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1 Introduction

The discovery of the Higgs boson at the LHC [1, 2] in July 2012 furnished the final piece
of the Standard Model (SM) of particle physics; however, it has also raised important new
questions. One of these relates to the issue of the electroweak vacuum stability and the fate
of the Higgs field in the early Universe, particularly during the inflationary and reheating
eras [3].

For the currently preferred values of the top quark mass and the strong coupling, the
self-coupling of the Higgs field turns negative at a high energy scale of order µc ∼ 1010 GeV [4–
6] (see [7] and [8] for its gauge (in)dependence). This would suggest that there exists another,
deeper vacuum state than the one we currently occupy. One finds then that the electroweak
vacuum is metastable with the lifetime longer than the age of the Universe. Although this
does not pose an immediate problem, the existence of the deeper vacuum raises cosmological
questions. In particular, one must explain how the Universe ended up in an energetically
disfavored state and why it stayed there during inflation [9]. Even if one fine-tunes the Higgs
field initial conditions before inflation, light scalar fields experience large fluctuations of order
the Hubble rate H during the exponential expansion epoch [10]. Unless H is sufficiently small,
the Universe is overwhelmingly likely to end up in the catastrophic vacuum [11].

These problems can be solved by coupling the Higgs field to the scalar curvature [3] or by
taking into account the Higgs-inflaton coupling [9]. We focus on the latter possibility in this
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paper and neglect the effect of the non-minimal coupling to gravity.1 As shown in [13], Higgs-
inflaton interaction is inevitable in realistic models of reheating. Indeed, the inflaton energy
must be transferred to the Standard Model fields which leads to a (perhaps indirect) coupling
between the inflaton and the SM particles. The latter induces Higgs-inflaton interaction at
loop level,

VHφ =
λhφ
2
H†Hφ2 + σhφH

†Hφ , (1.1)

where H is the Higgs doublet and φ is a (real) inflaton. Here λhφ and σhφ typically receive
log-divergent loop contributions and thus require renormalization. In other words, these
couplings are generated by the renormalization group (RG) evolution [13]. Their magnitude
can be large enough to alter the Higgs evolution completely, in particular, by inducing a large
effective Higgs mass which drives the Higgs field to zero. This mechanism is operative in the
range

10−10 < λhφ < 10−6 , (1.2)

with the upper bound coming from the requirement that the Higgs-inflaton interaction pre-
serve flatness of the inflaton potential, and the lower limit dictated by the condition that the
Higgs effective mass be greater than the Hubble rate during inflation (see however ref. [12]).
The trilinear interaction should be subdominant, λhφφ

2 � σhφφ so that the effective mass
term does not depend on the sign of the inflaton field. This is usually the case in explicit
reheating models [13].

In this work, we study the effect of the above couplings after inflation. Although the
Higgs-inflaton interaction can stabilize the Higgs potential during inflation, during preheating
its effect can instead be destabilizing (see also [14]). The parametric resonance [15, 16] due
to the quartic interaction h2φ2 and the tachyonic resonance [17, 18] due to the h2φ term can
lead to very efficient Higgs production. This causes large fluctuations and the Higgs variance
〈h2〉 that can exceed the critical value beyond which the system becomes unstable. We find
that these considerations place important upper bounds on both λhφ and σhφ such that the
range of favored couplings (1.2) reduces.

The field of Higgs dynamics in the early Universe has been very active in the recent
years. Higgs field fluctuations during inflation in the metastable Universe have been studied
in [19, 20] and [21–23]. The Higgs condensate dynamics assuming stability of the Higgs
vacuum were analyzed in detail in [24, 25]. These considerations are affected by the presence
of further Higgs interactions which are usually not included in the Standard Model. The
effect of the non-minimal coupling Higgs to gravity on the Higgs dynamics was recently
refined in [26]. In this framework, it was also noted that the resonances during preheating
can destabilize the electroweak vacuum [14]. The effect of the quartic Higgs-inflaton coupling
on the Higgs production during preheating was considered in detail in [27] (see also [28, 29]).
Our present work goes beyond these previous studies in that we consider a more realistic
case of both quartic and trilinear interactions present, which brings in new and important
qualitative features. We also refine the earlier analysis of the pure quartic case. Finally, we
discuss implications of our findings for realistic reheating models.

This paper is organized as follows. In the next section, we present our setup. In
section 3, we consider the effect of the quartic Higgs-inflaton interaction on Higgs production
during preheating. Section 4 is devoted to the more realistic case of both trilinear and quartic
interactions present.

1The effect of this term is small close to the conformal limit.
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2 Framework

In this section, we present our inflationary setup. For concreteness, we study the Higgs
production within the simple m2φ2 chaotic inflation model with

m = 1.3× 10−6MPl, MPl = 1.22× 1019 GeV , (2.1)

while our results easily generalize to other large field models. In the unitary gauge H =
(0, h/

√
2)T, the relevant Lagrangian is given by

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 +

1

2
∂µh∂

µh− λh(h)

4
h4 −

λhφ
4
φ2h2 −

σhφ
2
φh2 , (2.2)

where the self-coupling λh(h) is determined by the RG equations of the Standard Model.
During inflation, φ undergoes a slow-roll evolution. On the other hand, for λhφ > 10−10

and a sufficiently large initial inflaton value φ0 � Mpl, the Higgs mass is dominated by the
inflaton interaction, meff

h '
√
λhφ/2|φ| [9].2 Then Higgs field evolves exponentially quickly

to zero.
Not long after the end of inflation, the inflaton field undergoes oscillations

φ(t) = Φ(t) cosmt . (2.3)

