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Antiretroviral therapy (ART) efficiently suppresses HIV replication but immune activation and low CD4 T cell
counts often persist. The underlying mechanism of this ART-resistant pathogenesis is not clear. We observed
that levels of plasma extracellular vesicles (pEV) are strongly elevated in HIV infection and do not decline during
ART. Surprisingly, these vesicles contained the viral accessory proteins Nef and Vpu,which are assumed to be not
expressed under efficient ART, aswell as pro-inflammatory effectors, including activatedADAM17. HIV pEVwere
characterized by the presence of activatedαvβ3 and absence of CD81 and Tsg101. Correlating with immune ac-
tivation, peripheral monocytes ingested large amounts of pEV, giving rise to an increased population of CD1c+

CD14+ cells that secreted inflammatory cytokines. Importantly, the pro-inflammatory content, particularly
ADAM17 activity, correlated with low T cell counts. Preliminary evidence suggested that HIV pEV derived from
peripheral mononuclear cells and from an unknownmyeloid cell population. In summary we propose an impor-
tant role of pro-inflammatory pEV in chronic HIV infection due to ongoing viral Nef activity.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

HIV is targeting predominantly T cells, most of which are killed rap-
idly after infection (Perelson et al., 1996; Ho et al., 1995; Doitsh et al.,
2014), but leave behind a small reservoir of largely inactive proviruses
(Eriksson et al., 2013; Eisele and Siliciano, 2012). Despite this seemingly
negligible amount of latentHIV present under ART, signs of the infection
persist, including immune activation, lowCD4 counts and increased risk
for a number of co-morbidities (Deeks et al., 2013). Moreover, HIV rep-
lication resumes quickly when ART is discontinued, although a cellular
and humoral immune response is present (Davey et al., 1999).

Evidence is accumulating that extracellular vesicles not only play a
role in cancer (Greening et al., 2015) but also in viral infections
(Meckes, 2015). The membrane-enclosed viral-like structures are
found at high levels in plasma, contain numerous effectors including en-
zymes, proteins, and RNAs (Raposo and Stoorvogel, 2013; Konadu et al.,
2015) and are secreted continuously by cells with activated endo- and
ur).

. This is an open access article under
exocytosis (Baur, 2011). The latter may in part explain why tumor- as
well as HIV-infected cells shed high numbers of EV (Skog et al., 2008;
Muratori et al., 2009). In viral infections they seem to facilitate the
spread of the virus, a finding that has also been suggested for HIV
(Feng et al., 2013; Arenaccio et al., 2014; Meckes, 2015).

Our previous work suggested that large amounts of extracellular
vesicles (EV) are secreted by HIV-infected cells (Lee et al., 2013;
Muratori et al., 2009), which was confirmed by additional work
(Lenassi et al., 2010;Narayanan et al., 2013; Shelton et al., 2012). Vesicle
secretionwas induced by the viral pathogenesis factor Nef and linked to
Nef-mediated activation of ADAM17 at the plasma membrane. From
there, both factors were shuttled into EV in a Paxillin-dependent mecha-
nism. These in vitro vesicles were able to induce the release of TNF when
ingested by resting PBMC. So far it was not clear whether these mecha-
nisms occurred in vivo, what effect(s) they would induce and whether
they were linked to HIV-associated immune pathogenesis. Here we
demonstrate that HIV pEV contain a number of pro-inflammatory factors
as well as the viral accessory proteins Nef and Vpu, are persistently
upregulated despite ART and correlate significantly with pathogenesis
in chronic infection. Importantly our results point to a so far not recog-
nized cell compartment with ongoing viral activity under ART.
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2. Materials and Methods

2.1. Nef Antibodies and Detection Reagents

Different anti-Nef antibodies and reagents were used: (1) anti-Nef
JR6, a mouse monoclonal antibody (Abcam ab42358); (2) anti-Nef
2A3, a mouse monoclonal antibody (Abcam ab77172); (3 and 4) anti-
Nef sheep serum, either as a purified biotinylated polyclonal antibody
or non-labeled (both from NEXT Biomed, Helsinki); (5) anti-Nef poly-
clonal serum (provided by Mark Harris, Leed University). All Nef-
antibodieswere used to demonstrate the presence of Nef in pEV. For im-
munoblotting JR6 turned out to have the highest sensitivity and speci-
ficity as judged by the ratio of Nef vs. background staining. For
immunohistochemistry we used the biotinylated Nef sheep serum and
the JR6 antibody. To confirm Nef in pEV, we also employed the recom-
binant Neffin construct, comprised of a 118 aa llama Ig heavy chain var-
iable domain fragment (VHH) fused to a ligand-tailored 57 aa SH3
domain (Jarviluoma et al., 2012) and immunoprecipitated Nef from
plasma (data not shown).

