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Review of the papers and
the author’s contribution

Paper I investigates the abilities of four commonly used chemical transport models
to reproduce the PM concentration and composition in Europe in 2005. All mod-
els are found to substantially underestimate the PM concentrations. The worst
represented aerosol components are found to be the carbonaceous and crustal com-
ponents. Improvements are found necessary also for the wild-land fire emissions.

The author of the thesis performed the modelling with the SILAM model, col-
lected the data from the other modelling groups, planned and performed the anal-
ysis of the data, and wrote the paper.

Paper II studies the health effects resulting from the exposure to the smoke from
wild land fires in Europe. It was found that the air pollution due to PMs 5 released
from vegetation fires is a relevant risk factor for public health, especially in Southern
and Eastern Europe, although the lower concentrations in western and northern
Europe also contributed significantly to the overall attributable mortality.

The author of the thesis performed the modelling to obtain the vegetation fire
originated PMs 5 concentrations for 2005 and 2008. The 2005 data originated from
the same model simulations as used in Paper I. The author also contributed to
writing the paper supplying the description of the model simulations and the dis-
cussion of the simulation results and their uncertainties, variability, and relevant
weather patterns.

Paper III presents a correction for the commonly used EMEP emission inven-
tory for an error found in the emissions of industrial sources on Kola Peninsula.
The paper was based on an unexpected finding when modelling the origin of the
aerosol peaks measured during a field campaign in Vérrio, Finnish Lapland. It
was found that the emissions of the metal industry site Nikel were missing in the
EMEP inventory and also in other available inventories of anthropogenic emissions
in Europe. A corrected emission map was suggested and its accuracy evaluated.

The author of the thesis analysed the emission data from various inventories,
performed the forward and adjoint model simulations, analysed the results and was
the lead author of the paper.
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Paper IV describes the development of the emission model for the pollen of com-
mon ragweed (Ambrosia Artemisiifolia L.). An operational model was developed
for forecasting the ragweed pollen release and dispersion in Europe.The ragweed-
related developments in SILAM concentrated on the formulations of the source
term, which supplies the released pollen to the transport and deposition modules.
Comparison with the observational data shows that the model reproduces the sea-
son propagation and the spatial pattern of total pollen amount fairly well both in
the main source regions and further away.

The author of the thesis developed the module for the ragweed pollen emission
for SILAM based on available literature, calibrated it with the pollen observations,
performed its evaluation and wrote the paper.

Paper V studies the variations in the allergenity of grass pollens (pollen potency).
The dependences of the potency on weather conditions and pollen origin are anal-
ysed.

The author of the thesis performed the adjoint SILAM model simulations nec-
essary for delineating the pollen origin, contributed to the analysis of the variability
of the observed potency and to the writing of the related parts of the paper.
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Chapter 1

Introduction

Exposure to airborne particulate matter (PM) has been estimated to be among
the ten most significant risk factors for public health globally and among the 15
most relevant for Europe (Lim et al., 2012). It significantly increases the risks
of respiratory and heart diseases in both short and long term (Hdnninen et al.,
2014; Hansell et al., 2015). Recently, air pollution and especially the particulate
matter were classified as carcinogenic by WHO (Loomis et al., 2013). Dai et al.
(2014) concluded that particulate mass alone might not be sufficient to evaluate
the health effects of particles. Intensive research efforts have been dedicated to
specify the health relevance of specific chemical aerosol components, although the
results are this far inconclusive.

Allergenic pollen is arguably the type of aerosol with the most obvious effect to
health. Due to raising allergy levels among the European population, the airborne
allergenic pollen has become an important part of air quality. Sofiev and Bergmann
(2013) list the 12 most allergy relevant pollen species in Europe: Betula (birch),
Poaceae (grasses), Olea (olive), Ambrosia (ragweed), Alnus (alder), Artemisia
(mugwort), Chenopodiaceae (goosefoots), Corylus (hazel), Cupressaceae/Taxaceae
(cypresses, yews), Platanus (plane tree), Quercus (oak) and Urtica/Parietaria (wall
pellitory, nettle). The pollens of some allergy-relevant species, such as birch and
ragweed, are about 20 micrometers or less by diameter and with suitable conditions
these can be transported over hundreds or even thousands of kilometers.

In addition to the health effects, particulate matter has been recognized as
a strong climate forcer that influences the Earth’s energy balance through direct
radiative effects and cloud processes. Clouds and aerosols contribute the largest
uncertainty to the radiative budget estimates (IPCC, 2013; Khain, 2009). Both
aerosol radiative properties and its hygroscopicity and ability to serve as a cloud
condensation nuclei depend critically on its composition.

The substantial effects of atmospheric composition on health and climate make
it necessary to monitor and forecast the concentrations of the relevant tracer
species. The observational networks cannot cover the whole atmosphere and the
observations of a sparse network cannot always be extrapolated to other areas. Re-
mote sensing by satellite-borne instruments can cover large areas, but often with
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low temporal resolution. The observations also rarely resolve the vertical profiles
of the observed quantities. Thus, the numerical models are often the only feasible
source of information about the atmospheric composition.

As both the health and climate effects of aerosols depend on their chemical and
physical properties, it is important for the atmospheric chemistry and transport
models (CTMs) to accurately assess not only the total amount of PM but also the
chemical composition, size spectra and other physical and chemical features of the
particles.

The main scientific objectives of this study were:

1. quantifying deficiencies in modelling PM concentration in terms of the aerosol
chemical constituents, source categories, seasonal variations, and geographical
distribution and identifying the most prominent areas for model improvement;

2. evaluating the health effects of the fine particles originating from wild-land
fires;

3. determining the sources and the extent of atmospheric transport of the pollen
of common ragweed in Europe;

4. assessing the variability in grass pollen potency (allergen content of a single
pollen).

This work is focused on development, evaluation and application of a 3D re-
gional atmospheric chemistry and transport model SILAM. The thesis describes
the following developments and improvements of the SILAM model and its input
datasets:

1. improving the anthropogenic emission data through a combination of forward
and inverse modelling;

2. extending the number of allergenic pollen species in SILAM forecasts;

3. taking the first steps towards modelling the variations of pollen potency by
mapping the source areas of grass pollen with different potencies.

13



Chapter 2

Background

2.1 Atmospheric composition modelling

Atmospheric composition models simulate the concentrations of the tracer com-
pounds in the atmosphere. The models exist in different levels of complexity and
work on different spatial and temporal scales, thus the selection of the model de-
pends on the processes of interest in the specific study. Empirical models are
based on statistical relations derived from the observations, while the mechanistic
ones rely on the mathematical implementation of the current understanding of the
chemical and physical processes affecting the studied quantities. The empirical rela-
tionships cannot be extrapolated outside the range of the underlying observations,
and thus the empirical models are not always valid for assessing the air quality in
the future climate or for evaluating the effectiveness of emission abatement mea-
sures. In these cases, mechanistic models based on the best understanding of the
processes that control the atmospheric composition need to be applied.

This thesis focusses on mechanistic modelling of atmospheric composition in
regional scale, with the model domain sizes starting from a few hundreds of kilo-
metres in width, and the most extensive simulations covering the whole European
continent. The simulated processes include emission, along-wind transport, turbu-
lent mixing, chemical and physical transformations, and dry and wet deposition of
the pollutants. A wide range of methods and parametrizations is used in the var-
ious chemistry-transport models (CTMs) for modelling these processes, described
for instance by Kukkonen et al. (2012).

