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The multivariate Wright-Fisher process with mutation:

Moment-based analysis and inference

using a hierarchical Beta model
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Running title: Moment-based analysis of the multivariate Wright-Fisher model.

Abstract

We consider the diffusion approximation of the multivariate Wright-Fisher process with
mutation. Analytically tractable formulae for the first- and second-order moments of
the allele frequency distribution are derived, and the moments are subsequently used
to better understand key population genetics parameters and modelling frameworks. In
particular we investigate the behaviour of the expected homozygosity (the probability
that two randomly sampled genes are identical) in the transient and stationary phases,
and how appropriate the Dirichlet distribution is for modelling the allele frequency
distribution at different evolutionary time scales. We find that the Dirichlet distribution
is adequate for the pure drift model (no mutations allowed), but the distribution is not
sufficiently flexible for more general mutation models. We suggest a new hierarchical
Beta distribution for the allele frequencies in the Wright-Fisher process with a mutation
model on the nucleotide level that distinguishes between transitions and transversions.

Key words: Allele frequency, diffusion, Dirichlet model, hierarchical Beta, moments,
multivariate Wright-Fisher.

1 Introduction

Present day data sets for studying genetic variation within and between species often
consists of millions of markers and hundreds to thousands of individuals. The huge num-
ber of individuals makes tree-based analyses (e.g. based on phylogenetics or coalescent
theory) difficult because the number of possible trees increases very fast with the number
of individuals. This difficulty is pronounced when studying closely related species, where
incomplete lineage sorting or deep coalescence events can distort phylogenetic analyses
(Maddison, 1997). The discrepancy between species trees and gene trees can be taken
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into account by using multispecies coalescence methods (Degnan and Rosenberg, 2009;
Heled and Drummond, 2010). However, this more detailed framework is computation-
ally more challenging because the unknown gene trees need to be marginalized out from
the model in order to carry out species tree inference. In some special cases the gene
trees can be marginalized out using dynamic programming techniques (e.g. Bryant,
Bouckaert, Felsenstein et al., 2012), but in general it is neccessary to perform large-scale
Monte Carlo simulations to do the integration (Heled and Drummond, 2010).

An attractive alternative to tree-based methodology is to model the allele frequencies
over time in terms of a diffusion process, which is derived as an infinite population limit
of the Wright-Fisher model. Unfortunately the transition density for the diffusion pro-
cess corresponding to the basic Wright-Fisher model with mutation remains unknown;
the solution to the Fokker-Planck equation is not available (Ewens, 2004, Chapter 5).
Numerical approximations have been proposed to approximate the transition density,
but they are limited to a small number of populations or species due to computational
complexity (e.g. Gutenkunst, Hernandez, Williamson et al. 2009). The numerical solu-
tions also assume that each site has experienced at most one mutation and consequently
has at most two alleles, which restricts their usage to closely related samples. For more
distantly related samples where multiallelic loci are expected to occur, it is important
to generalize to the multivariate case (Jenkins, Mueller and Song, 2014).

An alternative strategy to numerically solve the Fokker-Planck equation is to ap-
proximate the transition density by a parametric distribution. This methodology has a
long tradition in population genetics and computational phylogenetics starting from the
seminal work by Edwards, Cavalli-Sforza and Felsenstein in the 60’s and 70’s (Edwards
and Cavalli-Sforza, 1964; Cavalli-Sforza and Edwards, 1967; Felsenstein, 1973), and con-
tinuing to present day (Nicholson et al. 2002; Gaggiotti and Foll, 2010; Siren, Marttinen
and Corander, 2011; Pickrell and Pritchard, 2012). However, most of the methods have
been developed for situations where the time span is sufficiently short to ignore muta-
tions and consider only pure drift. Furthermore, the parametric distributions have been
either the Gaussian or Dirichlet distributions.

We derive the first- and second-order moments of the multi-allelic Wright-Fisher
process with mutation and use the moments to characterise genetic variation and to
fit parametric models. Our approach generalizes the work by Siren (2012) and Siren,
Hanage and Corander (2013) to arbitrary mutation models. In the first part of the paper
(Section 2) we provide new analytically tractable formulas for the first- and second-order
moments of the multivariate Wright-Fisher model with mutation. These new formulas
allows us to characterise the expected mean and (co)variance of the frequency of an
allele, and in particular we investigate in detail the expected homozygosity (Section 3).
Furthermore we demonstrate how our formulas can be used to re-derive previous results
for the various general symmetric models considered in Griffiths (1980). We emphasize
that our mutation stucture is completely unrestricted.

In the second part of the paper (Section 4) we use the expressions for the means
and (co)variances of the allele frequencies to obtain insight into approximate models
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for the allele frequency distribution over time. In particular we find that while the
Dirichlet model is a suitable approximate model for the allele frequency distribution in
the Wright-Fisher process with no mutation (pure drift), it is not appropriate for the
Wright-Fisher model with a mutation structure that corresponds to the Kimura model.
Instead, we propose a novel hierarchical Beta model for the Wright-Fisher process with
Kimura mutations. The paper ends with a brief summary of our main findings, and a
discussion of similar methodology.

2 First- and second-order moments in the Wright-

Fisher with mutation process

We consider a constant-sized haploid population with N individuals. We denote by
z(m) = (z1(m), . . . , zK(m)) the row-vector of the number of alleles 1, . . . , K in genera-
tion m, and we let U be the K × K mutation probability matrix such that Uij is the
probability for a mutation from allele i to allele j in a generation. The Wright-Fisher
model with mutation is then given by the multinomial distribution

z(m+ 1)|z(m) ∼ Mult(N, x(m)U), (1)

where x(m) = z(m)/N is the allele frequency in generation m.
We are now in a position to formulate our main result:

Theorem 1. General formulas for the mean and variance in the Wright-Fisher
with mutation process
Consider the K-allele Wright-Fisher model with mutation probability matrix U and with
initial allele frequency x(0). Define the rate matrix Q = N(U − I). In the diffusion
approximation the mean of the allele frequency is given by

E[x(t)|x(0)] = x(0)eQt, (2)

and the variance is given by

Var[x(t)|x(0)] =

∫ t

0

e−s(eQs)′diag{x(0)eQ(t−s)}(eQs)ds− (eQt)′x(0)′x(0)eQt(1− e−t). (3)

Here we make use of a slight abuse of notation such that x(t) is the allele frequency
distribution in generation Nt.

Despite the huge interest in the Wright-Fisher process we believe the clean formula
for the variance is a new result.

Proof. Repeated use of the law of total expectation gives the mean value

E[x(m)] = E
[
E[x(m)|x(m− 1)]

]
= E[x(m− 1)U ] = E[x(m− 1)]U = · · · = x(0)Um,
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where for ease of notation we have omitted the conditioning on x(0). We approximate Um

as follows

Um = U tN =
[{
I + (U − I)

}N]t
=
[{
I +Q/N

}N]t ≈ (eQ)t = eQt,

where we scale time as m = tN and define Q = N(U − I). Note that with this
definition Q becomes a rate matrix where off-diagonal entries are non-negative and rows
sum to zero. Thus we have, with a small abuse of notation,

E[x(t)|x(0)] = x(0)eQt.

The proof of the variance is more involved, but the main idea is to make repeated use
of the law of total variance. The proof can be found in Appendix A.

Very many procedures are available for calculating matrix exponentials (e.g. Moler
and Van Loan, 2003), so a numerical calculation of the mean is straight forward. Calcu-
lating the variance is more difficult. In Appendix B we provide an analytical expression
for the mean and variance in the case of a reversible mutation matrix. The expression
is based on an eigenvalue decomposition of the rate matrix.

