic scattering rate in nuclear collisions compared to pp
collisions is expected to increase linearly with the average
number of binary nucleon–nucleon collisions 〈Ncoll〉. This
motivates the definition of the nuclear modification factor
RpPb, as the ratio of particle or jet transverse momentum
(pT) spectra in nuclear collisions to those in pp collisions
scaled by 〈Ncoll〉.

In heavy-ion collisions at the LHC, binary (Ncoll) scaling
is found to hold for probes that do not interact strongly, i.e.
isolated prompt photons [6] and electroweak bosons [7,8].
On the contrary, the yields of hadrons and jets in central Pb–
Pb collisions are strongly modified compared to the scaling
assumptions. For hadrons, the yield is suppressed by up to
a factor of seven at pT ≈ 6 GeV/c, approaching a factor of
two at high pT (�30 GeV/c) [9–11]. A similar suppression
is observed for jets [12–16]. This observation, known as jet
quenching, is attributed to the formation of a QGP in the
collision, where the hard scattered partons radiate gluons due
to strong interaction with the medium, as first predicted in
[17,18].

In minimum bias p–Pb collisions at
√
sNN = 5.02 TeV

the production of unidentified charged particles [19–22] and
jets [23–25] is consistent with the absence of a strong final
state suppression. However, multiplicity dependent studies
in p–Pb collisions on the production of low-pT identified
particles and long range correlations [26–29] show similar
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features as measured in Pb–Pb collisions, where they are
attributed to the collective behaviour following the creation
of a QGP. These features in p–Pb collisions become more
pronounced for higher multiplicity events, which in Pb–
Pb are commonly associated with more central collisions or
higher initial energy density.

The measurement of jets, compared to single charged
hadrons, tests the parton fragmentation beyond the lead-
ing particle with the inclusion of large-angle and low-pT

fragments. Thus jets are potentially sensitive to centrality-
dependent modifications of low-pT fragments.

This work extends the analysis of the charged jet pro-
duction in minimum bias p–Pb collisions recorded with
the ALICE detector at

√
sNN = 5.02 TeV to a centrality-

differential study for jet resolution parameters R = 0.2 and
0.4 in the pT range from 20 to 120 GeV/c [25]. Section 2
describes the event and track selection, the centrality deter-
mination, as well as the jet reconstruction, the corrections
for uncorrelated background contributing to the jet momen-
tum [15,30,31] and the corrections for detector effects. The
impact of different centrality selections on the nuclear mod-
ification factor has been studied in detail in [32]. We esti-
mate the centrality using zero-degree neutral energy and
the charged particle multiplicity measured by scintillator
array detectors at rapidities along the direction of the Pb
beam to determine Ncoll. The correction procedures specific
to the centrality-dependent jet measurement are discussed
in detail. Section 3 introduces the three main observables:
the centrality-dependent jet production cross section, the
nuclear modification factor, and ratio of jet cross sections
for two different resolution parameters. Systematic uncer-
tainties are discussed in Sect. 4 and results are presented in
Sect. 5.

2 Data analysis

2.1 Event selection

The data used for this analysis were collected with the
ALICE detector [33] during the p–Pb run of the LHC at√
sNN = 5.02 TeV at the beginning of 2013. The ALICE

experimental setup and its performance during the LHC Run
1 are described in detail in [33,34].

For the analysis presented in this paper, the main detec-
tors used for event and centrality selection are two scintilla-
tor detectors (V0A and V0C), covering the pseudo-rapidity
range of 2.8 < ηlab < 5.1 and −3.7 < ηlab < −1.7, respec-
tively [35], and the Zero Degree Calorimeters (ZDCs), com-
posed of two sets of neutron (ZNA and ZNC) and proton
calorimeters (ZPA and ZPC) located at a distance ±112.5 m
from the interaction point. Here and in the following ηlab

denotes the pseudo-rapidity in the ALICE laboratory frame.