The model input consists of the emissions of the tracers and the meteorological
fields from numerical weather forecasting (NWP) models. The NWP models and
CTMs can either work off-line or be on-line coupled, depending on whether there is
two-way data exchange between the models during the computation or whether the
output of the NWP model is just read by the CTM as input. In the Lagrangian
framework, the transport of discreet air parcels is described as a random-walk
process, while the Eulerian models compute the evolution of the concentrations in
a 3D grid. The model output usually consists of temporarily resolved gridded 3D
tracer concentration and 2D deposition fields.
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2.1.1 Adjoint modelling, footprints

Back trajectory analysis is a widely used method for investigating the origin of
the observed tracer concentrations (Stein et al., 2015). Also a more quantitative
method — the footprint analysis, which is based on solving the adjoint transport and
transformation equations — has been applied for tracing the origin of the observed
air-masses, for instance by (Stohl et al., 2002) using a Lagrangian and (Hourdin
and Talagrand, 2006) using an Eulerian models. Such receptor oriented mod-
elling, where the model starts from the observed state and the computation goes
backwards in time allows computing the sensitivity of the observation to model
parameters and input. For instance, the observed pollutants can be traced back
to their sources and as the adjoint model allows to compute the sensitivity of the
observation to the emission fluxes from every point of the model domain, it can
be used to estimate the source properties (Shankar Rao, 2007; Pudykiewicz, 1998;
Flesch et al., 1995). The footprint of the observation comprises the non-zero values
of the sensitivity distribution and the emissions from this area are responsible for
the observed concentration.

2.1.2 Modelling the aerosol composition

Atmospheric aerosols consist of a mixture of primary and secondary compounds
of both natural and anthropogenic origin. Sizes of aerosol particles range from a
few nanometres to several tens of micrometers. Most of the mass of tropospheric
aerosols consists of sulphate, ammonium, nitrate, sodium and chloride ions, elemen-
tal and organic carbon, crustal elements, and water. The particle size and composi-
tion can change due to chemical reactions or aerosol processes such as coagulation,
condensation or evaporation, which lead to each particle having a unique composi-
tion. Exhaustive studies about aerosol composition in Europe have been published
by Belis et al. (2013), Van Dingenen et al. (2004) and Putaud et al. (2004b, 2010),
who report that the PMs 5 fraction is dominated by secondary inorganic aerosol
(SIA) and carbonaceous particles, while the coarse fraction (PMz5_1¢) includes
large contributions from mineral dust and also sea salt at coastal stations. Nitrates
are still noticeable in coarse PM, while ammonium and sulphate contribute on av-
erage just by a few percent to the coarse fraction. Secondary organic aerosol (SOA)
makes up majority of organic carbon, especially in rural stations and during warm
periods (Belis et al., 2013), indicating an important role of the biogenic emissions
of the volatile organic compounds (VOCs). Significant contributions from biomass
burning can be observed during cold season indicating domestic heating. In Cen-
tral Europe carbonaceous matter contributes noticeably also to coarse particles
and generally there is more carbonaceous matter in Central Europe, more nitrate
in North-western Europe, and more mineral dust in southern Europe (Putaud et al.,
2004b, 2010).

Due to the impact of aerosols on climate and health, it is important for the
atmospheric chemistry and transport models to accurately assess not only the total
PM amount but also the particle chemical composition, size spectra and other
physical and chemical features.

Particulate matter consists of both primary components directly emitted in
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particulate phase and secondary components that form by chemical and physical
processes in atmosphere. A substantial proportion of secondary aerosols consists
of components, such as ammonium nitrate and semi-volatile organic species, whose
partitioning between gaseous and particulate phase depends on the atmospheric
conditions and concentrations of the compounds. The models use a range of dif-
ferent algorithms for assessing this equilibrium, such as the thermodynamic equi-
librium model ISORROPIA (Nenes et al., 1998) for the inorganic components and
water or the Volatility Basis Set (VBS, (Donahue et al., 2006)) for the partitioning
of the organic components.

Modelling studies often report underestimation of total PM mass concentration
(Im et al., 2014; Solazzo et al., 2012a; Stern et al., 2008, etc.). This underestimation
(also called PM deficit) is often easy to accept, because the models rarely include
all the aerosol components. For instance, secondary organic aerosols, forest fire
induced aerosols and wind-suspended dust are often left out because of limited
knowledge of their emissions or production in the atmosphere (Kukkonen et al.,
2012). Uncertainties in SOA modelling are described for instance by Bergstrom
et al. (2012), fire emission uncertainties by Soares et al. (2015), dust emission
uncertainties by Kim et al. (2014).

The properties of hygroscopic aerosols depend strongly on ambient relative hu-
midity — the particles in the atmosphere gain and lose water depending on their
hygroscopic properties and the available water vapour. This process influences the
aerosol size distribution, which in turn affects both dry and wet deposition, and
also the optical properties of the particles and their interaction with solar radiation.
Hysteresis exists in the particle deliquescence-crystallization cycle for many aerosol
components — the deliquescence humidity, at which the dry solid particle starts
taking up water is significantly higher than the efflorescence humidity, at which
the particle crystallizes and loses its water content. The deliquescence and effio-
rescence humidities differ for external and internal mixtures of different inorganic
salts (Seinfeld and Pandis, 2006; Martin, 2000) and also the presence of organic
components in the same particles can alter the water uptake of the inorganic species
(Jing et al., 2015). This makes modelling the aerosol water content challenging,
because the water uptake depends on the aerosol composition and mixing state of
the different components, but also on whether the particle comes from more or less
humid environment.

2.1.3 Allergenic pollen modelling

A pollen of a wind pollinated plant is usually a large and light particle, with di-
ameter in the range of a few tens of micrometers, and modelling its transport and
deposition is feasible with a regular CTM, as shown by Sofiev et al. (2006a). The
first studies about modelling pollen dispersion in Europe were published about 10
years ago (Helbig et al., 2004; Vogel et al., 2008; Schueler et al., 2005; Schueler
and Schliinzen, 2006; Sofiev et al., 2006a; Siljamo et al., 2008). During the last
decade, pollen dispersion has been incorporated into numerous reginonal CTMs
(COSMO (Helbig et al., 2004; Vogel et al., 2008; Zink et al., 2012), Enviro-HIRLAM
(Mahura et al., 2009), CHIMERE and RegCM (Hamaoui-Laguel et al., 2015),
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CMAQ, (Zhang et al., 2014), etc). In the SILAM CTM currently the pollen emis-
sion models exist for birch (Sofiev et al., 2013; Siljamo et al., 2013), grasses, olive,
alder, mugwort (Prank et al., 2016) and ragweed (Paper IV). The SILAM birch
pollen source term was recently used in the first study about ensemble modelling
of pollen dispersion (Sofiev et al., 2015a).

Also the biogenic emission models have started modelling pollen emission for
various plant species (LPJ-Guess (Leiblein-Wild et al., 2015), MEGAN (Zhang
et al., 2014)).

A pollen emission model for regional simulations requires two main compo-
nents: a habitat map and a flowering model specifying the dependencies of the
season timing on external forcings. As one of the main reasons for modelling pollen
with a regional CTM is to forecast the long-range transport episodes originating
occasionally from hundreds, or even thousands of kilometers away, all maps and
parametrizations have to be valid for the whole computed region.

Several data sources exist for plant habitat maps. Land cover and forest in-
ventories can contain either the required land use type (e.g. alder or birch forests,
olive plantations or grasslands) or a surrogate type that needs to be scaled for the
specific species (e.g. broadleaf forest for birch or alder). Possible data sources in-
clude detailed databases, such the Global Biodiversity Information Facility (GBIF,
www.gbif.org) that provides the data on observations of specific plant species or
European Forest Institute’s (EFI) database on tree species (Brus et al., 2012). How-
ever, such sources have not proved to be very useful, as the observation practices
differ noticeably between regions (Cunze et al., 2013), leading to unrealistically un-
even habitat maps, and low accuracy in reproducing the forest composition ( Trom-
bik and Hldsny, 2013). For the invasive ragweed, detailed maps have been compiled
for some of the most affected regions (Pannonian plain, Skjoth et al. (2010); France,
Thibaudon et al. (2014); Austria, Karrer et al. (2015)) based on land use, topogra-
phy and local knowledge. Unfortunately these maps do not cover the whole Europe.
Thus, the more general land-cover maps often have to be used for starting points,
and the habitat maps have to be obtained by calibrating those with the pollen
observations. For example, the broadleaf forest map of EFI (Pdivinen et al., 2001;
Schuck et al., 2002) was used in SILAM for birch and alder habitats. However,
also the quality of the available land cover data has been criticised by Fritz et al.
(2011).