There is a long tradition for careful investigation of mutation models in phylogenetics
(e.g. Felsenstein, 2004, Chapter 13). In this paper we consider in particular the pure drift
model (U = I; see Corollary 3 and Corollary 5), the Jukes-Cantor model (Uij = u, i 6= j;
see Corollary 4 and Corollary 8), and the symmetric model (U = U ′; see Theorem 7
and Theorem 9). We give special attention to the Kimura model (Felsenstein, 2004,
page 196-200) with K = 4 and mutation probability matrix

Uij =


κu if mutation i→ j is a transition
u if mutation i→ j is a transversion
1− (κ+ 2)u if i = j

or, equivalently,

Qij =


Nκu if mutation i→ j is a transition
Nu if mutation i→ j is a transversion
−N(κ+ 2)u if i = j.

(4)

We parameterize the rate matrix using either α = Nκu (the rate for a transition) and
β = Nu (the rate for a transversion), or using κ = α/β (the ratio of the transition rate
and transversion rate) and θ = α + 2β = N(κ+ 2)u (the mutation rate).

The matrix exponential for the Kimura model is given by

eQt =
1

4
E +

1

4
e−4βtA+

1

2
e−2(α+β)tB, (5)
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where E is the matrix with one in every entry,

A =


1 1 −1 −1
1 1 −1 −1
−1 −1 1 1
−1 −1 1 1

 and B =


1 −1 0 0
−1 1 0 0
0 0 1 −1
0 0 −1 1

 .

In Appendix C we derive, based on Theorem 1, analytical expressions for the Kimura
model for any initial frequency. In Figure 1 we show as solid lines the mean and variance
for the Kimura model with parameters κ = 10, θ = 1 and a initial frequency x(0) =
(70, 25, 4, 1)/100 (in the order A,G,C,T). We note that convergence toward the stationary
values is not always monotone and that it may take a long time to converge, which implies
that drift is important even with this high mutation rate.

In Figure 1 we also show a fit to the mean and (co)variance structure at various time
points. The dashed lines correspond to a fit based on the Dirichlet distribution. The
Dirichlet distribution with K = 4 categories has 4 parameters. Three of these parameters
determine the mean, leaving one parameter to model the (co)variance structure. It is
clear from the figure that the Dirichlet distribution is not flexible enough to capture the
behaviour of the second-order moments of the allele frequencies. In particular one single
parameter is clearly not enough to describe the covariance of the stationary distribution;
the covariance at stationarity has two limiting points corresponding to a transition or a
transversion.

In Figure 1 we also show a fit based on the hierarchical Beta distribution that we
define in Section 4 below. The hierarchical Beta distribution has 6 parameters. Three of
the parameters fully determine the mean, and the remaining 3 parameters nicely capture
the (co)variance structure of the model (dotted points).

In order to demonstrate the applicability of Theorem 1 we consider the problem of
determining the mean and variance in the case where the initial frequency is the uniform
distribution. From the limiting values when the evolutionary time gets large we can then
obtain the stationary values of the mean, variance, and covariance. In Figure 1 we have
included these stationary points as solid horizontal lines.

Corollary 2. Mean and variance in the Kimura model with uniform initial
frequency
In the Kimura model with x(0) = (1, 1, 1, 1)/4 = e/4 the mean is given by

E[x(t)|x(0) = e/4] = e/4,

and the variance is given by

Var[x(t)|x(0) = e/4] =
1

16

{ 1

8β + 1
(1− e−(8β+1)t)A+

2

4(α + β) + 1
(1− e−(4(α+β)+1)t)B

}
→ 1

16

{ A

8β + 1
+

2B

4(α + β) + 1

}
.
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Figure 1: The Kimura model as an illustration of Theorem 1. The initial allele frequen-
cies are (70, 25, 4, 1)/100. The three plots show the four means, four variances and six
covariances as a function of time. Time is scaled such that one time unit corresponds
to N generations where N is the population size. The solid lines are the true functions
of the moments. The dashed line is a fit based on the Dirichlet distribution, and the
bullets is a fit based on the hierarchical Beta distribution proposed in Section 4. The
hierarchical Beta model fits the true behaviour of the means and (co)variances much
better than the Dirichlet model. The values at stationarity come from Corollary 2.

6



Proof. The corollary follows by inserting the matrix exponential (5) in Theorem 1.

The special case of pure drift also follows easily from Theorem 1:

Corollary 3. Mean and variance in the pure drift model
If U = I we get the mean and variance

E[x(t)|x(0)] = x(0)

Var[x(t)|x(0)] = (1− e−t)
[
diag{x(0)} − x(0)′x(0)

]
.

Proof. In the pure drift case we have U = I and therefore Q = 0 and eQt = I. Now the
result is an immediate consequence of Theorem 1.

A natural approximate model for the allele frequency distribution in the pure drift
model is to assume the Dirichlet distribution

x(t)|x(0) ∼ Dir(α),

where α = (α1, . . . , αK) is the vector of K free parameters. The reason is that the mean
and variance in the Dirichlet model are

E[x(t)|x(0] = α/α0 (6)

Var[x(t)|x(0)] =
1

α0 + 1

[
diag{α/α0} − (α/α0)

′(α/α0)
]

(7)

where α0 =
∑K

k=1 αk, and therefore we have a 1-1 correspondence between (x(0), t)
and α, namely 1 − e−t = 1/(α0 + 1) and x(0) = α/α0. Indeed this model is known as
the Balding-Nichols model; we refer to Balding and Steele (2015, Section 5.3.2) for more
information. We note that the fixation index FST = 1/(α0 + 1), and in the case of pure
drift we have FST = 1 − e−t (see Balding and Steele, 2015, Section 5.2, regarding the
FST index).

Another special case where we can obtain rather nice explicit analytical results is the
Jukes-Cantor model:

Corollary 4. Mean and variance in the Jukes-Cantor model
In the Jukes-Cantor model with rate matrix Q = (qij) given by

qij =

{
−q if i = j
q/(K − 1) if i 6= j,

we get the mean

E[x(t)|x(0)] = e−εt/2(x(0)− e/K) + e/K, (8)

7



and variance

Var[x(t)|x(0)] = (9)[
I − E/K

]
/K

1

1 + ε

(
1− e−(1+ε)t

)
−

(x(0)− e/K)′(x(0)− e/K)e−εt(1− e−t) +[
diag(x(0)− e/K)− (x(0)− e/K)′e/K − (e/K)′(x(0)− e/K)

]
×

e−εt/2
1

1 + ε/2

(
1− e−(1+ε/2)t

)
.

Here e is the vector of length K with 1 in every entry, E = e′e is the K × K matrix
with 1 in every entry, and ε = 2qK/(K − 1).

Proof. In matrix notation the matrix exponential is given by

eQt = e−εt/2(I − E/K) + E/K, (10)

and the expression for the mean follows immediately from Theorem 1. The expression
for the variance requires more calculations; the details are provided in Appendix D.

A few comments are in order. We first note that for large t we have the mean and
variance

E[x(t)|x(0)] = e/K and Var[x(t)|x(0)] =
1

1 + ε

[
I − E/K

]
/K,

as expected because the stationary distribution is the Dirichlet distribution with param-
eter ε(e/K) (see e.g. Ewens, 2004, page 195).

Second we note from (7) that in order for the Dirichlet model to be appropriate, the
variance should be proportional (at least approximately) to the following function of the
mean

diag{E[x(t)]} − E[x(t)]′E[x(t)] =

diag{e−εt/2(x(0)− e/K) + e/K} −
(e−εt/2(x(0)− e/K) + e/K)′(e−εt/2(x(0)− e/K) + e/K) =

(I − E/K)/K −
(x(0)− e/K)′(x(0)− e/K)e−εt +[
diag(x(0)− e/K)− (x(0)− e/K)′e/K − e′/K(x(0)− e/K)

]
e−εt/2 (11)

where we used expression (8) for the mean of the fully symmetric model. We observe, as
expected from the considerations regarding the pure drift model, that expression (11) is
approximately proportional to expression (9) with proportionality constant (1−exp(−t))
for small ε. Furthermore we observe, using that for small t we have the Taylor expansion
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(1−exp(−(1+a)t))/(1+a) ≈ t, that for small evolutionary distances the two expressions
are also approximately proportional with constant of proportionality t and regardless of
the mutation rate ε.