As long as the energy density of the Universe is dominated by the inflaton oscillations, the
scale factor behaves as a = (t/t0)2/3 and the amplitude of oscillations decays as

Φ(a) = Φ0a
−3/2. (2.4)

For concreteness, we assume that φ(t) in eq. (2.3) becomes a good approximation to the
evolution of the inflaton at

Φ0 ' 0.2MPl. (2.5)

Soon thereafter we can accurately approximate the time dependence of Φ(t) as

Φ(t) ' (3π)−1/2MPl

mt
. (2.6)

The inflaton induced Higgs mass term also oscillates which can lead to efficient Higgs
production. As one can see in eq. (1.1) the second term grows with respect to the first one as
Φ(t) decreases due to the expansion of the Universe. Therefore the effect of the trilinear term
becomes important at some stage even though it was negligible during inflation. Since the
consequent effective Higgs mass term can have either sign ∝ σhφφ, the tachyonic resonance
becomes effective. Both of the resonances play an important role and will be studied in the
next sections.

Before we proceed, let us clarify our assumption about the running coupling λh(µ),
where µ is the renormalization scale. During the resonances, the Higgs quanta are produced
coherently with the corresponding occupation numbers being very large. Thus we may treat
h semi-classically. In this regime, we may take

λh(µ) = λh

(√
〈h2〉

)
, (2.7)

2Here the effect of the trilinear term is negligible since we assume λhφφ
2 � |σhφ|φ during inflation.
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where
√
〈h2〉 plays the role of the relevant energy scale at which the coupling should be

evaluated. Since we are only interested in the high energy regime, in our numerical analysis
we use the step-function approximation

λh(µ) = 0.01× sign
(
hSM
c −

√
〈h2〉

)
, (2.8)

where hSM
c ∼ 1010 GeV is the critical scale of the Standard Model at which λh flips sign.

3 Pure parametric resonance

Let us first consider the case where the trilinear interaction is negligible, σhφ ≈ 0. The
Higgs-inflaton interaction is quartic so that we recover the well-known parametric resonance
setting [16].

The equations of motion for the Higgs field are quadratic in h apart from the quartic
self-interaction. During the parametric resonance regime, the effect of the latter can be
approximated as h4 → 6h2〈h2〉, which is known as the Hartree approximation. In that case,
the equations of motion for different momentum modes decouple. In terms of the rescaled
Higgs momentum modes Xk ≡ a3/2hk, where a is the scale factor, one has [16]

Ẍk + ω2
kXk = 0 with ω2

k =
k2

a2
+
λhφ
2

Φ2 cos2(mt) + 3λha
−3〈X2〉+

3

2
wH2 . (3.1)

In the last term, w = p/ρ = −
(

1 + 2
3
Ḣ
H2

)
is the equation of state parameter of the Universe,

which vanishes in the matter-like background. We thus neglect this term.

If the Higgs-inflaton coupling λhφ is substantial, the Higgs modes experience amplifica-
tion due to broad parametric resonance. The parameter characterizing the strength of the
resonance is

q(t) =
λhΦ2(t)

2m2
(3.2)

such that q � 1 corresponds to the broad resonance regime. In this case, the modes grow
exponentially leading to a large Higgs field variance 〈h2〉. The fluctuations can be so signif-
icant that they exceed the size of the barrier separating the electroweak vacuum from the
catastrophic one at large field values. In this case, vacuum destabilization occurs. In what
follows, we will estimate the corresponding critical size of λhφ.

As was shown in [16], in the broad resonance regime the Higgs modes evolve adiabatically
away from the inflaton zero-crossings and can be described by the WKB approximation

Xk '
αk√
2ωk

e−i
∫
ωkdt +

βk√
2ωk

ei
∫
ωkdt , (3.3)

where αk, βk are some constants. Adiabaticity is broken for certain modes near the inflaton
zero-crossing, where the frequency ωk evolves very quickly. There the system can be treated
in analogy to the Schrödinger equation as a scattering of plane wave solutions. The adiabatic
constants αk and βk can be thought of as Bogolyubov coefficients. We assume a vacuum
initial condition for the Higgs modes with αk = 1 and βk = 0. The occupation number of
Higgs quanta after j ' mt/π zero crossings is then

nj+1
k = |βj+1

k |2 (3.4)
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and can be written in terms of the corresponding Floquet index µjk as [16]

nj+1
k ' e2πµjk njk . (3.5)

µjk can be calculated via scattering of plane waves in a parabolic potential [16],

µjk =
1

2π
ln

[
1 + 2e−πκ

2
j + 2 sin θjtot

√
e−πκ

2
j (1 + e−πκ

2
j )

]
with κ2

j ≡
k2

√
qja2

jm
2
. (3.6)

Here aj is the scale factor after j zero crossings. The term sin θtot is determined from the phase
accrued by the modes and behaves in a stochastic manner for different momenta (see [16]).
We take it to be zero for our estimates and use the consequent average value of the Floquet
index. The occupation numbers at late-times (aj � 1) can then be approximated by

nj+1
k ' 3j

2
e−µ̄j

k2

m2 where µ̄j =
MPl√
3πq0Φ0

aj . (3.7)

Here the factor of 1/2 is due to the vacuum fluctuations in the initial state, although it plays
no tangible role in our analysis.

Using the saddle point approximation, the Higgs field variance can be written as

〈h2〉 '
∫

d3k

(2πa)3

nk
ωk
' 3jm2κ3

max

25/2eπ3/2a3√q
, (3.8)

where κ2
max = µ̄−1

j is the momentum in units of m which contributes most significantly. Here

we have assumed that ωk is dominated by the inflaton-induced term.3 Already after the first
zero-crossing 〈h2〉 exceeds the critical scale ∼ 1010 GeV of the Standard Model and therefore

the Higgs self-coupling λh = λh

(√
〈h2〉

)
can be taken to be negative from the beginning.