The timing and intensity of the flowering season of a plant species varies both
geographically and from year to year. For annuals, the intensity of the flowering
season depends on the suitability of the meteorological conditions and availability
of resources (water, nutrients, solar radiation) during the growing season, while
for perennial plants, two or three year cycles are often observed in the flowering
intensity (Dahl et al., 2013). Various forms of competitions for resources between
the ripening of the seeds and the preparations for the next year’s reproductive
efforts have been suggested as an explanation, with spatial synchronization imposed
by the interannual variations in the environmental conditions (Dahl et al., 2013).

The onset and duration of the flowering can be influenced by meteorological and
physical parameters such as temperature, photoperiod, and availability of resources
(e.g. water, nutrients, CO3). In annuals, such as ragweed, mugwort and some
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grasses, the photoperiod often plays important role, modulated to varying extent
with temperature and water availability (Dahl et al., 2013; Grewling et al., 2012).
For trees, various types of temperature accumulation models are commonly used for
predicting the phenological phases (e.g. Linkosalo et al. (2006); Andersen (1991);
Galan et al. (2005)). Additionally, many tree species (including birch, olive, and
alder) have a ”chilling requirement” — to avoid frost damage by too early initiation
of flowering, they require a certain period of low temperatures before the winter
dormancy can be lifted (Dahl et al., 2013; Orlandi et al., 2004).

The temporal profile of the observed pollen season of a taxon can have several
peaks (e.g. Spieksma et al. (1989); Grewling et al. (2012)). One reason for that can
be that the pollen originates from areas with substantially different microclimates,
which can happen in mountainous or seaside regions. Multi-peak seasons can also
occur if several species with different phenological requirements contribute to the
same pollen observations. This complicates the modelling of the duration of the
pollen season. However, the accuracy of the forecasts of season end is much less
relevant for the allergy patients than the accuracy of predicting the start of the
season, in order to start the medications in time.

The calibration of the flowering model would ideally be based on phenologi-
cal observations. The observations of the timing of the phenological phases for
many species are available from the Pan European Phenology Project website
(http://www.pep725.eu). While for some species (e.g. birch, alder) a large dataset
about the start of flowering is available, for many other species, such as mugwort
and ragweed, the data is available only from one or two countries, which is not
sufficient to capture the behaviour over whole Europe. Very few observations exist
in the database about the end of flowering. Thus, often the pollen observations
have to be used for the calibration of the phenological model. However, Estrella
et al. (2006) found significant differences, when comparing the season propagation
in the pollen observations with the observations of local flowering.

Due to the fact that the pollen observations are rarely publicly available, the
opportunities for evaluating the pollen emission models are limited. For example,
Zhang et al. (2014) compare their modelling results with only one year of observa-
tions in 9 stations, and Leiblein- Wild et al. (2015) report only visual comparison
with the graphic maps available at the website of the European Aeroallergen Net-
work (EAN, https://www.polleninfo.org).

Pollen grains, when inhaled, release a mixture of proteins, some of which can
cause an allergic response in the sensitive individuals. As shown by Buters et al.
(2012); Galan et al. (2013) and Paper V, the allergen released from the same
amount of pollen varies substantially between the measurement stations and also
from day to day in the same location, depending on the meteorological conditions
and the area of origin of the pollen. Thus, although the airborne pollen observa-
tions are a good proxy for allergen exposure, more can be learned from the actual
monitoring and modelling of allergens in ambient air.
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2.2 Model evaluation

To gain trust in the model, its predictions need to be compared with the avail-
able observations. Model evaluation can serve several goals: determine the model’s
suitability for a given task, understand the strengths and limitations of different
models, and guide the model improvement (Dennis et al., 2010). Numerous pub-
lications compare the results of a single model to a set of observations, using the
range of methodologies described in Dennis et al. (2010). However, for such study
the modeller is free to select the set of observations and the statistical scores of the
model skill to be presented, and to choose the best model set-up to reproduce the
selected observations. As these choices are not the same between different studies,
the skills of the models are usually not directly comparable, ant thus these studies
do not give an objective picture of how the presented model or models in general
manage in all conditions. Multi-model intercomparison studies provide a more ob-
jective view, as all the models are compared to the same set of observations in an
identical way, and often the model input data is also unified.

Such intercomparison studies for atmospheric composition modelling have been
made in many projects, e.g. AEROCOM (Textor et al., 2006) for global models,
and HTAP (Dentener et al., 2010) for hemispheric modelling. For Europe numerous
studies can be mentioned, such as EUROTRAC (Hass et al., 1997, 2003), AQMEII
(Rao et al., 2011; Solazzo et al., 2012a,b; Im et al., 2014), MACC (Huijnen et al.,
2010b; Marécal et al., 2015), EURO/CITYDELTA (Vautard et al., 2007, 2009;
Bessagnet et al., 2014), ENSCLIM (Langner et al., 2012; Simpson et al., 2014;
Soares et al., 2016) and others.

It has also become increasingly common in projects studying either future cli-
mate scenarios or the effects of emission control measures to apply several models
of the same type, obtaining an ensemble of the predictions (Dentener et al., 2010;
Langner et al., 2012; Simpson et al., 2014; Colette et al., 2015; Soares et al., 2016),
etc. This is a way to improve the robustness and reproducibility of the scenario
results that cannot be validated against observations, showing that models with
different algorithms and assumptions show a similar response to the changes in the
model forcings.

A specific challenge of the model-measurement comparison for individual PM
components is the difference in how PM composition is represented in the models
and observations. The observations are available for specific molecules or ions
(Nat, SOZ*7 NHI, NOj, Ca**, Al, Fe, etc.) and elemental and organic carbon
(EC, OC), while in the models the speciation of primary aerosols rather follows
the emission categories, such as anthropogenic sources, wild-land fires, sea salt or
wind-blown dust, which all can include several of the measured components.

As a further complication, the PM speciation measurements do not resolve the
whole PM mass. Observational studies of the PM mass closure (Putaud et al.,
2004a; Sillanpdd et al., 2006) have reported an unidentified fraction of fine PM
reaching up to 20-30% of the gravimetrically determined aerosol mass, while it
might be as large as 40% for coarse particles. The explanations for this deficiency
include possible artefacts in observations of semivolatile organic and inorganic com-
ponents, unaccounted non-carbon atoms (e.g. O, H) in organic matter, uncertain-
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ties in estimating the concentration of the crustal particles, and most importantly
aerosol-bound water.

In gravimetric sampling, which is the reference method for PM observations
defined by the European Committee of Standardization, the filters are weighted in
laboratory conditions of 20° C and 50% relative humidity. While the deliquescence
relative humidity of most pure inorganic salts present in the atmospheric aerosol is
higher than 50% (Martin, 2000), it can be lower for mixed particles (Seinfeld and
Pandis, 2006). The efflorescence humidity is below 50% for many common aerosol
components, such as ammonium sulphate and sodium chloride (Martin, 2000).
Therefore, if the particle has been exposed to a more humid outdoor environment,
crystallization might not occur in the standard laboratory conditions, leaving some
water bound to the particles on the filter. However, the output of the chemistry-
transport models usually consists of dry particulate matter concentrations.