The minimum bias trigger used in p–Pb collisions
requires signal coincidence in the V0A and V0C scintilla-
tors. In addition, offline selections on timing and vertex-
quality are used to remove events with multiple interac-
tions within the same bunch crossing and (pile-up) and back-
ground events, such as beam-gas interactions. The event sam-
ple used for the analysis presented in this manuscript was
collected exclusively in the beam configuration where the
proton travels towards negative ηlab (from V0A to V0C).
The nucleon–nucleon center-of-mass system moves in the
direction of the proton beam corresponding to a rapidity of
yNN = −0.465.

A van der Meer scan was performed to measure the visi-
ble cross section for the trigger and beam configuration used
in this analysis: σV0 = 2.09 ± 0.07 b [36]. Studies with
Monte Carlo simulations show that the sample collected in
the configuration explained above consists mainly of non-
single diffractive (NSD) interactions and a negligible con-
tribution from single diffractive and electromagnetic inter-
actions (see [37] for details). The trigger is not fully effi-
cient for NSD events and the inefficiency is observed mainly
for events without a reconstructed vertex, i.e. with no parti-
cles produced at central rapidity. Given the fraction of events
without a reconstructed vertex in the data the corresponding
inefficiency for NSD events is estimated to (2.2 ± 3.1) %.
This inefficiency is expected to mainly affect the most periph-
eral centrality class. Following the prescriptions of [32], cen-
trality classes are defined as percentiles of the visible cross
section and are not corrected for trigger efficiency.

The further analysis requires a reconstructed vertex, in
addition to the minimum bias trigger selection. The fraction
of events with a reconstructed vertex is 98.3 % for minimum
bias events and depends on the centrality class. In the analy-
sis events with a reconstructed vertex |z| > 10 cm along the
beam axis are rejected. In total, about 96 · 106 events, cor-
responding to an integrated luminosity of 46 µb−1, are used
for the analysis and classified into five centrality classes

2.2 Centrality determination

Centrality classes can be defined by dividing the multiplicity
distribution measured in a certain pseudo-rapidity interval
into fractions of the cross section, with the highest multiplic-
ities corresponding to the most central collisions (smallest
impact parameter b). The corresponding number of partici-
pants, as well as Ncoll and b, can be estimated with a Glauber
model [38], e.g. by fitting the measured multiplicity distribu-
tion with the Npart distribution from the model, convoluted
with a Negative Binomial Distribution (NBD). Details on
this procedure for Pb–Pb and p–Pb collisions in ALICE are
found in [32,39], respectively.

In p–A collisions centrality selection is susceptible to a
variety of biases. In general, relative fluctuations of Npart and
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of event multiplicity are large, due to their small numerical
value, in p–Pb collisions [32] 〈Npart〉 = 〈Ncoll〉 + 1 =
7.9 ± 0.6 and dNch

dη
= 16.81 ± 0.71, respectively. Using

either of these quantities to define centrality, in the Glauber
model or the in experimental method, already introduces a
bias compared to a purely geometrical selection based on the
impact parameter b.

In addition, a kinematic bias exists for events containing
high-pT particles, originating from parton fragmentation as
discussed above. The contribution of these jet fragments to
the overall multiplicity rises with the jet energy and thus
can introduce a trivial correlation between the multiplic-
ity and presence of a high-pT particle, and a selection on
multiplicity will bias the jet population. High multiplicity
events are more likely created in collisions with multiple-
parton interactions, which can lead to a nuclear modifica-
tion factor larger than unity. On the contrary, the selection
of low multiplicity (peripheral) events can pose an effec-
tive veto on hard processes, which would lead to a nuclear
modification factor smaller than unity. As shown in [32] the
observed suppression and enhancement for charged parti-
cles in bins of multiplicity with respect to the binary scaling
assumption can be explained by this selection bias alone.
The bias can be fully reproduced by an independent super-
position of simulated pp events and the farther the central-
ity estimator is separated in rapidity from the measurement
region at mid-rapidity, the smaller the bias. We do not repeat
the analysis for the centrality estimators with known biases
here.

