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Abstract. Recent results from the ALICE experiment are presented with a particular

emphasis on particle identification, the nuclear modification factor (RAA) and azimuthal

anisotropy (v2). Comparison of lead-lead and proton-lead results reveals evidence of

collectivity in small systems.

1 Introduction

The main goal of ultrarelativistic heavy ion collisions is to study the thermal properties of quantum

chromodynamics (QCD). It is widely accepted that the thermal state of QCD, the quark-gluon plasma

(QGP), is reached in high energy nucleus-nucleus collisions at BNL-RHIC and CERN-LHC. Proper-

ties of the QGP medium, such as shear viscosity to entropy ratio, existence and location of the QCD

critical point, electromagnetic radiation and energy loss provide a focus for active measurements and

theory development; see e.g. the Hot QCD White Paper [1]. Recently there has been a growing

interest in possible collective phenomena in smaller collision systems [2], like deuteron-gold [3, 4],

helium-gold [5], proton-lead [6–8] or even in proton-proton [9–11].

The ALICE experiment [12] is the dedicated heavy ion experiment at the LHC. Compared to

ATLAS [13] and CMS [14], ALICE is a low luminosity experiment with more limited acceptance

but equipped with excellent particle identification (PID) and tracking capabilities down to very low

transverse momentum, pT. One example of the performance of the ALICE tracking is a recent mea-

surement of the mass difference between light nuclei and anti-nuclei [15]. The left panel of Fig. 1

shows observed counts with respect to the squared mass-over-charge ratio in the Pb − Pb collisions at√
s = 2.76 GeV for selected rigidity (p/|z|) intervals and 2σ cut of for TPC dE/dx expectations for

(anti-)deuterons and (anti-)helium-3. The mass of the light nuclei can be measured very precisely by

fits to these distributions. The right panel of Fig. 1 shows the resulting mass differences and binding

energy differences compared to earlier measurements. If the Charge conjugation-Parity-Time reversal

(CPT) –symmetry is exact, then these differences should be zero. ALICE has now presented the most

precise measurement confirming CPT invariance to hold in relative mass differences at 0.1% level,

which gives stringent constraints to any effective theory where CPT is broken.

On top of the measurements of heavy ion collisions, ALICE has also a proton-proton program

based upon the strengths of the experiment. One general motivation is to test and tune event gener-

ators and basic perturbative QCD predictions, which is important in its own right,but also a precise

understanding of QCD background is often crucial for the electroweak measurements at the LHC.
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Figure 1. Left: The ALICE measurements [15] for squared mass-over-charge ratio distributions for deuterons

(left) and 3He (right) in selected rigidity intervals. Particle and anti-particle spectra are in the top and bottom

plots, respectively. Right: Results for d-d and 3He-3He mass-over-charge ratio and binding energy differences

compared with CPT invariance expectation (dotted lines) and other measurements.

Some recent measurements that demonstrate the PID capabilities of ALICE include identified hadrons

and particle ratios at
√

s = 7 TeV [16] and π0’s at
√

s = 2.76 TeV [17]. ALICE has also measured

(charged) jet spectrum at
√

s = 7 TeV [18] and found a good agreement with ATLAS. Here, the

excellent tracking capability of ALICE was used to measure the mean number the mean number of

constituents down to low-pT jets. On top of these examples, the obvious and important part of the

ALICE pp program is to measure reference spectra to the heavy ion collisions.

The rest of this paper will concentrate on summarizing recent ALICE results on the nuclear mod-

ification factor RAA and elliptic flow v2 with an emphasis on particle identification and small systems.

2 Nuclear modification factor

It has long been predicted that partons traversing hot QCD matter would lose energy and attenuate,

but such a phenomena was not observed in early experiments at the CERN SPS [19]. A suppression of

high transverse momentum hadron was first observed by experiments at RHIC [16, 20]. To quantify

the nuclear modification, PHENIX experiment introduced the nuclear modification factor [20]

RAA(pT) =
(Yield in Pb + Pb)

(Number of collisions) × (Yield in p + p)
=

dNAA/dpTdη

〈Nbin〉 dNpp/dpTdη
. (1)

If the nucleus-nucleus collision could be described as a superposition of independent proton-proton

collisions, then RAA would equal unity for all pT. At the low-pT RAA < 1 since the soft particle

production in heavy ion collisions scales with the number of participants rather than the number of

collisions [21]. At high-pT at the SPS RAA > 1 which is connected with Cronin enhancement [22]. At

RHIC a suppression with respect to binary scaling was observed at the high-pT.