The spatial features of the compared data can also lead to uncertainties when
comparing the model grid-cell average with concentration observed in a single point.
Regional models with grid-cell sizes of a few tens of kilometres are not designed
to reproduce the concentration patterns with smaller spatial scales, e.g. in the
vicinity of strong sources, in urban conditions or mountainous areas. Also the
vertical gradients can be steep in the concentrations of surface emitted or fast
depositing pollutants and introduce extra uncertainties to the model evaluation
against surface or roof level observations.

2.3 Health impact of fine particulate matter

Adverse health effects arising from fine PM are well recognized (Lim et al., 2012;
Hinninen et al., 2014; Hansell et al., 2015; Loomis et al., 2013). As the toxicity of
the inhaled aerosol depends on its chemical composition, intensive research efforts
have been dedicated to specify the health relevance of specific aerosol components,
although the results are still inconclusive. Several epidemiological studies relate
the strongest adverse health outcomes with sulphate and crustal aerosols, and car-
bonaceous aerosols originating from combustion sources including traffic (Stanek
et al., 2011; Dai et al., 2014; Ostro et al., 2011; Zanobetti et al., 2014; Atkinson
et al., 2015), while no PM components have been unequivocally proven to have zero
health impact (Rohr and Wyzga, 2012). Toxicological studies, on the other hand,
have not shown direct toxicity of the secondary inorganic salts, elemental carbon,
crustal dust, and sea salt in ambient concentrations, indicating complex interac-
tive effects with other pollutants (Schlesinger and Cassee, 2003; Schlesinger, 2007;
Cassee et al., 2013). The toxicity of wood smoke has been found to vary depending
on burning conditions (Cassee et al., 2013). Due to these complications, majority
of the health impact assessments still concentrate on total mass of fine PM.
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Chapter 3

Models and data

3.1 SILAM chemistry-transport model

The thesis presents a collection of developments and applications of the System for
Integrated modeLling of Atmospheric coMposition (SILAM, http://silam.fmi.fi).
SILAM is a global-to-meso-scale chemical transport model developed at Finnish
Meteorological Institute and used in research and operational applications related
to air quality and emergency. SILAM can be used with two transport algorithms
- the Eulerian advection scheme of Sofiev et al. (2015b), and the Lagrangian ad-
vection scheme described by Sofiev et al. (2006b). Adjoint models exist for both
Lagrangian and Eulerian advection mechanisms.

SILAM includes a meteorological pre-processor for diagnosing the basic features
of the boundary layer and the free troposphere from the meteorological fields pro-
vided by various meteorological models (Sofiev et al., 2010). The dry deposition
scheme is described in Kouznetsov and Sofiev (2012).

Several options exist in SILAM for atmospheric chemistry, between which
the user can choose. The gas phase chemistry can be simulated by the Acid-
Basic scheme from DMAT model (Sofiev, 2000), or the Carbon Bond Mechanism
IV (CBM-1V, Gery et al. (1989)) can be used with reaction rates updated ac-
cording to the recommendations of IUPAC (http://iupac.pole-ether.fr) and JPL
(http://jpldataeval.jpl.nasa.gov) and with several possible alternations, such as ei-
ther including the stratospheric chlorine reactions or the terpenes oxidation from
CBO5 reaction list ( Yarwood et al., 2005). A linear chemistry scheme for the sulphur
oxides is also available (Sofiev, 2000).

Flexible options exist for the aerosol representation. The possible aerosol com-
ponents in SILAM include primary particulate matter, either as total or speciated
to multiple components, secondary inorganic species SOi_, NOjz and NHI, fresh
and aged elemental carbon, primary and secondary organic carbon, desert dust,
sea salt, smoke from wild-land fires and allergenic pollen.

For secondary inorganic aerosol formation, an updated version of the chemistry
scheme from DMAT model (Sofiev, 2000) is used. It includes gas phase and hetero-
geneous oxidation of SO3 to SOy4, dynamic equilibrium between NH4NOj3 aerosol
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and NHs and HNOj in gas phase. The scheme has been extended by including the
formation of coarse nitrates by the condensation of HNOg3 to the surface of the sea
salt particles.

A volatility basis-set (VBS) scheme (Donahue et al., 2006; Robinson et al., 2007)
is implemented in SILAM for modelling the secondary organic aerosols (SOA). The
SOA production is computed from toluene, xylene, isoprene and monoterpenes.
NOx-dependent SOA yields of Lane et al. (2008) are used. VBS in SILAM has
one non-volatile bin and four semivolatile bins (1-1000 ug m~3 saturation concen-
trations), separately for SOA from biogenic and anthropogenic precursors. Three
intermediate volatility (IVOC) bins (1e4 - 1e6 ug m~2) have been added for anthro-
pogenic OC emissions, for which the volatility distributions from e.g. Shrivastava
et al. (2008, 2011) can be used. The scheme is implemented keeping in mind various
test purposes, thus the OH reaction rates of the volatility bins can be defined by
the user, separately for biogenic and anthropogenic bins and anthropogenic IVOCs.

Some of the transformation schemes (linear sulphur chemistry, CBM-IV gas
phase chemistry, and passive self-decay) can be used in adjoint computations.

Sea-salt is emitted according to Sofiev et al. (2011); Soares et al. (2016). SILAM
uses the biogenic VOC emissions of Poupkou et al. (2010), the module is capable
of emitting isoprene and monoterpenes. Wild land fire emissions of IS4FIRES v1
Sofiev et al. (2009) or v2 Soares et al. (2015) can be used, further described below
in Section 3.3.2.

Pollen emission can be computed for birch (Sofiev et al., 2013; Siljamo et al.,
2013), grasses, olive, ragweed (Paper IV), alder and mugwort (Prank et al., 2016)
pollens. Further details of pollen emission in SILAM can be found below in the
Section 3.3.2.

SILAM includes 3D- and 4D-VAR (Vira and Sofiev, 2012) and EnKF schemes
for data assimilation.

The SILAM model has been evaluated against other models and air quality and
pollen observations over Europe in several recent multi-model inter-comparison
studies (Huijnen et al., 2010a; Solazzo et al., 2012a,b, 2013; Sofiev et al., 2015a;
Marécal et al., 2015; Soares et al., 2016) and Paper 1.

3.2 Thermodynamic equilibrium model ISOR-
ROPIA2

In Paper I the aerosol water content at the filter weighting conditions was evalu-
ated based on the modelled and observed dry PM composition using the thermo-
dynamic equilibrium model ISORROPIA2 (Fountoukis and Nenes, 2007). ISOR-
ROPIA2 considers the equilibrium between the gas phase NH3, HCl, HNO3, H,SO4
and aerosol phase Na, Ca, K, Mg, NH4, NO3, SO, and Cl. It allows to compute the
water uptake for stable and metastable states, corresponding to the lower and up-
per branches of the deliquescence hysteresis loop. In Paper I, ISORROPIA2 was
run in the reverse mode, where the input quantities were the soluble inorganic com-
ponents (SIA, sea salt, nss-Ca) in the aerosol phase. Both stable and metastable
states were computed, providing the lower and upper limits of the aerosol bound
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water amount.

3.3 Emission data

3.3.1 Anthropogenic emission inventories

The inventories of the anthropogenic emissions commonly consist of gridded maps
of annual or monthly total emissions by species and are often segregated by the
emission sector (industry, traffic, agriculture etc). Different temporal variations and
emission vertical profiles are applied in different models (e.g. Simpson et al., 2012;
Bieser et al., 2011), which provide the seasonal and diurnal changes in emission
intensity and release height of the pollutants depending on the emission sector.

