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 Abstract 37 

 38 

The highly ordered protein backbone of virus particles makes them attractive candidates for use as 39 

enzyme nano-carriers (ENCs). We have previously developed a non-covalent and versatile approach 40 

for adhesion of enzymes to virus particles. This approach makes use of z33, a peptide derived from 41 

the B-domain of Staphylococcus aureus protein A, which binds to the Fc domain of many 42 

immunoglobulins. We have demonstrated that with specific antibodies addressed against the viral 43 

capsid proteins (CPs) an 87 % coverage of z33-tagged proteins can be achieved on potyvirus particles. 44 

4-coumarate coenzyme A ligase (4CL2) and stilbene synthase (STS) catalyze consecutive steps in 45 

the resveratrol synthetic pathway. In this study, these enzymes were modified to carry an N-terminal 46 

z33 peptide and a C-terminal 6xHis tag to obtain z4CL2His and zSTSHis respectively. A protein 47 

chimera, z4CL2::STSHis, with the same modifications was also generated from the genetic fusion of 48 

both mono-enzyme encoding genes. All z33 enzymes were biologically active after expression in E. 49 

coli as revealed by LC-MS analysis to identify resveratrol and assembled readily into macromolecular 50 

complexes with Potato virus A particles and α-PVA CP antibodies. To test simultaneous 51 

immobilization-purification, we applied the double antibody sandwich – ELISA protocol to capture 52 

active z33-containg mono-enzymes and protein chimera directly from clarified soluble cell lysates 53 

onto the virus particle surface. These immobilized enzymes were able to synthesize resveratrol. We 54 

present here a bottom up approach to immobilize active enzymes onto virus-based ENCs and discuss 55 

the potential to utilize this method in the purification and configuration of nano-devices. 56 

 57 

 58 

 59 

 60 

 61 

 62 

 63 

 64 

 65 
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Introduction 66 

 67 

The tremendous progresses made in molecular biology have opened up possibilities for building new 68 

bioinspired objects for nanotechnologies. Amongst them is the ability to reposition biocatalysts in an 69 

environment mimicking their genuine working place, the cell. For instance, metabolic pathways are 70 

often defined as a cascade of enzymatic reactions catalyzed by a sequence of neighboring enzymes. 71 

Mimicking this organization gives access to potential applications, for instance in nano-catalysis lab-72 

on-a-chip and biosensor devices, drug delivery vectors and nano-metrology. The bottleneck in 73 

combining several different enzymes working cooperatively comes from the difficulty in controlling 74 

their relative positional assembly on the support. This control can be achieved by coupling the 75 

enzymes of interest with a compatible highly ordered protein scaffold. Within cells multi-enzyme 76 

complexes allow channelling of the substrates from one enzyme to another hence minimizing their 77 

free diffusion. This arrangement increases the efficiency of the consecutive reactions, protects the 78 

intermediates, prevents unwanted side reactions and concentrates the catalysis in one location. The 79 

influence of distance on multi-enzyme systems was demonstrated with glucose oxidase (GOx) and 80 

horse radish peroxidase (HRP) by spatially positioning them on various DNA scaffolds. The 81 

concentration of H2O2, product of the first reaction in the cascade, decreased when the distance 82 

between GOx and HRP increased, which resulted in lower activity of HRP (Fu et al., 2012). Also, 83 

functional biomimetic three-enzyme cascades have been built in polymersome nano-reactors (van 84 

Dongen et al., 2009). Scaffolding of enzymes often further improves the enzyme’s stability, activity, 85 

selectivity and specificity. Moreover, it enables enzyme reusability (Garcia-Galan et al., 2013) whilst 86 

facilitating its simultaneous immobilization and purification (Barbosa et al., 2015). For example, a 87 

synthetic protein scaffold interacting with the enzymes in a biosynthetic pathway in a programmable 88 

manner improved production of mevalonate (Dueber et al., 2009) and glucaric acid (Moon et al., 89 

2010) over the control. In addition, a synthetic metabolon of three enzymes, triose phosphate 90 

isomerase (TIM), aldolase (ALD) and fructose 1,6-biophosphatase (FBP),  showed improved activity 91 

compared with that of the free enzymes, due to increased substrate channelling resulting from the 92 

close proximity of the enzymes (You & Zhang, 2013). This metabolon was synthesized by 93 

simultaneous immobilization and purification of the cascade enzymes from cell extracts. 94 

 95 

Virus particles are supramolecular edifices unsurpassed in nature which are being exploited as 96 

enzyme nano-carriers (ENCs) (Cardinale, Carette, & Michon, 2012). The simplest of these virus 97 
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particles constitute a combination of proteins and nucleic acids, which are precisely arranged in space. 98 

Indeed, the symmetrical arrangement of the virus particles, and the repetitive nature of their capsid 99 

protein (CP) subunits provide a chemically uniform polyvalent binding surface for immobilization of 100 

various enzymes. Furthermore, the diversity in architecture, protein composition and size ensures the 101 

availability of various structural, chemical and physical properties to select from in virus 102 

nanoparticles (VNPs) design (Besong-Ndika et al., 2015). Coupling enzymes to the highly ordered 103 

protein backbones of viruses is an attractive way to achieve positional control (Steinmetz & Evans, 104 

2007). Many strategies have been developed to modify VNPs to allow attachment or encapsulation 105 

of proteins and other molecules (Koudelka & Manchester, 2010), (Comellas-Aragones et al., 2007).  106 

 107 

Considering enzyme patterning on solid supports, it appears that ENCs are easier to position on a 108 

support than pools of isolated enzymes. The last developments of top-down technologies enable a 109 

precise patterning of single nano-objects such as virus particles or DNA molecules on various 110 

supports. For instance, the building of pre-organized enzymatic cascades on the virus surface can be 111 

followed by top-down processes such as nanolithography or convective-capillary deposition (Cerf et 112 

al., 2011). This illustrates how bottom-up and top-down approaches begin to converge for the 113 

preparation of smart materials and bridge the gaps between the mesoscale, the microscale, and higher. 114 