We conclude that the Dirichlet model is a good approximation of allele frequency
distribution in the Wright-Fisher with a Jukes-Cantor mutation model when the muta-
tion rate is small or the evolutionary distance is small. In general, however, the Dirichlet
model is not appropriate. For example in Figure 1 we demonstrated that for the Wright-
Fisher with Kimura mutations the Dirichlet model has too few parameters to capture
the covariance structure. In Section 4 below we propose a new model for the Wright-
Fisher with Kimura mutations: The hierarchical Beta model. We demonstrate that the
hierarchical Beta model is sufficiently flexible to model allele frequency behaviour for
the Kimura mutation model.

Before discussing modelling strategies we demonstrate how the new formulas for the
first- and second-order moments can be used to investigate the expected behaviour of
homozygosity.

3 Homozygosity in the Wright-Fisher model

Griffiths (1980) provide formulas for the expected behaviour of the homozygosity in the
transient and stationary phases. The homozygosity

F (t) =
K∑
k=1

xk(t)
2 = x(t)x(t)′

is the probability of sampling two genes of the same allelic type. The expected homozy-
gosity is a function of the mean and variance

E[F (t)] = trace(Var[x(t)]) + E[x(t)]E[x(t)]′. (12)

Nice analytical expressions for the expected homozygosity are generally not available
in the Wright-Fisher with general mutation model, but Griffiths (1980) provided several
special cases where analytical expressions are available. In this section we re-derive
three main results in Griffiths (1980) using the formulas from Theorem 1. The results
all follow easily from Lemma 6 below.

In order to illustrate the results in this section we show in Figure 2 in blue the
expected homozygosity as a function of time for the Kimura model with κ = 10, initial
frequencies (4, 1, 0, 0)/5 (in light blue) and (4, 0, 1, 0)/5 (in dark blue), and three different
values of the mutation rate θ. These curves are based on our main Theorem 1 and
the formula for homozygosity (12). The Jukes-Cantor model (in purple) is based on
Corollary 8 with ε = 2θK/(K−1), the curves for the pure drift model (in red) are based
on Corollary 5, and the homozygosity at stationarity is calculated from Theorem 7 below.
Finally we discuss the curves in green in connection with Theorem 9 below.
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Figure 2: The Kimura model illustrates the various results on the expected homozygosity
as a function of time. The blue curves give the expected homozygosity based on (12)
and our main Theorem 1 for the Kimura model (4) with κ = 10 and three different
values of θ = 1, θ = 0.1, and θ = 0.01. The green curve is the expected homozygosity
with permutation of the initial frequencies (Theorem 9), and is a linear combination of
the two corresponding blue curves (see text after Theorem 9). The Jukes-Cantor model
(in purple), the pure drift model (in red) and the homozygosity at stationarity (black
horizontal lines) are based on Corollary 8, Corollary 5 and Theorem 7.
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Two main forces are driving the allele frequency distribution in the Wright-Fisher
model with mutation, namely genetic drift and introduction of new mutations. With a
small mutation rate genetic drift is the most important force, and the actual mutational
process is less important, as can be seen from the plot with the mutation rate θ = 0.01.
In this case the expected homozygosity is similar in all situations. For a large mutation
rate, however, taking the mutational process into account is crucial, and biases in the
mutation process (e.g. transitions versus transversions) should also be accounted for.
This is evident from the plots of the Kimura model with θ = 1 and κ = 10.

We begin our analyses of homozygosity with a small observation.

Corollary 5. Expected homozygosity in the pure drift model
In the pure drift model the homozygosity is

E[F (t)|F (0)] = 1− e−t(F (0)− 1).

Proof. The result follows easily by inserting the formulas from Corollary 3 in (12).

Griffiths (1980) considers general symmetric mutation models where U = U ′. For
general symmetric mutation models the following Lemma gives the expected homozy-
gosity.

Lemma 6. Expected homozygosity in the general symmetric mutation model
In the general symmetric mutation model (U = U ′) the homozygosity is given by

E[F (t)|x(0)] =

∫ t

0

e−strace
(

diag{x(0)eQ(t−s)}(e2Qs)
)
ds+ e−tx(0)e2Qtx(0)′. (13)

Proof. We need to insert the result from Theorem 1 in (12). Since Q is symmetric
(eQs)′ = eQs. Recall that generally trace(AB) = trace(BA). Furthermore the integral
in (3) is originally derived from a sum and since trace(A+B) = trace(A) + trace(B) we
can interchange the trace and the integral. We thus have

trace
(∫ t

0

e−s(eQs)′diag{x(0)eQ(t−s)}(eQs)ds
)

=

∫ t

0

e−strace
(

diag{x(0)eQ(t−s)}(e2Qs)
)
ds,

and

trace
(

(eQt)′x(0)′x(0)eQt(1− e−t)
)

= (1− e−t)x(0)e2Qtx(0)′,

and the result is established.

The first result from Griffiths (1980) is his Theorem 1:

Theorem 7. Expected homozygosity in the stationary phase for the general
symmetric mutation model (Theorem 1 in Griffiths (1980))

11



In the stationary phase of the general symmetric mutation model (U = U ′) the expected
homozygosity is given by

E[F ] =
1

K

{
1 +

K−1∑
j=1

1

1− 2λj

}
where λ1, . . . , λK−1, 0 are the eigenvalues of Q = N(U − I). We note that the expected
homozygosity at stationarity is the average of a simple function of the eigenvalues of the
rate matrix.

Proof. Recall that for a symmetric probability matrix the stationary distribution is
(1, . . . , 1)/K = e/K and (e/K)eQs = e/K. Let λ = (λ1, λ2, . . . , λK−1, 0) be the vector
of eigenvalues (hence all entries are smaller or equal to zero) and V the matrix of
corresponding eigenvectors such that Q = V diag(λ)V ′ and eQs = V diag(eλs)V ′ where
V V ′ = I.

We get

E[F (t)|x(0) = e/K]
(?)
=

∫ t

0

e−strace
(

diag{e/K}(e2Qs)
)
ds+ e−t(e/K)(e/K)′

=
1

K

∫ t

0

e−strace(e2Qs)ds+ e−t/K

=
1

K

∫ t

0

e−strace
(

diag(e2λs)
)
ds+ e−t/K

=
1

K

K∑
j=1

1− e−(1−2λj)t

1− 2λj
+ e−t/K

=
1

K

{
1− e−t +

K−1∑
j=1

1− e−(1−2λj)t

1− 2λj

}
+ e−t/K

=
1

K

{
1 +

K−1∑
j=1

1− e−(1−2λj)t

1− 2λj

}
−→
t→∞

1

K

{
1 +

K−1∑
j=1

1

1− 2λj

}
,

where in (?) we used Lemma 6.

The second result in Griffiths (1980) is concerned with the transient phase and the
Jukes-Cantor mutation model.

Corollary 8. Expected homozygosity in the transient phase for the Jukes-
Cantor mutation model (Corollary 3 in Griffiths (1980))
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In the transient phase of the Jukes-Cantor mutation model (Uij = u/(K − 1) for i 6= j)
the expected homozygosity is determined by

E[F (t)|x(0)] = K−1 +K−1(K − 1)(1 + ε)−1
(

1− e−τ(1+ε)
)

+ (F (0)−K−1)e−τ(1+ε),

where ε = 2NuK/(K − 1) and F (0) =
∑K

k=1 xk(0)2.

Proof. The proof is another application of Lemma 6 and can be found in Appendix E.