2.2. Antibodies

The following antibodies were used for immunostaining, flow cy-
tometry or immunoblotting: anti-ADAM10 (mouse monoclonal,
Abcam ab73402), anti-ADAM10-PE (mouse monoclonal anti-ADAM17
(rabbit polyclonal, Cell Signaling 3976), anti-alpha-smooth muscle
actin-FITC (Sigma-Aldrich, F3777), anti-TNF (rabbit monoclonal, Cell
Signaling 6945), anti-Gag p24 (mouse monoclonal, Abcam ab9071),
anti-CD81 (mouse monoclonal, BD Biosciences 555675), anti-Paxillin
(mouse monoclonal, Millipore 05-417), anti-Tsg101 (mouse monoclo-
nal, Santa Cruz Biotecnology sc-7964), anti-HLAI (mouse monoclonal,
BD Biosciences 555551), anti-HLAII (mouse monoclonal, Abcam
ab20181), anti-Vpu (rabbit polyclonal, Biozol FBX-VPU-101AP-100),
anti-CD1c-PE (mouse monoclonal, Miltenyi Biotec, 130-90-007), anti-
CD14-FITC (mouse monoclonal, Miltenyi Biotec, 130-080-701), anti-
CD19-APC (mouse monoclonal, Miltenyi Biotec, 130-091-247), anti-
Integrinαvβ3 (mouse monoclonal, Abcam ab78289), Propidium iodide
(Genaxxon bioscience, M3181.0010), DAPI (4′,6-diamidino-2-
phenylindole, Biomol ABD-17510). Primary antibodies were used at
1–2 μg ml−1 for immunoblotting, 2 μg ml−1 for immunofluorescence
and 5–10 μgml−1 for FACS analysis. The following secondary antibodies
were used: Alexa Fluor 488 goat anti-mouse and Alexa Fluor 555 goat
anti-rabbit IgG (both from Life Technologies) and anti-mouse IgG-HRP
conjugate and anti-rabbit IgG-HRP conjugate (both fromCell Signaling).

2.3. DNA Constructs and Transfection

Expression plasmids for Nef and Nef-cofactors (hnRNPK, PKCδ, Lck)
were described previously (Lee et al., 2013). The HIV-Δenv (pNL-
4.3Δenv (Clavel et al., 1989)) expression plasmid was kindly provided
by U. Schubert (Department of Virology, University of Erlangen). For
immunoblotting experiments, plasmids were transfected with
Lipofectamine® LTX with Plus™ Reagent (Invitrogen) according to the
manufacturer's instructions, or using the classical calcium phosphate
procedure. Cells were used for experiments 24–72 h after transfection.

2.4. ADAM17/α-Secretase Activity Assay

The assay was performed essentially as described previously (Lee
et al., 2013) using a commercial, SensoLyte®520 α-Secretase Activity
Assay Kit (AnaSpec 72085), according to the manufacturer's instruc-
tions. Briefly, we placed sucrose gradient purified pEV (the equivalent
of 1 ml plasma) on a 96-well, black, flat bottom plate (Greiner
655900) and added a 5-FAM (fluorophore) and QXL™ 520 (quencher)
labeled FRET peptide substrate for continuous measurement of enzyme
activity. Upon cleavage of the FRET peptide by the active enzyme, the
fluorescence of 5-FAM is recovered and continuouslymonitored at exci-
tation/emission= 490 nm / 520 nm by a preheated (37 °C) TECAN infi-
nite M200 Pro plate reader.

2.5. Patient Material

Patient material was obtained from patients of the HIV-clinic (head-
ed by T. Harrer) at the Department of Medicine 3, University Hospital
Erlangen. Plasma was drawn from patients after informed consent and
approval of the local ethics committee. All procedures were pursued
in accordancewith theDeclaration of Helsinki, with the patient's Guard-
ian Informed Consent and the approval from the Institutional Review
Board. At the time of sampling, non-viremic HIV patients were under
ART for prolonged periods without detectable viral load (b20 viral cop-
ies/ml), while viremic patients (for viral copy number see Supplement
Table S1) were untreated or had just started treatment. CD4 and CD8
counts (cells/μl blood)were determined by theDepartment ofMedicine
3 and viral copies number (copies/ml blood) by the Department of Vi-
rology in Erlangen. In general, 6–7 ml of plasma was obtained from
each individual per visit.

2.6. Immunostaining, Confocal Microscopy and FACS Analysis

For detection of Nef by immunofluorescence, monocytes were sepa-
rated from the non-adherent fraction (NAF) by plastic adherence on cell
culture flasks and cultured in RPMI (Sigma-Aldrich) including supple-
ments. In HIV pEV incubation experiments, 3.0 × 105 monocytes were
seeded in a 12 well plate and 10 μg of sucrose gradient purified HIV
pEV were added and incubated overnight at 37 °C under 5% CO2. Then
monocytes were harvested and 1.0–2.5 × 105 cells were seeded on a
Poly-(L)-Lysine (Sigma Aldrich) coated cover slips. The cells adhered
for 2 h at 37 °C under 5% CO2 and were fixed thereafter (3% PFA for
30 min at room temperature followed with three washes with PBS/1%
BSA). Then cells were permeabilized (0.1% Triton X-100/1% BSA) and
immunostained by standard procedures (primary and secondary anti-
bodies). Finally, the cells were washed 30 min with PBS/1% BSA and
mounted with Entellan (Merck 1079610100). Fixed samples were im-
aged with a laser scanning confocal microscope (LSM-780; Zeiss)
equipped with a 63× objective. For Alexa488 the illumination was set
at 488 nm and emissions were collected between 506 and 583 nm.
For Alexa555 the illuminationwas at 561 nmand emission collected be-
tween 574 and 667 nm. Detecting DAPI, illumination was set to 405 nm
and emission collected between 410 and 495 nm.

For FACS analysis, CD1c+ cells fromat least 1.0× 107 PBMCwere iso-
lated following the protocol of the CD1c+ (BDCA-1+) Dendritic Cell Iso-
lation Kit (Miltenyi Biotec 130-090-506), butwithout depletion of CD19
cells. Cells were stained with fluorochrome-conjugated antibodies and
flow cytometric analysis was done using a FACS Canto II flow cytometer
(BD Bioscience). Data were analyzed with the FCS Express 4 (De Novo
Software) software. CD1c+ CD14+ cells were analyzed in the CD19−

gated fraction of cells, as CD1c is also expressed on a subset of B cells.
CD19 MACS beads (Miltenyi Biotec 130-050-301) and CD14 Magnetic
particles (BD Bioscience 557769) were used for positive selection fol-
lowing the magnetic separation protocol of the manufacturer.