For our analysis, we take λh = −10−2 at large field values. Note that the fact that 〈h2〉
exceeds the SM critical scale does not necessarily lead to vacuum destabilization since the
presence of the Higgs-inflaton coupling pushes the barrier separating the two vacua to larger
values of order

hc ∼

√
λhφ
|λh|

|φ| . (3.9)

However, the position of the barrier is modulated by |cosmt| so it is not immediately clear
what vacuum stability would require.

To derive the stability condition, one can use the following reasoning. Around each infla-
ton zero crossing, the effective Higgs mass squared is dominated by the Higgs self-interaction
term λh〈h2〉. Such a tachyonic term leads to exponential amplification of the Higgs field by

a factor of order em
eff
h ∆t, where meff

h is the modulus of the effective Higgs mass term and ∆t
is the (short) period during which the Higgs self-interaction term dominates. ∆t is given
explicitly by

|∆t| <

√
6|λh|〈h2〉
λhφΦ2m2

. (3.10)

3This assumption does not have a significant numerical impact on our main results.
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Figure 1. Time evolution of the Higgs fluctuations scaled by the location of the potential barrier

hc =
√

λhφ
|λh|Φ, for different λhφ. The λhh

4 term is treated in the Hartree approximation.

The tachyonic amplification is insignificant as long as meff
h ∆t does not exceed unity, that is,√

3|λh|〈h2〉 |∆t| < 1 . (3.11)

Clearly, this condition eventually gets violated since ∆t grows as the inflaton amplitude Φ
decreases. However, if the resonance ends before this takes place, no destabilization occurs.
Using λhφΦ2 ' 2m2 at the end of the resonance [16], one finds that the stability condition
can be written as

λhφ <
6π3

(ln 3)2

m2

M2
Pl

[
ln

(
16eπ3/2

9|λh|

)
+

3

2
ln

(√
λhφ
16π

MPl

m

)]2

' 3× 10−8. (3.12)

Here we have neglected a smaller additive constant in the square brackets. If this condition is
violated, the Higgs field grows explosively since the amplification factor em

eff
h ∆t increases with

〈h2〉 itself. This leads to fast vacuum destabilization. On the other hand, if this condition is
satisfied, it implies that the Higgs potential is dominated by the inflaton coupling term on
the average and h does not fluctuate beyond the barrier (3.9). This result is consistent with
the bound obtained in [27].

Figure 1 shows our numerical evolution of the Higgs fluctuations for different values of
λhφ. To produce this plot we have solved the mode equations in the Hartree approximation
using Mathematica software. We see that for λhφ greater than a few times 10−8, the Higgs
field grows above the critical value and blows up at mt > 40. The destabilization time
however should not be taken at face value since the Hartree approximation turns out to be
rather crude for this purpose.

We have also performed a more sophisticated lattice simulation which takes into account
the Higgs self-interaction without resorting to the Hartree approximation. We used the

– 6 –
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Figure 2. Vacuum destabilization time versus λhφ (green curve) with LATTICEEASY. Points below
the red line correspond to the active parametric resonance. Our theoretical upper bound on λhφ is
marked by the vertical dashed line.

LATTICEEASY package [30] for this purpose. In our simulations, we choose the box size of
10/m (the L parameter of LATTICEEASY) with 64 grid points per edge (the N parameter).
We have checked that a larger and finer grid does not change the results significantly. In
figure 2, we plot the destabilization time versus λhφ. The green curve shows mt at which the
system is destabilized, that is, the Higgs field variance blows up. The red line marks the end
of the resonance such that the points below it correspond to vacuum destabilization during
the resonance as studied in this section.4 Our theoretical bound on λhφ is marked by the
vertical dashed line. We see that the latter describes the general situation reasonably well
and λhφ above 3× 10−8 typically leads to vacuum destabilization during the resonance. On
the other hand, we also see the limitations of our approach. In particular, figure 2 shows that
the strength of the resonance does not behave monotonically with λhφ. This is expected since
we have taken the term sin θtot to be zero, whereas in reality it either enhances or suppresses
the resonance such that there can be certain values of λhφ satisfying our bound yet leading
to an unstable configuration. Formally, the area around λhφ ∼ 2× 10−8 appears to be stable
during the resonance and the destabilization occurs shortly after the resonance. However,
one can classify this region as unstable since in reality the end of the resonance is not sharply
defined due to various approximations we have made. Apart from these complications, we
find that our simple considerations give a fairly good description of the system behavior
during the parametric resonance.

Comparing figure 1 and figure 2, one finds that the commonly used Hartree approxi-
mation overestimates the destabilization time. This is to be expected since the quantity h4

experiences greater fluctuations than h2〈h2〉 does. Nevertheless certain questions such as the
effect of perturbative Higgs are more easily addressed using our Mathematica routine which
employs the Hartree approximation. Hence we use both numerical approaches.

4The EW vacuum can be destabilized at later times as seen in figure 2. This is however a different
phenomenon which we consider in subsequent sections.

– 7 –
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Figure 3. Left: effect of the perturbative Higgs decay h → tt̄. Right: example of the occupation
number evolution for different momenta with λhφ = 3× 10−8. Blue (red) curves correspond to early
(late) times. (The Hartree approximation is employed).

Figure 2 also shows that the late-time behaviour (beyond the resonance) of the Higgs
fluctuations is important, which we discuss in section 5.

