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Abstract

We study the adaptive dynamics of virulence of a pathogen transmitted both via direct
contacts between hosts and via free pathogens that survive in the environment. The
model is very flexible with a number of trade-off functions linking virulence to other
pathogen-related parameters and with two incidence functions that describe the contact
rates between hosts and between a host and free pathogens. Instead of making a priori
particular assumptions about the shapes of these functions, we introduce a construction
method to create specific pairs of incidence functions such that the model becomes an
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to a wide range of eco-evolutionary models.
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1 Introduction

Many pathogens spread via both direct and environmental transmission, i.e., they can
be transmitted either from host to host or via free pathogen particles that survive in the
environment. For example, a virus might be picked up from a handshake (direct contact)
or from touching a door handle after an infected person (environmental transmission).
If the virus dies fast outside the host such that environmental transmission is effective
only if it happens within a short time, then the rates of handshake and of touching the
same door handle may be combined into one transmission factor (Breban, in press). If,
however, free pathogen particles can survive for a non-negligible length of time, then en-
vironmental transmission needs to be considered as a distinct transmission mode (Li et
al. 2009); this is most obvious when free pathogens outlive the host who produced them.
Environmental transmission is important for a number of human pathogens such as in-
fluenza and smallpox viruses, Corynebacterium diphtheriae, Mycobacterium tuberculosis,
Streptococcus pneumoniae (Walther and Ewald 2004) and cholera (Colwell and Huq 1994;
King et al. 2008) as well as for avian influenza (Rohani et al. 2009).

In addition to influencing the dynamics of the epidemics, there is an intriguing reason
why direct and environmental transmission need to be distinguished: the pathogen may
need contrasting adaptations to improve its transmission when infecting directly and when
infecting through the environment. Pathogen strains adapted to alternative transmission
modes may coexist while exploiting the same host (Roche et al. 2011), and may evolve
from a single ancestral strain via evolutionary branching (Boldin and Kisdi in press). The
alternative modes of transmission can thus contribute to the diversity of pathogens.

Whether or not evolutionary branching is possible depends critically on the so-called
incidence functions, which describe how the rates of encountering other hosts and en-
countering free pathogens depend on the population densities of hosts and of pathogens,
respectively. The simplest assumption is the mass action law in both transmission modes;
this excludes evolutionary branching (Day 2002; Boldin and Kisdi in press; see below).
For direct transmission all models cited here assumed mass action, even though stan-
dard incidence is often thought to be a better approximation (de Jong et al., 1995).
Standard incidence assumes that the rate of encounters between hosts is constant (inde-
pendent of population size), and the probability that the encountered host is infectious
is proportional to the frequency of infected hosts (therefore standard incidence is also
called ”frequency-dependent transmission”). For environmental transmission, Breban et
al. (2010) proposed a hyperbolically saturating incidence function based on an underly-
ing model of how susceptible hosts encounter free pathogens. Roche et al. (2011) used
this hyperbolic function, whereas Boldin and Kisdi (in press) showed that evolutionary
branching is always possible if the incidence function is concave.

In this paper, we focus on the role of incidence in evolutionary branching. The model
we study is very flexible as it contains a number of arbitrary trade-off functions next to
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the two incidence functions. Because of the large number of unspecified functions, finding
evolutionary branching points needs to be constructive rather than attempted on the basis
of trial and error. A further advantage of the constructive approach is that when it fails,
it excludes branching for a certain class of models. Building on the method of critical
function analysis (de Mazancourt and Dieckmann 2004; Kisdi 2006; Geritz et al. 2007),
we introduce here a constructive method to obtain incidence and trade-off functions that
lead to evolutionary branching. First, we show how an environmental incidence function
can be constructed to match an arbitrary incidence function for direct transmission such
that the resulting model is an optimization model. One such pair of functions is when
both incidences follow the mass action law (cf. Day 2002), but a matching environmen-
tal incidence almost always exists at least locally for any incidence in direct transmission.
Next, we show how the optimization model can be unfolded to yield coexistence by mutual
invasibility near the singular strain. Finally, we construct a trade-off function such that
evolutionary branching happens at the singular strain. This last step is known as critical
function analysis. It has been shown that whenever coexistence by mutual invasibility
exists near a singularity, one can choose the convexity of a trade-off function such that
the singularity becomes a branching point (Bowers et al. 2005, Kisdi 2006); the technique
has been applied to the evolution of pathogens e.g. by Svennungsen and Kisdi (2009),
Boldin et al. (2009) and Best et al. (2010). The present paper thus expands critical
function analysis by constructing incidence functions to obtain coexistence in the first
place, and then continues with the existing technique to obtain evolutionary branching.
The resulting branching points are structurally stable.

We illustrate the construction method by creating an example of evolutionary branch-
ing of pathogen virulence with standard incidence in direct transmission; this complements
our earlier work, where we assumed mass action in direct transmission (Boldin and Kisdi
in press). We assume a general trade-off structure in the sense that all pathogen-related
model parameters may depend on virulence. To present a concrete example, however, we
follow the common assumption that a trade-off exists between virulence and direct trans-
mission (Anderson and May 1982), and in the last step, we perform a critical function
analysis on this trade-off function.

2 The model

2.1 Host-pathogen population dynamics

We investigate the evolution of virulence in the single-infection SIR model with free
pathogens
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dS

dt
= b− βf(N)

I

N
S − γg(P )S − dS

dI

dt
= βf(N)

I

N
S + γg(P )S − (d+ α + ρ)I

dN

dt
= b− dN − αI

dP

dt
= θI − σP (1)

where S and I denote respectively the population density of susceptible and infected hosts,
N is the total host density (the sum of S, I, and the density of recovered hosts), and P is
the density of free pathogens. The host population is regulated via a density-dependent
per capita birth rate. For simplicity, we take the per capita birth rate to be inversely
proportional to population density, such that hosts are born at a constant population
birth rate b. All hosts are born susceptible, recovered hosts are immune to the pathogen,
and we assume perfect cross-immunity between pathogen strains. All hosts succumb to
natural death at a rate d. Infected hosts die due to the disease at a rate α, the virulence,
and recover at a rate ρ. Free pathogens are shed by infected hosts at a rate θ (there
is no release of pathogens upon the host’s death) and free pathogens decay at a rate σ.
Upon contact with an infected host, a susceptible individual contracts the disease with
probability β, whereas γ is the infectivity of free pathogens.

The functions f and g describe incidence in direct and environmental transmission,
respectively. f(N) is thus the rate of a focal susceptible host encountering other hosts
when the population density is N ; the host thus encountered is infected with probability
I/N . g(P ) is the rate of encountering free pathogens at pathogen density P . We assume
that f is a continuously differentiable, nondecreasing function, and construct g to be also
continuously differentiable and (under certain conditions) nondecreasing.