2.7. Micro-RNA Microarray

The pEV were purified from equal volumes of pooled or non-pooled
platelet poor plasma supplemented with BHRF1-2* miRNA as spike-in
control (see below) and pelleted. The pEV pellets were then dissolved
in 700 μl of Qiazol and total RNA was isolated using Qiagen miRNeasy
Mini Kits (Qiagen 217004). The extracted RNA was sent on dry ice to
Miltenyi Biotec. 100 ng total RNA was concentrated to 50 ng/μl and
Cy3-labeled using Agilent's miRNA Complete Labeling and Hyb Kit
(Agilent Technologies, 5190-0456). After purification through Micro
Bio Spin Columns (Bio Rad, 732-6221) the total RNA samples were
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hybridized for 20 h at 55 °C to humanmiRNAmicroarrays (Agilent, Ver-
sion V16, 8x60K). The microarrays were washed in Triton-containing
washing buffer as recommended by the manufacturer and scanned
with the Agilent's Microarray Scanner System (Agilent Technologies).
The image files were analyzed and processed by Agilent Feature Extrac-
tion Software (Version 10.7.3.1). The received miRNA expression data
was analyzed for logarithmic dot plots using Excel 2010 (Microsoft)
and for cluster analysis MultiExperiment Viewer Version 4.9 (MeV,
http://www.tm4.org/mev.html). Logarithmic dot plots and average
miRNA fold change assessments were generated analyzing gradient pu-
rified pEV frompooledHIV andhealthyplasma.Micro-RNA cluster anal-
ysis (Fig. 1B) was performed for individual plasma samples (14 ml)
from 2 viremic, 2 non-viremic HIV patients and 8 healthy individuals
based on Euclidean distance. For pairwise comparison of patient groups
(Figs. 1a, S1a) means of each detected miRNA were calculated within
each group and plotted on a logarithmic scale.

2.8. EV Depletion of FCS and Human Serum for Cell Culture

To assure EV generated from cell culture were not contaminated by
outside sources, heat inactivated FCS and human serum for medium
supplementation were depleted of vesicles by ultracentrifugation for
18 h at 110,000 g, 4 °C before use.

2.9. Isolation and Purification of EV

EV purification was performed essentially as described previously
(Muratori et al., 2009; Thery et al., 2009). Briefly, supernatantswere col-
lected after 48 h and centrifuged for 20min at 2000 g, 30min at 10,000 g
and ultra-centrifuged for 1 h at 100,000 g. Pellets were resuspended in
35ml PBS and centrifuged at 100,000 g for 1 h. Pelletswere resuspended
in 100 μl PBS and considered as EV preparations.

For EV purification frompatient samples, 30ml blood plasmawas di-
luted with 30 ml PBS and centrifuged for 30 min at 2000 g, 45 min at
12,000 g and ultra-centrifuged for 2 h at 110,000 g. Pellets were resus-
pended in 30 ml PBS and centrifuged at 110,000 g for 1 h. Pellets were
again resuspended in 100 μl PBS and considered as EV preparations.
Fig. 1.High levels of Nef-containingpEV in viremic andnon-viremicHIV infection. (a) Pairwise c
patients and healthy controls (left panel), and non-viremic patients (right panel). Each dot depi
extracted by sucrose gradient from 24 ml of pooled plasma (4 individuals, 6 ml each). AFI: ave
clustering based on Euclidean distance ofmiRNAs extracted from pEV (14ml plasma) from 8 he
HIV-infected individuals. nvir.: non-viremic. vir.: viremic. (c) Protein levels (μg) in sucrose grad
non-viremic patients (b20 viral copies/ml) aswell as controls (n=4). (d–e) Particle number an
and healthy controls (n = 4, pools of 24 ml each), subjected to a concentration analysis by d
Meerbusch, Germany). (e) Gradient-purified pEV derived from 15 ml plasma from 7 non-vire
on the measurements a pEV concentration per ml plasma was calculated as indicated.
For further purification, EV were diluted in 2 ml of 2.5 M sucrose,
20mMHepes/NaOH, pH 7.4 and a linear sucrose gradient (2–0.25M su-
crose, 20mMHepes/NaOHpH7.4)was layered on top of the EV suspen-
sion. The samples were then centrifuged at 210,000 g for 15 h. Gradient
fractions were collected and the refractive index was determined. Each
fraction was diluted in 10 ml PBS and ultra-centrifuged for 1 h at
110,000 g. Pellets were solubilized in SDS sample buffer or resuspended
in 100 μl PBS and analyzed by immunoblotting or Cytokine/Chemokine/
soluble Factor (CCF) protein array (see supplementary information).

To validate our centrifugation-based pEV isolation protocol, we gen-
erated an EV spike-in control (from a stable cell line producing EV), con-
taining an EBV-derived miRNA (BHRF1-2*) that was not found in
human pEV-miRNAs, but was detectable by the miRNA microarray
(Agilent). After spike-in, BHRF1-2* miRNA was readily detected with
comparable efficiency in 4 different plasma samples (data not shown).