In proton-lead collisions, the corresponding nuclear modification factor RpA measures the magni-

tude of cold nuclear matter effects such as a modification of the nuclear parton distributions [23]. As

will be seen, typically the cold nuclear effects are small at very high energy. To quantify nuclear mod-

ifications precisely, the most favourable case is when all collision systems, pp, p−Pb and Pb−Pb, are
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measured at the same collision energy and by the same detector. Currently at the LHC, there is a mea-

sured pp reference for the
√

s = 2.76 TeV lead-lead measurements, but not yet for the
√

s = 5.02 TeV

proton-lead run. This optimal scenario will be achieved at the end of 2015 when the LHC will provide

both
√

s = 5.02 TeV reference pp run and also Pb − Pb collisions at this same energy.

Following subsections discuss the RAA of various single particle spectra. ALICE has also measured

RAA of jets [24]. See also the dedicated talk on jets in heavy ions collisions presented at this conference

[25] .

2.1 Light flavours

The first ALICE RAA measurement for charged hadrons was published in [26] and immediately made

an important extension to RHIC results (not shown here). RHIC results reached up to pT ∼ 10 GeV/c

and it was open weather the data flattens in that region or if RAA starts to rise again. With the LHC

data extending to 50 GeV/c (ALICE) or 100+ GeV/c (ATLAS [27], CMS [28]), it is clear that RAA is

again rising towards unity. This rules out a very simple phenomenological description of energy loss

where every parton would loose a constant fraction of its energy, and also gives more constraints to

detailed calculations.

)c (GeV/
T

p          

A
A

R

0.2

0.4

0.6

0.8

1 ALICE 0-5% Pb-Pb

-
π++

π

- + K+ + Kpp + 
Charged

ALICE 60-80% Pb-Pb

0 2 4 6 8 10 12 14 16 18

0.2

0.4

0.6

0.8

1
-+K+K

pp + 

0 2 4 6 8 10 12 14 16 18

ALI-PUB-84488

Figure 2. The nuclear modification factor RAA as a function of pT for different particle species for central (left)

and peripheral (right) collisions [29].

Fig. 2 shows recent ALICE measurements of RAA for identified light hadron flavours; charged

pions and kaons and (anti-)protons together with all charged hadrons up to pT = 20 GeV/c in central

(left) and peripheral (right) collisions. In central collisions, RAA is observed to be the same for all

particle species for pT >∼ 10 GeV/c suggesting that there is no direct interplay between the energy loss

in the medium and the particle species composition in the hard core of the quenched jet and may

disfavour models that predict significant particle species dependence also at high-pT. The region

pT <∼ 2 . . . 2.5 GeV/c is generally associated with the thermal production which roughly scales as a

number of participants. In the mid-pT region, 3 < pT < 10 GeV/c, protons are clearly less suppressed

than pions or kaons. Further studies are needed in order to determine whether models containing only

hydrodynamics and jet quenching can describe also the intermediate pT region or whether a different

hadronization model, such as recombination [30], act in this region.
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2.2 Heavy flavours

Dedicated heavy flavour (HF) theory [31] and experimental [32] talks were delivered in this confer-

ence. Here, we summarize briefly ALICE results for HF RAA. One of the key motivations to study HF

in nucleus-nucleus collisions have been the expectation of reduced energy loss in the medium due to

so called dead cone effect [33], that arises from suppression of the forward QCD scattering amplitude

due to heavy quark mass in the propagator.
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Figure 3. Average D-meson RAA compared to

charged hadrons and - pions.

Fig. 3 shows the average D-meson RAA compared to all charged particles and charged pions. Par-

ticularly at high-pT the results agree within one another, and also in lower pT within the experimental

uncertainties, so the dead cone effect is not obvious. Although some models can reproduce this, they

tend to have difficulties in simultaneously reproducing the elliptic flow, as will be discussed later in

Sec. 3.1.