Note that the loss of free pathogens due to ingestion by a host is neglected in the
last equation of (1). With biologically realistic parameter values this approximation has
only a negligible effect (Dwyer 1994), and it greatly simplifies the analysis. Because our
results are structurally stable, relaxing this simplification would not qualitatively change
the results (although the functions constructed below would be slightly different) as long
as the effect of ingestion on free pathogen density is realistically small.

Throughout this paper, we assume that (1) has an asymptotically stable equilibrium.
If the model has multiple stable equilibria, we invoke the so-called Tube Theorem of Geritz
et al. (2002) and restrict attention to one such equilibrium.
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2.2 Trade-off structure

With the exception of the birth and natural death rates of the host (b and d), all pa-
rameters in equations (1) depend on the properties of the pathogen. We assume that
the pathogen strains can be identified by their virulence, α, and this determines all other
pathogen-related parameters according to twice differentiable trade-off functions. Some
of these parameters, such as transmission or recovery, may of course depend also on the
properties of the host, but host properties remain constant in our model. Biological consid-
erations may suggest certain shapes for these trade-off functions, but we shall assume only
that the recovery rate ρ is non-increasing as a function of pathogen virulence (ρ′(α) ≤ 0).
This assumption is made to simplify the analysis, but also appears natural as infections
by more virulent strains are likely harder to clear; however we note that simple models
of the host immune reaction (which do not incorporate e.g. the energetic costs inflicted
by either the infection or the immune system) suggest that fast-reproducing pathogens
are cleared faster (Read and Keeling 2006). We retain full flexibility with respect to all
other trade-off functions, i.e., except in a few additional remarks where assumptions are
explicitly stated and in the worked example of section 5, we allow β(α), γ(α), θ(α) and
σ(α) to depend arbitrarily on virulence α.

2.3 Invasion fitness of a mutant strain

Assume that a mutant strain of the pathogen appears in the resident host-pathogen system
at the population dynamic equilibrium of (1). The initial dynamics of the mutant strain
are given by the linearized equations

dImut
dt

= β(αmut)f(N)
Imut
N

S + γ(αmut)g(P )
Pmut
P

S

−(d+ αmut + ρ(αmut))Imut
dPmut
dt

= θ(αmut)Imut − σ(αmut)Pmut (2)

where S, N and P are the equilibrium densities of the resident system (1). The leading
eigenvalue associated with the linearized system (2) is positive if and only if the mutant’s
basic reproduction number

Rmut
0 =

S

d+ αmut + ρ(αmut)

[
β(αmut)

f(N)

N
+
θ(αmut)

σ(αmut)
γ(αmut)

g(P )

P

]
(3)

exceeds 1 (Diekmann and Heesterbeek 2000; van den Driessche and Watmough 2002;
Hurford et al. 2010; see Appendix A for derivation).

Note that the pathogen’s vital rates enter R0 only via the two functions

D(α) =
β(α)

d+ α + ρ(α)
, E(α) =

θ(α)

σ(α)
· γ(α)

d+ α + ρ(α)
(4)
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such that we have

Rmut
0 (αmut, α) = S

[
D(αmut)

f(N)

N
+ E(αmut)

g(P )

P

]
(5)

(Roche et al. 2011; Boldin and Kisdi in press). D(α) is the number of secondary infections
caused via direct transmission during the lifetime of an infection by strain α, per unit
contact rate with susceptible hosts. D(α) therefore measures the pathogen’s adaptedness
to direct transmission; similarly, E(α) is the pathogen’s adaptedness to environmental
transmission. It is important to note that D(αmut) and E(αmut) depend only on the
mutant trait value αmut and do not depend on the resident α. The resident influences
the mutant’s initial growth only via the equilibrium densities S, N and P , which in (5)

combine into two feedback variables, S f(N)
N

and S g(P )
P

.

2.4 Remarks

If the pathogen transmits only directly (θ(α) ≡ 0 or γ(α) ≡ 0 and therefore E(α) ≡ 0),
then we have an optimization model with the single feedback variable Sf(N)/N and the
optimal strain maximizes D(α). Similarly, if the pathogen transmits only environmen-
tally (β(α) ≡ 0 and therefore D(α) ≡ 0), then we have an optimization model with the
single feedback Sg(P )/P and the optimal strain maximizes E(α) (see Metz et al. 2008).
The feedback environment can be two dimensional only if both transmission modes are
present, which is a necessary condition for evolutionary branching. In this model, evo-
lutionary branching is driven by contrasting adaptations to the two transmission modes,
i.e., by the difference between the optima of D(α) and E(α) (Boldin and Kisdi, in press).

The simplest choice of the incidence functions f and g is to assume mass action in both
transmission modes, i.e., to assume f(N) = N and g(P ) = P . In this case, however, (5)
simplifies to Rmut

0 = S[D(αmut)+E(αmut)] such that S remains the only feedback variable.
Mass action therefore leads to an optimization model where the function D(α) +E(α) is
maximized (cf. Day 2002; Boldin and Kisdi in press).

3 Preliminaries

Evolutionary branching occurs at virulence α∗ if the following conditions are satisfied
(Geritz et al. 1998):

1. α∗ is singular:[
∂Rmut

0

∂αmut

]
αmut=α=α∗

= S∗

[
D′(α∗)

f(N∗)

N∗
+ E ′(α∗)

g(P ∗)

P ∗

]
= 0 (6)

6



where S∗, N∗ and P ∗ denote the equilibrium densities in the resident population
of strain α∗. Note that the singularity condition requires that the signs of D′(α∗)
and E ′(α∗) are different, which means that the two transmission modes require con-
trasting adaptations of the pathogen.

2. α∗ lacks evolutionary stability: E > 0, where

E =

[
∂2Rmut

0

∂α2
mut

]
α∗

= S∗

[
D′′(α∗)

f(N∗)

N∗
+ E ′′(α∗)

g(P ∗)

P ∗

]
(7)

3. α∗ is convergence stable: E +M < 0, where

M =

[
∂2Rmut

0

∂α∂αmut

]
α∗

= S∗

[
D′(α∗)

d

dα

f(N)

N

∣∣∣
α∗

+ E ′(α∗)
d

dα

g(P )

P

∣∣∣
α∗

]
(8)

Convergence stability and lack of evolutionary stability can hold simultaneously only
if M < 0. The inequality M < 0 is the condition for mutual invasibility near the sin-
gularity (Geritz et al. 1998). Coexistence in the neighbourhood of the singularity is
obviously a prerequisite for evolutionary branching, but in one-dimensional trait spaces,
an evolutionary branching point automatically satisfies the condition of coexistence by
mutual invasibility.

4 The construction method

Here we show how one can construct an example for evolutionary branching of virulence
in model (1) in three steps. First, we find (locally) a specific incidence function g0 paired
to a given incidence function f such that the model becomes an optimization model.
Second, we unfold this optimization model by changing g0 near the singularity to obtain
a model with mutual invasibility. In the last step, we use the established technique of
critical function analysis and change the curvature of a trade-off function to obtain an
evolutionary branching point from a singularity with mutual invasibility.

