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Objective: To collect published data on spermatogonial quantity in the testes of healthy children and calculate the reference values of
spermatogonial quantities throughout prepuberty.
Design: Systematic literature search in PubMed and EMBASE focusing on the number of spermatogonia per transverse tubular cross
section (S/T) and spermatogonial density per cubic centimeter (cm3) of testicular volume (S/V) throughout prepuberty.
Setting: None.
Patient(s): None.
Intervention(s): None.
Main Outcome Measure(s): Polynomial meta-regression analyses of S/T and S/V of healthy boys from the ages of 0 to 14 years.
Result(s): We found six papers describing original quantitative data on S/T and S/V of healthy boys (total n¼ 334 and 62, respectively) that
were suitable formeta-analysis. Polynomialmeta-regression analyses of S/T andS/Vdemonstrated a clear pattern of spermatogonial quantity
throughout prepubertal life. This consisted of a decline during thefirst 3 years of life, a gradual increase until the ages of 6 to 7 years, a plateau
until the ageof11years, anda sharp incline reachingpubertal numbers at13 to14yearsof age. TheassociationbetweenS/TandS/Vallowedus
to perform S/T to S/V extrapolation, creating reference S/V (rS/V) values throughout prepubertal life from a cohort of 372 boys.
Conclusion(s): Spermatogonial quantity varies during testicular development toward puberty. The values found in this study may
serve as a baseline clinical reference to study the impact of diseases and adverse effects of gonadotoxic treatments on spermatogonial
quantity in prepubertal testes. Spermatogonial quantity reference values may also help to evaluate the quality of testicular biopsy sam-
ples acquired for fertility preservation of prepubertal boys. (Fertil Steril� 2016;106:1652–7. Copyright�2016 The Authors. Published by
Elsevier Inc. on behalf of the American Society for Reproductive Medicine. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).)
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ter puberty. The number of
spermatogonia in prepubertal testes is
influenced by the rate of proliferation,
apoptosis, and differentiation into more
advanced germ cells (1–3) as well as the
growth rate of Sertoli and peritubular
cells that determines the tubular length
and total volume of the testis (1, 4–6).
These physiologic processes can be
disturbed by Klinefelter syndrome,
cryptorchidism, genetic or endocrine
disorders, and medical interventions like
chemotherapy or irradiation and lead to
partial or complete depletion of
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spermatogonia including spermatogonial stem cells during
childhood (7–13).

To assess the effects of these conditions and interventions
on spermatogonial counts, reference values of spermatogo-
nial quantity throughout prepubertal life of healthy boys
need to be established. To date, only a few small cohort studies
have reported data on spermatogonial count per age group
throughout prepuberty. Although some studies did not
describe any age-related changes in spermatogonial numbers,
other studies did. Therefore, we pooled data on spermatogo-
nial quantity in human prepubertal testes by a systematic
literature search and polynomial meta-regression analyses
to estimate spermatogonial density throughout childhood
and provide baseline clinical reference values.
MATERIALS AND METHODS
Literature Search Strategy

We used PubMed and EMBASE electronic databases to search
for articles on spermatogonial number in testes of healthy
prepubertal boys (final update on April 8, 2015). In PubMed,
we used queries for relevant keywords and medical subject
headings (MeSH) to generate three subsets of references,
where the first comprised ‘‘seminiferous tubules/anatomy
and histology’’ AND ‘‘germ cells’’ OR ‘‘spermatogonia’’ AND
‘‘germ cells/cytology’’ OR ‘‘cell count’’ OR ‘‘sperm count,’’
the second of ‘‘apoptosis’’ AND ‘‘spermatozoa’’ OR ‘‘germ
cells’’ OR ‘‘spermatogonia,’’ and the third of ‘‘cell prolifera-
tion’’ OR ‘‘proliferation’’ OR ‘‘cell division’’ AND ‘‘spermato-
zoa’’ OR ‘‘germ cells’’ OR ‘‘spermatogonia,’’ limiting all
outputs by ‘‘species: humans,’’ ‘‘sex: male,’’ and ‘‘age: child
from birth to 18 years.’’ Similarly, we searched for terms
‘‘testicular activity’’ OR ‘‘testis development’’ OR ‘‘ontogeny’’
OR ‘‘prepuberty’’ AND ‘‘germ cell’’ OR ‘‘spermatogonia’’ OR
‘‘spermatocyte’’ AND ‘‘proliferation’’ OR ‘‘apoptosis’’ in EM-
BASE using filters ‘‘human,’’ ‘‘male,’’ ‘‘child.’’We used review
papers and original research reports from this search to trace
references of relevant primary data missing from the elec-
tronic search.
Study Selection and Data Extraction