In this work, centrality classification is based solely on
the zero-degree energy measured in the lead-going neutron
detector ZNA, since it is expected to have only a small
dynamical selection bias. However, the ZNA signal can-
not be related directly to the produced multiplicity for the
Ncoll determination via NBD. As discussed in detail in [32]
an alternative hybrid approach is used to connect the cen-
trality selection based on the ZNA signal to another Ncoll

determination via the charged particle multiplicity in the
lead-going direction measured with the V0A (〈Ncoll〉Pb−side

c ).
This approach assumes that the V0 signal is proportional to
the number of wounded lead (target) nucleons (N target

part =
Npart − 1 = Ncoll). The average number of collisions for
a given centrality, selected with the ZNA, is then given by
scaling the minimum bias value 〈Ncoll〉MB = 6.9 with the
ratio of the average raw signal S of the innermost ring of the
V0A:

〈NPb−side
coll 〉c = 〈Ncoll〉MB · 〈S〉c

〈S〉MB
. (1)

The values of Ncoll obtained with this method are shown in
Table 1 for different ZNA centrality classes [32].

2.3 Jet reconstruction and event-by-event corrections

The reported measurements are performed using charged
jets, clustered starting from charged particles only, as
described in [15,25,40] for different collision systems.
Charged particles are reconstructed using information from
the Inner Tracking System (ITS) [41] and the Time Projection
Chamber (TPC) which cover the full azimuth and |ηlab| < 0.9
for tracks reconstructed with full length in the TPC [42].

The azimuthal distribution of high-quality tracks with
reconstructed track points in the Silicon Pixel Detector
(SPD), the two innermost layers of the ITS, is not com-
pletely uniform due to inefficient regions in the SPD. This
can be compensated by considering in addition trackswithout
reconstructed points in the SPD. The additional tracks con-
stitute approximately 4.3 % of the track sample used for anal-
ysis. For these tracks, the primary vertex is used as an addi-
tional constraint in the track fitting to improve the momen-
tum resolution. This approach yields a uniform tracking effi-
ciency within the acceptance, which is needed to avoid geo-
metrical biases of the jet reconstruction algorithm caused
by a non-uniform density of reconstructed tracks. The pro-
cedure is described first and in detail in the context of jet
reconstruction with ALICE in Pb–Pb collisions [15].

The anti-kT algorithm from the FastJet package [43] is
employed to reconstruct jets from these tracks using the pT

recombination scheme. The resolution parameters used in the
present analysis are R = 0.2 and R = 0.4. Reconstructed jets
are further corrected for contributions from the underlying
event to the jet momentum as

pT, ch jet = praw
T, ch jet − Ach jet · ρch, (2)

where Ach jet is the area of the jet and ρch the event-by-event
background density [44]. The area is estimated by counting
the so-called ghost particles in the jet. These are defined as
particles with a finite area and vanishing momentum, which
are distributed uniformly in the event and included in the jet
reconstruction [45]. Their vanishing momentum ensures that
the jet momentum is not influenced when they are included,
while the number of ghost particles assigned to the jet pro-
vides a direct measure of its area. The background density
ρch is estimated via the median of the individual momentum
densities of jets reconstructed with the kT algorithm in the
event

ρch = median

{
pT, k

Ak

}
· C, (3)

where k runs over all reconstructed kT jets with momentum
pT, i and area Ai . Reconstructed kT jets are commonly chosen
for the estimate of the background density, since they provide
a more robust sampling of low momentum particles. C is the
occupancy correction factor, defined as
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Table 1 Average Ncoll values for centrality classes selected with the ZNA determined with the hybrid approach (NPb−side
coll ) [32], as well as moments

of the background density and background fluctuation distributions shown in Fig. 1 (negligible statistical uncertainty)

ZNA centrality class (%) of visible cross section 〈NPb−side
coll 〉 ρ (GeV/c) σ(ρ) (GeV/c) σ(δpT, ch)(R = 0.4) (GeV/c)