4.1 Constructing an optimization model

Rewrite the basic reproduction number of a mutant strain in (5) in the form

Rmut
0 = S

f(N)

N

[
D(αmut) +

g(P )

P

N

f(N)
E(αmut)

]
(9)
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The mutant fitness depends on only one feedback variable, S f(N)
N

, if and only if g(P ) =
g0(P ) with g0 chosen such that

g0(P )

P

N

f(N)
≡ c (10)

is a positive constant. In this case, we have an optimization model where D(α) + cE(α)
is maximized (Metz et al. 2008). The optimal virulence α∗ satisfies

D′(α∗) + cE ′(α∗) = 0, D′′(α∗) + cE ′′(α∗) < 0 (11)

which determines the location of α∗ independently of the function f and the still unknown
function g0.

Specify a continuously differentiable, nondecreasing function f and b, d > 0 arbitrar-
ily. Next, specify twice differentiable trade-off functions (and hence D and E according
to equations (4)) and c > 0 such that the extrema of D and E do not coincide, an inte-
rior optimum exists according to (11), and it satisfies the non-degeneracy condition (32)
given in Appendix B. Alternatively, one can specify the trade-off functions and choose
α∗ arbitrarily within the constraints of (32) as well as that D′(α∗) and E ′(α∗) must have
opposite signs and D′′(α∗)− [D′(α∗)/E ′(α∗)]E ′′(α∗) must be negative; then α∗ is optimal
with the choice c = −D′(α∗)/E ′(α∗).

To construct g0 that satisfies (10), we need to solve the population dynamical equations
(1) for the equilibrium densities Ŝ(α), N̂(α), P̂ (α) that correspond to the resident strain
α. Using (10) and after some rearrangement, the equilibrium equations are

Ŝ(α)
f(N̂(α))

N̂(α)

[
D(α) + cE(α)

]
= 1

Ŝ(α) = N̂(α)−
[
d+ ρ(α)

α

](
b

d
− N̂(α)

)
P̂ (α) =

[
d

α

θ(α)

σ(α)

](
b

d
− N̂(α)

)
Î(α) = P̂ (α)σ(α)/θ(α) (12)

Varying α in some neighbourhood of α∗, we solve these equations for (N̂(α), P̂ (α)) for a
range of α and define g0 according to (10),

g0(P̂ (α)) = cP̂ (α)
f(N̂(α))

N̂(α)
(13)

The non-degeneracy condition (32) derived in Appendix B guarantees the existence of
an open interval (αmin, αmax) which contains the singular virulence α∗ and over which g0
is a differentiable function. Henceforth we restrict virulence to the interval (αmin, αmax)
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and perform the construction locally; one can however extend the incidence and trade-off
functions in any biologically reasonable way beyond the interval (αmin, αmax) without af-
fecting the local properties (in particular, E and M) of the singularity α∗.

Biological considerations furthermore dictate that g(P ) should be an increasing (or at
least non-decreasing) function of P . The necessary and sufficient conditions guaranteeing
this are more stringent and also somewhat more complicated (see (37) in Appendix B).
Nevertheless, for every given f one can choose trade-off functions such that the resulting
function g0 is increasing. A biologically important class of incidence functions f are those
that satisfy f ′(N̂(α∗)) < f(N̂(α∗))/N̂(α∗); this holds for standard incidence (constant
f) and whenever f is concave with f(0) ≥ 0. For this class of incidence functions, and
assuming realistically that θ is increasing and σ is non-increasing, any convex or linear
function θ with θ(0) = 0 leads to an increasing function g0 (this however is not necessary
for g0 to be increasing; see Appendix B).

With g(P ) = g0(P ), the model is an optimization model over the interval (αmin, αmax)
with locally optimal virulence α∗. This implies that no pair of strains may exhibit either
mutual invasibility or mutual exclusion, and therefore M = 0 at α∗. In the next step,
we perturb the incidence function g0 to obtain a model with M < 0 and therefore with
mutual invasibility near α∗.

4.2 Unfolding the optimization model

An important observation is that the singularity condition (6) andM in (8) depend only
on the values and first derivatives of f and g at the equilibrium population densities of the
singular strain (S∗ = Ŝ(α∗), N∗ = N̂(α∗), P ∗ = P̂ (α∗)), which themselves depend only on
the values of f and g. Hence one can take any function g tangent to g0 at the singularity
(g(P ∗) = g0(P

∗) and g′(P ∗) = g′0(P
∗)) in place of g0 and still have a singularity at α∗ with

M = 0. Note that this perturbed model is no longer an optimization model and it can
accommodate either mutual invasibility or mutual exclusion between strains. However,
near the singularity the area of mutual invasibility or mutual exclusion is cusp-shaped
such that, corresponding toM = 0, it vanishes in first order (see Figure 2 below; Dercole
and Geritz in prep.).

Changing the derivative g′(P ∗) while retaining the value g(P ∗) changes M but does
not change the location of the singularity α∗. In Appendix B, we derive the transversality
condition for unfolding M = 0 and show that it is always satisfied, i.e., M changes sign
when g′(P ∗) is varied across g′0(P

∗), whenever the non-degeneracy condition (32) holds
and therefore g′0(P

∗) exists. We can thus always obtain a singularity with M < 0 by
changing the slope of g locally. The derivative ofM with respect to the slope of g is given
in formula (49) of Appendix B. To obtain M < 0, the slope of g should be increased
(decreased) relative to the slope of g0 at P ∗ if (49) is negative (positive). M < 0 im-
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plies mutual invasibility near the singularity and is a necessary condition for evolutionary
branching.

4.3 Obtaining an evolutionary branching point

The last step follows earlier work by de Mazancourt and Dieckmann (2004), Bowers et
al. (2005) and Kisdi (2006); the method used in this section has been applied to various
other models by Geritz et al. (2007), Svennungsen and Kisdi (2009), Boldin et al. (2009),
Best et al. (2010) and others.

Recall that evolutionary branching occurs at α∗ if E > 0 and E +M < 0. We thus
need to tune the model to have E in the interval (0,−M), while keeping the location of

the singularity α∗ fixed and M < 0 as obtained above. The values of f(N∗)
N∗

and g(P ∗)
P ∗

are
now fixed and E does not depend on the derivatives of the incidence functions; hence to
obtain a desired value of E , we need to modify a trade-off function appropriately.

The key observation in this step is that whereas α∗ and M depend only on the first
derivatives of the trade-off functions (via D′ and E ′ in (6) and in (8), respectively), E
depends on the second derivatives (cf. (7)). Hence by changing the convexity of a trade-
off function at α∗ without changing its value and its first derivative at the same point,
we can change E arbitrarily without changing α∗ or M. In particular, we can choose the
convexity of a trade-off such that E > 0 and E +M < 0 are satisfied, and therefore α∗ is
an evolutionary branching point.