Suppression of the J/ψ states in presence of QGP was predicted in 1986 [34] and it has been stud-

ied extensively at the SPS [35] and RHIC [36]. On top of the effects coming from the hot deconfined

medium, there may be cold nuclear matter effects like modification of parton distribution functions

or final state absorption in the nuclear medium. Both SPS and RHIC experiments found suppression

beyond any cold matter effects. At the LHC, CMS has observed a sequential suppression of the higher

mass bottomonium states [37] showing clear medium effects in the suppression.

An earlier measurement in ALICE [38] revealed an interesting surprise: the pT-integrated RAA of

the J/ψ was less suppressed in central lead-lead collisions at the LHC as compared to central gold-

gold collisions at RHIC. This is counter intuitive in a sense that naively one would expect the larger

and more hot medium to give larger suppression.

Fig. 4 shows ALICE results for pT-dependence of J/ψ nuclear modification factor RAA in central

lead-lead collisions measured at forward rapidity (left panel) using di-muons pairs [39] and in mid-

rapidity (right panel) using di-electron pairs [40]. While in [38, 39] one compared forward LHC

to mid-rapidity RHIC measurements, later measurement [40] confirmed that the observed smaller

suppression at the LHC does not come from a trivial rapidity dependence. Note that the last bin in the
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Figure 4. Nuclear modification factor RAA of J/ψ in 0–20 % most central lead-lead collisions at forward rapidity

[39] (left) and in 0–40 % most central collisions at mid-rapidity [40] (right).

right panel has open marker indicating that the statistics was too low to determine the mean pT in that

bin, hence the marker is placed at the bin center.

A possible explanation for smaller suppression comes from higher density of charmed quarks at

the LHC that would increase the recombination probability to J/ψ. The right panel in Fig. 4 shows

results from two transport models [41, 42] that can describe the rise of RAA towards the small pT. In

both models the rise comes from recombination.

2.3 Proton-lead collisions

In the early RHIC era, deuteron-gold collisions were considered mainly as a control for heavy ions. It

was expected that there is no medium created and the measurements would probe only cold nuclear

matter effects. Originally proton-lead collisions were expected to play the same role also at the LHC.

Experiments at both accelerator centers have now found that there may be collective behaviour also

in small systems, as will be discussed in Sec. 3.2.

Fig. 5 shows the nuclear modification factor RAA for charged hadrons [43] (left) and average

D-mesons [44] (right) in minimum bias proton-lead collisions compared to central and peripheral

lead-lead collisions. At high-pT, RAA is consistent with unity for both charged hadrons and average

D-mesons in p − Pb collisions. On the other hand, a clear suppression is seen in central heavy ion

collisions. Peripheral heavy ion results lie in between indicating smooth and gradual disappearance

of the nuclear effects. The observed cold nuclear matter effects (at high-pT) are rather modest. This

was expected if the only source of cold nuclear modifications is due to the nuclear parton distribution

functions, see e.g. [45]. However, saturation physics phenomenology [46] gives results that are also

consistent with the data.

3 Elliptic flow

If the fireball created in the relativistic heavy ion collisions thermalizes, then there is a strong hydro-

dynamical pressure gradient that drives the system to collective motion towards the vacuum outside

the droplet. In a very simple blast wave model, the fireball is assumed to break up instantaneously, at
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Figure 5. Nuclear modification factor RAA for charged hadrons [43] (left) and average D-mesons [44] (right) in

minimum bias proton-lead collisions compared to central and peripheral lead-lead collisions.

some constant proper time, parametrized collective transverse flow profile, in which case the invariant

yield of thermal particles becomes [47]

E
dN

d3 p
∝ mT

∫ RA

0

dr rI0

(
βTγT pT

Tkin

)
K1

(
γT mT

Tkin

)
, where βT = βT (r) = βmax

(
r

RA

)α
. (2)