The third result in Griffiths (1980) is also concerned with the transient phase but for
the general symmetric model. The result requires some notation. Let σk, k = 1, . . . , K!,
denote the K! permutation matrices that permute the entries in a vector. For example
if K = 3 then the possible six permutations of (1,2,3) are (1,2,3), (1,3,2), (2,1,3), (2,3,1),
(3,1,2), and (3,2,1). The permutation matrix that transforms (1,2,3) to (1,2,3) is the
3 × 3 identity matrix σ1 = I, and the permutation matrix that transforms (1,2,3) to
(1,3,2) is

σ2 =

 1 0 0
0 0 1
0 1 0

 .

We can now formulate the theorem.

Theorem 9. Expected homozygosity in the transient phase for the general
symmetric mutation model with permutation (Theorem 2 in Griffiths (1980))
In the general symmetric mutation model (U = U ′) with permutation of the initial fre-
quencies the expected homozygosity is given by

(K!)−1
K!∑
k=1

E[F (t)|x(0)σk] =
1

K

{
1 +

K−1∑
i=1

(1− e−t(1−2λi))
(1− 2λi)

}
+

(F (0)− 1/K)

K − 1

K−1∑
i=1

e−t(1−2λi),(14)

where λ1, . . . , λK−1 are the eigenvalues of Q = N(U − I) and F (0) is the initial homozy-
gosity.

Proof. The proof is yet another application of Lemma 6 and can be found in Appendix F.

Now consider again Figure 2 and note that because of the symmetry in the Kimura
model the expected homozygosity for initial frequency (4,1,0,0)/5 is the same as the
expected homozygosity for initial frequencies (1,4,0,0)/5, (0,0,4,1)/5 and (0,0,1,4)/5.
Similarly the expected homozygosity is the same for initial frequency (4,0,1,0)/5 and ini-
tial frequencies (0,4,1,0)/5, (0,4,0,1)/5, (4,0,0,1)/5, (1,0,4,0)/5, (0,1,4,0)/5, (1,0,0,4)/5
and (0,1,0,4)/5. Thus Griffiths’ result in Theorem 9 on the permuted initial frequen-
cies (shown in green) is a weighted sum of the expected homozygosity with initial fre-
quency (4,1,0,0)/5 and with initial frequency (4,0,1,0)/5, where the weights are 1/3 and
2/3, respectively. In Figure 2 we also show the situation where the initial frequency is
(4,4,1,1)/10. Again Griffiths’ result for the permuted initial frequencies (shown in green)
is a weighted sum of (4,4,1,1) with weight 1/3 and (4,1,4,1)/10 with weight 2/3.
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4 The hierarchical Beta model

In Section 2 we showed that the Dirichlet model is not appropriate for the distribution
of allele frequencies in the Wright-Fisher model with Kimura mutations. In this section
we introduce the hierarchical Beta model. The model is adequate for loci with four
alleles and by construction is expected to fit the Wright-Fisher with Kimura mutation.
We show that the model is analytically tractable and describe in detail an application
to estimation of the scaled number of generations.

4.1 Definition and basic properties

Consider a locus with four alleles with frequencies x = (x1, x2, x3, x4) corresponding
to A,G,C,T. Define the independent beta-distributed stochastic variables ω, η1 and η2
according to

ω ∼ Beta(φaµa, φa(1− µa))
η1 ∼ Beta(φ1µ1, φ1(1− µ1))

η2 ∼ Beta(φ2µ2, φ2(1− µ2)),

with mean, variance and interpretation given in Table 1, and define the joint distribution
of x hierarchically according to Table 2.

variable mean variance interpretation

ω µa Va = µa(1− µa)/(φa + 1) purine (A+G) fraction
η1 µ1 V1 = µ1(1− µ1)/(φ1 + 1) A fraction of purines
η2 µ2 V2 = µ2(1− µ2)/(φ2 + 1) C fraction of pyrimidines (C+T)

Table 1: Variables, corresponding parameters and their interpretation in the hierarchical
Beta model.

allele
frequency definition mean variance

x1 ωη1 µaµ1 µ2
1Va + µ2

aV1 + VaV1
x2 ω(1− η1) µa(1− µ1) (1− µ1)

2Va + µ2
aV1 + VaV1

x3 (1− ω)η2 (1− µa)µ2 µ2
2Va + (1− µa)2V2 + VaV2

x4 (1− ω)(1− η2) (1− µa)(1− µ2) (1− µ2)
2Va + (1− µa)2V2 + VaV2

Table 2: Definition, mean and variance of nucleotide frequencies in the hierarchical Beta
model.

In Table 2 the mean is a result of independence between ω, η1 and η2. The variance
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of x1 is calculated from

Var(x1) = Var(ωη1) = Var[E(ωη1|ω)] + E[Var(ωη1|ω)]

= Var[ωµ1] + E[ω2V1]

= µ2
1Va + µ2

aV1 + VaV1,

and similar calculations apply for the other three variances.
The covariance between x1 and x2 is given by

Cov(x1, x2) = Cov[E(ωη1|ω),E(ω(1− η1)|ω)] + E[Cov(ωη1, ω(1− η1)|ω)]

= Cov(ωµ1, ω(1− µ1))− E[ω2Var(η1)]

= µ1(1− µ1)Va − VaV1 − µ2
aV1.

We note that the covariance between x1 and x2 can be positive; recall that positive
covariances are not possible in the Dirichlet distribution.

The covariance between x1 and x3 is

Cov(x1, x3) = Cov[E(ωη1|ω),E((1− ω)η2)|ω)] + E[Cov(ωη1, (1− ω)η2|ω)]

= Cov(ωµ1, (1− ω)µ2)− E[ω(1− ω)Cov(η1, η2)]

= −µ1µ2Va.

In Table 3 we summarize the covariance structure of the model.

variables covariance between variables

x1, x2 µ1(1− µ1)Va − VaV1 − µ2
aV1

x1, x3 −µ1µ2Va
x1, x4 −µ1(1− µ2)Va
x2, x3 −(1− µ1)µ2Va
x2, x4 −(1− µ1)(1− µ2)Va
x3, x4 µ2(1− µ2)Va − VaV2 − (1− µa)2V2

Table 3: Covariance between nucleotide frequencies in the hierarchical Beta model.

4.2 Moment-based parameter estimation

Having calculated the means and (co)variances of the model we now discuss how the
parameters are determined. We first note that the mean of (x1, x2, x3, x4) is a bijective
function of (µa, µ1, µ2). The means (µa, µ1, µ2) are therefore completely determined.

The remaining parameters Va, V1 and V2 are determined as follows. We determine Va
from

Var(x1 + x2) = Va, (15)

15



we determine V1 from

Var(x1) + Var(x2) = [µ2
1 + (1− µ1)

2]Va + 2
[
µ2
a + Va

]
V1, (16)

and we determine V2 from

Var(x3) + Var(x4) = [µ2
2 + (1− µ2)

2]Va + 2
[
(1− µa)2 + Va

]
V2. (17)

We now use Table 2 and Table 3 to determine the variance-covariance structure of x.

4.3 Likelihood for a sample of allele counts

In reality we do not observe the allele frequencies (x1, x2, x3, x4), but a sample of al-
lele counts c = (c1, c2, c3, c4). Let ξ = (αa, βa, α1, β1, α2, β2) denote the parameters in
the hierarchical Beta model. In this section we determine the likelihood L(c|ξ) for a
sample c from the hierarchical Beta model conditional on the parameters ξ. Instead of
parameterising the hierarchical Beta model in terms of the means and (scaled) variances
(µa, φa, µ1, φ1, µ2, φ2) we use the shape parameters ξ = (αa, βa, α1, β1, α2, β2) of the Beta
distribution such that e.g. µa = αa/(αa + βa) and φa = αa + βa.