5 Example: Standard incidence in direct transmis-

sion

In this section, we illustrate the above methods by investigating the evolution of virulence
assuming standard incidence in direct transmission. In many instances, the rate of en-
counters does not follow the common assumption of mass action, i.e., is not proportional
to population density, because hosts actively seek out conspecifics while they search for
mates or engage in other social interactions. Standard incidence assumes that hosts en-
counter other hosts at a fixed, density-independent rate, which can be seen as an extreme
case of seeking contacts actively. (An alternative interpretation of standard incidence is
to assume that the area occupied by the population changes proportionally to the number
of individuals such that population density is constant, and the rate of encounters is pro-
portional to density as in mass action. The model in (1) however assumes a constant area
by treating population size and density interchangeably, and therefore we do not follow
this alternative interpretation.)
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Under standard incidence, f(N) ≡ f0. To avoid excess notation, we factor the con-
stant f0 into β, and henceforth assume f(N) = 1. Note that with f0 factored in, β is no
longer a probability; it is now measured in units of 1/time and need not be less than 1.

For the example we work out, we assume b = 1 and d = 0.1 for the host life history
parameters and β(α) = 20α

1+α
, θ(α) = 5α

5+α
, γ(α) ≡ γ0 = 1, ρ(α) ≡ ρ0 = 1, σ(α) ≡ σ0 = 0.1

for the pathogen’s trade-offs (note that we shall change the function β in the last step
of constructing a model with evolutionary branching). Moreover, we choose c = 1. By
equation (11), these choices imply that the singular virulence is at α∗ = 1.5146.

We start with solving equations (12) for the equilibrium densities of a given resident
strain α. Because f(N) = 1, the first two of equations of (12) yield a linear equation for
N̂(α), which is readily solved; the other densities follow immediately. The equilibrium
densities are positive for 0.039 < α < 65.027.

In Figure 1a, we plot the parametric curve between P̂ (α) and cP̂ (α)/N̂(α) (cf. (13)).
To obtain the function g0 locally, we restrict virulence to the interval (αmin, αmax) = (1, 2).
This interval contains the singularity at α∗ = 1.5146; moreover, g0(P ) as defined by
g0(P̂ (α)) = cP̂ (α)/N̂(α) is an increasing function of P in the interval 3.716 < P < 4.410,
which is the range of P̂ (α) over α ∈ (1, 2) (cf. Figure 1a). The population dynamics
of the singular strain α∗ in (1) with g(P ) = g0(P ) have a locally asymptotically stable
equilibrium. By continuity, the equilibrium is stable also in an open interval around α∗

and also under small changes in the incidence function g.

With the choice g(P ) = g0(P ), the model is an optimization model and therefore the
singularity is characterized withM = 0. Figure 1b shows the corresponding mutual inva-
sibility plot, i.e., the pairwise invasibility plot superimposed with its mirror image (Geritz
et al. 1998). The pairwise invasibility plot is the sign plot of lnRmut

0 (α2, α1) obtained from
the basic reproduction number in (5), which shows whether strain α2 is able to invade the
resident population of α1 (shown by the first sign in the labels); whereas its mirror image
is the sign plot of lnRmut

0 (α1, α2), which indicates invasion under the reversal of roles
(second sign in the labels). The pairwise invasibility plot in Figure 1b is skew-symmetric
(positive areas mirror into negative and vice versa). This follows directly from the model
being an optimization model and indicates that neither mutual invasibility nor mutual
exclusion occurs for any pair of strains (see Metz et al. (2008) and Gyllenberg and Service
(2011) for further details on pairwise invasibility plots of optimization models).

We unfold the above optimization model first such that the singularity still retains
M = 0. To this end, we choose a new function g1 that is tangential to g0 at P ∗ = P̂ (α∗).
The simplest choice is the linear function

g1(P ) = g0(P
∗) + g′0(P

∗)(P − P ∗) (14)

but this function gives negative incidences at low densities of free pathogens (see Figure
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Figure 1: (a) The dashed line is the parametric curve (P̂ (α), cP̂ (α)/N̂(α)) with α varied
over the full interval of pathogen viability; the arrow indicates the direction of increasing
α. The thick part shows the restriction to α ∈ (αmin, αmax) = (1, 2) that we use for the
function g0 and the dot marks the position of the singularity. (b) The pairwise invasibility
plot and its mirror image superimposed for g(P ) = g0(P ). In the areas marked with
”+,−”, α2 invades α1 whereas α1 does not invade α2; in the areas marked with ”−,+”,
the opposite happens. Since with g(P ) = g0(P ) the model is an optimization model, no
other sign combinations appear.

2a); although it can be truncated at zero with no consequence to the properties of the
singularity, the resulting incidence function is still perhaps not realistic. We shall therefore
use the function

g1(P ) =
P 3

P ∗3

[
g0(P

∗) +

(
g′0(P

∗)− 3
g0(P

∗)

P ∗

)
(P − P ∗)

]
(15)

which is also tangential to g0 at P ∗ (Figure 2a).

Because M depends only on the value and the first derivative of the incidence func-
tion g, M is zero with the choice g(P ) = g1(P ) and therefore the invasion boundaries in
Figure 2b coincide up to first order at the singularity. The model is however no longer an
optimization model; there is a cusp-shaped area of mutual exclusion, where neither strain
can invade the population of the other.

In order to obtain a model with M < 0 and hence with mutual invasibility, we need
to change the slope of the incidence function g at the singularity. The derivative of M
with respect to the slope of g is given by expression (49) in Appendix B, which in the
present model evaluates to 0.3276. Therefore, we decrease the derivative by changing the
incidence function in (15) into

g2(P ) =
P 3

P ∗3

[
g0(P

∗) +

(
(g′0(P

∗)−∆)− 3
g0(P

∗)

P ∗

)
(P − P ∗)

]
(16)
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Figure 2: (a) The grey and black lines show g1 according to (14) and (15), respectively;
both are tangential to the parametric curve in Figure 1 (dashed line) at the singularity.
The thick black line indicates the segment used to obtain the mutual invasibility plot.
(b) The mutual invasibility plot for g(P ) = g1(P ) as given by the linear function in (14).
Note the cusp-shaped area of mutual exclusion (”−,−”). The function in (15) yields a
similar plot but with less separation between the boundaries.

with some positive but sufficiently small ∆. The resulting function is shown in Figure 3a.
In the corresponding mutual invasibility plot (Figure 3b), the invasion boundaries separate
also in first order and thus form a wedge-shaped area of coexistence by mutual invasibility.