The gamma-factor is related to the collective transverse flow 1/γT =

√
1 − β2

T
, transverse mass mT =√

p2
T
+ m2 and RA is the nuclear radius. The model has four parameters to be determined by a fit

to the data: the kinetic freezeout temperature of the system, Tkin, the maximum flow velocity, βmax,

the shape parameter for the flow profile, α, and an overall normalization related to the size (also the

lifetime) of the fireball. In the case of constant radial flow βT = β0 = (const.), i.e. shape parameter

α = 0, one finds that asymptotically at pT � max(m,Tkin)

1

mT

dN

dmT dy
∼ exp

(−mT

Teff

)
, where Teff ≡ Tkin

√
1 + β0

1 − β0

. (3)

This illustrates the blue shifts in spectra coming from the collective radial expansion. The increase of

the apparent temperature is the dominant flow effect in heavy ion collisions.

Fig. 6 shows the blast wave parameters Tkin and mean of the transverse velocity 〈βT 〉 at the LHC

(solid black) and in RHIC (dashed blue) [48]. Centrality increases when moving from left to right.

Average flow velocity increases and freezeout temperature decreases with growing centrality. This

suggests that more central collisions have longer lifetime and hence the flow has time to build up.

The blast wave model has several short comings. Perhaps the most important, it does not contain

any dynamics and it neglects the fact that significant fraction of pions and protons originate from the

decays of heavier resonances [49]. The latter could be easily taken into account by considering the

resonance decay chains in the blast wave spectra but it would still only give a qualitative description.
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Figure 6. Blast wave fit parameters break up

temperature Tkin and mean transverse velocity

〈βT 〉 at the LHC and in RHIC [48]. With

increasing centrality, the mean velocity grows

and break up temperature reduces. This can

be interpreted such that in more central

collisions the average lifetime of the system is

longer leading to stronger flow and later break

up.

Hydrodynamical modeling gives a real dynamical solution of the conservation equations and is

the only known thermodynamically consistent way to treat the Equation of State of strongly inter-

acting matter in the evolution equations. The solution of the hydrodynamical evolution equations

give dynamically the local temperature, densities and collective velocity in every space-time point in-

side the fireball. Hence all quantitative thermodynamical characteristics should follow from detailed

hydrodynamical simulations. For example, see recent results found using sophisticated theoretical

frameworks like VISHNU [50], MUSIC [51] or pQCD+saturation+viscous hydrodynamics [52] in

heavy ion collisions or using hydrodynamics in small systems [53].

It was realized [54] that there will be deviations of radial symmetry in the transverse flow due

to anisotropic pressure gradients during the evolution. The Fourier decomposition of the angular

distribution of particles with respect to the reaction plane has become the standard method with which

to analyze flow anisotropies [55]. There are many experimental methods to measure those Fourier

coefficients, like flow cumulants [56], but we shall not elaborate the discussion in this note.

Using Fourier decomposition, azimuthal dependence of the final hadron spectra becomes

E
dN

d3 p
=

1

pT

dN

dpTdydφ
=

1

2πpT

dN

dpTdy

⎛⎜⎜⎜⎜⎜⎝1 + ∞∑
n=1

2vn(pT) cos(nφ − ψn)

⎞⎟⎟⎟⎟⎟⎠ , (4)

where vn are the flow harmonics and ψn event plane angles. The second harmonic coefficient, v2,

is called elliptic flow and it has a clear centrality dependence. Elliptic flow reflects the dominant

almond-shaped geometry in the non-central collisions. The third harmonic, v3, is called triangular

flow. Triangular flow comes dominant in the ultra-central collisions and it is related to the fluctuations

in the initial state of the collisions. For example, simultaneous description of the pT and centrality

dependence of the v2 and v3 coefficients puts constraints on the initial geometry fluctuations and the

shear viscosity to entropy ratio η/s. A higher viscosity causes more rapid damping of the fluctuations

(v3) and slows the buildup of v2. Based on these studies, it has been concluded that QGP shows

features of nearly perfect liquid. [50, 51]

The hydrodynamical models [50–52] go beyond the event averages of the flow coefficients (the

vn in Eq. (4)) and study e.g. experimentally measured event-by-event fluctuations of flow [57] and

correlations between event plane angles [58]. Such a global analysis provide significantly tighter

constraints on QCD matter properties.