Let p(x|ξ) be the density of the allele frequencies x = (x1, x2, x3, x4) conditional on
the parameters ξ, and let L(c|x) be the likelihood of the sample c conditional on the
frequencies x. The sample likelihood L(c|ξ) is given by

L(c|ξ) =

∫
x

L(c|x)p(x|ξ)dx.

In the subsections below we determine L(c|x), p(x|ξ), and finally L(c|ξ). In particular
we show that in the hierarchical Beta model the sample likelihood is a product of three
Beta-binomial distributions.

4.3.1 Likelihood L(c|x) for c conditional on x

We observe the allele counts c = (c1, c2, c3, c4) where c1 +c2 +c3 +c4 = n. The likelihood
for a sample conditional on the underlying frequency vector x = (x1, x2, x3, x4) is given
by the multinomial distribution c ∼ Mult(n, x). An equivalent description is that the
counts follow the distributions

c1 + c2 ∼ Bin(n, x1 + x2)

c1|(c1 + c2) ∼ Bin(c1 + c2, x1/(x1 + x2)) (18)

c3|(c1 + c2) ∼ Bin(n− c1 − c2, x3/(1− x1 − x2)),

and using this description the natural summary of the data is in terms of the vector
(c1 + c2, c1, c3), and we have

L(c1 + c2, c1, c3|x) = P (c1 + c2|x1 + x2)P (c1|c1 + c2, x1 + x2, x1)P (c3|c1 + c2, x1 + x2, x3).(19)
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4.3.2 Density p(x|ξ) for x conditional on ξ

The density of (x1, x2, x3) can be found by taking advantage of the conditional properties
of the hierarchical Beta model. By noting that

x1 + x2 ∼ Beta(αa, βa)

x1|(x1 + x2) ∼ (x1 + x2)Beta(α1, β1) (20)

x3|(x1 + x2) ∼ (1− x1 − x2)Beta(α2, β2)

we get the joint density for (x1 + x2, x1, x3) from

p(x1 + x2, x1, x3) = p(x1 + x2)p(x1|x1 + x2)p(x3|x1 + x2). (21)

We note that this formula also holds for the joint density of (x1, x2, x3) because the
absolute value of the determinant of the Jacobian |Jg(x1, x2, x3)| for the transformation

g(x1, x2, x3) = (x1 + x2, x1, x3)

equals one. In conclusion the density of (x1, x2, x3) is given by

p(x1, x2, x3) =

fB(αa,βa)(x1 + x2)
1

x1 + x2
fB(α1,β1)

( x1
x1 + x2

) 1

1− x1 − x2
fB(α2,β2)

( x3
1− x1 − x2

)
,(22)

where e.g. fB(αa,βa)(·) is the density function for the Beta-distribution with shape pa-
rameters (αa, βa).

4.3.3 Sample likelihood L(c|ξ) =
∫
x
L(c|x)p(x|ξ)dx.

Now consider the likelihood

L(c1 + c2, c1, c3|ξ) =

∫
x

L(c1 + c2, c1, c3|x1 + x2, x1, x3)p(x1 + x2, x1, x3|ξ)dx (23)

where L(c1 + c2, c1, c3|x1 + x2, x1, x3) is given by (18) and (19), and p(x1 + x2, x1, x3|ξ)
is given by (20) and (21). The likelihood becomes a product of three beta-binomial
distributions

L(c1 + c2, c1, c3) = fBB(n,αa,βa)(c1 + c2)fBB(c1+c2,α1,β1)(c1)fBB(c3+c4,α2,β2)(c3), (24)

where e.g. fBB(n,αa,βa)(k) is the probability function of the Beta-binomial distribution
with n trials and shape parameters αa and βa.
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4.3.4 Stationary distribution for symmetric mutation model

As an illustration of our moment-based parameter estimation and corresponding likeli-
hood function we consider the stationary distribution for the symmetric mutation model.
In the special case of a Jukes-Cantor mutation model, the stationary distribution for
(x1, x2, x3, x4) is a Dirichlet with parameter vector (α, α, α, α), and the marginal distri-
butions are Beta with shape parameters (α, 3α) (e.g. Ewens, 2004, p. 194-195).

We get µa = µ1 = µ2 = 1/2. Equation (15) becomes

Va = Var(x1 + x2) = Var(x1) + Var(x2) + 2Cov(x1, x2) =
1

4(4α + 1)
,

and therefore φa = 4α. Equation (16) becomes

1

2
Va + 2

(1

4
+ Va

)
V1 = Var(x1) + Var(x2) =

3/2

4(4α + 1)
=

3

2
Va,

which implies

V1 =
Va

2(1
4

+ Va)
=

1

2(4α + 2)
=

1

4(2α + 1)
,

and therefore φ1 = 2α, and finally φ1 = φ2 by symmetry (or using equation (17)).
Now consider the joint distribution of (x1, x2, x3, x4) in the hierarchical Beta model

with parameters

(µa, φa, µ1, φ1, µ2, φ2) = (1/2, 4α, 1/2, 2α, 1/2, 2α).

Inserting in (22) we get a Dirichlet distribution with parameters (α, α, α, α), and we
conclude that the hierarchical Beta approximation is exact in this particular case.

4.4 Application: Estimation of scaled number of generations

To illustrate the hierarchical Beta model we consider the problem of estimating the scaled
number of generations (time) in the Wright-Fisher with Kimura mutation process. We
assume the initial frequency x(0) = (16, 2, 1, 1)/20 is known. Similarly, the mutation
rate θ = α + 2β = 1 and the transition-transversion rate ratio κ = α/β = 10 are also
assumed known. We then simulate a total of 500 independent loci for a scaled number
of generations t = 0.4 (in the simulation the population size is N = 1000). The full data
thus consists of 500 frequency vectors of length four corresponding to the frequency of
(A,G,C,T). We also sampled count data from the full data. The count data consist of
60 or 20 samples from the multinomial distribution with the simulated frequency vector
from each of the 500 loci.

We consider the likelihood as a function of time when the initial frequency and
mutation model is fixed. The solid curve in the left figure in Figure 3 shows the log-
likelihood (22) based on the fully observed allele frequencies. The dashed and dotted
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curves are the log-likelihood (24) based on samples of size 60 or 20. We note that the
likelihood curves based on more detailed information are more peaked, but the maximum
likelihood value is stable and close to the true value.
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Figure 3: Likelihood function for the scaled number of generations (time) in the Wright-
Fisher with Kimura mutation process. Left: Hierarchical Beta model. Right: Dirichlet
model.

The right plot in Figure 3 shows the likelihood for the Dirichlet model. The solid
curve is the log-likelihood based on the fully observed allele frequencies, and the dashed
and dotted curves are based on the two samples. The four Dirichlet parameters are
determined in a similar fashion as for the hierarchical Beta model. In particular the
means determine three of the parameters, and the last parameter (the concentration
parameter) is determined from the variances of the Wright-Fisher with Kimura mutation
process. The likelihood for a sample from the Dirichlet model is determined by the
Dirichlet-multinomial model; see Gaggiotti and Foll (2010) for more information about
parameter estimation in this model. We observe that the maximum likelihood time
estimates based on the Dirichlet models are more variable than for the hierarchical Beta
model, but they do give reasonable values.

In Figure 4 we show the empirical and marginal distributions from the hierarchical
Beta and Dirichlet models. The marginal distributions from the hierarchical Beta and
Dirichlet distributions are very similar.
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Figure 4: Marginal distributions for the Wright-Fisher with Kimura mutation model.
The lines are the marginal densities for the hierarchical Beta and Dirichlet approxima-
tions.

5 Simulation studies

5.1 Transition density

Matching the moments does not guarantee that the hierarchical Beta is a good approx-
imation of the transition density of the Wright-Fisher model with Kimura mutations.
To get insight into the quality of the approximation in different situations, we simulated
both the Wright-Fisher model and its hierarchical Beta approximation and compared
the generated samples. Additionally, we also simulated samples from the Dirichlet ap-
proximation to see how large effect the correct covariances of the hierarchical Beta have
on the accuracy.