We screened abstracts of the electronic search results to select
developmental and quantitative reports on spermatogonia
(comprising gonocytes, type A spermatogonia, and type B
spermatogonia) in healthy prepubertal boys, including cases
where data were reported for a control group, and excluded
reports describing only spermatogonial counts of boys with
(testicular) tumors, cryptorchidism, varicocele, or other health
problems that might influence spermatogenesis. We summa-
rized reported prepubertal spermatogonial cell counts per
seminiferous tubular cross section (S/T) and spermatogonial
numerical density per testicular tissue volume of
1 cm3 (S/V) calculated using a stereometric counting grid
by extracting data from quantitative studies. To estimate
the common trend of S/T and S/V as a function of age, we
pooled data from studies that specified a cohort size (n) and
a range or standard deviation (SD) per each age group of their
results and performed polynomial meta-regression analyses.
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We excluded reports that did not specify the method of sper-
matogonial counting or that used correction factors to adjust
germ cell counts for shrinkage, tubular diameter, or tubular
shape. The study selection and the data extraction strategy
are summarized in the PRISMA pipeline (Fig. 1) as described
previously elsewhere (14).
Statistical Analysis

We used either smoothed fractional polynomial or least
square fractional polynomial without smoothing together
with a random effects model as appropriate to perform the
meta-regression analysis (95% confidence interval [CI]) (15).
To measure the heterogeneity between values reported in
the studies, we performed I2 statistics for both S/T and S/V
(16). To build reference S/V (rS/V) values, we extrapolated
S/T to S/V values by using correction factors 11 (for age group
0 to 4 years) and 16 (for age group 4 to 14 years). This strategy
was chosen based on the previously described constant vol-
ume density of the tubular compartment and constant testic-
ular volume in the respective age groups, as well as individual
values within each of these age groups and the described S/T
to S/V correlation (6, 17). As the polynomial meta-regression
data represent an estimate of the number of spermatogonia
throughout prepubertal development, we considered further
statistical analyses between various ages within this develop-
mental period to be inaccurate, so we presented these as a
trend. Finally, to establish reference values for age-related
spermatogonial quantity in prepuberty, we extracted regres-
sion fit and 95% CI boundary values from the S/T meta-
analysis, as well as boundary values for the rS/V polynomial
regression. The data analysis was performed using Stata/IC
14.0 (2015; StataCorp).

RESULTS
From a total of 141 abstracts, we screened 129 full, relevant,
original studies and reviews with an additional 13 articles
located from references (Fig. 1). After applying the inclusion
criteria, 32 full-text articles were processed. We found nine
studies describing original quantitative data (Supplemental
Table 1, available online), six of which satisfied the inclusion
criteria and were used for S/T (5, 17–20) and S/V (6, 17)
polynomial meta-regression analyses, and three (21-23) that
did not satisfy the inclusion criteria. In all the selected
studies, the tissue processing methodologies included
histology for S/T and stereology using counting grid for S/V
assessment without correction for tissue shrinking.
Changes in Spermatogonia per Tubular Cross
Section (S/T) during Prepuberty

In the five studies describing S/T of healthy prepubertal boys,
we identified three patterns as a function of age
(Supplemental Fig. 1, available online). [1] The first pattern
showed a decline in S/T numbers during the first 2 to 4 years
of life followed by a gradual increase toward puberty. [2] The
second pattern described S/T as a plateau from the ages of 3 to
12 years, with a sharp increase during puberty. [3] The third
pattern depicted a decrease in numbers during the first 3 years
1653



FIGURE 1

Summary of literature review, data extraction, and selection strategy for the original studies reporting spermatogonia per tubular cross section (S/T)
and spermatogonial density per cubic centimeter (cm3) of testicular volume (S/V). *One of the studies is present in both analyses, resulting in a total
of six original reports used in the polynomial meta-regression analyses.
Masliukaite. Spermatogonial quantity in childhood. Fertil Steril 2016.
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of life followed by a gradual rise toward puberty with a light
drop around the age of 8 years (5, 17–20).