 115 

4-coumarate-CoA ligase (4CL2) and stilbene synthase (STS) are enzymes involved in a cascade 116 

reaction which leads to the production of resveratrol. Resveratrol (3, 5, 4′-trihydroxy-trans-stilbene) 117 

is a polyphenolic compound produced by some plants in response to various infections or 118 

environmental stresses. In recent years, resveratrol has received a lot of attention due to its numerous 119 

health benefits. It is a component of grape and thought to be responsible for the cardio-protective 120 

effect of red wine (Tome-Carneiro et al., 2013). It is obtained from ρ-coumaric acid, which in the 121 

presence of co-enzyme A is converted to coumaroyl-CoA by 4CL2. Subsequently, STS adds three 122 

acetyl units from malonyl-CoA to coumaroyl-CoA followed by a cyclization reaction to produce 123 

trans-resveratrol (Figure 1A). Resveratrol production from p-coumaric acid has been achieved in 124 

Escherichia coli and Sacchromyces cerevisiae expressing either monomeric 4CL2 and STS 125 

(Beekwilder et al., 2006; Lim, Fowler, Hueller, Schaffer, & Koffas, 2011) or alternatively, a fusion 126 

protein resulting from a genetic fusion of these two enzymes (Zhang et al., 2006). In a previous work, 127 

we demonstrated that 4CL2 can be attached in an active form to the external surface of Zucchini 128 

yellow mosaic virus (ZYMV; genus Potyvirus) via anti-ZYMV antibodies (Pille et al., 2013). We 129 
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developed an adaptable tagging strategy using a 33 - amino acid peptide (z33) derived from 130 

Staphylococcus aureus protein A (SpA), which binds with high affinity (Kd value 10-50 nM) to the 131 

Fc domain of immunoglobulins (Braisted & Wells, 1996). In the current study we aimed at building 132 

a 4CL2 and STS enzymatic cascade reaction on the surface of a potyviral particle. The filamentous 133 

phytovirus Potato virus A (PVA), which is a member of the genus Potyvirus was used as a model 134 

ENC. Potyviruses are plant viruses with flexible rod-shaped particles (ca. 750 nm long, 15 nm 135 

diameter) enclosing a single-stranded, polyadenylated, positive-sense genomic RNA. The virus 136 

particle is made up of about 2000 self-assembled identical coat protein subunits against which we 137 

directed the enzyme assembly. We present here a bottom up approach in which active z4CLHis and 138 

zSTSHis or a protein chimera, z4CL2::STSHis, were captured from clarified soluble cell lysates on to 139 

the surface of PVA particles and demonstrate that resveratrol synthesis can be reconstituted with these 140 

enzymes on potyvirus particles.   141 

 142 

2. Materials and Methods 143 

 144 

2.1. Plasmid Constructs 145 

The 4CL2 and STS proteins used in this study were from Nicotiana tabacum (GenBank accession no. 146 

U50846) and STS Vitis vinifera, respectively (GenBank accession no. EU156062). A z33 sequence 147 

(Braisted and Wells, 1996), was incorporated into the N-terminus of all proteins and cloned into a 148 

pET21a (+) –based expression vector with a C-terminal 6x His-tag. The expression clone z4CL2His is 149 

the same used in Pille et al., 2013).  150 

 151 

For preparation of the zSTSHis expression clone, the pET21a (+)-z33-mYFP (Pille et al., 2013) was 152 

linearized (NEB enzymes BamHI and HindIII), gel-purified and ligated to the STS gene. Prior to 153 

ligation, corresponding sites were inserted into the sts gene via PCR using the forward primer: 5’- 154 

TCATAAGGATCCATGGCTTCAGTCGAGGAAATTAGA-3’ and reverse primer: 5’- 155 

CCGTCCGAAGCTTATTTGTAACCATAGGAATGCTAT-3’; BamHI and HindIII restriction 156 

sites are underlined and the corresponding STS sequences are shown in bold.  157 

 158 
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The z4CL2::STSHis clone was produced via homologous recombination in yeast. A short linker of 159 

three amino acids, Glycine-Serine-Glycine, was inserted between both protein domains as in (Zhang 160 

et al., 2006). The pET21a (+)-z33-4CL plasmid was used as a template (Pille et al., 2013). The 161 

following primer pair was used to amplify sts from pET21a-z33-STS with insertion of a linker and 162 

the corresponding 4CL2 sequences: forward primer; 163 

CTGGCTGCTGGGCTTCCAAATGGATCTGGCatggcttcagtcgaggaaattagaaacg and reverse primer; 164 

CTCAGTGGTGGTGGTGGTGGTGATTTGTAACCATAGGAATGCTATG. The following 165 

primers were used to linearize the template plasmid, pET21a-z33-4CL, to enable insertion of the 166 

foreign DNA fragment: reverse primer; ATTTGGAAGCCCAGCAGCCAG and forward primer 167 

CACCACCACCACCACCACTG. All PCR products were cleaned up using the PCRapace kit 168 

(Invitek). Competent Saccharamyces cerevisae (strain YPH501) were transformed with these PCR 169 

products for homologous recombination. Colonies were selected and grown in CAU medium 170 

(synthetic-defined base medium plus tryptophan) for about 30 hours. Plasmids purified from these 171 

overnight cultures were subsequently used to transform XL1-Blue cells and positive clones for 172 

downstream applications were then selected via restriction digestion and sequencing. However, the 173 

resulting plasmid was too large, about 10300 bp due to the presence of yeast replication components 174 

and hampered expression of the fusion proteins in E.coli. To get rid of the yeast components in the 175 

plasmid, the z4CL2::STSHis insert was PCR-amplified with insertion of the restriction sites NheI at 176 

the N-terminus and XhoI at the C-terminus and cloned into the pET21a (+) vector. The primers used 177 

to amplify the insert were: forward primer ACATATGGCTAGCTTCAACATGCAGCAGC and 178 

reverse primer GGTGGTGCTCGAGATTTGTAACCATAGG. After sequencing, positive clones 179 

were used to transform BL21 (DE3) cells.  180 

All the proteins contained a linker, GGGGS, at the C-terminal of z33 peptide to ensure flexibility 181 