Notice that in the first step of unfolding we got a cusp-shaped area of mutual ex-
clusion (Figure 2b), whereas in the present step there is a wedge-shaped area of mutual
invasibility (Figure 3b). Figure 4 depicts schematically how this change happens. As M
decreases from zero (left panel in Figure 4) to slightly negative (middle panel), the curved
invasion boundaries move from tangential to intersecting, such that near the singularity
there appears an area of mutual invasibility, but further away there is still an area of
mutual exclusion. As M becomes increasingly negative, the point of intersection moves
away from the singularity and therefore the area of mutual exclusion disappears. Priklopil
(2012) proved that the scenario depicted in Figure 4 is one of the two generic scenarios that
can occur when M changes sign (in the other scenario, the invasion boundaries intersect
while M is positive). Moreover, Priklopil (2012) also shoved that in the neighbourhood
of the intersection point of the invasion boundaries, there is an area of unprotected co-
existence, i.e., there exist pairs of strains outside the area of mutual invasibility that
can coexist. The extension of equations (1) to two resident strains of the pathogen thus
has multiple attractors of population dynamics for some choices of the incidence functions.

In the last step of the construction, we change the trade-off function β into a new
function βBP that is tangential to β at the singularity (the choice of β is arbitrary, one
could change any of the trade-off functions analogously). Because βBP (α∗) = β(α∗)
and β′BP (α∗) = β′(α∗), this change does not affect the position of the singularity or

13



Figure 3: (a) The black line shows g2 according to (16) with ∆ = 0.5; the thick part is
used to obtain the mutual invasibility plot. At the singularity, g2 has the same value but
a smaller derivative compared to the parametric curve in Figure 1 (dashed line). (b) The
mutual invasibility plot for g(P ) = g2(P ) exhibits a wedge-shaped area of coexistence by
mutual invasibility (”+,+”).

Figure 4: A schematic visualization of how mutual exclusion is replaced with mutual
invasibility (the curvature of the invasion boundaries is exaggerated for clarity). (a)
M = 0, a cusp-shaped area of mutual exclusion is connected to the singularity as in
Figure 2b; (b) M is small negative, a wedge-shaped area of mutual invasibility connects
to the singularity and the area of mutual exclusion shrinks away; (c)M is more strongly
negative, the area of mutual exclusion has disappeared as in Figure 3b.
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the value of M (cf. (6) and (8)). We continue to use the incidence function g2 in
(16) with ∆ = 0.5, which implies M = −0.01915. In order to obtain an evolutionary
branching point, the convexity β′′BP (α∗) must be chosen such that E in (7) is in the interval
(0,−M) = (0, 0.01915); with the trade-off and incidence functions of this example, this
occurs for 1.8084 < β′′BP (α∗) < 2.2618. We therefore choose β′′BP (α∗) = 2 and use the
sigmoidal function

βBP (α) = A+
B

1 + C exp(−kα)
(17)

with k = 1.2 and A,B,C chosen such that βBP is tangential to β at α∗ and has the
required convexity (Figure 5a).

In Figure 5b we show the pairwise invasibility plot obtained with the constructed in-
cidence function g2 and trade-off function βBP . As prescribed by the construction, the
model now exhibits an evolutionary branching point at α∗.

Figure 5: (a) The original trade-off function β (dashed line) and βBP given in (17) with
parameters A = 8.5943, B = 14.5957, C = 19.8738 (black line; the thick part shows the
part used to obtain the pairwise invasibility plot). (b) The pairiwise invasibility plot with
the incidence function g(P ) = g2(P ) given by (16) with ∆ = 0.5 and trade-off function
βBP . In the grey areas strain αmut can invade strain α; the singularity is an evolutionary
branching point.

6 Discussion

In this paper, we introduced a constructive method to find incidence functions that allow
for coexistence by mutual invasibility of strains near an evolutionary singularity. Once
such coexistence is possible, critical function analysis can be used to obtain a trade-off
function that leads to evolutionary branching (Bowers et al. 2005, Kisdi 2006). Evolu-
tionary branching is structurally stable, i.e., it does not depend on the exact particulars
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of the constructed example but holds for similar incidence and trade-off functions as well.
Moreover, only the local properties of these functions matter (up to the first order for
the incidence function and second order for the trade-off function), beyond which the
constructed functions can be chosen arbitrarily without any change to the evolutionary
singularity. This mathematical flexibility helps to construct examples with biologically
realistic functions. However, the construction method may also indicate that no biologi-
cally realistic function yields the requested outcome; this would happen for example if it
turned out that branching at a given singularity would be possible only with a decreasing
incidence function.

Most models of evolutionary ecology assume a number of functions without firm justi-
fications, and it is very difficult to judge to which extent these choices influence the model
predictions. Boldin et al. (2009) found that the conditions for evolutionary branching of
pathogens depend on the shape of the function that describes the host’s density-dependent
birth rate; this is worrisome because the host population dynamics is commonly assumed
on an ad hoc basis. In our present model, there are two incidence functions and five
trade-off functions. Deciding whether this model can lead to evolutionary branching
would be very difficult if one simply tries various incidence and trade-off functions, as in
a random search there is no guarantee for success and failure does not prove non-existence.

For some of the simplest choices of functions, evolutionary branching is indeed im-
possible. This is the case if both incidence functions follow mass action, which results in
an optimization model (Day 2002; Boldin and Kisdi in press). An optimization model
however needs to be changed only slightly in order to obtain an evolutionary branching
point; as Boldin and Kisdi (in press) show, it suffices to assume a concave rather than
a linear function for the environmental incidence function when the direct transmission
follows mass action. This is also the basis of our present construction method. If an op-
timization model can be constructed by the appropriate choice of an incidence function,
then a straightforward unfolding will yield coexistence and evolutionary branching.

There is an unexpected upshot of our construction method. As we unfold a model
with M = 0 into a model with nonzero M, we encounter a situation where the invasion
boundaries generically intersect each other (cf. Figure 4); and in the neighbourhood of
such an intersection point, coexistence occurs also outside the area of mutual invasibility
(Priklopil 2012). Hence the construction method yields not only examples for evolution-
ary branching, but also examples of unprotected coexistence with multiple attractors in
the population dynamics. Most well-known simple models of disease dynamics lack mul-
tiple attractors, but our analysis suggests that with more general choices of the model’s
feedback functions and with multiple strains of the pathogen, multiple attractors appear
naturally.

The incidence functions are important in the adaptive dynamics of the evolving pathogen
because they determine the feedback loop through which the pathogens influence each oth-
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ers’ reproduction (cf. (5)). The feedback loop has a central role in population dynamics
(Diekmann et al. 2001, 2003; Meszéna et al. 2006) and epidemiological dynamics (An-
dreasen and Pugliese 1995) as well as in evolution (Mylius and Diekmann 1995). In most
evolutionary models, however, it is only the dimensionality of the feedback loop that has
received proper attention but not the shape of the feedback functions (see e.g. Pugliese
2002; Dieckmann and Metz 2006; Metz et al. 2008; Svennungsen and Kisdi 2009; Best
et al. 2010). A minimum of two feedback variables may lead to either mutual invasibil-
ity or mutual exclusion, but these two possibilities allow for very different evolutionary
scenarios. Whether the model (with a given set of trade-off functions) exhibits mutual
invasibility rather than mutual exclusion is determined by the shape of the feedback func-
tions, and this is what our analysis focuses on.