The polynomial meta-regression analysis of the pooled S/
T data from these studies (n¼ 334, I2¼ 12%) showed that S/T
tends to decrease over the first 3 years of life from 2.5 to 1.2
(Fig. 2A), followed by a twofold increase until the peak of 2.6
at the age of 6 to 7 years is reached. Thereafter, there is a small
decline in S/T numbers and a plateauing phase of 2.5 that lasts
until the age of 11 years, which is followed by an accelerated
increase reaching values of 7, marking the onset of puberty
(Table 1).
Changes of Spermatogonial Density per Testicular
Volume (S/V) during Prepuberty

The two studies describing S/V of healthy boys showed a
pattern of decrease in spermatogonial density in the first
3 years of life followed by an increase in numbers toward pu-
berty (6, 17). The polynomial meta-regression analysis of the
1654
pooled S/V data (n¼ 62) showed a twofold drop in spermato-
gonial density at the age of 3 to 4 years, an increase in values
at the age of 7 years, and a sharp incline toward puberty start-
ing at 11 to 12 years (see Fig. 2B).
The Reference S/V (rS/V) Values

Spermatogonial quantity in S/T and S/V revealed similar pat-
terns throughout prepubertal life, as shown in Figure 2A
and B. This allowed us to extrapolate S/T to S/V numbers (n
¼ 310 boys). Together with the original S/V values, these
extrapolated S/V values comprised a reference S/V (rS/V)
data set with a cohort size of 372 boys. The rS/V trend corre-
sponded to S/V polynomial meta-regression analysis results
and showed a pattern of decline during the first 3 years of
life, with rS/V from approximately 30 � 106 to 19 � 106

(Fig. 3), an increase until the peak of 48 � 106 at the age of
7, a phase of plateau of 45 � 106 until 11 years of age, and
VOL. 106 NO. 7 / DECEMBER 2016



FIGURE 2

Meta-regression analyses of (A) spermatogonia per tubular cross section (S/T) and (B) spermatogonial density per cubic centimeter (cm3) of
testicular volume (S/V) distribution throughout prepuberty illustrating a decline in spermatogonial numbers during the first 3 years of life, an
increase in the next 4 years, a slight decline and plateau, and a sharp incline starting after the age of 10 years. Dots represent mean or median
values from the original reported studies. Due to the low number of studies, regression fit was not applied in B.
Masliukaite. Spermatogonial quantity in childhood. Fertil Steril 2016.
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a sharp incline reaching pubertal values of approximately 100
� 106 around the age of 13 to 14 (Table 1).
TABLE 1

Clinical reference values to evaluate spermatogonial quantity in
prepubertal testes.

Age (y)
S/T Regression fit
(95% CI boundary)

rS/V (95% CI
estimated boundary)

0 2.5 (2.3–3) (20–40)
1 2.2 (1.8–2.6) (15–35)
2 1.2 (1.0–1.4) (15–25)
3 1.2 (0.9–1.4) (14–24)
4 2.0 (1.7–2.3) (20–35)
5 2.5 (2.1–2.9) (38–50)
6 2.6 (2.2–3.0) (40–54)
7 2.6 (2.2–3.1) (40–56)
8 2.5 (1.9–3.1) (35–55)
9 2.4 (1.8–3.1) (35–55)
10 2.5 (1.9–3.1) (35–55)
11 3.3 (1.0–5.6) (30–100)
12 5 (2–8) (45–120)
13 7 (2.5–11) (80–180)
Note: Spermatogonial quantification performed by histology (S/T) or stereology (S/V) without
correction for tissue shrinkage when standard fixatives (glutaraldehyde, Cleland's, Bouin's,
or Stieve's) are used for tissue processing. CI ¼ confidence interval in polynomial meta-
regression analysis; rS/V ¼ spermatogonial numerical density 106/cm3 testicular tissue; S/T
¼ spermatogonia per tubular cross section.

Masliukaite. Spermatogonial quantity in childhood. Fertil Steril 2016.
DISCUSSION
In this study we combined the literature data on S/T and S/V
of healthy prepubertal boys in polynomial meta-regression
analyses and performed S/T extrapolation, creating a refer-
ence S/V cohort (rS/V) of 372 boys. The analysis showed
that both S/T and rS/V values had a trend of decrease over
the first 3 years of life (2.5 to 1.2 and 30 to 19 � 106/cm3,
respectively), an increase until the peak at ages 6 to 7 years
(2.6 and 48 � 106, respectively), a plateau until the age of
11 years, and a sharp incline marking the onset of puberty
(7 and approximately 100 � 106, respectively).

Our study is the first to combine the available quantitative
data on the number of spermatogonia in various age groups of
healthy prepubertal boys. Using polynomial meta-regression
analysis we provide the common reference S/T and S/V trends
of a large cohort throughout prepubertal life.

A limitation of this study is the reliability of data obtained
from a small number of old studies. Although we could not
compare the S/T and rS/V values with spermatogonial quan-
tities of freshly collected, healthy prepubertal testicular tissue
for ethical reasons, we applied stringent screening of the pub-
lished studies to ensure comparable high-quality spermatogo-
nial quantification methods. The tissue-processing
methodologies referenced in the selected studies included his-
tologic (S/T) and stereologic (S/V) spermatogonial quantity
assessments without correction for tissue shrinking, all
methods still routinely used in clinical and research settings
(24–26). The number of evaluated tubular cross sections in
the selected studies was in a recommended range to achieve
result validity (21). Furthermore, even though age-grouping
strategies could not be unified, the measured heterogeneity
implied that age-divided spermatogonial quantities in
VOL. 106 NO. 7 / DECEMBER 2016
individual studies could be confidently combined to provide
a reliable reference estimate throughout prepuberty.