We simulated the Wright-Fisher model with Kimura mutations for 2N generations
for each of the 108 different combinations of parameters as indicated in Table 4. For each
parameter combination we generated 106 replicates and recorded the allele frequencies
at 15 different times. We generated 106 samples from each corresponding Dirichlet and
hierarchical Beta approximation.

Evaluation of the quality of the approximations was carried out by comparing the
empirical cumulative distribution functions (cdf) computed from the samples. A total
of 2000 random points were sampled from a uniform distribution on the 3-dimensional
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Parameter N κ θ = N(2 + κ)u x(0)

Value
60
240
960

1
2
10

1
0.1
0.01

(0.25, 0.25, 0.25, 0.25)
(0.8, 0.2, 0, 0)

(0.4, 0.1, 0.4, 0.1)
(0.4, 0.4, 0.1, 0.1)

Table 4: Parameter values used in the simulation study of the transition density.

simplex and the empirical cdf was evaluated at these points. The root mean squared
difference (RMSD) between the two empirical cdfs was calculated for each comparison.

Figure 5 summarizes the differences between the approximations and the Wright-
Fisher model in several cases. With a high mutation rate θ = 1 and κ > 1, the hierar-
chical Beta clearly outperforms the Dirichlet. When the mutation rate is θ = 0.1 and
κ > 1 the two approximations behave similarly for short time scales, but with longer
times the hierarchical Beta is more accurate. The difference between the two approx-
imations is smaller the closer the initial frequency is to uniform. Interestingly, with
x(0) = (0.8, 0.2, 0, 0) the hierarchical Beta was more accurate than the Dirichlet even
when mutation rate was low (θ < 0.1) and κ = 1. This finding is somewhat surprising
because the covariance structure is symmetric in this case. The RMSD between the true
distribution and the hierarchical Beta approximations peaked with a scaled time around
0.5 or 1 depending on the initial frequency x(0). Full results of all the simulations are
shown in the Supplementary Information, with the exception of the case N = 240, which
produced almost identical results as N = 960.

5.2 Stationary distribution

We investigated the accuracy of the approximations in the stationary phase of the
Wright-Fisher model with Kimura mutations by using a similar simulation study as
with the transient phase. We fixed N = 960 and used the parameter values for κ and
θ shown in Table 4. For each parameter combination we simulated 106 replicates from
the Wright-Fisher model in the stationary phase by first drawing initial allele frequen-
cies from the Dirichlet approximation and then simulating the Wright-Fisher model for
10N generations. The allele frequencies were recorded at 5N and 10N generations. We
sampled the initial frequencies from the Dirichlet instead of the hierarchical Beta ap-
proximation to reduce the possibility that the better performance of hierarchical Beta
was caused by the initial frequencies. In each case we simulated 107 samples from both
the Dirichlet and the hierarchical Beta approximations to the stationary distribution of
the Wright-Fisher model. The samples were compared similarly as in the transient case
by evaluating the empirical cumulative distribution functions on 2000 random points
and recording the RMSD to the Wright-Fisher model.

The root mean squared difference between the two approximations and the Wright-
Fisher model are shown in Figure 6. With κ = 1 the hierarchical Beta and Dirichlet

21



Figure 5: Transient density approximations. The root mean squared difference of the
hierarchical Beta (blue circles) and Dirichlet (red crosses) approximations against the
Wright-Fisher process with Kimura mutations. Each panel shows the RMSD as a func-
tion of time for values of x(0) and θ indicated above the panel. Different linestyles
correspond to different values of κ as shown in the legend.

approximations are identical, which is seen in the results. The approximations are also
exact for the Wright-Fisher diffusion in that case (Ewens, 2004) and the differences to
the discrete Wright-Fisher model come from the discrete support of the distribution
and Monte Carlo error. As the value of κ increases the accuracy of the hierarchical
Beta is several times larger than that of the Dirichlet, because the latter is not able to
capture the covariance structure of the Wright-Fisher model. With θ = 0.01 the RMSD

22



between the hierarchical Beta and the Wright-Fisher model is smaller than the RMSD
between samples from the Wrigh-Fisher model recorded 5N generations apart. This
is probably due to the simulations from WF-model recorded at 5N generations being
further from the actual stationary distribution than the same simulations recorded at
10N generations.

Figure 6: Stationary distribution approximations. The root mean squared difference
of the hierarchical Beta (blue circles and solid line) and Dirichlet approximation (red
crosses and dashed line) to the stationary distribution of the Wright-Fisher model with
N = 960 as a function of κ. Green stars and dotted lines lines show the RMSD between
realizations of the stationary Wright-Fisher model observed 5N generations apart. The
value for the mutation parameter θ is indicated above each panel.

6 Conclusion

We have derived a general formulae for the mean and (co)variance of the allele frequencies
in the Wright-Fisher with mutation process (Theorem 1), and have considered several
special cases of mutation structure, including pure drift (Corollary 3), Jukes-Cantor
(Corollary 4) and Kimura (Corollary 2 and Appendix C). We showed that it is generally
not possible to fully capture the theoretical covariance structure of the allele frequency
distribution in the general multi-allelic case with the Dirichlet distribution, which is the
standard approximation to the Wright-Fisher model. This result should be contrasted
to the biallelic case, where the Beta distribution is sufficient, and is due to having
only one single free parameter for controlling the covariance structure in the Dirichlet
distribution. Our results show that in spite of the theoretical mis-match the Dirichlet
distribution is generally appropriate to describe the allele frequency distribution in the
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case of pure drift, or for the Jukes-Cantor model with either a small mutation rate or a
short evolutionary distance. However, for more general situations, the Dirichlet is not
flexible enough to capture the (co)variance structure.

We introduced a new statistical approximation for the Wright-Fisher with Kimura
mutations, the hierarchical Beta model, which can be parametrized to have approx-
imately the correct theoretical first two moments of the Wright-Fisher model. With
extensive simulation studies we demonstrated that the hierarchical Beta model captures
the allele frequency distributation very well.

There are two main reasons why the approximations to the Wright-Fisher model
with mutation should be considered. First, if the evolutionary timescale is intermediate,
such as when studying several subspecies or closely related species, both mutation and
genetic drift play important roles in shaping the genetic variation. It is inadequate to
model only one of these forces, by either standard phylogenetic methods or by pure
drift-based approximations to the Wright-Fisher model. Second, many of the current
methods that include both mutation and drift are limited by the number of samples
that can be simultaneously analyzed. These include coalescent based methods as well as
others such as PoMo (De Maio, Schloetterer and Kosiol, 2013; De Maio, Schrempf and
Kosiol, 2015), which extends standard phylogenetic models to account for incomplete
lineage sorting and ancestral variation.

The results in this paper were originally motivated by the desire to construct statis-
tical approximations for the transition density of the Wright-Fisher diffusion. However,
the moments derived in Theorem 1 also facilitate the study of theoretical properties of
the model, as demonstrated in Section 3 by the new proofs and extensions of homozy-
gosity results in Griffiths (1980).

In this work we considered only the first two moments of the transition distribution.
Higher order moments could at least in principle be computed in a similar fashion as
the first two, although the calculations are more involved (especially in the multi-allelic
case). We derived the expression for the mean and variance by repeated use of the
formulas for conditional mean and variance. Another route to obtain the moments is to
first formulate recursive equations for the moments and second turn the recursions into
differential equations by letting the population size N tend to infinity (e.g. Crow and
Kimura, 1970, page 336). It could be interesting to investigate this alternative procedure
for establishing expressions for the moments. Higher-order moments would be helpful to
get insight into the variability in homozygosity. Also, if selection is included in addition
to mutation, then the first two moments might not be able to capture the variation in
the allele frequencies adequately.