2.10. Immunoisolation of pEV/EV by Magnetic Beads

Antibodies were coupled to magnetic microbeads by a Miltenyi
Biotec (Bergisch Gladbach, Germany). For isolation of pEV, 2 ml blood
plasma was diluted with 2 ml PBS and 50 μl of antibody-coupled
beads were added for 1 h and subsequently subjected to magnetic
immunoisolation with MACS® Technology (Miltenyi Biotec) using MS
columns. To purify EV from cells, cell cultured supernatants were col-
lected and were purified by combining differential centrifugation and
column-based bead isolation. The vesicles were finally eluted with
45 μl of hot (95 °C) SDS sample buffer and all of the vesicle lysate was
subsequently analyzed by western blot. The column flow-through was
collected and centrifuged at 110,000 g (pEV) or 100,000 g (EV from
cells) for 1 h. Pelletswere solubilized in SDS sample buffer and analyzed
by western blot.

2.11. Screening of Primary Hybridoma Supernatants Directed Against Nef
EV

Latex beads were coated with 10 μl Nef EV generated from Nef
transfected 293 T cells as described previously (Lee et al., 2013).
omparison of pEVmiRNA levels obtained bymiRNAmicro arrays, derived fromviremicHIV
cts the signal intensity of onemiRNA, exemplified by the red dot and arrows. The pEVwere
rage fold-increase of all miRNAs over reference. RLU: relative light units. (b) Hierarchical
althy individuals and 2 viremic (2.1 × 104 and 5.6 × 103 viral copies/ml) and 2 non-viremic
ient fractions 1.13–1.23 (as in Fig. 1D) from viremic (103–105 viral copy numbers/ml) and
d size analysis of pEV. (d) Example of a pEV analysis from a pool of non-viremic individuals
ynamic light scattering using a ZetaView® nanoparticle tracker (ParticleMetrix GmbH;
mic individuals and 6 healthy controls using the ZetaView® nanoparticle tracker. Based

http://www.tm4.org/mev.html
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Subsequently the beads were incubated with 10 μl primary hybridoma
supernatant (host: mouse) dissolved in 50 μl PBS/0.5% BSA for 30 min
at 4 °C. 200 μl PBS/0.5% BSA was added and the sample was centrifuged
at 1500 g for 3min at RT. The pellet was resuspended in 200 μl PBS/0.5%
BSA and incubated with 1 μl anti-mouse Alexa Fluor® 488 labeled sec-
ondary antibody for 30 min at 4 °C and subsequently washed twice be-
fore a FACS measurement was carried out. Primary screening was done
with 262 monoclonal antibodies generated against EV antigens. The
candidates of EV specific antigens were selected and analyzed by FACS
to identify antibodies specifically binding to Nef EV.

2.12. Peripheral Blood Mononuclear Cell (PBMC) Preparation

Leukoreduction systemchambers (LRSCs) fromhealthy donorswere
acquired after plateletpheresis. The resulting platelet free cell sample
was diluted 1:2 in PBS and the PBMC containing buffy coat was isolated
after density gradient centrifugation on Lymphoprep (Axix Shield
1114544) at 500 g for 30 min at room temperature. PBMCs were then
washed 3 times in PBS/1 mM EDTA; 1. wash: 282 g, 15 min, 4 °C; 2.
wash: 190 g, 10 min, 4 °C; 3. wash: 115 g, 12 min, 4 °C).

2.13. Particle Quantification

Sucrose purified pEV were diluted 1:1,000,000 for HIV patients and
1:1000 for healthy donors in PBS. The pEVs numbers were quantified
via particle tracking analysis on a commercially available ZetaView par-
ticle tracker from ParticleMetrix (Germany) using a 10 μl aliquot of the
diluted samples. The concentration of pEVwas then calculated using the
appropriate dilution factors.

2.14. Measurement of Cytokine Secretion

PBMCs or positive-selected cells (1 × 105) were added to each well
of a 96-well-U-bottom plate (BD Biosciences) in a total volume of
200 μl medium. Cytokines in the supernatant (200 μl) were measured
via the CBA (Cytometric Bead Array) Human Th1/Th2/Th17 kit (BD Bio-
sciences 560484) or Human Soluble Protein Flex Set System (BD Biosci-
ences 558265).

2.15. Image Quantifications of Immunoblotting

All image quantifications were performed with ImageJ software
(NIH). The quantified data were analyzed using Excel 2010 (Microsoft)
for statistical analysis.

2.16. Human Cytokine/Chemokine/Soluble Factor (CCF) Array

Purified EV from sucrose gradient fractions were applied to the
RayBio Human Cytokine Array C-S (Hölzel Diagnostika, AAH-CYT-
1000-2) according to the manufacturer's instructions. Cytokines were
analyzed and identified based on a table presented in supplement
material.

3. Results

3.1. High levels of pEV in Viremic and Non-viremic HIV Infection

To quantify pEV in blood of infected individuals, we measured pEV-
derived miRNAs (Valadi et al., 2007; Aqil et al., 2014). After pEV were
purified by sucrose gradient from a pool of 4 viremic or non-viremic pa-
tients (patient details per experiment in Table S1), extracted miRNAs
were assessed by miRNA microarray. Levels of detected miRNAs were
on average 25.9-fold higher than in healthy controls (Fig. 1a, left
panel), but surprisingly slightly lower than levels measured in non-
viremic patients (right panel). Plasma samples from single individuals
w/wo viremia and 8 controls were analyzed accordingly and gave sim-
ilar results (Figs. 1b and S1a).

Measuring the total protein content in pEV gradient fractions (as in
Fig. 1d, upper panels), we found an increase of about 18 to 22-fold
over healthy controls in both HIV groups (Fig. 1c). The slightly higher
protein levels in viremic patients might have been attributed to the
presence of viral particles (see p24 in Fig. 2a). Similarly, a particle num-
ber and size analysis revealed a 12- to 28-fold increase (median: 17.9) of
pEV over healthy controls aswell as a broader size range of the particles
(Fig. 1d and e). Together these results suggested a sustained increase of
HIV pEV despite ART.