So far our discussion has ignored perturbative decay of the Higgs quanta, which reduces
the efficiency of the resonance and can potentially invalidate our conclusions. The main
decay channel is provided by the top quarks which are effectively massless for our purposes.
The corresponding decay width is

Γ(h→ tt̄) =
3y2
tm

eff
h

16π
. (3.13)

Taking yt(m
eff
h ) ∼ 1/2, meff

h '
√
λhφ/2 |φ| and averaging | cosmt|, we find that the pertur-

bative decay reduces the number of the Higgs quanta by a factor 2 or so in the region of
interest (λhφ ∼ 10−8), see the left panel of figure 3. Therefore it does not significantly affect
our bound on λhφ. On the other hand, for larger λhφ ∼ 10−7, the Higgs decay can reduce
〈h2〉 by an order of magnitude thus delaying (but not avoiding) vacuum destabilization.

For completeness, in the right panel of figure 3, we present a typical example of the
occupation number evolution for different momenta. We find that at late-times the Higgs
field is typically dominated by the modes with momenta k ∼ m.

The bound λhφ < 3 × 10−8 has implications for the problem of Higgs field initial con-
ditions [9]. It is meaningful to talk about the Higgs potential as long as the corresponding
energy density is far below the Planck scale. Further, truncation of the Higgs potential at
quartic order requires the Higgs field value itself to be below the Planck scale. These con-
ditions restrict the range of the Higgs field initial values within which the problem can be
discussed in a meaningful way. Taking the maximal Higgs value to be 0.1MPl, the total Higgs
potential is convex for the inflaton initial values above ∼ 50MPl. This is only a factor of a
few above those typical to large field inflation models and thus such values do not appear un-
natural. In this case, the Higgs field evolves to zero during inflation thus solving the problem
restricted to this field range. Outside this range however, the problem cannot be formulated
properly as this would require mastery of quantum gravity.

4 Effect of the trilinear interaction

The trilinear Higgs-inflaton interaction brings in an additional effective mass term whose
sign oscillates in time. This results in the tachyonic resonance [17] which amplifies the Higgs
fluctuations. We find that the effect is important and cannot be neglected.
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The parametric and tachyonic resonances have been studied separately in detail. In
realistic models, both of them are present at the same time, yet their combined effect is
not well understood (see however [18, 31]).5 In particular, the Higgs field goes through a
sequence of exponential amplification periods and plateaus. In what follows, we study some
of the important aspects of the system and obtain the corresponding bound on σhφ.

4.1 Equations of motion

The trilinear interaction introduces an additional oscillating contribution to the effective
Higgs mass. The frequency of this contribution is half the frequency of the quartic interaction.
In particular, the Higgs dispersion relation in eq. (3.1) becomes

ω2
k =

(
k

a

)2

+ σhφΦ (t) cosmt+
1

2
λhφΦ2 (t) cos2mt+ 3λha

−3
〈
X2
〉
, (4.1)

where, as in eq. (3.1), we have neglected terms proportional to Ḣ ∼ H2. These terms become
small, as compared to m2, soon after the end of inflation. Let us introduce

p (t) ≡ 2
σhφΦ (t)

m2
, (4.2)

δm2 (t) ≡ 3λha
−3
〈
X2
〉
, (4.3)

and the q(t) parameter, which is defined in eq. (3.2). Then the equation of motion for the
(rescaled) Higgs field can be written as

d2Xk

dz2
+

[
A (k, z) + 2p (z) cos 2z + 2q (z) cos 4z +

δm2 (z)

m2

]
Xk = 0, (4.4)

where

z ≡ 1

2
mt , (4.5)

A (k, z) ≡
(

2
k

am

)2

+ 2q (z) . (4.6)

This differential equation reduces to the Whittaker-Hill equation if the Universe expansion
and the Higgs self-interaction are neglected. Its solutions exhibit the resonant behavior
similar to those of the Mathieu equation, although the situation is more complicated due
to the presence of two parameters p and q. According to the Floquet theorem, a general
solution of the Whittaker-Hill equation can be written as

X (z) = ρ1eµzy (z) + ρ2e−µzy (−z) , (4.7)

where ρ1 and ρ2 are integration constants, y (z) are periodic functions of period π and µ
is a characteristic exponent, or Floquet exponent, which in general is a complex number.
When µ attains a real part, the solution grows exponentially. We discuss the most important
properties of these solutions in appendix A. In particular, the stability chart of the Whittaker-
Hill equation is quite different from that of the Mathieu equation in the parameter range of
interest (see figure 9).

5We also note that the range of parameters considered in these papers is very different from that of
interest here.
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In reality, the Universe expansion cannot be neglected and leads to the end of the
resonance. Hence the Whittaker-Hill equation only provides a simple approximation to the
equations of motion. The duration of the resonance is essential for our considerations since
it determines the size of 〈h2〉. Let us consider it in detail.

4.2 Duration of the resonance

The essential difference between the solutions of eq. (4.4) in an expanding and static Universes
is that in the former case the boundaries between the stability and instability regions are
no longer clearly defined: they are smeared [16]. Despite this fact, we will use figure 9 as
a helpful illustration. For that matter, the time dependence of A (k, z), p (z) and q (z) can
be introduced adiabatically: as they evolve, one can think of them as tracing a trajectory
in the three dimensional space, crossing through stable and unstable regions. Once these
parameters decrease substantially and the trajectory converges to the lowest stable region,
the resonance ceases.