The hierarchical Beta model was introduced as a more accurate approximation to
the Wright-Fisher with Kimura mutations than the Dirichlet distribution. If some other
mutational model was considered, such as the general time-reversible model (e.g. Felsen-
stein, 2004, page 204), then the hierarchical Beta model might not be able to capture
the (co)variance structure anymore, because it relies on the division of the alleles into
two groups (purines and pyrimidines). We emphasize that different approximations need
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to be derived for different mutational models, and it remains a challenge to formulate
appropriate statistical models for the allele frequency distribution in the Wright-Fisher
with mutation models that are more complex than pure drift, Jukes-Cantor or Kimura.

We showed in a simulation study that the hierarchical Beta approximation can be
used to estimate the scaled number of generations. A natural continuation of this work
would be to implement the hierarchical Beta approximation in a more complex model
for inference of population structure.
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A Variance in the Wright-Fisher model

In this subsection we show the expression (3) for the variance-covariance matrix. Recall
from (1) that the dynamics of the number of alleles is given by

z(m)|z(m− 1) ∼ Mult(N, x(m− 1)U),

where x(m) = z(m)/N is the allele frequency in generationm. Consider first the variance

Var[zi(m)|z(m− 1)] = N(x(m− 1)U)i(1− (x(m− 1)U)i)

= N(x(m− 1)U)i −N(x(m− 1)U)i(x(m− 1)U)i,

and second the covariance

Cov(zi(m), zj(m)|z(m− 1)) = −N(x(m− 1)U)i(x(m− 1)U)j = −N(U ′x(m− 1)′x(m− 1)U)ij,

for i 6= j. We thus have

Var[x(m)|x(m− 1)]ij = − 1

N
(x(m− 1)U)i(x(m− 1)U)j +

1

N
(x(m− 1)U)i1(i = j),

where 1(·) is the indicator function. In matrix notation

Var[x(m)|x(m− 1)] = − 1

N
U ′(x(m− 1)′x(m− 1))U +

1

N
diag(x(m− 1)U).

The formulas now become more readable if we write xm instead of x(m). We use the
law of total variance to get

Var[xm] = E[Var(xm|xm−1)] + Var[E(xm|xm−1)]

= − 1

N
U ′E[x′m−1xm−1]U +

1

N
diag{(Exm−1)U}+ U ′(Varxm−1)U

=
1

N
diag{(Exm−1)U} −

1

N
U ′
{

Varxm−1 + E[x′m−1]E[xm−1]
}
U + U ′(Varxm−1)U

=
1

N

[
diag{(Exm−1)U} − U ′E[x′m−1]E[xm−1]U

]
+
(

1− 1

N

)
U ′(Varxm−1)U.

27



We now make repeated use of the law of total variance and find

Var[xm] =
1

N

[
diag{(Exm−1)U} − U ′E[x′m−1]E[xm−1]U

]
+
(

1− 1

N

)
U ′(Varxm−1)U

=
1

N

[
diag{(Exm−1)U} − U ′E[x′m−1]E[xm−1]U

]
+
(

1− 1

N

)
U ′

1

N

[
diag{(Exm−1)U} − U ′E[x′m−1]E[xm−1]U

]
U

+
(

1− 1

N

)
U ′
(

1− 1

N

)
U ′(Varxm−1)UU

=
1

N

[
diag{(Exm−1)U} − U ′E[x′m−1]E[xm−1]U

]
+

1

N

(
1− 1

N

)
U ′
[
diag{(Exm−2)U} − U ′E[x′m−2]E[xm−2]U

]
U

+
(

1− 1

N

)2
(U ′)2(Varxm−2)U

2

= · · ·

=
m∑
i=0

1

N

(
1− 1

N

)i
(U ′)i

[
diag{x0Um−1−i}

]
U i

−
m∑
i=0

1

N

(
1− 1

N

)i
(U ′)mx′0x0U

m. (25)

Recall that m = tN and Q = N(U − I). We can therefore approximate the variance by

Var[xt] =

∫ t

0

e−s(eQs)′diag{x0eQ(t−s)}(eQs)ds− (eQt)′x′0x0e
Qt(1− e−t). (26)

We suggest computating the first term using an eigenvalue decomposition of the rate
matrix; see the next section.

B Computing the (co)variance matrix

We follow Appendix B in Hobolth and Jensen (2005). Assuming reversibility of the
mutation process we have

diag(π)Q = Q′diag(π),

where π is the stationary distribution. The matrix

S = diag(π)1/2Qdiag(π)−1/2

is symmetric and therefore has a computationally robust eigenvalue decomposition

S = V diag(λ)V ′.
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It follows that

P (t) = eQt = diag(π−1/2)V diag(etλ)V ′diag(π1/2)

so that

Pab(t) = [eQt]ab =
(πb
πa

)1/2∑
i

VaiVbie
λit.

We now find the following formula for the first term of the variance[ ∫ t

0

e−s(eQs)∗diag{xeQ(t−s)}(eQs)ds
]
ij

=
∑
k

∫ t

0

e−s[(eQs)∗]ik
∑
l

xl[e
Q(t−s)]lk[e

Qs]kjds

=
∑
k

∫ t

0

e−s
( πi
πk

)1/2∑
m

VkmVime
λms
∑
l

xl

(πk
πl

)1/2∑
n

VlnVkne
λn(t−s)

(πj
πk

)1/2∑
r

VkrVjre
λrsds

=
√
πiπj

∑
m

Vim
∑
l

1√
πl
xl
∑
n

Vln
∑
r

AmnrVjr
∑
k

1√
πk
VkmVknVkr, (27)

where

Amnr =

∫ t

0

e−s+λms+λn(t−s)+λrsds =

{
teλnt if λm + λr = 1 + λn

e(λm+λr−1)t−eλnt
λm+λr−1−λn otherwise.

Note that expression (27) suggests a fast recursive procedure for evaluating the covari-
ance matrix.

C Variance in the Kimura mutation model

In this appendix we derive the mean and variance from Theorem 1 for the Kimura model.
Recall from equation (5) that we can write

eQt =
3∑
i=1

aie
−bitAi

with obvious definitions of ai, bi and Ai. We immediately get the mean x(0)eQt in the
Kimura mutation model.

Recall the general formula for the variance in the Wright-Fisher with mutation model

Var[x(t)|x(0)] =

∫ t

0

e−s(eQs)′diag{x(0)eQ(t−s)}(eQs)ds− (eQt)′x(0)′x(0)eQt(1− e−t).
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The last term is easy, and the first term is calculated from∫ t

0

e−s(eQs)′diag{x(0)eQ(t−s)}(eQs)ds =∫ t

0

e−s
3∑
i=1

aie
−bisAidiag

{
x(0)

3∑
j=1

aje
−bj(t−s)Aj

} 3∑
k=1

ake
−bksAkds =

3∑
i=1

3∑
j=1

3∑
k=1

aiajakgijk(t)Aidiag{x(0)Aj}Ak

where

gijk(t) =

∫ t

0

e−se−bise−bj(t−s)e−bksds =

{
te−bjt if 1 + bi + bk = bj

e−bjt−e−(1+bi+bk)t

1+bi+bk−bj
otherwise.

These expressions are straight forward to implement.

D Variance in the transient phase for the Jukes-

Cantor model

In matrix notation the transition probability matrix for the Jukes-Cantor model is given
by

P (t) = eQt = a(t)(I − E/K) + E/K, (28)

where E is the K ×K matrix with 1 in every entry and

a(t) = exp(−qKt/(K − 1)) = exp(−εt/2).