In Europe the emissions of acidifying air pollutants, heavy metals, particu-
late matter and photochemical oxidants are reported to EMEP (Co-operative Pro-
gramme for Monitoring and Evaluation of the Long-range Transmission of Air
Pollutants in Europe, http://www.emep.int/). Based on these emissions reported
officially by the authorities of the countries CEIP (the EMEP Centre on Emission
Inventories and Projections) prepares emission inventories for dispersion model
input. The inventory includes anthropogenic emissions and some natural sources
(volcanoes in Italy and DMS marine fluxes), with yearly time step and 50km spatial
resolution. Currently the resolution is about to rise to 0.1 degrees.

There are numerous other inventories of anthropogenic emission, covering var-
ious regions and time periods with different spatial and temporal resolutions and
containing different sets of pollutant species. The most comprehensive collection
of emission data can be found at the website of the ECCAD project (Emissions of
atmospheric Compounds & Compilation of Ancillary Data, http://eccad.sedoo.fr).
The portal provides access to numerous regional and global datasets of anthro-
pogenic, biogenic, oceanic and biomass burning emissions for various periods. For
Europe, the emission inventories currently available with spatial resolution suitable
for regional scale modelling are various versions originating from TNO ( Visschedijk
et al., 2007; Denier van der Gon et al., 2014; Kuenen et al., 2014), and EDGAR
(http://edgar.jrc.ec.europa.eu; Crippa et al., 2016).

As shown by McLinden et al. (2016), numerous large sources of SOq are cur-
rently missing in the commonly used emission inventories. Paper III reports such
error found in the emission database of EMEP. When new emissions patterns are
reported by the countries, updated data are reported also for the past years and all
emissions are recomputed retrospectively by CEIP. This can result in substantial
changes in the emission amounts and patterns. In Paper III the EMEP dataset
for 2003, downloaded before 2006, was used as the starting point for the analysis.

Other inventories are partly independent from the EMEP database but can
sometimes rely on the data reported to EMEP. For instance in the TNO-GEMS
inventory for 2003 (Visschedijk et al., 2007), used in Paper III, the initial EMEP
emission distributions were significantly rearranged but the national totals for most
countries were based on the values reported to EMEP. Independent bottom-up
assessment from activity data and emission factors was used only if the reported
data were missing or suspected to be erroneous.

23



3.3.2 Natural emissions

If the emission intensity from a source depends on meteorological conditions, the
emissions are usually computed on-line within the chemistry-transport model. The
emissions of wind-suspended dust and sea salt depend strongly on wind speed, sea
salt emissions also depend on water temperature and salinity and dust emissions
on soil water content, vegetation and soil properties. Biogenic emissions of VOC-
s depend on solar radiation and temperature and the phenological state of the
vegetation. Biogenic particulate emissions, such as pollens, fungal spores and plant
debris, also follow the phenological developments. The two sets of natural emissions
relevant for this study — wild-land fires and allergenic pollen — are described in detail
below.

The emissions from wild-land fires

The emissions from wild-land fires can be estimated from satellite observations of
either burnt area scars or active fires, such as the Fire Radiative Power (FRP).
The first of these approaches is taken for instance in the Global Fire Emissions
Database (GFED, van der Werf et al. (2010), while the Global Fire Assimilation
System (GFAS Kaiser et al. (2012) and the Integrated Monitoring and Modelling
System for wild-land fires (IS4FIRES) Sofiev et al. (2009); Soares et al. (2015))
follow the second approach, as it allows near-real-time retrieval of the emission
fluxes necessary for air quality forecasting. IS4FTRES emissions used in Paper I
and Paper IT are computed using the FRP observations of the Moderate Reso-
lution Imaging Spectro-radiometer (MODIS) on-board Terra and Aqua satellites.
Land-use dependent emission factors are used to convert the observed FRP to PM
emissions. As MODIS covers every location on the globe at least twice per day,
the emissions are computed with daily resolution and a fixed diurnal variation pro-
file is assumed for the emission intensity (Soares et al., 2015). Also a fixed vertical
emission profile can be assumed (e.g. uniform distribution up to 1 km in IS4FIRES
v1), or the plume rise can be computed for every fire separately based on the ob-
served FRP and the meteorological conditions at the fire location (Sofiev et al.,
2012). The latter option was used in SILAM computations presented in Paper I
and Paper II.

Pollen emission modelling

SILAM can compute pollen emission for birch (Sofiev et al., 2013; Siljamo et al.,
2013), grasses, olive, alder and mugwort (Prank et al., 2016) pollens. Paper IV
describes the development of the emission model for common ragweed (Ambrosia
artemisiifolia L.).

The trees (birch ,olive, alder) are represented as temperature sum dependent
species, while the flowering of the annuals such as ragweed, mugwort and grasses
has been assumed to mainly depend on photoperiod and thus fixed calendar days
can be used as start and end of the flowering season. SILAM allows the parameters
of the flowering model to vary spatially, and thus a map of flowering thresholds
(temperature sums or calendar days) is necessary for model input.
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The temperature sum model for birch pollen emission in SILAM is described by
(Sofiev et al., 2013; Siljamo et al., 2013). Broadleaf forest map from EFI (Pdivinen
et al., 2001) was calibrated with the EAN pollen observations to obtain the habi-
tat map. For grasses the grassland map from ECOCLIMAP database (Champeaux
et al., 2005) is used. As the numerous grass species that contribute to the grass
pollen have different requirements for flowering onset, and their abundance and
flowering intensity varies both spatially and year to year, the grass flowering model
in SILAM is based on observed average dates and larger model uncertainties have
to be accepted. The olive groves from ECOCLIMAP are used as olive habitat and
a similar temperature sum model as used for birch was calibrated using EAN obser-
vations. The initial guess for the flowering parameters of alder was taken following
the simple degree hour model of (Andersen, 1991) — SILAM does not include chill
accumulation. The start and ending dates of mugwort flowering were taken from
long term averages of EAN observations that were interpolated over whole Europe.
As mugwort is mostly found at roadsides, waste areas and other areas with dis-
turbed soil and rarely occurs on crop fields (Barney and Ditommaso, 2003), human
influenced land uses (roads, inhabited areas, etc.) from ECOCLIMAP land cover
(Champeauz et al., 2005) were taken as a first guess for mugwort habitat. These
land cover maps were calibrated with the alder and mugwort pollen observations
of EAN to obtain the pollen emission maps of these species (Prank et al., 2016).

Common ragweed is a highly allergenic invasive weed, which is spreading
through southern and central Europe. Ragweed pollens are relatively small — Tara-
marcaz et al. (2005) reports 18-22 ym diameter, even smaller size (13-15 pm) was
reported by Fumanal et al. (2007) — and thus can be transported over the whole
Europe. Due to the extremely high allergenicity, even small pollen concentrations
in the air can cause symptoms in the sensitive population (de Weger et al., 2013).
Recently Grewling et al. (2016) proved that the long range transported ragweed
pollens remain immunoreactive, and thus the long-rage transport episodes can re-
sult in adverse health effects.