The construction method we used to study the evolutionary dynamics of pathogen
virulence is applicable to a wide range of other evolutionary models as well. The key
point is to find feedback functions such that mutual invasibility occurs near a singular-
ity. The position of the singularity remains fixed as long as the values of the feedback
functions remain unchanged (cf. (6)). M however depends also on the slopes (but not
on higher derivatives) of the feedback functions; this is because the feedback variables
depend only on the resident trait value and in M the invasion fitness is differentiated
only once with respect to the resident (cf. (8)). By changing the slopes of the feedback
functions but not their values, one can changeM such that the position of the singularity
remains fixed. If one chooses the slopes such that M < 0, then the condition for mutual
invasibility near the fixed singularity is satisfied. The most straightforward way of finding
feedback functions that yield M < 0 is to construct a set of functions that yield M = 0
and unfold this degeneracy. Mutual invasibility near the singularity makes evolutionary
branching possible when the convexity of a trade-off can be chosen appropriately (Bowers
et al. 2005, Kisdi 2006).

When the incidence and trade-off functions are specified a priori, their values and
derivatives can be changed by changing the parameters that appear in those functions.
The values and derivatives at given points are however linked via the specified functional
forms, which constrains the possible outcomes of the model. Our construction method ef-
fectively treats the values and derivatives of the incidence and trade-off functions directly
as model parameters. In this paper, we focused only on constructing examples for evolu-
tionary branching; but the approach can be extended to characterize all possible functions
that lead to a certain evolutionary outcome (such as evolutionary branching) in terms of
relatively few parameters. This can then be compared with biologically realistic shapes of
functions, obtained from measurements in various experimental systems or by modelling
the biological processes underlying the trade-offs (e.g. Gilchrist and Sasaki 2002; Alizon
and van Baalen 2005; Read and Keeling 2006; Boldin and Diekmann 2008; see Mideo et
al. 2008 for a review) and incidence functions (Breban et al. 2010). In other words, the
adaptive dynamics need not be re-investigated for each case study proposing different in-
cidence and trade-off functions. Instead, a powerful way of analysis is to derive conditions
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for certain evolutionary outcomes without sacrificing generality with ad hoc assumptions
about the functions involved in the model, and then compare these conditions with the
actual functions obtained in various concrete systems.
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7 Appendix A

In this Appendix, we derive the basic reproduction number of a mutant strain, Rmut
0 .

The basic reproduction number is the number of new infections made by an infected host
during the entire lifetime of the infection via either transmission modes, i.e., the leading
eigenvalue of the next-generation matrix (Diekmann and Heesterbeek, 2000).

The mutant’s dynamics in (2) can be written as(
İmut
Ṗmut

)
=

(
βmut

f(N)
N
S − (d+ αmut + ρmut) γmut

g(P )
P
S

θmut −σmut

)(
Imut
Pmut

)
(18)

where the shorthand βmut = β(αmut) etc. is used for brevity. To obtain the next-
generation matrix, we write the matrix in (18) as F + Σ−V, where

F =

(
βmut

f(N)
N
S γmut

g(P )
P
S

0 0

)
(19a)

is the reproduction matrix,

Σ =

(
0 0

θmut 0

)
(19b)

is the transition matrix and

V =

(
d+ αmut + ρmut 0

0 σmut

)
(19c)

is the matrix of death rates. The next-generation matrix is then given by

F(V −Σ)−1 =

(
S

d+αmut+ρmut

[
βmut

f(N)
N

+ θmut

σmut
γmut

g(P )
P

]
γmut

σmut

g(P )
P
S

0 0

)
(20)

(Diekmann and Heesterbeek, 2000). This matrix is of rank 1 and its leading eigenvalue
is its first row, first column element, which gives Rmut

0 in (3).

The next-generation theorem (Diekmann and Heesterbeek 2000, theorem 6.13; van den
Driessche and Watmough 2002, theorem 2; Hurford et al. 2010) states that the trivial
equilibrium of (18) is stable (unstable) if Rmut

0 < 1 (Rmut
0 > 1), provided that F and

(V − Σ)−1 are nonnegative matrices and all eigenvalues of (V − Σ) are positive. It is
straightforward to see that these conditions are satisfied; F and

(V −Σ)−1 =

 1
d+αmut+ρmut

0

θmut

σmut

1
d+αmut+ρmut

1
σmut

 (21)
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are indeed nonnegative, and the eigenvalues of the triangular matrix

V −Σ =

(
d+ αmut + ρmut 0

−θmut σmut

)
(22)

are its diagonal elements, which are both positive. Hence the spectral bound of (2) is
positive if and only if Rmut

0 in (3) exceeds 1.

8 Appendix B

Here we derive non-degeneracy and transversality conditions guaranteeing respectively (i)
that there is an interval (αmin, αmax) which contains the singularity α∗ and over which
g0(P̂ (α)) defined in (13) is an (increasing) function; and (ii) that changing the derivative
of g at the singularity relative to that of g0 changes the cross derivative M in (8) from
zero to negative.

8.1 Preliminaries

The equilibrium population densities of a resident population harbouring an arbitrary
strain α are given by the equations

Ŝ(α)

[
D(α)

f(N̂(α))

N̂(α)
+ E(α)

g(P̂ (α))

P̂ (α)

]
= 1 (23a)

Ŝ(α) = N̂(α)−
[
d+ ρ(α)

α

](
b

d
− N̂(α)

)
(23b)

P̂ (α) =

[
d

α

θ(α)

σ(α)

](
b

d
− N̂(α)

)
(23c)

Î(α) = P̂ (α)σ(α)/θ(α) (23d)

These are the same as equations (12) except that we have not substituted (10) so that g
is arbitrary. The first three equations are closed so that the last of these equations will
not be needed. Because f and g are unknown, these equations cannot be solved explicitly.
Substituting (23b) and (23c) into (23a) gives a single equation for N̂(α), and once it is
solved, Ŝ(α) and P̂ (α) follow immediately.