0–20 12.1 ± 1.0 1.60 1.17 1.43

20–40 9.6 ± 0.8 1.27 1.04 1.30

40–60 6.7 ± 0.5 0.88 0.84 1.11

60–80 4.0 ± 0.3 0.70 0.52 0.90

80–100 2.1 ± 0.3 0.26 0.37 0.71

Minimum bias (0–100) 6.9 ± 0.6 0.98 1.02 0.91

C =
∑

j A j

Aacc
, (4)

where A j is the area of each kT jet with at least one real track,
i.e. excluding ghosts, and Aacc is the area of the charged-
particle acceptance, namely (2×0.9)×2π . The typical values
for C range from 0.72 for most central collisions (0–20 %) to
0.15 for most peripheral collisions (80–100 %). This proce-
dure takes into account the more sparse environment in p–
Pb collisions compared to Pb–Pb and is described in more
detail in [25]. The probability distribution for ρch for the
five centrality classes and minimum bias is shown in Fig. 1
(left) and the mean and width of the distributions are given in
Table 1. The event activity and thus the background density
increases for more central collisions, though on average the
background density is still two orders of magnitude smaller
than in Pb–Pb collisions where ρch is ≈140 GeV/c for central
collisions [31].

2.4 Jet spectrum unfolding

Residual background fluctuations and instrumental effects
can smear the jet pT. Their impact on the jet spectrum
needs to be corrected on a statistical basis using unfolding,

which is performed using the approach of Singular-Value-
Decomposition (SVD) [46]. The response matrix employed
in the unfolding is the combination of the (centrality-
dependent) jet response to background fluctuations and the
detector response. The general correction techniques are dis-
cussed in detail in the context of the minimum bias charged
jet measurement in p–Pb [25].

Region-to-region fluctuations of the background density
compared to the event median, contain purely statistical fluc-
tuations of particle number and momentum and in addition
also intra-event correlations, e.g. those characterised by the
azimuthal anisotropy v2 and higher harmonics, which induce
additional variations of the local background density. The
impact of these fluctuations on the jet momentum is deter-
mined by probing the transverse momentum density in ran-
domly distributed cones in (η, φ) and comparing it to the
average background via [31]:

δpT, ch =
∑

i

pT, i − ρch · A, A = πR2 (5)

where pT, i is the transverse momentum of each track i inside
a cone of radius R, where R corresponds to the resolution
parameter in the jet reconstruction. ρch is the background
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Fig. 1 Left Centrality dependence of the background momentum density ρch determined with kT jets and R = 0.4. Right δpT, ch distributions for
different centralities obtained with random cones and R = 0.4
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density, and A the area of the cone. The distribution of resid-
uals, as defined by Eq. 5, is shown for different centrali-
ties in Fig. 1 (right). The corresponding widths are given in
Table 1. The background fluctuations increase for more cen-
tral events, which is expected from the general increase of
statistical fluctuations (∝ √

N ) with the particle multiplicity.
The δpT, ch distributions measured for R = 0.2 and 0.4 are
used in the unfolding procedure.

In addition to the background fluctuations the unfolding
procedure takes into account the instrumental response. The
dominating instrumental effects on the reconstructed jet spec-
trum are the single-particle tracking efficiency and momen-
tum resolution. These effects are encoded in a response
matrix, which is determined with a full detector simulation
using PYTHIA6 [47] to generate jets and GEANT3 [48] for
the transport through the ALICE setup. The detector response
matrix links the jet momentum at the charged particle level
to the one reconstructed from tracks after particle transport
through the detector. No correction for the missing energy of
neutral jet constituents is applied.

3 Observables

3.1 Jet production cross sections

The jet production cross sections dσ c

dpT
, for different central-

ities c, are provided as fractions of the visible cross section
σV0. The fraction of the cross section is determined with
the number of selected events in each centrality bin Nc

ev and
takes into account the vertex reconstruction efficiency εcvtx
determined for each centrality

dσ c

dpT
= εcvtx

Nc
ev

dN

dpT
· σV0 · Nc

ev

NMB
ev

= εcvtx

NMB
ev

dN

dpT
· σV0, (6)

where εcvtx decreases from 99.9 % for the most central selec-
tion (0–20 %) to 95.4 % in peripheral.