3.2. HIV pEV Contain Viral Accessory Proteins and Inflammatory Effectors

Similar as observed previously, purified HIV pEV contained Nef and
activated ADAM17 and −10 proteases as well as classical EV-markers
(CD63, CD81) (Lee et al., 2013; Khan et al., 2015). In addition,we detect-
ed TNF and its precursor (Fig. 2a). ADAM17 activation was only seen in
fractions where Nef was present, evidenced by the cleavage of the TNF
precursor into itsmature form (red boxes and arrows). To our great sur-
prise, this pEV protein profile was identical in viremic and non-viremic
patients. Blotting for p24 Gag confirmed the presence of viral particles
in viremic patients. In addition, p24 floated slightly different than pEV,
pointing to a slight size/density difference of viral particles (Fig. 2a).
However, we cannot exclude that p24 was also present in pEV. Never-
theless the presence of p24 was an indication for viral replication.
Non-viremic HIV pEV also contained Vpu, as shownwith different plas-
ma samples (Fig. S1b; Figs. 3b and 4a, b). Supporting this finding, the
uploading of Vpu into EV was confirmed by transient transfection ex-
periments (Fig. S1c). These results suggested continuous expression of
viral accessory proteins in the absence of productive replication. As
Nef induces the secretion of EV, this seemingly explained the unabated
high levels of pEV despite ART.

Searching for potential differences between viremic and non-
viremic-derived pEV, we analyzed whether they harbored additional
cytokines, chemokines and soluble factors (hereafter referred to as
CCF). Purified pEV from a plasma pool of clinically healthy non-
viremic patients (CD4 N 800/μl) and viremic patients with low CD4
counts (b250/μl), as well as healthy volunteers (details in Tables S1
and S2) were analyzed for 120 CCF by protein array (list of all CCF in
Supplement Methods). Whereas healthy pEV contained 3 CCF, HIV
pEV harbored as many as 23 in readily detectable amounts (Fig. 2b).
Both HIV groups showed significant differences (red boxes). In general,
viremic patients with low CD4 counts harbored more and higher levels
of CCF including a number of pro-inflammatory effectors (e.g. TNF, IL-
12p40, sIL-6R, sTNF-RI, GRO). Overall, however, both profiles had a sim-
ilar pattern. This pattern suggested that the vesicles originated from a
myeloid/macrophage-like cell population (e.g. IL-12p40, GRO, NAP-2).

3.3. HIV pEV Constitute a pEV Subclass Induced by αvβ3 Activation

Since pEV constitute a mix of different vesicles from different cell
populations, we asked whether HIV accessory proteins and the pro-
inflammatory effectors were uploaded into the same pEV. We screened
a panel of 262 monoclonal antibodies generated against EV antigens.
The selected EV specific candidateswere analyzed to identify antibodies
specifically binding to Nef-induced and Nef-containing EV. We identi-
fied one antibody (2H4) that, when coupled to magnetic beads
(Fig. S2a), captured seemingly 100% of Nef-containing pEV (Fig. 3a,
compare red boxes). Along with Nef, all activated ADAM17 and 10, ma-
ture TNF and also Vpu were found. Surprisingly, many common vesicle
markers (Tsg101, CD81, CD25, DC-SIGN) were not detected (Fig. 3a,
green boxes),while CD63 andHLA-Iwere present.When the CCF profile
was analyzed following 2H4-bead isolation, most effectors, including
those with a pro-inflammatory effect and putative myeloid origin,
co-precipitated with the bead fraction in an all or nothing fashion



Fig. 2. HIV pEV contains viral accessory proteins and inflammatory effectors. (a) Western blot analysis of individual sucrose gradient fractions from viremic and non-viremic patients.
Purified pEV from samples analyzed in Fig. 1d and viremic patients (n = 4, pools of 24 ml each) were blotted for indicated factors. Red arrows in the boxes depict the positive
correlation of Nef with ADAM17 and pro-TNF cleavage. precrs.: precursor. Note: CD63 and CD81 western blot panel in Fig. 1d and panel (a) in this figure are identical (same samples).
Lysates of 293 T cells, transfected with p24 Gag (+Gag) and/or Nef/Nef-cofactors (Lys.), served as controls (Cont.). (b) Protein array analyzing the content of cytokines, chemokines
and soluble factors (CCF) in pEV from healthy controls, viremic patients with low CD4 counts (120–250/μl) and non-viremic HIV patients with high CD4 counts (N750/μl) (30 ml
pooled plasma, 5 patients). See full CCF list analyzed in supplementary information.
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(Fig. 3b). This and the distinct surfacemarker profile implicated thatNef
pEV constituted a specific subclass of vesicles, potentially distinct from
multivesicular body (MVB)-derived classical exosomes. The latter are
typically secreted in an ESCRT (Tsg101)-dependent pathway
(Colombo et al., 2013), which we did not detect in Nef-containing
pEV. Together these results confirmed that HIV accessory proteins
were co-packaged into pEVwith an array of pro-inflammatory effectors
and chemokines.