The definition of the parameter A in eq. (4.6) contains two terms, which are time
dependent. To compute the duration of the resonance, we first estimate the relative size of
these two contributions at the end of the resonance. Using eq. (2.4) and the definition of q
in eq. (3.2), we can write

(2k/afm)2

2qf
∼ (m/Φ0)4/3 (k/m)2

λ
2/3
hφ q

1/3
f

, (4.8)

where the subscript f refers to values at the end of the resonance. Typically, the excited
modes towards the end of the resonance are k/m ∼ 1. Since m/Φ0 ∼ 5× 10−6, we have

(2k/afm)2

2qf
' 10−7

λ
2/3
hφ q

1/3
f

. (4.9)

In this work we are interested in the range of values of λhφ given in equations (1.2) and (3.12).

Taking also q
1/3
f ∼ 1, the above ratio lies in the range 10−2 . . . 1. That is, at the end of the

resonance, the q-term dominates and it suffices for our purposes to consider the evolution
of the k = 0 mode only. This restricts our parameter space to the plane A = 2q. The
stability and instability regions for constant p,q can be obtained by the methods discussed in
appendix A. The result is shown in figure 4, where the labeled curves display the trajectories
p(t), q(t) for different λhφ and σhφ. The vertical line p = 0 corresponds to the parametric
resonance and one recovers the standard results of ref. [16].

The resonance stops when q (z) and p (z) reach the last stable region around p = 0 and
q = 0 in figure 4. To estimate the time when this happens, we approximate the boundary
of the lowest stable region by a linear relation q = 0.48 − 0.53 |p|. This approximation is
shown by bold red lines in figure 4. One has to keep in mind however, that in the expanding
universe the boundaries between stable and unstable regions are smeared. Hence, even when
a trajectory in (q, p) parameter space reaches the last stable region, the resonance continues
for some time, depending on the phase. Thus, the end of the resonance corresponds to

qf = 0.48 (1− δ)− 0.53 |pf | , (4.10)

where δ is a “fudge” factor to be determined from simulations. Our results show that δ varies
from 0 to about 1/4. An analogous result for the parametric resonance was obtained in [16],
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Figure 4. Stability (shaded) and instability (white) regions of the Whittaker-Hill equation for A = 2q.
The labeled curves describe evolution of p(t), q(t) for different values of σhφ and λhφ: (1) σhφ =
8 × 10−11MPl, λhφ = 1.5 × 10−8; (2) σhφ = −8 × 10−11MPl, λhφ = 1.5 × 10−8; (3) σhφ = 7 ×
10−11MPl, λhφ = 2.5 × 10−8; (4) σhφ = 1 × 10−11MPl, λhφ = 3 × 10−8. The boundary of the last
stability region around p = 0 is marked in red.

in which case the resonance stops somewhere in the range 1 ≤ qf ≤ 4/3.6 In our parameter
range, we find that δ ' 0.1 gives a good approximation for most cases.

Using eqs. (4.2), (3.2) and eq. (2.6), we find

mtf '

[
3.25
|σhφ| /MPl

λhφ

(√
1 + 0.77λhφ

m2

σ2
hφ

− 1

)]−1

. (4.11)

In figures 5 and 6, we plot numerical LATTICEEASY computations of occupation numbers
nk with k ≈ 0.63m and

〈
h2
〉

for several models.7 The values of tf from eq. (4.11) are shown
by dashed vertical lines. We conclude that the agreement is quite good.

Eq. (4.11) does not apply for very small values of σhφ such that the tachyonic resonance
is inefficient. In particular, the amount of time the system spends in the last instability region
(just above the red line in figure 4) is so small that no substantial amplification occurs. For
such models, the dynamics of the resonance are close to those of the pure parametric case [16].
It is also worth recalling that λhφ in eq. (4.11) is not allowed to be too small so that the ratio
in eq. (4.9) is below unity.

4.3 Vacuum destabilization by a mixed resonance

As in the parametric resonance case, the Higgs field fluctuations can grow large enough so
that the system moves over to the catastrophic vacuum. This transition is facilitated by the
presence of the trilinear term which results in very large Higgs occupation numbers. In what
follows, we study the destabilization effect due to σhφ. That is, we choose λhφ for which the

6Note that the definition of q in ref. [16] differs from ours by a factor of 1/4.
7Note that, as expected, nk starts growing when p(t), q(t) reach the relevant instability region. In particular,

for curve 2 the growth begins at mt ∼ 20.
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Figure 5. Evolution of the occupation numbers for the mode k/m = 0.63 with LATTICEEASY.
Different color lines correspond to models with different values of σ and λhφ (same as in figure 4).
The vertical dashed lines show the end of the resonance according to eq. (4.11), apart from model 4
for which the standard result qf = 1 holds [16]. The Higgs self-interaction is set to zero, λh = 0.

Figure 6. Evolution of 〈h2〉 for the models of figure 5 and λh = 0. Due to the Universe expansion,
〈h2〉 decreases when the resonance is not active.

system is stable and analyze how large a σhφ one can add without destabilizing the vacuum.
As before, we focus on the destabilization during the resonance, i.e. before tf in eq. (4.11).

4.3.1 Simplified bound on σhφ

The analysis of the mixed trilinear-quartic case is substantially more complicated than the
pure quartic case. As seen from the stability chart, the system goes through a series of stable
and unstable regions with a varying exponent µ(t). We will thus content ourselves with only
an order of magnitude estimate of the critical σhφ.

Towards the end of the resonance, the Higgs-dependent potential is dominated by the
trilinear term 1

2σhφφh
2 since the quartic interaction decreases faster with time. The desta-

bilization occurs when this term becomes overtaken by the Higgs self-interaction 1
4λhh

4.
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Therefore, one can estimate the critical variance by

〈h2〉cr ∼
2|σhφ|Φ
|λh|

, (4.12)

where the Hartree approximation has been used and the oscillatory behavior of φ has been
ignored.