3.2 Quantifying nuclear modification

The nuclear modification factor compares the pT-differential
per-event yield, e.g. in p–Pb or Pb–Pb collisions, to the
differential yield in pp collisions at the same center-of-mass
energy in order to quantify nuclear effects. Under the assump-
tion that the jet or particle production at high pT scales with
the number of binary collisions, the nuclear modification fac-
tor is unity in the absence of nuclear effects.

In p–Pb collisions the jet population can be biased,
depending on the centrality selection and Ncoll determina-
tion, hence the nuclear modification factor may vary from
unity even in the absence of nuclear effects as described in
detail in Sect. 2.2 (see also [32]). To reflect this ambiguity

the centrality-differential nuclear modification factor in p–
Pb collisions is called QpPb, instead of RpPb as in the mini-
mum bias case. QpPb is defined as

QpPb = d2Nc
pPb/dηdpT

〈Nc
coll〉 · d2Npp/dηdpT

. (7)

Here, 〈Nc
coll〉 is number of binary collisions for centrality c,

shown in Table 1.
For the construction of QpPb, we use the same pp refer-

ence as for the study of charged jet production in minimum
bias p–Pb collisions [25]. This reference has been deter-
mined from the ALICE charged jet measurement at 7 TeV
[40] via scaling to the p–Pb center-of-mass energy and tak-
ing into account the rapidity shift of the colliding nucleons.
The scaling behaviour of the charged jet spectra is deter-
mined based on pQCD calculations using the POWHEG
framework [49] and PYTHIA parton shower (see [25] for
details). This procedure fixes the normalisation based on the
measured data at 7 TeV, while the evolution of the cross sec-
tion with beam energy is calculated, taking into account all
dependences implemented in POWHEG and PYTHIA, e.g.
the larger fraction of quark initiated jets at lower collision
energy.

3.3 Jet production cross section ratio

The angular broadening or narrowing of the parton shower
with respect to the original parton direction can have an
impact on the jet production cross section determined with
different resolution parameters. This can be tested via the
ratio of cross sections or yields reconstructed with different
radii, e.g. R = 0.2 and 0.4, in a common rapidity interval,
here |ηlab| < 0.5:

R(0.2, 0.4) = dσpPb, R=0.2/dpT

dσpPb, R=0.4/dpT
. (8)

Consider for illustration the extreme scenario where all
fragments are already contained within R = 0.2. In this case
the ratio would be unity. In addition, the statistical uncertain-
ties between R = 0.2 and R = 0.4 would be fully correlated
and they would cancel completely in the ratio, when the jets
are reconstructed from the same data set. If the jets are less
collimated, the ratio decreases and the statistical uncertain-
ties cancel only partially. For the analysis presented in this
paper, the conditional probability varies between 25 and 50 %
for reconstructing a R = 0.2 jet in the same pT-bin as a geo-
metrically close R = 0.4 jet. This leads to a reduction of the
statistical uncertainty on the ratio of about 5–10 % compared
to the case of no correlation.

The measurement and comparison of fully corrected jet
cross sections for different radii provides an observable sen-
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sitive to the radial redistribution of momentum that is also
theoretically well defined [50]. Other observables that test
the structure of jets, such as the fractional transverse momen-
tum distribution of jet constituents in radial and longitudinal
direction or jet-hadron correlations [10,51–54], are poten-
tially more sensitive to modified jet fragmentation in p–
Pb and Pb–Pb . However, in these cases the specific choices
of jet reconstruction parameters, particle pT thresholds and
the treatment of background particles often limit the quanti-
tative comparison between experimental observables and to
theory calculations.

4 Systematic uncertainties

The different sources of systematic uncertainties for the three
observables presented in this paper are listed in Table 2 for
0–20 % and 60–80 % most central collisions.