Using MALDI TOF we identified αvβ3 as the binding antigen of 2H4
(Fig. S2b). Control pEV from healthy individuals harbored αvβ3, but
were not recognized/isolated by 2H4-coupled beads as revealed byblot-
ting with a commercial αvβ3 antibody (Fig. 3c, red boxes). Conversely,
2H4 captured pEV when Nef, active ADAM17 and mature TNF were
present (Fig. 3a and c, see TNF). Together this suggested that 2H4
bound an activation-induced epitope of αvβ3 and implicated that the
integrin was activated when HIV pEV were induced by Nef. Again, the
absence of Tsg101 and CD81 in the bead fraction suggested that Nef/
αvβ3 pEV constituted a subclass of vesicles distinct from MVB-derived
exosomes (Fig. 3c). Supporting the assumption that Nef activated
αvβ3, a co-transfection of Nef with cofactors hnRNPK, Lck and PKCδ,
which induces Paxillin phosphorylation in 293 T cells (Lee et al.,
2013), also stimulated the phosphorylation of Pyk2 and PLCγ (Fig. 3e).
In their activated forms these factors form a complex with αvβ3 (Pfaff
and Jurdic, 2001; Nakamura et al., 2001). These results indicated that
αvβ3 activation was required for the induction of HIV pEV.

3.4. Peripheral Mononuclear Cells Ingest HIV pEV and Secrete Inflammatory
Cytokines

Inflammatory peripheralmononuclear cells are a hallmark of chron-
ic HIV infection and correlate with the development ART-resistant
pathogenesis (Wilson et al., 2014; Sandler et al., 2011). Since mononu-
clear cells efficiently incorporate EV (Lee et al., 2013),we askedwhether
HIV pEVwere involved in this patho-mechanism. To demonstrate a pos-
sible uptake of HIV vesicles, plastic adherent mononuclear cells from
different non-viremic individuals were stained for Nef, Vpu and p24
Gag. Indeed, an astonishing 47–72% of these cells contained Nef, where-
as Vpu and p24 were detected at much lower frequency, 3–12% and 1–
3% respectively (Fig. 4a and c). We explained this unexpected high fre-
quency of Nef-positive cells with the high concentration and efficient
uptake of HIV pEV. To confirm this assumption, HIV non-viremic pEV
were incubated with mononuclear cells from healthy donors and
stained as above. Positive staining for Nef and Vpu indeed suggested a
vesicle-mediated transfer of these proteins (Fig. 4b), and confirmed
the presence of Nef/Vpu-containing pEV in non-viremic patients. Nota-
bly, p24-positive cells were not detected, confirming that p24 was not
present in HIV pEV. To further support these surprising findings, prima-
ry mononuclear cells were analyzed for Nef and ADAM17 by Western
blot. In line with the last results, only the HIV mononuclear cells har-
bored activated ADAM17 and Nef (red box) (Fig. 4d).

Under inflammatory conditions, monocyte-derived CD1c+ CD14+

dendritic cells develop (Segura et al., 2013). We found that CD1c+

CD14+ CD19− cells increased in PBMC of non-viremic patients by
about 10-fold over controls, to approximately 0.2% ± 0.17% of PBMC
(Fig. 5a and b). All CD1c+ cells were Nef-positive and developed CD14
granules as if generated for secretion (Fig. 5a). Resting PBMC of non-
viremic individuals secreted significant amounts of TNF, IL-6 and IFNγ
within 12 h, an effect thatwas abolishedwhen the CD1c+ cells were de-
pleted (Fig. 5c). Positively selected CD14+ cells also secreted TNF and IL-
6, while CD1c+- or CD1c+ CD14+ CD19−-selected cells were not viable
in culture in our hands (Fig. 5d and data not shown). For control, CD1c+

CD19+ cells (B-cells) were selected and cultured, but secreted no



Fig. 3.HIVpEV constitute a pEV subclass induced byαvβ3 activation. (a) HIV pEV isolation fromplasma of 3 non-viremic patientswith high or lowCD4 count using 2H4-coupledmagnetic
beads (see Fig. S2). Bead isolated pEV (bead) and flow through (FT) were analyzed for the indicated markers. The lower panel includes an additional control for non-coupled beads,
indicated by a sphere w/wo antibody. Red and green boxes point to differences between bead-isolation and FT (details in text). (b) CCF protein array analysis of purified pEV from
non-viremic patients (30 ml pooled plasma, 4 patients) coupled to 2H4-coupled beads (beads) and flow through (FT). (c) Same experimental set up as in (a). pEV were isolated from
two non-viremic patients using 2H4-coupled beads and blotted for indicated markers. Red boxes refer to differences in bead-isolated fraction and flow through as described in the
text. (d) Expression of Nef and co-factors in 293 T cells as indicated and similar as performed previously (Lee et al., 2013), and immunoblot for phosphorylated endogenous Pyk2 and
PLCγ. Insert*: longer exposure of negative control and PMA stimulation as compared to the rest of the blot.
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cytokines (Fig. 5d). Collectively these data suggested that HIV pEVwere
involved in the induction of inflammatory mononuclear cells.
3.5. pEV-Derived Nef and ADAM17 Activity Correlate with Low T Cell
Counts

Since pEV are highly concentrated and also ingested by T cells (Lee
et al., 2013; Gutierrez-Vazquez et al., 2013), we asked whether inflam-
matory pEV modulated the T cell count in HIV infection. Multiple pEV-
derived factors and plasma p24 Gag levels from 17 non-viremic and
16 viremic patients were analyzed by Western blot and quantified by
ImageJ software (Schneider et al., 2012). Results were correlated with
CD4 and CD8 counts and viral copy numbers. Validating our approach,
viral copy numbers vs. p24 levels as well as Nef vs. ADAM17 correlated
visibly by Western blot (Fig. 6a, arrows) and gave the expected signifi-
cant positive Pearson correlation coefficient (Fig. 6b, upper panels).