(Pille et al., 2013). The expression cassettes of all proteins are represented in Figure 1B. 182 

 183 

2.2. Clarified cell lysate preparation 184 

E. coli BL21 (DE3) cells were transformed with expression vectors harboring the z33-containing 185 

proteins. Expression was performed in 1 liter 2x LB medium supplemented with 100 mg/ml 186 

ampicillin. Bacteria cultures were grown until OD600 1.0 followed by induction with 1 mM isopropyl 187 

β-D-thiogalactoside (IPTG) for about 18 hours at 20 °C. Cells were harvested by centrifugation at 188 

6000 rpm for 10 min at 4 °C. Pellets were re-suspended in lysis buffer (25 mM NaH2PO4, 100 mM 189 

NaCl, 5% glycerol pH 8.0) containing 1 mM PMSF, 1 mg/ml lysozyme and 1 protease inhibitor mini 190 
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tablet (ThermoScientific) followed by 1 hour incubation at 4 °C. For zSTSHis, the lysis buffer was 191 

supplemented with 20 mM β-mercaptoethanol to reduce oxidation damage. Cells were lysed by 192 

sonication for a total of 10 min (30 sec burst, 30 sec cooling, 40% power cycle, power level 2, 0.7 193 

duty cycle) using the Labsonic U sonicator (BRAUM). Cell debris was removed by centrifugation at 194 

14000 g for 30 min at 4 °C. Protein expression was confirmed by western blot analysis. Aliquots of 195 

the clarified cell lysates were stored at -20 °C. Untransformed empty BL21 lysate was also prepared 196 

as above for use as a negative control. 197 

 198 

2.3. Protein purification  199 

 200 

The purification of z4CL2His and zSTSHis was performed under native conditions as previously 201 

described for z4CL2His (Pille et al., 2013). The fusion protein z4CL2::STSHis was expressed as above 202 

and purified under denaturing conditions according to the supplier’s instructions (Machery-Nagel, 203 

Protino® Ni-NTA). Protein purification was performed by immobilized metal affinity 204 

chromatography (IMAC) using Ni-NTA (Ni2+ immobilized on nitrilotriacetic acid). The clarified 205 

lysate (about 50 ml) was allowed to bind 1 ml Ni-NTA beads overnight at 4 °C after which the beads 206 

were allowed to settle in an empty column. The beads were washed four times with wash buffer (50 207 

mM NaH2PO4, 300 mM NaCl, 20 mM Imidazole, 8 M Urea, pH 8.0). Proteins were then eluted with 208 

elution buffer (50 mM NaH2PO4, 300 mM NaCl, 250 mM Imidazole, 8 M Urea, pH 8.0) and analyzed 209 

on SDS-PAGE. To remove imidazole and urea whilst refold the proteins, the eluted proteins were 210 

extensively dialyzed against phosphate buffer (25 mM NaH2PO4, 100 mM NaCl, pH 8.0). Most of 211 

the protein precipitated during dialysis and the precipitate was removed by centrifugation at 212 

maximum speed. The remnant of protein contained in the soluble fraction was further purified by size 213 

exclusion chromatography on Sephacryl S-200 on an X16 column using the ÄKTA Prime system. 214 

Phosphate buffer was used as the eluent at a flow rate of 0.5 ml/min and 1.5 ml fractions were 215 

collected and analyzed by SDS-PAGE. All proteins were aliquoted and stored in phosphate buffer at 216 

-20 °C. 217 

 218 

2.4. PVA particle purification 219 

Nicotiana benthamiana plants were infected with PVA virus by mechanical inoculation or 220 

Agrobacterium mediated infiltration. Plants were grown under greenhouse conditions for about 3 221 
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weeks. Infected leaves were collected one day before and stored at 4 oC. Leaves were homogenized 222 

in 2 x volume of 0.1 M phosphate buffer pH 8 containing 0.15% 2-mercaptoethanol and 0.01 M 223 

EDTA (1 g of infected leaf material per 2 ml of buffer). Clarified lysate was obtained by low speed 224 

centrifugation (LSC) at 10 000 rpm for 20 min. Supernatant was filtered and triton X-100 was added 225 

to a final concentration of 3%. The mixture was stirred for 3 hours at 4 oC. Insoluble material was 226 

removed by LSC at 10 000 rpm for 10 min. PEG 6000 (40 g / liter of supernatant) and NaCl to a final 227 

concentration of 0.2 M were added to the supernatant and stirred for 1.5 hours at 4 oC. Virus particles 228 

were pelleted by LSC at 10 000 rpm for 20 min then pellets were re-suspended in 0.1 M phosphate 229 

buffer pH 8 containing 1% Triton X-100 (buffer volume should be 1/10th of the original volume of 230 

the supernatant). Virus particles were pelleted by high speed centrifugation (HSC) at 40 000 rpm at 231 

4 oC for 1 h (Beckman Ultracentrifuge). Pellets were re-suspended in 0.2 M phosphate buffer pH 8.0. 232 

Particles were further purified on 30% sucrose in 0.1 M phosphate buffer pH 8 by HSC at 90 000g 233 

for 3 hours at 4 oC. Pellets were re-suspended in 2 ml of 0.1 M phosphate buffer pH 8 and again 234 

purified through a 5 – 40% sucrose gradient in 0.1 M phosphate buffer pH 8 by HSC at 80 000 g for 235 