On the other hand, the Higgs variance as a function of time can be calculated via the
occupation numbers as in (3.8). The dominant contribution is given by modes around the
comoving momentum k∗ which maximizes nk. For the parameter range of interest, we find
that k∗ ∼ m towards the end of the resonance and the width of the k-distribution is of order
k∗/2. The corresponding nk∗ is a rather complicated function of time containing sections
where it undergoes an exponential increase. For our purposes, we simply interpolate it by
eµ∗mt with some effective exponent µ∗. We then obtain

〈h2〉 ' ∆k∗k
2
∗

a3

nk∗
ωk∗
∼ m3

2a3

eµ∗mt√
|σhφ|Φ

. (4.13)

The destabilization occurs if 〈h2〉 reaches the critical value during the resonance. The
latter stops around 2|σhφ|Φend ' m2. Taking this into account and dropping order one
constants, one finds

|σhφ| <
m2

Mpl
× 1

µ∗
ln
a3

end

|λh|
∼ 109 GeV , (4.14)

with aend = (Φ0/Φend)2/3 being the scale factor at the end of the resonance. Here we take a
typical value8 µ∗ ∼ O(10−1) (cf. figure 9). Note that the main σhφ-dependence of the result
comes from the duration of the resonance, mtend ∼ σhφ × Mpl/m

2, while that of µ∗ and
ln aend is milder.

Although this estimate is very crude, we find that the bound is within a factor of a
few from our numerical results. Here we have neglected both the λhφ-dependence and the
dependence on the sign of σhφ.

Note that both the λhφ and σhφ bounds do not appear to depend explicitly on the
critical scale of the Standard Model. This dependence is hidden in our assumption about λh
at the energy scales of interest. As long as λh ∼ −10−2 in that range, our bounds apply.

Finally, we have considered a chaotic φ2 inflation model which fixes a large Hinfl ∼
1014 GeV. For models with small Hinfl < 1010 GeV, the Higgs fluctuations during inflation
are not dangerous and the Higgs-inflaton coupling can be set negligibly small.9

4.3.2 Simulation results

Our LATTICEEASY simulations show that the bound on σhφ depends both on λhφ and
the sign of σhφ. The latter is due to the fact that even though the Whittaker-Hill equation
enjoys the symmetry z → z + π/2, p→ −p, the time translation invariance is broken by the
Universe expansion. Figures 7 and 8 display the bounds on σhφ as a function of λhφ. We see
that the upper bound varies between 108 GeV and 6× 108 GeV in the region of interest.

We should note that these plots are somewhat simplified in that it is tacitly implied
that |σhφ| below the critical value leads to a stable system. In practice, this is not always the

8This is supported by our numerical analysis.
9Such models however do not solve the problem of the Higgs initial conditions at the beginning of inflation.

This is in contrast to large field inflation models discussed in section 3 and ref. [9].
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Figure 7. Upper bound on σhφ > 0 from LATTICEEASY simulations. In the shaded region, the
Higgs vacuum is destabilized during the resonance.

Figure 8. Upper bound on |σhφ| for negative σhφ from LATTICEEASY simulations. In the shaded
region, the Higgs vacuum is destabilized during the resonance.

case and the destabilization time can be a non-monotonic function of σhφ. However, these
effects do not change our results drastically.

5 Comments on the late-time behavior

So far we have discussed vacuum destabilization during the resonance. The initial stage of
preheating is dominated by a single process, that is, resonant Higgs production. At later
stages, other processes such as rescattering, thermalization, etc. become important.

– 14 –



J
C
A
P
1
1
(
2
0
1
6
)
0
2
5

Figure 9. Stability (shaded) and instability (white) regions of the Whittaker-Hill equation for several
values of q. The solid curves are contours of constant |Reµ|. The leftmost panel (q = 0) is the stability
chart of the Mathieu equation.

As seen in figure 2, the Higgs vacuum can be destabilized much after the end of the
resonance. The simple reason for it is that

√
〈h2〉 and the position of the barrier hc ∝ Φ

scale differently in time. If only the quartic coupling is present,

hc ∝ a−3/2 ,√
〈h2〉 ∝ a−α , (5.1)

where α is between 1 and 3/4, depending on which k-modes dominate 〈h2〉. This can be
seen from the first equality in (3.8) and the fact that the comoving occupation numbers are
constant after the end of the resonance, while the ωk scaling depends on the balance between
k2/a2 and the inflaton-induced mass term. In any case,

√
〈h2〉 decreases slower in time than

hc does so that after a sufficiently long period the Higgs fluctuations go over the barrier.
Figure 2 shows that the relevant time scale is of order 100mt. Analogous considerations also
apply to the mixed trilinear-quartic case.

However, the true dynamics of the system on a larger time scale are complicated. The
Higgs interacts with other fields of the Standard Model which becomes important after the
resonance. As noted in [27], thermalization effects can generate a thermal mass term for
the Higgs thereby stabilizing the vacuum. Also, non-perturbative production of particles
via the Higgs couplings can reduce 〈h2〉 [25]. These effects are subtle and require a careful
investigation which is beyond the scope of our present work. On the other hand, the resonance
regime is quite well understood and thus we believe our bounds on λhφ and σhφ are solid.

6 Implications for reheating models

In this section, we consider implications of our bounds for model parameters of representative
reheating scenarios. We choose two examples considered in [13]: reheating via right-handed
neutrinos and reheating via non-renormalizable operators.