One may observe that there is no rapidity dependence in the flow coefficients in Eq. (4). Conse-

quently, flow leads into interesting long range correlations seen in the two-particle correlations. Given
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the single particle distribution (4), one obtains a similar Fourier decomposition for the two particle

distribution [59]

dNpair

d(φt − φa)
=:

dNpair

dΔφ
∝ 1 +

∞∑
n=1

2VnΔ(pTt, pTa) cos(Δφ), (5)

where Δφ := φt − φa is a difference in the azimuthal angle between trigger and associated hadron that

have transverse momenta pTt and pTa, respectively. In the case of flow correlations only, one would

have a connection to single particle flow coefficients

VnΔ(pTt, pTa) = vn(pTt)vn(pTa) (6)

and you would see the correlations extending over large rapidity gaps Δη := ηt − ηa. This gives an

opportunity to determine flow coefficients for hadrons and also for identified flow [60]: by choosing

a symmetric bins for trigger and associated particles, pTmin < pTa, pTt < pTmax, one finds

vh
n{2PC} =

√
Vh−h

nΔ
vi

n{2PC} = Vh−i
nΔ√
Vh−h

nΔ

, (7)

where i = π, K, p in case of identified flow. Above h−h refers to unidentified charged hadron-hadron

correlation in a symmetric pT-bin and h − i to a case where one of the hadrons is identified.

So far we have related the harmonics with collectivity in the system (hydrodynamical flow). How-

ever, one should be a bit careful since particularly hydrodynamics is expected to describe the bulk of

the particle production, i.e. it would be valid description at pT < 1 . . . 3 GeV/c depending on the par-

ticle species. However, as discussed in Sec. 2, hard partons are not expected to thermalize but instead

they traverse the medium losing their energy. But since the medium is expected to have a smaller

geometrical extension in in-plane as compared to out-of-plane, the partons are (on the average) less

suppressed at the in-plane direction, causing a positive second Fourier coefficient v2. Hence, even

though one generally speaks of “flow coefficients”, the full range in pT is not related with hydrody-

namical flow.

The rest of this note concentrates on identified v2 in Pb − Pb and p − Pb collisions.

3.1 Heavy ion collisions

In the Blast Wave model (2), radial flow breaks the mT–scaling present in the non-flowing case (i.e.,

if βmax = 0 then (yield) ∼ K1(−mT/Tkin)). Heavier particles gain more momentum from the common

collective flow field and this leads into mass ordering of elliptic flow at low-pT. The left panel in

Fig. 7 shows recent ALICE measurement1 [61] for elliptic flow of π±, K±, p + p̄,Λ + Λ̄,Ξ + Ξ̄

and Ω + Ω̄. One sees a clear mass ordering of the different hadrons and also that a sophisticated

hydrodynamical simulation [63] can reproduce that qualitatively rather well, although a more detailed

analysis presented in the ALICE paper shows some tensions. The study also provided evidence for

constituent quark scaling [64–66] to be violated at the intermediate pT region at the LHC as deviations

up to ∼ 20 % level are observed [61]

The right panel in Fig. 7 shows the elliptic flow of average D-mesons compared to charged particle

v2. The measurements [62] show that D-mesons have a positive v2 in range 2 < pT < 6 GeV/c interval

with 5.7σ significance. This high-pT range is outside the thermal region so these results, together with

the D-meson RAA, provide very tight constraints on the heavy quark interactions with the medium.

1The published paper includes also the v2 of K0
s and φ mesons, not shown in Fig. 7.
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Figure 7. Left: elliptic flow v2 for identified particles in
√

sNN = 2.76 TeV measured by ALICE [61]. Right:

D-meson and charged hadron v2 compared [62].

3.2 Double ridge in proton-lead collisions

An interesting observation in p-Pb collisions at the LHC was the appearance of a double ridge structure

in two-particle correlations [6]. Two-particle correlations are define as

1

Ntrig

d2N

dΔφdΔη
, (8)

where Δφ = φt − φa and Δη = ηt − ηa, such that trigger (t) and associated (a) transverse momenta

are in the given bin, and also classify the events globally in terms of the charged particle multiplicity.