1 hour at 4 oC. Virus particles were analyzed on SDS-PAGE and protein concentration was measured 236 

using the NanodropTM (ThermoScientific). Virus particles were stored long term at -80 °C and short 237 

term at -20 °C.  238 

 239 

2.5. α-PVA CP antibody purification 240 

Recombinant PVA CP protein was analyzed by SDS-PAGE and transferred to a nitrocellulose 241 

membrane. PVA CP containing band was located by brief staining with Ponseau S and this area was 242 

excised. The protein containing strip was de-stained with 1 x PBS buffer then blocked for 1 hour with 243 

the same buffer  containing 10 % BSA at RT. Rabbit antisera against native PVA particles was diluted 244 

about 1:4 times in 1 x PBS and incubated with the strip overnight at 4 °C. The strip was washed 3 245 

times with 1 x PBS then once with ddH2O. Antibody was eluted from the strip 4 times with 400 µl 5 246 

mM glycine-HCl pH 2.3, containing 400 mM NaCl, and immediately neutralized with 20 µl 247 

Na2HPO4. Antibody concentration was measured with a NanodropTM. Eluted fractions were pooled 248 

and dialyzed extensively against 1 x PBS at 4 °C. Antibody was stored at 4 °C until further use. 249 

 250 

2.6. α-PVA : z4CL2::STSHis Affinity Assay 251 
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Affinity assay was performed as described earlier (Pille et al., 2013) with minor modifications. IgGs 252 

and z4CL2::STSHis fusion protein were mixed in molar ratios of 1:1, 1:3 and 1:5. Binding was allowed 253 

to proceed for 45 min at RT after which the resulting complex was purified via affinity 254 

chromatography using Ni-NTA beads as described above. IgGs treated as above were used as a 255 

negative control. Samples were analyzed by SDS-PAGE followed by silver staining. 256 

 257 

2.7. Macromolecular assembly in solution 258 

Assembly was performed as previously described (Pille et al., 2013) with slight modifications. PVA 259 

particles were mixed with α-PVA and z4CL2::STSHis purified under denaturing conditions (PVA CP/ 260 

α-PVA /z33-enzyme 1:1:8 ratio). All components were left to bind for 2 hours at 4 °C in 0.1 M sodium 261 

phosphate buffer pH 8. To eliminate any unbound components, the assembled complex was dialyzed 262 

extensively using dialysis buttons and a 300 kDa MWCO (Molecular Weight Cut Off) membrane 263 

(Spectra – Pro Biotech) for four days with regular buffer changes. The resulting complex and controls 264 

were resolved by SDS-PAGE and visualized by silver staining. 265 

 266 

2.8. DAS ELISA-based ENC formation  267 

ENCs were immobilized on 2 ml polypropylene tubes following the DAS (Double Antibody 268 

Sandwich) ELISA procedure. First the tubes were coated with 3.6 µg/ml of α-PVA diluted in ELISA 269 

coating buffer (Na2CO3, NaHCO3 pH 9.6) by incubation for 3 hours at 37 °C  and washed three times, 270 

three minutes each with wash buffer (1x PBS containing 0.05 % Tween-20). Empty spots were 271 

blocked with 5% BSA in 1x PBS for one hour at RT. 8 µg/ml PVA particles, diluted in sample buffer 272 

(1x PBS containing 0.1% BSA and 0.05% Tween-20) were added to the tubes and incubated 273 

overnight at 4 °C. To prepare the enzyme-IgG conjugates, the clarified soluble cell lysate (protein 274 

100 mg/ml) was incubated with 9 µg/ml α-PVA for 1 hour at RT. The tubes were washed as above 275 

and their inner surface incubated with the cell lysate/α-PVA mixed overnight at 4 °C. Finally, the 276 

tubes were washed extensively for about 30 min with regular buffer changes. Tubes were stored at 4 277 

°C. 278 

Two controls were prepared in addition to this experiment. The first control was prepared exactly as 279 

above with untransformed clarified soluble cell lysates instead protein containing cell lysates. The 280 

second control contained only the initial antibody layer, the PVA particle layer and the enzyme layer. 281 

 282 
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2.9.  Enzyme assay 283 

Enzymatic reactions were performed in parallel with the same enzyme batch either immobilized or 284 

free in solution in the activity buffer containing 25 mM Na2HPO4 and 100 mM NaCl, pH 8.0. Clarified 285 

E.coli lysates obtained after expression of z4CL2His and zSTSHis were mixed in a 1:1 (100 mg/ml each) 286 

ratio. The reaction mixture contained 1 mM co-enzyme A (CoA), 0.5 mM ρ-coumaric acid, 5 mM 287 

ATP, 10 mM MgCl2 and 2 mM DTT and 0.5 mM malonyl-CoA in 200 µl activity buffer. The reaction 288 

was initiated by adding ρ-coumaric acid and allowed to proceed for 1 hr at 28 °C. The product 289 

(resveratrol) was extracted 2-3 times with 600 µl ethyl acetate (EtOAc), the organic phase was 290 

collected and the solvent was removed by centrifugal evaporation. The dried extract was re-suspended 291 

in 50% MeOH in MQ/5% formic acid and analyzed by LC-MS. 292 

 293 

2.10. LC-MS analysis 294 

Samples were injected into an Acquity UPLC system (Waters, Manchester, UK), equipped with a 295 

Cortecs C18 column (50×2.1 mm inner diameter, particle size 1.6 µm). The UPLC was operated with 296 

a flow-rate of 0.3 ml/min in gradient mode, at a temperature of 30 °C. Solvents used in the gradient 297 

were A: 0.1% formic acid in water and B: 0.1 % formic acid in acetonitrile. The initial conditions of 298 

the linear gradient were A: 5% and B: 95% and the conditions were changed to A: 95% and B: 5% in 299 

5 minutes. Injection volumes varied from 0.1 to 5μL. Mass spectra were recorded with a Waters 300 

Synapt G2-Si mass spectrometer (Waters, Manchester, UK). Measurements were performed using 301 

negative electrospray ionization (ESI) in resolution mode. Ions were scanned in the range from 50 to 302 

1200 m/z. MS and MS/MS analyses were performed with scan times of  0.2 sec. Capillary voltage 303 

was 2.0 kV, source temperature 120°C, sampling cone 40.0, source offset 60.0, desolvation 304 

temperature 600°C, desolvation gas flow 1000 L/h and nebulizer gas flow 6.5 Bar. Leucine-305 

encephalin was used as a lock mass and calibration was done with sodium formiate. 306 