In both patient groups the Western blots revealed an inverse rela-
tionship between the presence of either Nef or active ADAM17 and
CD4 counts. Supporting this finding, therewas also a visible inverse cor-
relationwith Paxillin,which is required for ADAM17uploading into pEV
(Lee et al., 2013). Conversely, ADAM10, Tsg101, HLA-I, and HLA-DR
were evenly present (Fig. 6A left panel, arrows, and Figs. S3a and S4b).
The calculated correlations between Nef, or ADAM17, and CD4 counts
were highly significant (Fig. 6b, red boxes, and Fig. S5a). Similar but
less stringent correlationswere seenwith respect to CD8 counts, partic-
ularly in viremic patients (Fig. 6b, yellow boxes and S5b). Neither viral
copy number nor p24 correlatedwith CD4, CD8, Nef or ADAM17 respec-
tively, as observed in Western blots (Fig. 6a, right panel, arrows and
Fig. S4a) or determined by calculation (Fig. 6b, gray boxes). Also, p24
levels did not correlatewith pEVNef levels, suggesting that they derived
fromdifferent sources (Fig. 6a right panels). Although the number of an-
alyzed patients was low, the stringent results and internal validations
implied that the ADAM17-containing HIV pEV correlated with T cell
levels in viremic and non-viremic infection.

To support this conclusion, pEV from viremic and non-viremic pa-
tients with different CD4 counts were analyzed for ADAM17 protease
activity using a pro-TNF sequence-based FRET peptide cleavage assay
(AnaSpec). The results confirmed an inverse relationship between
ADAM17 activity and individual CD4 levels irrespectively of the pres-
ence of viral particles (Fig. 6c, left panel). Notably, the three healthy con-
trols revealed no ADAM17 activity at all. To solidify this finding, we
assayed three plasma pools derived from non-viremic patients only,
representing different ranges of CD4 levels. The result confirmed the in-
verse relationship between CD4 count and ADAM17 activity (Fig. 6c
right panel). Together with the Western blot analysis these findings
suggested a link between Nef-mediated ADAM17 activation and lower
CD4 counts.
3.6. HIV pEV are Secreted in Part by PBMC

The CCF profile of HIV pEV pointed at a myeloid compartment as
their cellular source; however this profile did not exclude T cells. Non-
stimulated primary T cells from infected or healthy individuals pro-
duced only negligible amounts of EV in vitro, insufficient to give a CCF
signal (data not shown). Conversely, Jurkat T cells transfected with an
HIV-Δenv viral construct (expression control in Fig. S6) did secrete EV
with some lymphocyte-typical CCF, including TNF. However, most of
these factors were not detected in HIV pEV (Fig. 7). Thus we analyzed
EV shed by non-stimulated PBMC from 7 non-viremic patients in 48 h
(pooled supernatants). The results revealed a CCF pattern that showed



Fig. 4. Peripheral mononuclear cells ingest large amounts of HIV pEV. Immunohistochemistry analysis of Nef, Vpu and p24 Gag in plastic adherent PBMC, obtained from non-viremic
patients and a healthy controls. (a) One representative sample is shown. (b) Nef, Vpu and Gag staining as in (a) after incubation of non-viremic HIV pEV (gradient-purified) with
plastic-adherent PBMC from a healthy individual. (c) Average number of positive cells (in %) stained as in (a) in 4 non-viremic patients. For each patient 3.0 × 102 cells were analyzed
and the mean value was taken as a representative number. (d) Western blot analysis of plastic adherent cells from one non-viremic individual (nvir.) and one healthy control (hlt.) for
factors as indicated. Nef/co-factors-transfected cells 293 T cells (as in Fig. 3a) served as positive control.
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some overlap with HIV pEV (7 of 23 CCF; Fig. 7, red boxes). In addition
some T cell typical factors were detected (blue boxes), implying that
the interaction of different PBMC fractions stimulated EV secretion
also from T cells. Therefore it seemed possible that at least a fraction
of HIV pEV derived from PBMC. However, since PBMC from non-
viremic individuals are not productively infected by HIV, it appeared



Fig. 5.CD1c+CD14+mononuclear cells containNef and secrete inflammatory cytokines. FACS and immunohistochemistry analysis ofNef-containingmononuclear cells. (a) Assessment of
CD1c+ CD14+ cells in CD1c+ positive selected PBMC from 2 non-viremic patients and a healthy control. Aliquots of the cells were stained for Nef and CD14 by immunohistochemistry.
(b) Percentage of CD1c+ CD14+ cells in the CD1c+ CD19− cell fraction based on the analysis of 5 non-viremic patients and healthy controls. Error bars represent mean ± SEM.
(c) Secretion of TNF, IL-6 and IFNγ by 105 PBMC obtained from 4 non-viremic patients and controls in 12 h. PBMC were left untreated or the CD1c+ fraction was positive depleted (by
magnetic beads) (d) TNF and IL-6 secretion from PBMC, or from 105 positive-selected CD14+ and CD19+ cells in 12 h. Error bars show the SEM.
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Fig. 6. pEV-derived Nef and ADAM17 activity correlate with low T cell counts. (a) Correlation of pEV protein levels of Nef and other markers with CD4 count (left panel, arrows) and viral
copynumbers (right panel, arrows). Plasma-EVwere purifiedby differential centrifugation fromnon-viremic and viremicpatients. The equivalent of 3ml plasmawas analyzed byWestern
blot. Lysates (Lys.) of 293 T cells, transfected with p24 Gag (Gag Lys.) or Nef/Nef-cofactors (+cont.), served as controls, as well as EV purified from these transfected cells (EV).
(b) Correlation and significance analyses (Pearsons correlation coefficient (PCC); Student's t-test) of pEV-derived Nef-, ADAM17- and p24 Gag-levels with CD4-, CD8-count and viral
copy numbers. Protein-levels were assessed from 16 viremic and 17 non-viremic patients (see Figs. S3 and S4) by Western blot and quantified by ImageJ. Boxes were colored to
simplify their explanation in the text. (c) Correlation of ADAM17 activity with CD4 count. Plasma EV were purified from 6 viremic and non-viremic patients and 3 healthy controls
(left panel), and from 30 ml of pooled plasma (5 patients, 6 ml each), collected from non-viremic HIV patients with different CD4 counts as depicted. Aliquots corresponding to 1 ml of
plasma were analyzed using a commercial assay (AnaSpec).
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unlikely that the bulk of HIV pEV were produced by PBMC and thus
must have originated from a different myeloid cell pool.