The dominant source of uncertainty for the pT-differential
jet production cross section is the uncertainty of the single-
particle tracking efficiency that has a direct impact on the cor-
rection of the jet momentum in the unfolding, as discussed in
Sect. 2.4. In p–Pb collisions, the single-particle efficiency is
known with a relative uncertainty of 4 %, which is equivalent
to a 4 % uncertainty on the jet momentum scale. To estimate
the effect of the tracking efficiency uncertainty on the jet
yield, the tracking efficiency is artificially lowered by ran-
domly discarding the corresponding fraction of tracks (4 %)
used as input for the jet finder. Depending on the shape of
the spectrum, the uncertainty on the single-particle efficiency

(jet momentum scale) translates into an uncertainty on the jet
yield ranging from 8 to 15 %.

To estimate the effect of the single-particle efficiency on
the p–Pb nuclear modification factor for jets, one has to
consider that the uncertainty on the efficiency is partially cor-
related between the pp and p–Pb data set. The correction is
determined with the same description of the ALICE detec-
tor in the Monte Carlo and for similar track quality cuts, but
changes of detector conditions between run periods reduce
the degree of correlation between the data sets. The uncor-
related uncertainty on the single-particle efficiency has been
estimated to 2 % by varying the track quality cuts in data and
simulations. Consequently, the resulting uncertainty for the
nuclear modification factor is basically half the uncertainty
due to the single particle efficiency in the jet spectrum (cf.
Table 2). It was determined by discarding 2 % of the tracks
in one of the two collision systems, as also described in [25].

Uncertainties introduced by the unfolding procedure, e.g.
choice of unfolding method, prior, regularisation strength,
and minimum pT cut-off, are determined by varying those
methods and parameters within reasonable boundaries. Bay-
esian [55,56] and χ2 [57] unfolding have been tested and
compared to the default SVD unfolding to estimate the sys-
tematic uncertainty of the chosen method. The quality of the
unfolded result is evaluated by inspecting the Pearson coeffi-
cients, where a large (anti-)correlation between neighbouring
bins indicates that the regularisation is not optimal.

The overall uncertainty on the jet yield due to the back-
ground subtraction is estimated by comparing various back-

Table 2 Summary of systematic uncertainties on the fully corrected
jet spectrum, the corresponding nuclear modification factor, and the jet
production cross section ratio in 0–20 % central and 60–80 % peripheral
events for the resolution parameter R = 0.4. The range of percentages

provides the variation from the minimum to the maximum momentum
in each centrality. For R = 0.2 only the combined uncertainty is pro-
vided for, the difference to R = 0.4 is mainly due to the smaller impact
of the single particle efficiency for smaller radii

Observable Jet cross section (R = 0.4) QpPb (R = 0.4) R

ZNA centrality class (%) 0–20 60–80 0–20 60–80 0–20 60–80

Single-particle efficiency (%) 10.2–14.0 10.0–12.7 4.9–6.3 4.9–6.4 2.0–2.0 1.8–4.7

Unfolding (%) 4.3 4.6 4.5 4.8 1.4 −3.1

Unfolding prior steepness (%) 0.9–7.0 0.3–3.6 1.1–7.2 0.8–4.0 0.7–1.4 0.3–2.2

Regularisation strength (%) 2.8–6.4 0.4–3.7 2.8–7.3 0.5–3.9 1.8–7.0 0.3–3.7

Minimum pT cut-off (%) 3.7–9.2 0.6–2.9 4.1–9.8 1.7–3.8 2.2–0.8 0.5–1.8

Background estimate (%) 3.5–1.8 3.8–3.0 3.5–1.8 3.8–3.0 1.7–1.8 2.6–1.2

δpT, ch estimate (%) 0.1–0.0 0.2–2.3 0.1–0.0 0.2–2.3 0.1–0.0 0.2–1.1

Combined uncertainty (%) 12.5–19.8 11.6–15.2 9.0–16.3 8.1–11.1 4.2–7.8 4.4–7.5

Combined uncertainty (R = 0.2) (%) 10.4–19.5 8.2–12.5 8.6–18.0 5.8–9.4 – –

〈NPb−side
coll 〉 (%) – – 8.0 8.0 – –

Visible cross section (%) 3.3 3.3 – – – –

Reference scaling pp 7 TeV (%) – – 9.0 9.0 – –

NSD selection efficiency p–Pb (%) – – 3.1 3.1 – –

Combined scaling uncertainty (%) – – 12.4 12.4 – –
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ground estimates: track-based and jet-based density esti-
mates, as well as pseudo-rapidity-dependent corrections.
The estimated uncertainty amounts to 3.8 % at low pT and
decreases for higher reconstructed jet momenta.