2.11. TEM analysis of coated PVA particle 307 

z4CL2::STSHis (purified under denaturing conditions) was utilized as a model enzyme to showcase 308 

the effectiveness of this strategy. Carbon coated grids were incubated with 20 µl PVA (0,0135 mg/ml) 309 

diluted in PBS-T BSA for 5 min at RT then for 1 hour in 5% BSA in PBS. The grids were further 310 

incubated in a 20 µl mixture of a 1:1 ratio of 1:300 diluted α-PVA and protein for an hour. They were 311 

washed once with 20 µl BSA PBS-T (1x PBS containing 0.1% BSA and 0.05% Tween-20) for 5 min 312 

at RT. The grids were incubated in a 1:20 dilution of GAM 10 (10 nm gold labeled secondary 313 
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antibody) for 1 hour, washed again then stained with 3% uranyl acetate for 30 sec. Visualization was 314 

done with the JEOL 1400 Electron Microscope. 315 

 316 

3. Results 317 

 318 

3.1. Engineering and expression of z33-tagged enzymes 319 

The enzymes used in this study, 4CL2 and STS, are involved in the resveratrol synthetic pathway 320 

(Figure 1A). These enzymes have successfully been expressed as soluble forms in E. coli (W. Wang 321 

et al., 2008; Y. Wang, Yi, Wang, Yu, & Jez, 2011). In this study, the z33 peptide was fused to the N-322 

terminus of the expressed proteins and a 6x His-tag to the C-terminus (Figure 1B). The resulting 323 

clones, labeled z4CL2His and zSTSHis were expressed in BL21 (DE3) cells (Figure 2A). As observed 324 

also previously (Pille et al., 2013), the presence of the z33 peptide did not affect the expression of 325 

z4CL2His. During the cloning process, an unintentional mutation was introduced into the sts gene 326 

leading to the S276P substitution. This mutation was ignored as it was not a critical amino acid residue 327 

in the active site of this chalcone synthase (CHL) -like enzyme (Jez & Noel, 2000; Suh et al., 2000). 328 

This did not rule out a possible effect of the mutation on the stability of the protein.  329 

 330 

4CL2 and STS have previously been fused genetically, interspaced by a three amino acid linker 331 

(glycine-serine-glycine) and equipped with an N-terminal 6x His-tag (Y. Wang et al., 2011; Zhang et 332 

al., 2006).  In this study, 4CL2 and STS were fused by homologous recombination in yeast and this 333 

fusion protein was tagged at its N-terminus with the z33-peptide and at its C-terminus with a 6x His-334 

tag, to build the z4CL::STSHis protein chimera. This protein chimera was present in the E. coli crude 335 

extracts after expression (Figure 2A). However, further analysis of the soluble and insoluble fractions 336 

revealed most of the protein was retained in inclusion bodies. The z4CL2::STSHis protein chimera was 337 

extracted from these inclusion bodies under denaturing conditions (Figure 3A). Unfortunately, all 338 

dialysis driven attempts to refold this protein were unsuccessful. Also, further purification by size 339 

exclusion chromatography did not overcome the refolding hurdles as no significant enzyme activity 340 

could be detected. 341 

 342 

3.2. Activity of z33-tagged enzymes from E.coli lysate 343 
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The production of resveratrol was monitored by tandem mass spectrometry (MS/MS) as previously 344 

described (Lo et al., 2007; Menet et al., 2014). Clarified soluble cell lysates containing z4CL2His and 345 

zSTSHis were mixed in a 1:1 (100 mg/ml each) ratio. An enzymatic assay was performed with this 346 

µysate mix and the product from the reaction was analyzed and compared to a resveratrol (RES) 347 

standard. The standard mass spectrum displayed a single product at m/z 227.07 [M-H]- corresponding 348 

to the resveratrol standard and subsequent ionization in an ESI source (fragmentation) identified two 349 

daughter ions of m/z 143.0474 and 185.0618 specific to resveratrol (Figure 2B). The amount of 350 

resveratrol synthesized from the lysates was quite low hence a single product band could not be 351 

detected after MS analysis. However, after MSMS analysis, two daughter ions, 143 and 185, identical 352 

to those obtained with the standard could be detected at 2.25 min (Figure 2C). These results 353 

demonstrated that z4CL2His and zSTSHis enzymes were both active in the clarified soluble lysate mix.  354 

As above, RES synthesis was also assessed in clarified soluble E. coli lysate containing the 355 

z4CL2::STSHis fusion protein. After the enzymatic assay on the lysates, tandem mass spectrometry 356 

allowed the identification of two daughter ions at m/z 143 and 185 at about 2.25 min from the product 357 

identical to the standard (Figure 2D). This result confirmed that both enzymes were active in the 358 

fusion protein. No RES was produced in a clarified E.coli lysate obtained from untransformed BL21 359 

(DE3) cells (negative control). This affirmed the presence of RES in the samples was due to the 360 

presence of the recombinant enzymes in the cell lysate.  361 

 362 

3.3. The z33-enzyme fusion binds to IgGs 363 

The z4CL2::STSHis protein chimera purified under denaturing conditions (Figure 3A) was used as a 364 

model protein to investigate the binding of z33 to rabbit IgGs directed towards the PVA coat protein 365 

(α-PVA).  The z4CL2::STSHis fusion protein was mixed with rabbit IgGs in different ratios and the 366 

resulting complex was purified via affinity chromatography using Ni-NTA beads. When the antibody 367 

to protein ratio was 1:1 or 1:3, most of the antibody was bound to the fusion protein but a small 368 

amount of the constituents were detected in the flow through and/or wash fractions (Figure 3B). 369 