4. Discussion

By analyzing primary material from a total of 166 HIV patients we
suggest that HIV Nef acts at least in part by the induction of pro-
inflammatory pEV. We have previously suggested a model of how
Nef/ADAM17-containing EV induce the secretion of TNF in host and
target cells (Lee et al., 2013). It is tempting to speculate that this
Fig. 7. PBMC-derived CCF contribute to HIV pEV. Protein array analyzing the content of cytokine
cells transfected with a HIV-Δenv construct for 72 h or vector control (expression control in
cultured separately for 48 h. For comparison, pEV were purified from plasma pools of viremic
information. Assay input details are summarized in Table S2.
mechanism renders resting T cells permissive for the viral infection as
suggested recently (Arenaccio et al., 2014). Here we asked whether
HIV pEV have detrimental effects on the immune system and found a
surprisingly strong correlation with immune pathogenesis, seemingly
due to the pro-inflammatory nature of these vesicles.

Plasma EV of infected individuals were loaded with pro-
inflammatory effectors, while healthy controls harbored none. This
striking difference could be a consequence of Nef-mediated activation
of ADAM proteases. However, it is also possible that the viral protein
triggered a host inflammatory reaction. Many ADAM proteases
s, chemokines and soluble factors (CCF) in EV purified from culture supernatants of Jurkat T
Fig. S6B), and from resting PBMC from 7 non-viremic individuals and 7 healthy controls
/non-viremic patients as described in Fig. 2B. See full CCF list analyzed in supplementary
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associate with Integrins at the plasma membrane (Murphy, 2008) and
activated Integrins induce the formation of vesicles (Caswell et al.,
2009). Thus a putative host inflammatory pEV response could be in-
duced by Integrin activation. Potentially this is mimicked by Nef
through targeting of αvβ3, similar as we have suggested before (Witte
et al., 2004).

The high percentage of Nef-positive mononuclear cells indirectly
confirmed our observation that Nef pEV levels are significantly in-
creased in non-viremic patients. It is conceivable to assume that mono-
cytes ingesting large amounts of pro-inflammatory pEV undergo
functional changes and acquire an inflammatory phenotype that is typ-
ically seen in chronic HIV infection. We documented such a cellular dif-
ferentiation by describing a Nef+ CD1c+ CD14+ CD19− cell type that
could be considered an inflammatory immature dendritic cell. Notably,
this cell population showed a strong production of inflammatory cyto-
kines in vitro. This does not exclude that other pEV acquiringmonocytes
were non-productive, as we measured only some cytokines at an early
time point (12 h). Therefore, most Nef-containing mononuclear cells
could have a role in the development of secondary inflammatory effects
in blood and tissue.

Although the low number of patients analyzed precludes final con-
clusions, the stringent correlations between T cell levels, Nef levels
and ADAM17-activity corroborated that Nef activates this protease
and hints at a particular role of ADAM17 in T cell decline. The mecha-
nism is not obvious but may involve the TNF/TNF-receptor-I/II-
mediated regulation of apoptosis/anti-apoptosis in T cells. These pro-
teins are substrates of ADAM17 and increased levels of their soluble
forms correlate with disease progression (Zangerle et al., 1994). The lat-
ter is an independent confirmation for the correlation between active
ADAM17 and HIV pathogenesis.

Surprisingly, pEV levels did not decline during ART, suggesting that
they did not derive from a T cell compartment as the latter sees dramat-
ic recovery upon treatment. Supporting this conclusion we saw no cor-
relation between Gag p24 and pEV-derived Nef levels in viremic
patients and HIV-transfected Jurkat cells did not produce a CCF pattern
similar to that of HIV pEV.We therefore have to predict the existence of
an infected myeloid or myeloid-like compartment, which may produce
predominantly spliced Nef and Vpu mRNA message despite effective
treatment. In linewith ourfindings, the presence of SIV viral sanctuaries
could be demonstrated in numerous cellular compartments despite ef-
ficient ART (North et al., 2010). ThepEV-producing cells could be, for ex-
ample, stem cell-like precursor cells in different organs that are long-
lived and promote HIV immune pathogenesis independently of viral
replication. It will be interesting to identify these cells.

In summary our findings suggest that high levels of inflammatory
pEV have an important role in the pathogenesis of viremic as well as
chronic (i.e. non-viremic) HIV infection. This finding also point to a hid-
den but highly active HIV compartment that is not suppressed by ART.
Therefore monitoring pEV Nef levels or ADAM17 activity could have di-
agnostic value in clinical management of HIV infection. In addition, our
findings may point out new opportunities for treatment interventions
aiming to reduce immune activation in chronic HIV disease.
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