The main uncertainty related to the background fluctuation
estimate is given by the choice of excluding reconstructed jets
in the random cone sampling. While the probability of a jet
to overlap with another jet in the event scales with Ncoll − 1,
it scales in the case of the random cone sampling with Ncoll.
This can be emulated by rejecting a given fraction of cones
overlapping with signal jets, which introduces an additional
dependence on the definition of a signal jet. The resulting
uncertainty due to the treatment of jet overlaps is of the order
of 0.1 % and can be considered negligible.

In addition, several normalisation uncertainties need to
be considered: the uncertainty on Ncoll (8 % in the hybrid
approach), on the visible cross section σV0 (3.3 %) and from
the assumptions made to obtain the scaled pp reference from
7 to 5 TeV (9 %).

Further details on the evaluation of the centrality-indepe-
ndent systematic uncertainties can be found in [25].

5 Results

The pT-differential cross sections for jets reconstructed from
charged particles for five centrality classes in p–Pb collisions
at

√
sNN = 5.02 TeV are shown in Fig. 2. For both resolution

parameters, the measured yields are higher for more central
collisions, as expected from the increase of the binary inter-
actions (cf. Table 1). The pp reference at

√
s = 5.02 TeV is

also shown. In addition to the increase in binary collisions
the larger total cross section in p–Pb compared to pp fur-
ther separates the data from the two collision systems; by an
additional factor of 20 % · σ

pPb
V0 /σ

pp
inel ≈ 6.

The scaling behaviour of the p–Pb spectra with respect
to the pp reference is quantified by the nuclear modification
factor QpPb (Eq. 7). The nuclear modification factor with the
hybrid approach, shown in Fig. 3, is compatible with unity
for all centrality classes, indicating the absence of centrality-
dependent nuclear effects on the jet yield in the kinematic
regime probed by our measurement. This result is consistent
with the measurement of single charged particles in p–Pb col-
lisions presented in [32], where the same hybrid approach is
used.

For other centrality selections, closer to mid-rapidity, a
separation of QpPb for jets is observed for the different cen-
tralities that is caused by dynamical biases of the selection,
similar to the QpPb for charged particles. If we use e.g. the
centrality selection based on the multiplicity in the V0A,
QpPb decreases from about 1.2 in central to approximately
0.5 in peripheral collisions [58].
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Fig. 2 pT-differential production cross sections of charged jet produc-
tion in p–Pb collisions at 5.02 TeV for several centrality classes. Top
and bottom panels show the result for R = 0.4 and R = 0.2, respec-
tively. In these and the following plots, the coloured boxes represent
systematic uncertainties, the error bars represent statistical uncertain-
ties. The overall normalisation uncertainty on the visible cross section
is 3.3 % in p–Pb . The corresponding reference pp spectrum is shown
for both radii, it was obtained by scaling down the measured charged
jets at 7 TeV to the reference energy

The centrality dependence of full jet production in p–
Pb collisions, i.e. using charged and neutral jet fragments,
has been reported by the ATLAS collaboration in [23] over a
broad range of the center-of-mass rapidity (y∗) and transverse
momentum. Centrality-dependent deviations of jet produc-
tion have been found for large rapidities in the proton-going
direction and pT,jet � 100 GeV/c. In the nucleon–nucleon
center-of-mass system as defined by ATLAS, our measure-
ment in |ηlab| < 0.5 corresponds to −0.96 < y∗ < −0.04.
As shown in Fig. 4, the measurement of the nuclear modifica-
tion factor of charged jets in central and peripheral collisions
is consistent with the full jet measurement of ATLAS, where
the kinematical selection of jet momentum and rapidity over-
lap, note however that the underlying parton pT at a given
reconstructed pT is higher for charged jets.