Ragweed is the only species in SILAM for which the source term utilizes occu-
pancy and climatic habitat quality maps from an ecological model. The ecological
model of Chapman et al. (2016) was applied to simulate the invasion of Ambrosia
Artemisiifolia in Europe, accounting for the climate suitability (temperature dur-
ing the vegetative season, annual variations in temperature to break the dormancy,
available moisture, etc.), seed import from infested areas, seed dispersal from in-
vaded areas, and suitability of land use for ragweed. Both the underlying model
and the ragweed habitat map are described by Bullock et al. (2012); Chapman
et al. (2014, 2016). The habitat maps were provided with spatial resolution of 5
x 5 km and further refined based on the comparison of SILAM simulations with
EAN observations (Paper IV). A multi-threshold model for ragweed flowering was
developed in Paper IV, based on Deen et al. (1998). The flowering was assumed
to start when photoperiod gets shorter than 14.5 hours after midsummer, and 25
biodays of Deen et al. (1998) are accumulated. The flowering in the model ends
when photoperiod shortens to 12 hours, daily mean temperature falls below 7.5 °C
or frosts occur.
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3.4 Observational data

3.4.1 EMEP opservational network

The observations by the EMEP monitoring network are used in Paper I and
Paper III. Chemical Co-ordinating Centre of EMEP (CCC) aims at long-term
monitoring of concentrations and deposition fluxes of air pollution with adequate
spatial coverage over Europe. The stations of the EMEP observational network
have been chosen to be representative of regional background and thus suitable for
comparison with regional models that have grid cell size of a few tens of kilometres
(EMEP, 2001). Gravimetric sampling is the reference method for PM observations
defined by the European Committee of Standardization. Before weighting the filters
are equilibrated at 20°C and 50% relative humidity for 48 hours.

Model measurement comparison for aerosol composition

In order to evaluate the model results against the observations, the model output
needs to be converted to the observed quantities.

In Paper I, the observed Na™ was assumed to originate only from sea salt,
consisting 30.8% of sodium by dry weight. The part of the Ca?* observations not
related to sea salt (nss-Ca) was used to evaluate the modelled mineral aerosol.
The sea salt related calcium was subtracted from the observations proportionally
to observed Nat concentrations, sea salt including 1.2% of calcium by dry weight.
Widely varying calcium contents have been reported for Saharan dust from different
origin areas ranging from <5% to >15% (Awila et al., 1998; Formenti et al., 2011;
Marconi et al., 2014; Putaud et al., 2004a). The calcium content of anthropogenic
emissions also varies between the sources, ranging from less than a percent for
biomass burning (Akagi et al., 2011; Larson and Koenig, 1993) to 30% for cement
and lime production ](Lee et al., 1999; van Loon et al., 2005). In Paper I the
modelled dust was assumed to come mainly from Sahara and was attributed 10%
Ca?* content (Marconi et al., 2014). In addition, 3.5% Ca?* content was attributed
to the mineral part of primary anthropogenic emissions. This value was chosen as
it maximized the correlation between the observed nss-Ca and the model results. It
stays well within the reported range for the anthropogenic emissions. The simulated
nss-Ca concentrations were estimated as the sum of the 10% of dust concentrations
plus 3.5% of the unspeciated other primary PM concentrations.

The OC to OM ratios have been reported to range from 1.2 to 1.6 for fresh
anthropogenic emissions, while factors around 2 have been found for aged, sec-
ondary and oxygenated aerosol and particles originating from biomass burning
(Aiken et al., 2008; Turpin and Lim, 2001). Factor 1.6 was used in this study,
analogously to (Bessagnet et al., 2014), however, this might be an underestimation
for the EMEP stations, which are mostly located in rural areas and would thus be
largely influenced by aged aerosols.

The aerosols emitted by wild-land fires also consist mainly of carbonaceous
compounds. The fire emissions originated from IS4FIRES, which provides unspe-
ciated PM1¢ and PMs 5 emissions. The fire-emitted PM has been further speciated
as post-processing following Akagi et al. (2011); Andreae and Merlet (2001). On
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average these papers suggest roughly 5% EC and 50% OC content for fire emitted
aerosol, the rest mainly consisting of non-carbon atoms in the organic compounds
and some inorganics (up to 5%).

3.4.2 Observations of pollen and allergen

Majority of pollen air-concentration measurements in Europe are made with Hirst-
type volumetric samplers (Hirst, 1952). The air is sucked in through a nozzle
aimed at a slowly rotating drum, and the airborne particles are deposited on a
sticky tape, which is later analysed under a microscope by an aerobiologist, who
counts the pollens of different taxa.

The pollen observations in Europe are made by wide range of institutions in
different countries. The observational data are collected by European Aeroallergen
Network (EAN, https://ean.polleninfo.eu/Ean), who gather the data from a few
hundred individual stations to a common database. The EAN archives include
pollen counts starting from 1974. For recent years Europe is covered with ~400
stations. The network covers well the Central Europe, however, it has very limited
coverage of the Eastern Europe. The data are not publicly available, and EAN
membership and permission from all data owners is necessary for accessing the
database and using the data (https://ean.polleninfo.eu/Ean/datausepolicy).

The EAN database includes the pollen counts of numerous different plant taxa.
The pollens of different species are not always distinguishable, and thus one pollen
taxon can include the pollen from several plant species. For instance, pollens of
different grasses can not be distinguished visually and thus all grasses are reported
together as single taxon. The ragweed pollen observations of the EAN network are
used in Paper IV.

Within the HTIALINE project Buters et al. (2012, 2015); Galan et al. (2013) the
aerosol samples collected daily for three years with a high-volume cascade impactor
from 10 sites in Europe were analysed for the content of the major allergens from
birch (Bet v 1), olive (Ole e 1) and grass (Phl p 5) pollen. The allergen levels were
determined in two aerosol fractions: PMs 5_10 and larger particulates (grass pollen
is about 40 pm in diameter, olive about 30 and birch about 20). The allergen mea-
surements were accompanied with pollen observations at the same sites. Paper V
studies the relations between the grass pollen and allergen concentrations in air
and the variations in their ratio - the pollen potency.

3.5 Model setup used in this work

The SILAM model versions, setup and input data used in the papers are shown in
Table 3.1.

In Paper I the aerosol concentration and composition over Europe was com-
puted by four regional chemistry-transport models - CMAQ, EMEP, LOTOS-
EUROS and SILAM. The setup of the models is shown in Table 3.2.

The anthropogenic emissions originated from the TNO-TRANSPHORM inven-
tory (Denier van der Gon et al., 2014). The wild-land fire emissions were provided
by the Integrated System for wild-land fires ISAFIRES (Sofiev et al., 2009; Soares
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Table 3.1: SILAM setups used in the studies
Model setup  Paper I Paper II Paper ITI Paper IV Paper V
Model ver- SILAM v5.3  SILAM v5.3  SILAM v4.5 SILAM v5.2  SILAM v5.1

sion

Direction Forward Forward Forward, Forward Adjoint
Adjoint
Species All PM com- Wild-fire SOx, PM Ragweed Grass pollen
ponents emitted pollen
PM; 5
Transport Eulerian Eulerian Eulerian, La-  Eulerian Eulerian
grangian
Area Europe Europe 15°E-42°E; Europe Europe
58°N-72°N
Period 2005 2005, 2008 2003, 2006 2005-2011 2009-2011
Resolution 0.3° x 0.2° 0.3° x 0.2° 0.1° 0.2° 0.3° x 0.2°
Vertical 8layersup to 8layersupto 11 layers up 8layersupto 8 layers up to
~8km ~8km to ~9km ~T7km ~6Gkm
Timestep 15 min 15 min 6 min 15 min 15 min
Meteorology ~ECMWF ECMWF ECMWF, ECMWF ECMWF
HIRLAM
Emission TNO- IS4FIRES EMEP Paper IV Observed
TRANSPHORM pollen  po-
(Denier wvan tency
der Gon
et al., 2014)

et al., 2015). Desert dust was included only through the lateral boundary condi-
tions; no wind-blown dust was emitted inside the modelling domain.The collected
model output consisted of hourly concentrations of each PM component, separately
for fine (PMay.5) and coarse (PMa.5_19) fractions: SO~ NO; and NHJ, EC, OC,
SOA, sea salt, mineral dust, wild-land fire originated particulate matter, unspeci-
ated other primary PM, and additionally also total PMs 5 and PMyg fields. Not
all components were available from all models — OC was provided as a separate
species only by EMEP and CMAQ models; forest fire smoke was left out of the
total PM output of EMEP and LOTOS-EUROS but was provided as a separate
field, while in CMAQ the fine fraction of fire emitted PM was included in primary
OA and the coarse fraction in unspeciated coarse primary PM.