Another limitation of this study is that due to the low
number of studies reporting S/V values we could not apply
a regression fit for S/V meta-analysis (27). However, based
on a previously described statistically significant (P< .001)
positive correlation (17), we extrapolated our S/T values to
rS/V from a total of 372 boys, allowing us to provide the
regression fit with a wide confidence interval of 95%.

The pattern of spermatogonial quantity throughout prepu-
berty that we found can be explained by testicular growth that
is influenced by endocrine activity.More specifically, the pattern
1655



FIGURE 3

Meta-regression analysis of the extrapolated spermatogonia per
tubular cross section (S/T) to spermatogonial density per cubic
centimeter (cm3) of testicular volume (S/V) data together with
original S/V values forming the reference spermatogonial density
pattern throughout prepuberty (rS/V). Dots represent mean or
median values from the original reported studies.
Masliukaite. Spermatogonial quantity in childhood. Fertil Steril 2016.
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of a decrease in spermatogonial numbers during the first 3 years
of life could be addressed by the fact that spermatogonial
numbers consist of A spermatogonia and gonocytes, which are
difficult to distinguish from each other (17, 28). The
differentiation from gonocytes to spermatogonia during this
period is influenced by the postnatal gonadotropin surge (29),
where elevated luteinizing hormone (LH) stimulates Leydig
cells to increase total plasma testosterone (30–34). Once LH
levels drop, gonocytes that failed to reach the basal membrane
degenerate, resulting in reduced numbers of spermatogonia (5,
34, 35) (Supplemental Fig. 2, available online). In addition,
follicle-stimulating hormone (FSH) fuels rapid proliferation of
immature Sertoli cells, causing the dispersion of spermatogonia
across the elongating seminiferous tubules (4–6, 17, 29, 36–38).

After that, around the age of 4 years, the increase in the
spermatogonial quantity up to the age of 6 to 7 years could
be explained by higher spermatogonial proliferation and dif-
ferentiation into B spermatogonia, primary spermatocytes
(5% to 25% of tubules), and very occasional spermatids
(2, 5, 18, 19, 23, 28, 32, 40). This proliferation and
differentiation is induced by elevated FSH and LH, as well
as increased inhibin B and testosterone secretion (32, 40,
41, 42) during that period. Although LH and FSH levels
continue to rise between the ages of 7 and 10 years,
immature Sertoli cells cannot support the differentiation of
spermatogonia to functional spermatozoa, resulting in the
plateau in spermatogonial numbers (5, 28, 32, 40, 41). We
showed that S/T and rS/V display a progressive pattern of
increase from the age of 11 years. This rapid
spermatogonial proliferation is associated with increasing
levels of gonadotropins (5, 32), the last wave of Sertoli cell
proliferation followed by maturation (6, 18, 23, 35, 36), and
enhanced germ cell differentiation, resulting in complete
spermatogenesis (5, 35).
1656
In conclusion, our study provides age-related reference
values for spermatogonial quantity in the testes of healthy
prepubertal boys. This can serve as a clinical tool to evaluate
the effect of diseases and gonadotoxic therapies on the qual-
ity of prepubertal testicular tissue acquired for fertility preser-
vation or pathologic analysis.
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SUPPLEMENTAL FIGURE 1

Spermatogonia per tubular cross section (S/T) distribution from individual reports illustrating three S/T trends as a function of age. Dots represent
mean or median values in the original reported studies: Cortes 1990 (17); Hadziselimovic et al. 1987 (19); Cinti et al. 1993 (18); Hedinger 1982 (20);
Paniagua and Nistal 1984 (5).
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SUPPLEMENTAL FIGURE 2

Spermatogonia per tubular cross section (S/T) and spermatogonial numerical density per cm3 (rS/V) as a function of age in relation to inhibin B,
testosterone, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) levels, as well as differentiation from gonocytes (G) and into
more advanced germ cell types from A dark (Ad) and A pale (Ap) into type B spermatogonia (B), spermatocytes (Spc), spermatids (Spt), and
spermatozoa (Spz), based on the previous reports: 1 (32), 2 (42), 3 (31), 4 (41), 5 (2), 6 (39), 7 (19), 8 (23), 9 (28), 10 (5).
Masliukaite. Spermatogonial quantity in childhood. Fertil Steril 2016.
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