We shall also need the derivatives N̂ ′(α), Ŝ ′(α) and P̂ ′(α). The latter two are imme-
diate from (23b) and (23c) and hold for all α:

Ŝ ′(α) = N̂ ′(α)

[
α + d+ ρ(α)

α

]
−
(
b

d
− N̂(α)

)[
d+ ρ(α)

α

]′
(24a)

P̂ ′(α) =

[
d

α

θ(α)

σ(α)

]′(
b

d
− N̂(α)

)
− N̂ ′(α)

[
d

α

θ(α)

σ(α)

]
(24b)
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To obtain N̂ ′ at the singularity, differentiate (23a) and use (6) and (23a) to arrive at

Ŝ ′(α∗)

S∗
+ S∗

[
D(α∗)

(
f(N)

N

)′
N=N∗

N̂ ′(α∗) + E(α∗)

(
g(P )

P

)′
P=P ∗

P̂ ′(α∗)

]
= 0 (25)

where starred densities are the equilibrium densities of the singular strain α∗ (i.e., S∗ =
Ŝ(α∗), N∗ = N̂(α∗), P ∗ = P̂ (α∗)). Substituting (24a) and (24b) yields a linear equation
for N̂ ′(α∗).

8.2 Non-degeneracy condition for constructing g0

g0 is defined in (13) as the parametric curve (P̂ (α), g0(P̂ (α)) = (P̂ (α), cP̂ (α)f(N̂(α))

N̂(α)
).

This parametric curve need not be a function (cf. Figure 1), but it is a function over any
interval of α in which P̂ ′(α) does not vanish. By continuity, there exists such an interval
(αmin, αmax) around the singularity α∗ if P̂ ′(α∗) 6= 0.

In this section, we calculate the derivatives N̂ ′(α∗), Ŝ ′(α∗) and P̂ ′(α∗) assuming
g(P ) = g0(P ); these derivatives will be used also in the remainder of this appendix.
The condition for P̂ ′(α∗) 6= 0 appears in (32).

By differentiating (13) with respect to α, we have(
g0(P )

P

)′
P̂ ′(α) = c

(
f(N)

N

)′
N̂ ′(α) (26)

Substituting this into (25) and using (23a) and (13) leads to

Ŝ ′(α∗)

S∗
f(N∗)

N∗
+

(
f(N)

N

)′
N=N∗

N̂ ′(α∗) = 0 (27)

and with (24a) and (23b) this yields

N̂ ′(α∗)

N∗
=

f(N∗)
N∗

(
b
d
−N∗

)[d+ρ(α)
α

]′
α∗

f(N∗)
N∗

b
d

[d+ρ(α∗)
α∗

]
+ f ′(N∗)S∗

(28)

Notice that since N∗ < b
d

for all positive virulence and by assumption ρ′(α) ≤ 0, the
numerator of (28) is negative; and because f is assumed to be nondecreasing, the denom-
inator is strictly positive. N̂ ′(α∗) is therefore always negative.

By substituting (28) into (24a) and using (23b) and (28), we obtain

Ŝ ′(α∗)

S∗
=
N̂ ′(α∗)

N∗

[
1− f ′(N∗)

f(N∗)
N∗

]
(29)
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Because N̂ ′(α∗) is negative, Ŝ ′(α∗) is negative if and only if

f ′(N∗) <
f(N∗)

N∗
(30)

Note that this condition holds if f is concave with f(0) ≥ 0.

From (24b) and (23c), we have

P̂ ′(α∗)

P ∗
=

[
d
α
θ(α)
σ(α)

]′
α∗[

d
α
θ(α)
σ(α)

]
α∗

− N̂ ′(α∗)(
b
d
−N∗

) (31)

Substituting (28) and rearranging shows that P̂ ′(α∗) 6= 0 if and only if[
d

α

θ(α)

σ(α)

]′
α∗
6=
[
d

α

θ(α)

σ(α)

]
α∗

f(N∗)
[d+ρ(α)

α

]′
α∗

f(N∗)
N∗

b
d

[d+ρ(α∗)
α∗

]
+ f ′(N∗)S∗

(32)

Note that since N̂ ′(α∗) is negative in (24b),[
d

α

θ(α)

σ(α)

]′
α∗

=
d[θ′(α∗)α∗σ(α∗)− θ(α∗)σ(α∗)− θ(α∗)α∗σ′(α∗)]

(α∗σ(α∗))2
≥ 0 (33)

ensures that P̂ ′(α∗) is positive. This sufficient condition holds for example if θ(α)/σ(α)
is a convex function of α with θ(0) = 0. If one assumes realistically that the shed-
ding rate is an increasing function of virulence (θ′(α) > 0) and the decay rate is non-
increasing (σ′(α) ≤ 0), then (33) holds if θ is linear or convex with θ(0) = 0 (such that
θ′(α)α ≥ θ(α)).

8.3 Conditions guaranteeing that g0 is increasing

Biological considerations dictate that the incidence function g should be increasing (or at
least non-decreasing). In this section, we investigate the conditions under which g0 is an
increasing function in the vicinity of P ∗.

Assuming P̂ ′(α∗) 6= 0, from (26) we obtain

g′0(P
∗) = c

[
f(N∗)

N∗
+ P ∗

N̂ ′(α∗)

P̂ ′(α∗)

(
f(N)

N

)′
N=N∗

]
(34)

which, by substituting
(f(N)

N

)′
N=N∗

from (27) and using (13), simplifies to

g′0(P
∗) =

g0(P
∗)

P ∗

[
1− P ∗

S∗
Ŝ ′(α∗)

P̂ ′(α∗)

]
(35)
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g′0(P
∗) is obviously positive if Ŝ ′(α∗)/S∗ and P̂ ′(α∗)/P ∗, given respectively in (29) and

(31), have different signs; (30) together with (33) are therefore a simple set of sufficient
conditions. These are however somewhat restrictive: on the one hand, (30) limits the
choice of f locally; and on the other hand, (33) is not necessarily satisfied by biologically
plausible trade-offs.

To give necessary and sufficient conditions for g′0(P
∗) > 0, note that g′0(P

∗) changes

sign (i) when P ∗

S∗
Ŝ′(α∗)

P̂ ′(α∗)
= 1; by (28), (29) and (31), this occurs at

[
d

α

θ(α)

σ(α)

]′
α∗

=

[
d

α

θ(α)

σ(α)

]
α∗

[
f(N∗) +

(
b
d
−N∗

)(f(N∗)
N∗
− f ′(N∗)

)][d+ρ(α)
α

]′
α∗

f(N∗)
N∗

b
d

[d+ρ(α∗)
α∗

]
+ f ′(N∗)S∗

(36)

and (ii) when P̂ ′(α∗) = 0 and changes sign, which occurs when (32) is violated. For either

sufficiently large positive or large negative values of
[
d
α
θ(α)
σ(α)

]′
α∗

, P̂ ′(α∗) is large in absolute

value (cf. (24b)), and therefore g′0(P
∗) is positive irrespectively of the signs of Ŝ ′(α∗)

and P̂ ′(α∗). Thus g′0(P
∗) is negative inbetween the thresholds (i) and (ii), and positive

outside. Threshold (i) in (36) is lower than (ii) in (32) if and only if f ′(N∗) < f(N∗)
N∗

(recall

that b
d
−N∗ > 0 and

[d+ρ(α)
α

]′
α∗
< 0).