Models also computed the concentration of benzo[a]pyrene (BaP), which was
assumed to be an inert fine aerosol not participating in any chemical transforma-
tions.

Paper II used the SILAM simulations from Paper I to assess the health
effects of wildfire smoke in Europe. An extra SILAM run was made for wild-land
fire smoke 2008 with identical model setup.

In this thesis the footprint analysis has been applied for both supporting the
analysis of observations (Paper V) and for refining the emission estimates (Pa-
per III). In Paper III, the footprints of model-measurement discrepancies at the
Virrio station lead to the discovery of an error in the emission data of the met-
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Table 3.2: Model setup for the TRANSPHORM multi-model intercomparison. Ta-
ble 1 from Paper I)

Model CMAQ v4.7.1 EMEP MSC-W LOTOS- SILAM v5.3
rv. 4.4 EUROS v1.8
Horizontal reso- 18 km 0.2° x 0.2° 0.3° x 0.2° 0.3° x 0.2°

lution

Vertical resolu-
tion

Lowest layer

Meteo driver
Chemistry
scheme

Aerosol scheme

Temporal emis-
sion profiles
Vertical  emis-
sion profiles

Wildfire

sion

emis-

Sea salt emis-
sion

Reference

34 layers up to
~20 km
~20m

WRF v3.2.1
CBO05

aerob

Builtjes et al.
(2003)

SMOKE plume
rise based on
Briggs  (1971),
wildfire  emis-
sion homoge-
neously up to
1km

IS4FIRES vl
Sofiev et al.
(2009)

Spicer et al.
(1998)

Foley et al.
(2010)

20 layers up to
100 hPa

~90m; 3m con-
centrations de-
rived from the
lowest layer val-
ues

ECMWF
EMEP Em-
Chem09 Simp-
son et al. (2012)
MARS and VBS
Bergstrom et al.
(2012)

Sitmpson et al.
(2012)

Simpson et al.
(2012), wildfire
emission homo-
geneously up to
1km

IS4FIRES vl
Sofiev et al.
(2009)
Tsyro et al.
(2011)

Simpson et al.
(2012)

3 layers up to
3.5 km

the mixing
layer; 25m sur-
face layer for
tracking surface
concentrations

ECMWF

TNO CBM-1IV

ISORROPIA2

Builtjes et al.
(2003)

EURODELTA
Cuvelier et al.
(2007), wildfire
emission homo-
geneously up to
1km

IS4FIRES vl

Sofiev et al.
(2009)
Martensson

et al. (2003);
Monahan et al.
(1986)

Schaap et al.
(2008), Wichink
Kruit et al.
(2012)

8 layers up to
~8km
20m

ECMWF
Acid-Basic
Sofiev (2000)

Extended
DMAT
(2000)
EuroDelta

Sofiev

Bieser et al.
(2011),  Sofiev
et al. (2012) for
fire emissions

IS4FIRES  v2
Soares et al.

(2015)

Sofiev et al.
(2011)

Sofiev et al.
(2015b)

allurgy plants on Kola Peninsula. After correcting the emission data, combined
adjoint and forward modelling was applied to analyse whether further refinements
were possible.

In Paper V the allergen observation footprints were used for mapping the
source areas of pollen with different potency. The model evaluated the transport
for 60 hours backward in time for each daily observation at each site. The observed
pollen potency was mapped to the origin of pollen via the footprints, which were
cut off at 99%, and only the areas where the grass was predicted to be flowering at
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the time were kept, so that the remaining footprint would cover the sources that
contributed 99% of the observation. A weighted mean of the attributed potency
values was computed over the season, the weights taking into account the predicted
flowering intensity in the gridcell and the footprint value. The computations re-
sulted in potency maps, which show the mean potency of pollen released from the
area during a specific year.
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Chapter 4

Results and discussion

4.1 Modelling the particulate matter in Europe

4.1.1 The ability of chemical transport models to simulate
the mass concentration and composition of PM

The currently available chemical transport models commonly under-predict the PM
mass concentrations, however the previous multi-model studies have not thoroughly
investigated how this underprediction is reflected in the PM chemical composition.
The study presented in Paper I was conducted to quantify the model deficiencies
in terms of the aerosol chemical constituents, source categories, seasonal variations,
and geographical distribution. The aerosol predictions of four widely used chemical
transport models (CMAQ, EMEP, LOTOS-EUROS and SILAM) were compared
to the chemically-speciated PM observations by the EMEP monitoring network.

When the calculated dry PM mass was compared with the measurements, all
models systematically underestimated PMg and PM, 5 by 10-60%, depending on
the model and the season of the year, as shown in Figure 4.1. The PM components
for which the modelling and monitoring experience is longer, such as nitrates,
sulphates and ammonia were reproduced fairly well by all the models, whereas
there were major underestimations for carbonaceous and mineral aerosols (Table
4.1).

SO4 and NHy were mostly slightly underestimated by the models, while the
NOg3 concentrations were mostly somewhat overestimated. While the models re-
produced the summertime drop in the concentrations of NH, and NOg, they tended
to overestimate the autumn concentrations, and while the observations show the
highest concentrations in spring for all three secondary inorganic aerosol (SIA)
species, this was not reproduced by the models. SILAM did not reproduce the
seasonal variations well - it overestimated NOs in winter and SO4 in autumn and
underestimated NH, in summer.

The sea-salt concentrations were mostly overestimated by the models. SILAM
failed to reproduce the seasonal variations in the sea salt concentration, the other
models reproduced it more successfully.
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Figure 4.1: Observed and predicted seasonal concentrations of PMs 5 (upper panel)
and PM;o (lower panel), mean over the EMEP stations [ug PM m~3]. The light
blue part shows the aerosol-bound water amount at the filter weighting conditions
(50% relative humidity, 20° C), estimated with ISORROPIA2 based on the mod-
elled aerosol composition. The solid light blue shows the water content in stable
case (the lower curve of the hysteresis loop) and the striped part in metastable case
(the upper branch of the hysteresis loop), when the crystallization has not occurred
to aerosol coming from more humid conditions. Figure 3 of Paper 1.

Only SILAM and EMEP modelled the transport of desert dust from the bound-
aries (mainly Sahara) as a separate tracer. A 10% Ca content was assumed for it,
and in addition, a 3.5% Ca content was attributed to the mineral part of primary
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Table 4.1: Annual statistics for the PM components: ScaledBias - bias divided
with the mean observed value, tCor - temporal correlation of the daily values, Fac2
— the fraction of daily values within factor of two from the observed ones. The
shading emphasizes the range of the values — bias: blue - underestimation, orange
- overestimation; correlation and factor-2 agreement: red - low, green - high. Table
7 of Paper I