Typically two-particle correlation functions have a near side peak at (Δφ,Δη) = (0, 0) coming from

hadrons associated with the fragmentation of the same jet as the trigger particle and an away-side

peak at Δφ = π, which is smeared in Δη due to the different momentum fractions carried by partons

in the initial hard scattering. If we now assume that the hard scattering is not significantly modified

in proton-lead collision, we can assume that jet correlations from the hard scattering are similar in

low- and high-multiplicity p−Pb events. For the further support, we have checked that the correlation

function in the low-multiplicity p−Pb collisions is observed to be very similar with the one measured

in proton-proton collisions. Then we can study any residual correlations in high-multiplicity events,

on top of the hard scattering, by subtracting the correlation functions measured at low-multiplicity

from the correlation function measured in the high-multiplicity events. The left panel in Fig. 8 shows

the resulting residual correlation function, when you perform such a subtraction [6]. One can observe

a clear double ridge structure in Δφ that is elongated in Δη. Returning to the discussion of collective

flow of single particles is reflected into two-particle correlations, see Eq. (5), we immediately realize

that the observation very much resembles this expectation.

The right panel in Fig. 8 shows the projection of the two-dimensional subtracted correlation func-

tion (left) into Δφ together with Fourier decomposition including cos(2Δφ) and cos(3Δφ) terms resem-

bling elliptic and triangular flow in the single particle distributions. Note, however, that you cannot use

directly Eq. (7) to obtain single particle v2,3 here because the trigger and associated bins are asymmet-

ric. Nevertheless, we observe that the double ridge structure is dominantly given by the 2nd harmonic

and after inclusion of 3rd harmonic the description of the data already is very good. Results from

HIJING simulation, that does not have any flow effects, is also shown and there is no similar double

ridge structure seen indicating that this is not a trivial long range pseudorapidity correlation.
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Figure 8. Left: Associated yield per trigger particle in Δφ and Δη for pairs of charged particles with 2 < pTtrig <

4 GeV/c and 1 < pTassoc < 2 GeV/c in p − Pb collisions at
√

sNN = 5.02 TeV for the 0–20% multiplicity

class,after subtraction of the associated yield obtained in the 60–100% event class. Right: as left but projected

onto Δφ averaged over 0.8 < |Δη| < 1.8 on the near side and |Δη| < 1.8 on the away side. [6]

Figure 9. Fourier coefficients v2{2PC, sub} for

pions, kaons and protons measured in the

high-multiplicity p − Pb collisions [60].

More detailed study of the properties of the observed double ridge was presented in [60]. Fig. 9

shows the v2{2PC, sub}, extracted using Eq. (7), where “sub” refers that the jet correlations are re-

moved by subtracting the low-multiplicity correlation function from the high-multiplicity one before

the projection to Δφ. The observed v2 values have a similar mass ordering than observed in Pb − Pb

collisions, compare to left panel in Fig. 7. While not yet conclusive proof, it shows that the Fourier

analysis of the double ridge leads to a mass ordering in v2{2PC, sub} that is characteristic of collective

flow. The ATLAS collaboration has also measured higher harmonics using two-particle correlations

[67] and the CMS collaboration has also shown that multiparticle correlations [68] give a non-zero v2

at high-multiplicity proton-lead collisions. The latter strongly favour collective correlations.

Hydrodynamical calculations can qualitatively reproduce these observations [53]. However, one

might be concerned on validity of the (viscous) hydrodynamical description due to large pressure

gradients in these small system [69]. An alternative Color Glass Condensate (CGC) explanation

based on two gluon scattering from the same color field gives rise to similar correlations when the

target gluon densities are high (saturation) [70]. It remains to be seen if the CGC based model can

also explain the observed mass ordering.
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4 Summary

ALICE is the dedicated heavy ion experiment at the CERN LHC that is equipped with excellent

tracking and particle identification capabilities. Recent measurements have been presented of recent

ALICE results for RAA and elliptic flow for identified particles in Pb−Pb and p−Pb collisions. There

are interesting hints for collective behaviour in high-multiplicity p−Pb collisions. However, the effect

of a Color Glass Condensate or other cold matter effects may yet provide an alternative explanation

for the observed behaviour.
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