The centrality evolution for QpPb as measured by ALICE
is shown for three pT-regions and R = 0.4 in Fig. 5. No
significant variation is observed with centrality for a fixed
pT interval. The same holds for R = 0.2 (not shown).
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Fig. 3 Nuclear modification factors QpPb of charged jets for several
centrality classes. Ncoll has been determined with the hybrid model.
Top and bottom panels show the result for R = 0.4 and R = 0.2,
respectively. The combined global normalisation uncertainty from Ncoll,
the measured pp cross section, and the reference scaling is indicated by
the box around unity

Recently, the PHENIX collaboration reported on a central-
ity dependent modification of the jet yield in d–Au collisions
at

√
sNN = 200 GeV in the range of 20 < pT < 50 GeV/c

[59]: a suppression of 20 % in central events and correspond-
ing enhancement in peripheral events is observed. Even when
neglecting the impact of any possible biases in the central-
ity selection, the measurement of the nuclear modification at
lower

√
sNN cannot be directly compared to the measure-

ments at LHC for two reasons. First, in case of a possi-
ble final state energy loss the scattered parton momentum
is the relevant scale. Here, the nuclear modification factor
at lower energies is more sensitive to energy loss, due to the
steeper spectrum of scattered partons. Second, for initial state
effects the nuclear modification should be compared in the
probed Bjorken-x , which can be estimated at mid-rapidity to
xT ≈ 2pT/

√
sNN, and is at a given pT approximately a factor

of 25 smaller in p–Pb collisions at the LHC.
The ratio of jet production cross sections reconstructed

with R = 0.2 and 0.4 is shown in Fig. 6. For all centrality
classes, the ratio shows the expected stronger jet collimation
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Fig. 4 Nuclear modification factor of charged jets compared to the
nuclear modification factor for full jets as measured by the ATLAS
collaboration [23]. Note that the underlying parton pT for fixed recon-
structed jet pT is higher in the case of charged jets
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Fig. 5 Centrality evolution of QpPb for selected pT, ch jet-bins and R =
0.4

towards higher pT. Moreover, the ratio is for all centrali-
ties consistent with the result obtained in minimum bias p–
Pb collisions, which agrees with the jet cross section ratio in
pp collisions as shown in [25]. The result is fully compatible
with the expectation, since even in central Pb–Pb collisions,
where a significant jet suppression in the nuclear modification
factor is measured, the cross section ratio remains unaffected
[15].

6 Summary

Centrality-dependent results on charged jet production in p–
Pb collisions at

√
sNN = 5.02 TeV have been shown for

transverse momentum range 20 < pT, ch jet < 120 GeV/c
and for resolution parameters R = 0.2 and R = 0.4. The
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Fig. 6 Charged jet production cross section ratio for different reso-
lution parameters as defined in Eq. 8. Different centrality classes are
shown together with the result for minimum bias collisions. Note that
the systematic uncertainties are partially correlated between centrality
classes. The ratio for minimum collisions is compared in more detail to
pp collisions at higher energy and NLO calculations at

√
s = 5.02 TeV

in [25], where no significant deviations are found

centrality selection is performed using the forward neutron
energy, and the corresponding number of binary collisions
Ncoll is estimated via the correlation to the multiplicity mea-
sured in the lead-going direction, in order use a rapidity
region well separated from the one where jets are recon-
structed.

With this choice of centrality and data driven Ncoll esti-
mate, the nuclear modification factor QpPb is consistent with
unity and does not indicate a significant centrality depen-
dence within the statistical and systematical uncertainties. In
the measured kinematic range momentum between 20 GeV/c
and up to 120 GeV/c and close to mid-rapidity, the observed
nuclear modification factor is consistent with results from full
jet measurements by the ATLAS collaboration in the same
kinematic region. The jet cross section ratio for R = 0.2
and 0.4 shows no centrality dependence, indicating no mod-
ification of the degree of collimation of the jets at different
centralities.

These measurements show the absence of strong nuclear
effects on the jet production at mid-rapidity for all centrali-
ties.
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