In summary, g′0(P
∗) is positive if and only if[

d
α
θ(α)
σ(α)

]′
α∗[

d
α
θ(α)
σ(α)

]
α∗

/∈ [m,M ] (37)

where m and M are given as follows:

(a) if f ′(N∗) < f(N∗)
N∗

then

m =

[
f(N∗) +

(
b
d
−N∗

)(
f(N∗)
N∗
− f ′(N∗)

)][
d+ρ(α)
α

]′
α∗

f(N∗)
N∗

b
d

[
d+ρ(α∗)
α∗

]
+ f ′(N∗)S∗

(38)

M =
f(N∗)

[d+ρ(α)
α

]′
α∗

f(N∗)
N∗

b
d

[d+ρ(α∗)
α∗

]
+ f ′(N∗)S∗

(39)

(b) if f ′(N∗) > f(N∗)
N∗

then m and M are reversed.

If f ′(N∗) = f(N∗)
N∗

then m and M coincide and g′0(P
∗) is always positive when it exists,

i.e., when (32) is satisfied.
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8.4 Transversality condition for unfolding M = 0

In this section, we investigate how M changes with changing g′(P ∗). Let s denote the
slope of the incidence function g at the singularity (i.e., s = g′(P ∗)) and let s0 be the
slope of g0 at the same point (s0 = g′0(P

∗)). In (8), M is given as

M = S∗

[
D′(α∗)

(
f(N)

N

)′
N=N∗

N̂ ′(α∗) + E ′(α∗)

(
g(P )

P

)′
P=P ∗

P̂ ′(α∗)

]
(40)

Changing the derivative s = g′(P ∗) [while leaving the value of g(P ∗) unchanged] does
not affect the equilibrium densities of strain α∗ so that N∗, S∗ and P ∗ remain the same;
and it does not affect the singularity condition (6) so that α∗ remains singular. The
derivatives N̂ ′(α∗) and P̂ ′(α∗) however do change. Using(

g(P )

P

)′
P=P ∗

=
1

P ∗

[
s− g(P ∗)

P ∗

]
(41)

and differentiating (40) with respect to s yields

dM
ds

= S∗

[
D′(α∗)

(
f(N)

N

)′
N=N∗

dN̂ ′(α∗)

ds
+ E ′(α∗)

(
g(P )

P

)′
P=P ∗

dP̂ ′(α∗)

ds
+

+E ′(α∗)
P̂ ′(α∗)

P ∗

]
(42)

To obtain the derivatives dN̂ ′(α∗)
ds

and dP̂ ′(α∗)
ds

, differentiate (25) implicitly with respect
to s using (41). This yields

dŜ ′(α∗)

ds
+ S∗2

[
D(α∗)

(
f(N)

N

)′
N=N∗

dN̂ ′(α∗)

ds
+

+E(α∗)

(
g(P )

P

)′
P=P ∗

dP̂ ′(α∗)

ds
+ E(α∗)

P̂ ′(α∗)

P ∗

]
= 0 (43)

Substituting

dŜ ′(α∗)

ds
=

[
α∗ + d+ ρ(α∗)

α∗

]
dN̂ ′(α∗)

ds
(44a)

dP̂ ′(α∗)

ds
= −

[
d

α∗
θ(α∗)

σ(α∗)

]
dN̂ ′(α∗)

ds
(44b)

obtained directly from (24a,b), we arrive at

dN̂ ′(α∗)

ds

[
α∗ + d+ ρ(α∗)

α∗
+ S∗2

(
D(α∗)

(
f(N)

N

)′
N=N∗

−

−E(α∗)

(
g(P )

P

)′
P=P ∗

d

α∗
θ(α∗)

σ(α∗)

)]
= −E(α∗)S∗2

P̂ ′(α∗)

P ∗
(45)
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which, using (25) and (24a,b) again, simplifies to

dN̂ ′(α∗)

ds

[(
b

d
−N∗

)[
d

α

θ(α)

σ(α)

]′
α∗

(
1− S∗2E(α∗)

(
g(P )

P

)′
P=P ∗

)]
=

= −E(α∗)S∗2
P̂ ′(α∗)

P ∗
N̂ ′(α∗) (46)

This is a simple linear equation for dN̂ ′(α∗)
ds

; and dP̂ ′(α∗)
ds

follows from (44b) immediately.

With g(P ) = g0(P ), α∗ is optimal so that neither mutual invasibility nor mutual
exclusion occurs near the singularity; and therefore at s = s0, M is zero. By (40) and
(24b) this implies

D′(α∗)

(
f(N)

N

)′
N=N∗

− E ′(α∗)
(
g0(P )

P

)′
P=P ∗

[
d

α∗
θ(α∗)

σ(α∗)

]
=

= −E
′(α∗)

N̂ ′(α∗)

(
g0(P )

P

)′
P=P ∗

(
b

d
−N∗

)[
d

α

θ(α)

σ(α)

]′
α∗

(47)

This we use to simplify dM/ds at s = s0. From (42) and (44b) we have

dM
ds

= S∗

[
E ′(α∗)

P̂ ′(α∗)

P ∗
+
dN̂ ′(α∗)

ds
× (48)

×

(
D′(α∗)

(
f(N)

N

)′
N=N∗

− E ′(α∗)
(
g(P )

P

)′
P=P ∗

[
d

α∗
θ(α∗)

σ(α∗)

])]
and with (47) this becomes

dM
ds

∣∣∣∣
s=s0

= S∗

[
E ′(α∗)

P̂ ′(α∗)

P ∗
− dN̂ ′(α∗)

ds

∣∣∣∣
s=s0

×

×E
′(α∗)

N̂ ′(α∗)

(
g0(P )

P

)′
P=P ∗

(
b

d
−N∗

)[
d

α

θ(α)

σ(α)

]′
α∗

]
=

=
S∗E ′(α∗) P̂

′(α∗)
P ∗

1 + E(α∗)S∗ g0(P
∗)

P ∗
Ŝ′(α∗)

P̂ ′(α∗)

(49)

where in the last step we substituted dN̂ ′(α∗)
ds

from equation (46), using (41) with s0 =
g0(P ∗)
P ∗

[
1− P ∗

S∗
Ŝ′(α∗)

P̂ ′(α∗)

]
(cf. (35). In (49), the derivatives N̂ ′(α∗), Ŝ ′(α∗) and P̂ ′(α∗) are from

equations (28), (29) and (31), respectively.

Recall that E ′(α∗) cannot be zero and that the non-degeneracy condition (32) guar-
antees P̂ ′(α∗) 6= 0. dM

ds

∣∣
s=s0

therefore does not vanish, and perturbing s = g′(P ∗) from

s0 = g′0(P
∗) will unfold the degeneracyM = 0. To obtainM < 0 so that there is mutual

invasibility near the singularity, the sign of s− s0 should be opposite to that of (49).
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