In general one expects the Higgs-inflaton couplings to be present already at the tree
level. However, if they are for some reason suppressed, λhφ and σhφ are generated by loop
corrections. Therefore, the loop-induced couplings can be regarded as the corresponding
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lower bound. In what follows, we consider two conservative scenarios in which λhφ and σhφ
are entirely due to loop effects.

6.1 Reheating via right-handed neutrinos

In this model, the inflaton decays into heavy right-handed neutrinos which subsequently
decay into SM particles. This option is attractive since the inflaton-neutrino coupling is
allowed already at the renormalizable level. The relevant interaction terms are

−∆L =
λν
2
φνRνR + yν l̄L ·H∗ νR +

M

2
νRνR + h.c. , (6.1)

where lL is the lepton doublet, the Majorana massM is chosen to be real and we have assumed
that a single νR species dominates. The quartic and trilinear Higgs-inflaton couplings are
generated at 1 loop and the result is divergent. In other words, such couplings are required
by renormalizability of the model. As the renormalization condition, we take λhφ(MPl) = 0,
σhφ(MPl) = 0 such that at the inflationary scale the couplings are generated by loop effects.
In the leading-log approximation, we find

λhφ '
|λνyν |2

2π2
ln
MPl

µ
,

σhφ ' −
M |yν |2Reλν

2π2
ln
MPl

µ
, (6.2)

where µ is the relevant energy scale. In what follows, we assume real couplings and take
µ ∼ m since this is the typical momentum of the Higgs quanta towards the end of the
resonance.10 In any case, the dependence on µ is only logarithmic.

The value of λν is constrained by inflationary dynamics. In order not to spoil flatness
of the inflaton potential, the coupling must satisfy λν < 10−3 [13]. Taking λhφ < 3 × 10−8

and |σhφ| < 108 GeV (see figure 7), we find the following bounds on the neutrino Yukawa
coupling and the Majorana mass,

yν < 0.2 ,

M < 4× 1012 GeV . (6.3)

Although these constraints are not particularly strong, they are non-trivial. In particular,
they imply that the neutrino Yukawa coupling cannot be order one.

6.2 Reheating via non-renormalizable operators

A common approach to reheating is to assume the presence of non-renormalizable operators
that couple the inflaton to the SM fields. Let us consider a representative example of the
following operators,

O1 =
1

Λ1
φ q̄L ·H∗ tR , O2 =

1

Λ2
φ GµνG

µν , (6.4)

where Λ1,2 are some scales, Gµν is the gluon field strength and qL, tR are the third generation
quarks. These couplings allow for a direct decay of the inflaton into the SM particles. It
is again clear that a Higgs-inflaton interaction is induced radiatively. In order to calculate

10Choosing a higher µ would result in slightly looser bounds.
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the 1-loop couplings reliably, one needs to complete the model in the ultraviolet (UV). The
simplest possibility to obtain an effective dim-5 operator is to integrate out a heavy fermion.
Therefore, we introduce vector-like quarks QL, QR with the tree level interactions

−∆L = yQ q̄L ·H∗QR + λQ φ Q̄LtR +M Q̄LQR + h.c. , (6.5)

where the heavy quarks have the quantum numbers of the right-handed top tR, their mass
M is taken to be above the inflaton mass scale and the couplings to the third generation are
assumed to dominate. One then finds that O1 appears at tree level with 1/Λ1 = yQλQ/M,
whereas O2 appears only at 2 loops with 1/Λ2 ∼ yQλQytαs/(64π3M) and can be neglected.
Using the renormalization condition that the relevant couplings vanish at the Planck scale and
the fact that the heavy quarks contribute only at scales above M, we get in the leading-log
approximation

λhφ '
3|λQyt|2

2π2
ln
MPl

M
,

σhφ ' −
3M Re(λQyQyt)

2π2
ln
MPl

M
, (6.6)

where yt is the top Yukawa coupling and we assume M � MPl. As in the previous
example, one of the couplings is constrained by the inflationary dynamics, |λQ| < 2 ×
10−3/(ln MPl/M)1/4 [13], since it generates a correction to the inflaton potential. The heavy
quark mass must be well below the Planck scale, M�MPl, and the bound on λQ depends
very weakly on M in the allowed range. Therefore, in practice one may take |λQ| < 10−3.
Our results λhφ < 3 × 10−8, |σhφ| < 108 GeV lead to a stronger bound. For real couplings,
we get

|λQ| < 4× 10−4 ,

|yQ| < 0.02 , (6.7)

where in the second inequality we took M∼ m to obtain the most conservative bound and
yt(M) ∼ 1/2. This implies, in particular, that the minimal value of the suppression scale
Λ1 = M/|λQyQ| is around the Planck scale and the maximal reheating temperature is of
order 109 GeV (see [13] for details).

7 Conclusions

This work is devoted to an in-depth analysis of the Higgs-inflaton coupling effects in the
reheating epoch. We have focussed in particular on the preheating stage when the parametric
and tachyonic resonances are active. Our framework includes both the quartic and trilinear
couplings since these are present simultaneously in realistic models. The resulting mixed
parametric-tachyonic resonance is described by the Whittaker-Hill equation. While inheriting
certain features of the two resonances, it brings in new effects which require a thorough
investigation.