However, when the antibody to protein ratio was 1:5, all the z4CL2::STSHis protein and IgGs were 370 

retained in the column through the Ni-NTA::His interaction.  371 

 372 

3.4. Decoration of PVA particles with z4CL2::STSHis in solution 373 
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The next step was to investigate the binding of z4CL2::STSHis to PVA particle surface using 374 

antibodies directed against the CP of native PVA particles (α-PVA). PVA particles were incubated 375 

with α-PVA and z33-tagged fusion protein in a molar ratio of 1:1:8 corresponding to 1 CP: 1 IgG: 8 376 

fusion proteins. The mixture was extensively dialyzed against a 300 MWCO membrane to exclude 377 

any unbound molecules. All three components assembled into macromolecular complex hence were 378 

retained in the dialysis button (Figure 3C, lane 4). On the other hand, in the absence of PVA particles, 379 

only a minute amount of z4CL2::STSHis protein was retained in the buttons (Figure 3C, lane 2). As 380 

expected, in the absence of z4CL2::STSHis, PVA particles and α-PVA were retained in the dialysis 381 

buttons (Figure 3C, lane 3).  382 

 383 

We further confirmed the coating of PVA particles with z4CL2::STSHis by TEM imaging. An 384 

immune-conjugate composed of α-His antibody coupled to a complementary 10 nm gold bead-labeled 385 

IgG was used to demonstrate the presence of z4CL2::STSHis on the surface of the particles. When 386 

compared to an uncoated particle (right next to the coated particle in the image), it was clear that the 387 

decorated particle displayed an additional layer of material all along its length, resulting in an increase 388 

of its width by at least a factor of 2 (Figure 3D). This extra layer was due to z4CL2::STSHis - α-PVA 389 

coupling to the particles.  390 

 391 

3.5. Resveratrol synthesis from enzyme containing PVA ENCs  392 

In spite of the successful macromolecular assembly obtained with the z4CL2::STSHis protein chimera 393 

purified under denaturing conditions and carried out in solution, the protein remained inactive and 394 

RES was not detected with these decorated ENCs. A plausible reason being the inability to refold the 395 

protein after denaturing purification. Consequently, we attempted to capture recombinant active 396 

enzymes directly from clarified soluble cell lysates on to PVA particles adsorbed on polypropylene 397 

tubes. 398 

 399 

Clarified soluble cell lysates containing z4CL2His and zSTSHis or z4CL2::STSHis were respectively 400 

incubated with α-PVA. The α-PVA and cell lysate mixes containing the mono-enzymes were added 401 

to polypropylene tubes containing immobilized PVA particles to obtain decorated ENCs (Figure 4A). 402 

Unbound components were removed by washing and resveratrol catalytic cascade reactions were 403 
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initiated from these immobilized enzymes. LC-MS analysis of the product extract revealed a 404 

compound identical to the trans-resveratrol standard (m/z 227.070) (Figure 4A, left panel). To 405 

confirm that the observed activity was due to the presence of z4CL2His and zSTSHis, the same 406 

experiment was performed with untransformed BL21 (DE3) cells. No resveratrol was synthesized in 407 

this control sample. Furthermore, to confirm that the observed activity was from the enzymes attached 408 

on the PVA particles and not on plastic or the first antibody layer, the same experiment was carried 409 

out without adding α-PVA to the clarified cell lysates containing z4CL2His and zSTSHis. No detectable 410 

RES peak was observed from this control assembly after LC-MS analysis (Figure 4B) when compared 411 

to the RES standard as well as RES peak derived from the same cell lysate batch. This control 412 

confirmed no direct binding of the enzymes either to polypropylene tubes or to the first antibody layer 413 

took place after blocking them with the immobilized PVA particles. Also, it excluded the possibility 414 

of unspecific binding of the z33-tagged enzymes directly to PVA particles. Our conclusion therefore 415 

is that the detected enzyme activity was derived from the enzymes organized on the virus particle 416 

surface. A second peak with a retention time around 2 minutes could be seen in the controls and the 417 

samples. The content of this peak was not verified and is unknown. As with the monomeric enzymes, 418 

a peak with the same retention time and molecular mass as the RES standard peak (Figure 5A) was 419 

also produced in assays conducted with the immobilized z4CL2::STSHis protein chimera (Figure 5B) 420 

confirming the fusion protein could be immobilized directly from the cell lysate onto PVA particles 421 

via the α-PVA antibodies in an active form.  422 

 423 

Discussion 424 

In this work, we designed PVA-based ENCs displaying active z4CL2His and zSTSHis or a protein 425 

chimera z4CL2::STSHis involved in RES biosynthesis.  426 

The z33 peptide, fused to the N-terminus of all proteins, enabled antibody-mediated functionalization 427 

of PVA particles and the GGGGS peptide linker inserted into the C-terminal of the z33 peptide 428 

ensured its free movement. An addition linker, GSG, was inserted between the two protein domains 429 

in the protein chimera to avoid steric interference and 6x His-tag was also engineered to the C-430 

terminal of the proteins of interest to enable purification. Most of the z33-tagged mono-enzymes were 431 

expressed as active, soluble proteins in E.coli (Figure 2). Nonetheless, majority of the z4CL2::STSHis 432 

protein chimera accumulated in inclusion bodies and all attempts to purify under native conditions 433 

failed. Arabidopsis thaliana 4CL1, grape STS and a fusion protein 4CL::STS have previously been 434 

purified in a native and active form via an N-terminal His-tag (Y. Wang et al., 2011). We reckoned 435 
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addition of the z33 peptide to the N-terminus or the C-terminal location of the His-tag most likely 436 

caused the accumulation of the protein chimera in inclusion bodies.  437 

The protein chimera, z4CL2::STSHis, was purified from inclusion bodies (Figure 3A) and although 438 

refolding was unsuccessful, this protein showed high affinity for α-PVA IgGs when the protein was 439 

supplied in 5-fold excess (Figure 3) binding both heavy chains of the antibody. This was consistent 440 

with our earlier observation using a z33 tagged yellow fluorescent protein (Pille et al., 2013). Even 441 

though the protein was inactive, the observed binding to α-PVA IgGs indicated the z33 peptide was 442 

fully functional after the denaturing purification and still permitted the antibody-mediated absorption 443 

of this inactive protein chimera to PVA particles in solution and on carbon coated grids. Furthermore, 444 

the size of the protein, about 107 kDa, did not affect the antibody-binding property of the z33 peptide 445 

showing the robustness of this virus decoration strategy.  446 

PVA forms flexible rod-shaped particles composed of about 2000 coat protein subunits surrounding 447 

a single-stranded positive sense RNA molecule. Theoretically all CP subunits can be recognized by 448 

the α-PVA IgGs and consequently the z33-tagged enzymes. Transmission electron microscopy 449 

revealed only very few gold labels on the surface of the particles when detection of the antibodies 450 

bound to z4CL2::STSHis was carried out with a secondary antibody conjugated with gold beads 451 