We therefore get the mean

E[x(t)] = x(0)eQt = x(0)
[
a(t)(I − E/K) + E/K

]
= e−εt/2(x(0)− e/K) + e/K,

where we have used x(0)E = e. We now turn to the variance

Var[x(t)] =

∫ t

0

e−s(eQs)′diag{x(0)eQ(t−s)}(eQs)ds− (eQt)′x(0)′x(0)eQt(1− e−t). (29)

The last term is determined by

(eQt)′x(0)′x(0)eQt =
[
a(t)(x(0)− e/K)′ + (e/K)′

][
a(t)(x(0)− e/K) + e/K

]
= e−εt(x(0)− e/K)′(x(0)− e/K) + e−εt/2(x(0)− e/K)′e/K + e−εt/2(e/K)′(x(0)− e/K) + E/K2.
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The first term in the variance becomes∫ t

0

e−s
(
a(s)(I − E/K) + E/K

)(
a(t− s)(diag(x(0))− I/K) + I/K

)(
a(s)(I − E/K) + E/K

)
ds =[

diag(x(0)− e/K)− (x(0)− e/K)′e/K − (e/K)′(x(0)− e/K)
] 1

1 + ε/2
e−εt/2

(
1− e−(1+ε/2)t

)
+[

(x(0)− e/K)′e/K + (e/K)′(x(0)− e/K)
]
e−εt/2

(
1− e−t

)
+[

I − E/K
]
/K

1

1 + ε

(
1− e−(1+ε)t

)
+

E/K2(1− e−t),
where we have used∫ t

0

e−sa2(s)a(t− s)ds =
1

1 + ε/2
e−εt/2

(
1− e−(1+ε/2)t

)
∫ t

0

e−sa(s)a(t− s)ds = e−εt/2
(

1− e−t
)

∫ t

0

e−sa2(s)ds =
1

1 + ε

(
1− e−(1+ε)t

)
∫ t

0

e−sds = 1− e−t.

The final expression for the variance is

Var[x(t)] = (30)[
I − E/K

]
/K

1

1 + ε

(
1− e−(1+ε)t

)
−

(x(0)− e/K)′(x(0)− e/K)e−εt(1− e−t) +[
diag(x(0)− e/K)− (x(0)− e/K)′e/K − (e/K)′(x(0)− e/K)

]
e−εt/2

1

1 + ε/2

(
1− e−(1+ε/2)t

)
.

E Homozygosity in the transient phase for the Jukes-

Cantor model

Corollary 8 follows after an application of Lemma 6. From equation (10) the matrix
exponential is

eQt =
1

K

(
1− e−εt/2

)
E + e−εt/2I

where ε = 2q/(K − 1) = 2Nu/(K − 1). We get

diag{x(0)eQ(t−s)} =
1

K

(
1− e−ε(t−s)/2

)
diag{x(0)E}+ e−ε(t−s)/2diag{x(0)}

=
1

K

(
1− e−ε(t−s)/2

)
I + e−ε(t−s)/2diag{x(0)}, (31)
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where we have used

diag{x(0)E} = diag{e} = I.

We now note that

trace(I) = trace(E) = K

and

trace
(

diag{x(0)}E
)

= trace
(

diag{x(0)}
)

= 1,

and we find

trace
(

diag{x(0)eQ(t−s)}(e2Qs)
)

=
1

K

(
1− e−ε(t−s)/2

) 1

K

(
1− e−εs

)
K +

1

K

(
1− e−ε(t−s)/2

)
e−2εs/2K + e−ε(t−s)/2

1

K

(
1− e−εs

)
+ e−ε(t−s)/2e−εs

=
1

K
+
(
1− 1

K

)
e−εs.

We therefore have∫ t

0

e−strace
(

diag{x(0)eQ(t−s)}(e2Qs)
)
ds =

∫ t

0

e−s
[ 1

K
+
(
1− 1

K

)
e−sε

]
ds

=
1

K

(
1− e−t

)
+
K − 1

K

(
1 + ε

)−1(
1− e−t(1+ε)

)
. (32)

The second term in (13) is easier to calculate. We get

x(0)e2Qtx(0)′ = x(0)
[ 1

K

(
1− e−tε

)
E + e−tεI

]
x(0)′

=
1

K
− 1

K
e−tε + F (0)e−tε

=
1

K
+ (F (0)−K−1)e−tε (33)

where we have used x(0)Ex(0)′ = ex(0)′ = 1 and F (0) = x(0)x(0)′. Inserting (32) and
(33) in (13) we get

E[F (t)|x(0)] =
1

K
+
K − 1

K

(
1 + ε

)−1(
1− e−t(1+ε)

)
+ (F (0)−K−1)e−t(1+ε)

= K−1 +K−1(K − 1)(1 + ε)−1
(

1− e−t(1+ε)
)

+ (F (0)−K−1)e−t(1+ε).
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F Homozygosity in the transient phase for the gen-

eral symmetric model

The proof of Theorem 9 is based on Lemma 6 and a direct calculation. From Lemma 6
we get

(K!)−1
K!∑
k=1

E[F (t)|x(0)σk] = (K!)−1
K!∑
k=1

∫ t

0

e−strace
(

diag{x(0)σke
Q(t−s)}(e2Qs)

)
ds+

(K!)−1
K!∑
k=1

e−t(x(0)σk)
′e2Qtx(0)σk. (34)

We begin by calculating the first term in (34)

First term in (34) =

∫ t

0

e−strace
(

diag
{[

(K!)−1
K!∑
k=1

x(0)σk
]
eQ(t−s)}(e2Qs)

)
ds

=

∫ t

0

e−strace
(

diag{[e/K]eQ(t−s)}(e2Qs)
)
ds

=

∫ t

0

e−strace
(

diag{e/K}(e2Qs)
)
ds

=
1

K

∫ t

0

e−strace(e2Qs)ds

=
1

K

∫ t

0

e−strace
(

diag
{
e2λs

})
ds

=
1

K

K∑
i=1

1− e−(1−2λi)t

1− 2λi

=
1

K

(
1− e−t +

K−1∑
i=1

1− e−(1−2λi)t

1− 2λi

)
=

1

K

(
1 +

K−1∑
i=1

1− e−(1−2λi)t

1− 2λi

)
− e−t

K
.
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The second term in (34) is given by

Second term in (34) = e−t
1

K!

K!∑
k=1

x(0)σke
2Qtσ′kx(0)′

= e−t
1

K!

K!∑
k=1

trace
(
e2Qtσ′kx(0)′x(0)σk

)
= e−ttrace

(
e2Qt

1

K!

K!∑
k=1

(x(0)σk)
′x(0)σk

)
(?)
= e−t

[(F (0)− 1/K)

K − 1

(
1 +

K−1∑
i=1

e2λit
)

+
K(1− F (0))

K(K − 1)

]
=

(F (0)− 1/K)

K − 1

K−1∑
i=1

e−t(1−2λi) + e−t
(F (0)− 1/K)

K − 1
+ e−t

(1− F (0))

K − 1

=
(F (0)− 1/K)

K − 1

K−1∑
i=1

e−t(1−2λi) +
e−t

K
,

where in (?) we have used

1

K!

K!∑
k=1

(x(0)σk)
′x(0)σk =

1

K!

[
(K − 1)!F (0)I + 2(K − 2)!

(1− F (0))

2
(E − I)

]
=

1

K
F (0)I +

(1− F (0))

K(K − 1)
(E − I)

=
(F (0)− 1/K)

K − 1
I +

(1− F (0))

K(K − 1)
E.

Here the first equation is true because on the diagonal we have F (0) a number K!/K =
(K − 1)! times in the sum, and the off-diagonal entries are

K−1∑
i=1

K∑
j=i+1

xi(0)xj(0) =
1− F (0)

2

a number K!/
(
K
2

)
= 2(K − 2)! times. Finally in order to obtain (?) we note that

trace
(
eQtE

)
= trace

(
eQte′e

)
= trace

(
eeQte′

)
= trace

(
ee′
)

= K.

The Theorem now follows by adding the first and second term above.
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