Within this framework, we have analyzed the issue of electroweak vacuum stability
during the preheating epoch assuming that the Higgs self-coupling turns negative at high
energies. Even though the Higgs-inflaton couplings can stabilize the system during inflation,
resonant Higgs production thereafter can lead to vacuum destabilization. The relevant quartic
and trilinear Higgs-inflaton couplings are generated by the renormalization group equations in
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realistic models, and even their tiny values make a difference. Using both analytical methods
and lattice simulations in a representative large field (φ2) inflation model, we obtain upper
bounds on the couplings from vacuum stability during preheating. These allow for a range
of couplings, roughly 10−10 < λhφ < 10−8 and |σhφ| < 108 GeV, which ensure stability both
during inflation and preheating.

Our analysis is limited to the timescale of the mixed resonance. This leaves out the issues
of the late-time behavior of the Higgs fluctuations which can further limit the allowed range
for the couplings. The required analysis is highly involved and we leave it for future work.
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A The Whittaker-Hill equation

A.1 Computation of the Floquet exponent

The Whittaker-Hill equation is given by[
d2

dz2
+ 2p cos (2z) + 2q cos (4z)

]
X = −AX, (A.1)

where a constant A can be thought of as an eigenvalue of the differential operator on the
l.h.s. The analysis of this equation can be found in [31–34].

According to the Floquet theorem, the solution can be written as a series of the form

X (z) = eµz
∞∑

n=−∞
c2ne2inz. (A.2)

Plugging this Ansatz into the above equation, we obtain a recursive relation

γ2n

(
c2(n−1) + c2(n+1)

)
+ c2n + ξ2n

(
c2(n−2) + c2(n+2)

)
= 0, (A.3)

where

γ2n ≡
p

A− (iµ− 2n)2 and ξ2n ≡
q

A− (iµ− 2n)2 . (A.4)

For given values of A, q and p we can find the Floquet characteristic exponent µ by solving
for the roots of the determinant

∆ (iµ) =

∣∣∣∣∣∣∣∣∣∣∣∣

. . .

ξ−2 γ−2 1 γ−2 ξ−2 0 0
0 ξ0 γ0 1 γ0 ξ0 0
0 0 ξ2 γ2 1 γ2 ξ2

. . .

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 . (A.5)
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It is possible to prove (see, e.g., refs [31, 32]) that this determinant can be written in a
compact form as

sin2
(
iµ
π

2

)
= ∆ (0) sin2

(√
A
π

2

)
. (A.6)

From this equation we can easily find

µ = − i
π

arccos
[
1 + ∆ (0)

(
cos
(√

Aπ
)
− 1
)]
. (A.7)

The advantage of this representation of solutions is that it can be evaluated numerically
very efficiently. Indeed, as one can see from the definitions of γ2n and ξ2n in eqs. (A.4),
the off-diagonal elements of ∆ (iµ) decrease as ∝ n−2 as they depart from the center of the
matrix.

A.2 Boundary between stability and instability regions

The stability of the solution in eq. (4.7) is determined by the characteristic exponent µ. In
general, µ is a complex number µ = α + iβ. If the real part of µ is non-zero, that is α 6= 0,
the given solution is unstable. For stable solutions α = 0 and their periodicity is determined
by the value of the imaginary part β. If β is a rational fraction, the solution is periodic, while
for irrational β the solution is non-periodic. Particularly interesting are the cases where β is
an integer. If β = 2l, where l ∈ Z, then solutions are either even or odd periodic functions
with a period π. For β = 2l + 1 those solutions are even or odd periodic functions with
a period 2π. These solutions of period π and 2π lie on the boundary between the regions
where the families of stable and unstable solutions reside, that is, the so called stability and
instability regions in (A, q, p) space. To find the equations for these boundary surfaces, we
can use the following Ansätze

y1 (z) =
∞∑
n=0

C2n cos (2nz) , (A.8)

y2 (z) =
∞∑
n=0

S2n+1 sin ((2n+ 1) z) , (A.9)

y3 (z) =

∞∑
n=0

C2n+1 cos ((2n+ 1) z) , (A.10)

y4 (z) =

∞∑
n=0

S2n+2 sin ((2n+ 2) z) . (A.11)

The function y1 (z) describes even solutions of period π; y2 (z) is an odd function of period
2π; y3 (z) is an even function of period 2π and y4 (z) is an odd function of period π. To find
the coefficients, one plugs these functions back into the Whittaker-Hill equation. This gives
us four recursive relations which can be written in a matrix form,

MJC
J = AJC

J , (A.12)

where no summation over J is implied; CJ stands for C1 =(C0, C2, C4, . . .)
T, C2 =(S1,S3, . . .)

T,
etc. and AJ represent eigenvalues AIJ (p, q) of an infinite square matrix MJ , where I =
0, 1, . . . ,∞. These eigenvalues define the boundaries between the stability and instability
regions.
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To find AIJ (p, q), let us compute the four matrices MJ explicitly. Plugging eq. (A.8)
into eq. (A.1), we find

M1 =


0 p q 0
2p q − 4 p q
2q p −16 p
0 q p −4n2

. . .

 , (A.13)

where the first row corresponds to n = 0. Similarly, one obtains the other three matrices,

M2 =


−p− 1 p− q q 0
p− q −9 p q
q p −25 p

0 q p − (2n+ 1)2

. . .

 , (A.14)

M3 =


p− 1 p+ q q 0
p+ q −9 p q
q p −25 p

0 q p − (2n+ 1)2

. . .

 , (A.15)

M4 =


−q − 4 p q 0
p −16 p q

q p −4 (n+ 1)2 p
. . .

 . (A.16)

We compute the eigenvalues of these matrices numerically by truncating them at some high
value of n. Some solutions of eq. (A.7) and eigenvalues of these matrices are shown in figure 9.
The leftmost panel (q = 0) can be recognized as the familiar stability chart of the Mathieu
equation.
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