(Figure 3D). This was not surprising as we had earlier shown that the amount of beads does not 452 

correlate with the actual particle coverage and discussed a possible cause to be steric hindrance from 453 

several antibody layers and extensive washes (Pille et al., 2013). However, the EM images revealed 454 

virus particles with increased width suggesting a good coverage of PVA by z4CL2::STSHis. 455 

Multi-enzyme systems allow channelling of the substrates from one enzyme to another, hence 456 

increasing their catalytic efficiency and immobilization of the enzymes further improves product 457 

yield. Using the double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) 458 

method, we built a macromolecular assembly in which PVA particles immobilized in a polypropylene 459 

tube were functionalized with active z4CL2His and zSTSHis (Figure 4A) or z4CL2::STSHis (Figure 5). 460 

This method has been used previously to capture virus particles from plant sap onto polypropylene 461 

tubes pre-coated with coat protein antibodies for subsequent detection of viral RNA by RT-PCR 462 

(Fedorkin et al., 2000). More so, a similar immune-capture procedure was used prior to real-time 463 

quantitative RT-PCR to detect tobacco mosaic virus (TMV) from soil samples (Yang et al., 2012). A 464 

low amount of enzyme activity was associated with these functionalized viral ENCs. We previously 465 

showed that 4CL2 remains fully active upon fusion to z33 (Pille et al., 2013) and it has been shown 466 

that STS activity may vary tremendously depending on its source or the expression construct used 467 
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(Lim et al., 2011). Based on this, we believe the second reaction in the cascade catalyzed by STS 468 

might be the rate limiting step and might offer a plausible explanation for the observed low efficiency 469 

of resveratrol synthesis. However we show that the observed low activity was specific to enzymes 470 

attached to the virus surface and not to the initial antibody layer or the polypropylene tube (Figure 471 

4B). The absence of activity when the enzymes were incubated in tubes containing only the initial 472 

antibody layer and the PVA particles indicated the PVA particle layer in addition to BSA efficiently 473 

blocked the binding surface of the initial antibody layer. It also indicated there was no unspecific 474 

interaction between the z33-tagged enzymes and the virus particle. 475 

 476 

A 15-fold increase in RES production was obtained when a translational fusion of 4CL and STS was 477 

used as a catalyst compared to a mixture of the mono-enzyme. These activities were monitored with 478 

the enzymes free in solution (Zhang et al., 2006). The stimulation of the catalytic efficiency was 479 

attributed to the physical localization of the two active sites, interspaced by 70Å (Y. Wang et al., 480 

2011). The low catalytic efficiency of our system made it near to impossible to compare the enzyme 481 

activity from z4CL2His and zSTSHis functionalized ENCs to z4CL2::STSHis  functionalized ENCs. 482 

 483 

Several strategies for one-step immobilization-purification of enzymes based on the use of antibodies, 484 

affinity domains or various ligands were recently reviewed (Barbosa et al., 2015). We anticipated that 485 

immobilization of z33-containing enzymes on a virus scaffold would first act as a means to purify the 486 

active enzymes from the clarified soluble cell lysate. Unfortunately, a significant amount of 487 

contaminating proteins were associated with the assemblies after SDS-PAGE analysis despite the 488 

intensive washes (data not shown). This shows a clear need for optimization of the procedure for 489 

better capture and binding efficiency of the enzymes. This could be achieved either by adding several 490 

tags in tandem or repositioning the tags within the enzymes. Optimally the one-step immobilization-491 

purification approach could provide a cost-effective, fast and reliable way to purify and configure 492 

nano-devices like lab on a chip, for industrial applications. 493 

 494 

Concluding remarks 495 

With increasing understanding of living systems, the scientific community has developed new interest 496 

for biologically ordered structures having the potential to become ENCs (Cardinale et al., 2012). It 497 
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appears that ENCs are easier to position on a support than single enzymes using top-down processes. 498 

Because of their highly ordered protein nature, virus structures can be precisely decorated with 499 

enzymes and used as ENCs. The preliminary work reported here explores the use of viral ENCs to 500 

display enzyme cascades on solid supports by means of an interplay between genetically tagged 501 

enzymes, immune-conjugation, two bottom up approaches and DAS-ELISA based top-down 502 

adsorption. We confirm here the robustness of the z33-fusion strategy as a method to decorate any 503 

virus particles via virus-specific antibodies and its ability to coat these particles with proteins as large 504 

as 107 kDa.  This study provides us with a proof of concept that the simultaneous purification and 505 

positioning of tagged enzymes on ordered solid supports can be achieved. This could be the first step 506 

towards a direct way to assemble protein biochips. 507 
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  624 

Figure Legends 625 

Figure 1. Schematic representation of the resveratrol biosynthesis pathway and the expression 626 

cassette of the recombinant proteins 627 

A. Resveratrol synthetic pathway. The ρ-coumaric acid precursor, in the presence of CoA is converted 628 

to ρ-coumaroyl-CoA by the action of 4-coumarate:coenzyme A ligase (4CL2). Subsequently, stilbene 629 

synthase (STS) in the presence of three acetyl groups from malonyl-CoA catalyzes the condensation 630 

and cyclization reaction to produce resveratrol. 631 

B. Showcases the plasmids utilized in this study, the expression cassettes and the molecular weight 632 

(MW) of the recombinant proteins. The z33-tagged proteins were cloned into pET21a (+) with an N-633 
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terminal T7 promoter and a C-terminal 6x His tag. The protein sequence of z33 peptide is represented 634 

as well as the linkers used. 635 

Figure 2. Assessment of the activity of the expressed proteins in solution (tandem mass 636 

spectrometry, MS/MS, analysis) 637 

A. Western blot analysis of crude cell extracts from expressed z33-tagged proteins probed with α-638 

His.  639 

B. QTOF MS/MS spectra of a resveratrol standard showing its precursor ion at m/z 227.0698 and 640 

the daughter ions at m/z 143.0474 and m/z 185.0618 derived from its fragmentation. 641 

C. Enzymatic activity from a mixture of clarified soluble cell lysates harboring z4CL2His and zSTSHis. 642 

Resveratrol synthesis was initiated by the addition of ρ-coumaric acid to the cell lysates. 643 

Resveratrol was extracted with ethyl acetate and QTOF MSMS analysis was performed. Two 644 

peaks m/z 143 and 185 corresponding to resveratrol fragmentation ions, were eluted around 2.25 645 

min. A non-transformed (NT) BL21(DE3) clarified cell lysate treated as above, did not contain 646 

resveratrol. 647 

D. Enzymatic activity from clarified soluble cell lysate harboring the z4CL2::STSHis protein chimera. 648 

QTOF MSMS analysis also revealed the presence of two ions (m/z 143 and 185) around 2.25 min 649 

corresponding to resveratrol daughter ions.  650 

 651 

Figure 3. Affinity assay and Macromolecular assembly in solution and on carbon coated grids 652 

A. Coomassie stained SDS-PAGE gel of purified z4CL2::STSHis. Affinity chromatography was 653 

performed using the Ni-NTA matrix (IMAC) under denaturing conditions followed by size 654 

exclusion chromatography on Sephacryl S-200. An N-terminal truncated form of z4CL2::STSHis 655 

of 32kDa was also identified. 656 

B. z4CL2::STSHis and rabbit IgG affinity assay analyzed on silver stained SDS-PAGE gel. 657 

z4CL2::STSHis was incubated with rabbit-born polyclonal PVA antibody at three different 658 

antibody to protein ratios (1:1; 1:3 and 1:5). The resulting complex was purified by IMAC. As a 659 

negative control, PVA antibodies alone were also purified via IMAC. AB=PVA antibody; 660 

FT=Flow through; W=Wash; E=Elution; HC= IgGs Heavy chain; LC= IgGs Light chains. 661 

C. Silver stained SDS-PAGE gel of the macromolecular complex formed between z4CL2::STSHis, 662 

PVA antibody and PVA particles in solution. All components of the complex were incubated for 663 

an hour at RT followed by extensive dialysis for four days against a 300 MWCO membrane (cut 664 
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off 300 kDa). Two similarly treated controls were included: the first did not contain PVA particles 665 

(Lane 2) and the second did not contain the z33-tagged protein (Lane 3). 666 

D. Transmission electron microscopy depiction of PVA particles coated with z4CL2::STSHis via 667 

PVA antibody. After particle deposition, the grid was first incubated with α-His antibodies, 668 

washed and then incubated with a 10 nm gold-conjugated antibody to probe the presence of the 669 

fusion enzyme on the virus particles. An uncoated particle can also be seen on the image. 670 

 671 

Figure 4. Resveratrol synthesis from immobilized z4CL2His and zSTSHis 672 

A. Enzymatic activity from PVA immobilized z4CL2His and zSTSHis proteins. PVA particles were 673 

trapped in a 2 ml polypropylene tube pre-coated with PVA antibody and uncoated areas were 674 

blocked with BSA. Clarified E. coli BL21 (DE3) lysate harboring z4CL2His and zSTSHis 675 

respectively were mixed in a 1:1 ratio and incubated with PVA antibody. The antibody: protein 676 

complex was allowed to bind the trapped PVA particles overnight. Unbound component were 677 

washed out after each step. Resveratrol synthesis was initiated from the immobilized enzymes by 678 

addition of the necessary substrates followed by resveratrol extraction with ethyl acetate. QTOF 679 

MS analysis was performed to identify resveratrol. Resveratrol standard with an m/z of 227.0704 680 

(upper inset) and eluted around 2.20 min was used as a positive control to confirm its presence in 681 

the experimental sample (lower inset). The figure on the right is a schematic representation of the 682 

macromolecular assembly. 683 

B. Control experiment to investigate enzyme binding to initial PVA antibody layer and 684 

polypropylene tubes. PVA particles were trapped in a 2 ml polypropylene tube pre-coated with 685 

PVA antibody. Clarified E. coli BL21 (DE3) lysate harboring z4CL2His and zSTSHis respectively 686 

were mixed in a 1:1 ratio and added to the tubes pre-coated with PVA antibody. Tubes were 687 

washed and resveratrol synthesis was initiated from the immobilized enzymes. Resveratrol 688 

standard with an m/z of 227.0704 (upper inset) and eluted around 2.20 min obtained from an 689 

authentic standard and from clarified lysates containing z4CL2His and zSTSHis, were used as a 690 

positive control. 691 

 692 

Figure 5. Resveratrol synthesis from immobilized z4CL2::STSHis 693 

A. QTOF MS analysis of resveratrol standard with a peak between 2.10 – 2.20 min corresponding 694 

to trans-resveratrol. The smaller peak might be cis-resveratrol. 695 
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B. Enzymatic activity from PVA immobilized z4CL2::STSHis protein chimera. PVA particles were 696 

trapped on a plastic plate pre-coated with PVA antibody. Clarified E. coli BL21(DE3) cell lysate 697 

harboring z4CL2::STSHis was incubated with PVA antibody and the protein: antibody complex 698 

was allowed to bind the trapped particles overnight. Unbound components were washed away 699 

after each step. Resveratrol synthesis was initiated from the immobilized enzymes by addition of 700 

the substrates and the product was extracted with ethyl acetate followed by QTOF MS analysis. 701 

The figure on the right hand side shows a schematic representation of the macromolecular 702 

assembly. 703 
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