Species Model Scaled bias tCor Fac2 |Species Model Scaled bias tCor Fac2
NH, CMAQ -0.08 0.55 0.49|NO; CMAQ -0.12 0.35 0.47
Ave obs: EMEP -0.08 0.58 0.51)Ave obs: EMEP 0.13 0.46 0.45
0.86 ug N/m * |LoTos-EUuROS -0.06 0.56 0.47|0.52 ug N/m * |LOTOS-EUROS 0.06 0.44 0.42
SILAM -0.16 0.55 0.37 SILAM 0.06 0.44 0.39
median -0.13 0.61 05 median 0.00 0.49 0.49
NH3+NH, CMAQ 0.00 0.38 0.44|NO;3;+HNO; CMAQ 0.14 0.49 0.67
Ave obs: EMEP -0.06 0.45 0.59|Ave obs: EMEP 0.24 0.49 0.56
1.54 ug N/m ® |LoTOS-EUROS 0.12 0.39 0.59]0.58 ug N/m * |LoTos-EuROS 0.12 0.47 0.6
SILAM 0.10 0.44 0.54 SILAM 0.02 0.48 0.49
median 0.01 047 0.6 median 0.10 0.54 0.65
NH; CMAQ 0.04/ 0.18 0.25|HNO; CMAQ 0.21 0.34 043
Ave obs: EMEP -0.07 0.30 0.36|Ave obs: EMEP -0.11 0.38 0.39
0.75 ug N/m*>  |LOTOS-EUROS 0.19 0.22 0.38[0.19ug N/m’ |LOTOS-EUROS 0.00 0.38 0.40
SILAM 0.32 0.30 0.40 SILAM -0.53 0.32 0.32
median 0.05 0.31 0.39 median -0.16 0.41 0.44
SO, CMAQ -0.10 0.59 0.73|S0, CMAQ 0.25 0.53 0.49
Ave obs: EMEP -0.18 0.58 0.57|Ave obs: EMEP 0.23 0.47 0.48
0.77ug S/m * |LoTos-EUuROS -0.38 0.56 0.45|0.79 ug S/m * |LOTOS-EUROS 0.05 0.49 0.54
SILAM -0.04 0.51 0.52 SILAM -0.13 0.48 0.5
median -0.23 0.63 0.63 median 0.04 0.55 0.54
Sea salt CMAQ 0.40 0.48 0.46|Mineral dust EMEP -0.75 0.29 0.29
Ave obs: EMEP 0.38 0.54 0.49|Ave obs: SILAM -0.58 0.31 0.33
0.78 ug Na/m * |LoTos-EUROS -0.03 0.38 0.49]0.12 ug Ca/m * |median -0.67 0.32 0.31
SILAM 0.08 0.44 0.48
median 0.13 0.55 0.58
ECin PM,;5 CMAQ -0.61 0.51 0.35|ECin PM,, CMAQ -0.69 0.42 0.32
Ave obs: EMEP -0.56 0.53 0.4]|Ave obs: EMEP -0.66 0.46 0.35
1.08 ug ¢/m*>  |LOTOS-EUROS -0.34 051 0.44[1.32ug¢/m*® [LOTOS-EUROS -0.48 0.39 0.44
SILAM -0.17 0.61 0.4 SILAM -0.35 0.45 0.38
median -0.45 0.6 0.38 median -0.58 0.49 0.37
0Cin PM,; cMAQ -0.80 0.52 0.26]0Cin PMy, cMAQ 0.36 0.18
Ave obs: EMEP -0.25 0.54 0.6|Ave obs: EMEP -0.37 0.46 0.52
361pgC/m’  |median -052 054 061|478 g (/m’  |median -061 046 0.48

anthropogenic emissions. The modelled contributions from these sources are about
equal, except for winter when the models predict almost no dust from Sahara. The
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non-sea-salt calcium (nss-Ca) concentrations are substantially underestimated by
the models for the whole year. The EMEP model underestimated the nss-Ca by
75% and SILAM by 58%. Considering that the models omitted the wind-blown
dust emissions inside the European modelling domain, this underestimation is not
surprising. The seasonal patterns of the models differ from the observations, where
the autumn concentrations are close to the winter levels and noticeably lower than
for summer. The models rather suggest similar dust levels for most of the year,
except for winter when the predicted concentrations are lower.

The model evaluation for the carbonaceous compounds suffers from the limited
amount of available observational data and for OC also model data was provided
only by two of the models (SILAM and LOTOS-EUROS did not compute SOA
formation). Only four EMEP stations reported the EC and OC concentrations in
2005. However, based on the data from these stations and additional data from
EMEP 2002-2003 campaign, it could be concluded that the concentrations of the
carbonaceous components are severely underestimated. The models reproduce the
seasonal variations observed in EC concentrations, but they completely miss the ob-
served OC winter maximum. The large underestimation in winter could be caused
by missing emissions of domestic heating (Denier van der Gon et al., 2015), but
also the SOA formation from anthropogenic aromatics could be underestimated.
A rather large portion of semi-volatile organics is believed to be missing in current
anthropogenic emission inventories of PMy 5 and NMVOCs (Denier van der Gon
et al., 2015; Donahue et al., 2006; Ots et al., 2016b; Robinson et al., 2007). Cook-
ing emissions have been pointed out as another missing source of organic aerosols
(Fountoukis et al., 2015; Young et al., 2015; Ots et al., 2016a). The large model-
to-model differences for EC were somewhat surprising, as the emission data had
been unified and no chemical transformations affect the EC concentrations in the
atmosphere. A possible explanation is the considerably lower dry deposition of
fine aerosols in SILAM (Kouznetsov and Sofiev, 2012). Different treatment of EC
hygroscopicity and ageing, affecting the efficiency of its wet scavenging, could also
contribute to differences in the model results.

The benzo(a)pyrene concentrations were overestimated by all models, which
was also unexpected, as the models underestimate the concentrations of black car-
bon and the sources of these two pollutants significantly overlap. Omne possible
reason for this can be a simplified approach taken by the models to simulate this
species: BaP was assumed to be an inert fine aerosol not participating in chem-
ical transformations and not partitioning to gas-phase. In more complex models
the heterogeneous oxidation by ozone has been reported to efficiently reduce the
BaP concentrations (Friedman and Selin, 2012; Matthias et al., 2009). It is also
probable that some part of the over-estimation, especially in winter time when the
oxidation is slower, may be attributed to the emissions.

The individual PM components were reproduced with about the same or lower
quality as the total PM. Not all individual PM components were equally underes-
timated. The secondary inorganic species were reproduced without much bias and
sea salt was usually overestimated. Large underestimations for carbonaceous and
mineral aerosols were supported by the few available observations. In some cases
the overestimations of some components could bring the models very close or even
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over the observed PM levels, while still underestimating other components.

The ensemble median showed better correlation with the observations than the
individual models. However, the bias demonstrated by all models propagated also
into the median results. This effect can be reduced by computing the median for
each of the PM components separately with subsequent summation to the total-
PM concentration. This procedure reduces the effect of the components that have
been omitted by some of the models within the ensemble.

4.1.2 The most important components contributing to the
PM deficit

The study highlighted the importance of the contribution of commonly omitted
aerosol components, such as SOA, mineral dust and wildfire smoke. Neglecting the
desert dust contribution to the PM budget substantially worsened the correlation
of model predictions with PM observations in summer, which indicates that ac-
counting for the inflow of Saharan dust is important in PM simulations, especially
for southern Europe - for central and northern parts, agricultural and road dust
are more important on an annual basis. The impact of wild-land fires was also
significant in summer of 2005 in the western and southern parts of the domain.
Including SOA in the modelled PM also substantially reduced the model bias in
summer. Providing that all major PM components are included, the particle-bound
water in gravimetric PM observations can explain a major fraction of the remain-
ing bias. Based on the modelled aerosol composition, the average water content
at laboratory conditions was estimated roughly between 5 and 20% for PMjy 5 and
between 10 and 25% for PM;g, depending on whether the aerosol was assumed to
be in stable or metastable state, the latter corresponding to situation when the
aerosol has been exposed to more humid conditions and crystallization has not oc-
curred. Adding this contribution to the modelled PM reduced the model bias 25-70
% (Table 4.2, Figure 4.1), but also reduced both spatial and temporal correlations
with the observations.

The estimated aerosol water content on the filters is in the range of the previous
estimates of Tsyro (2005), who estimated 20-35% water content for the aerosol
observed in EMEP stations and Sillanpdd et al. (2006), who estimated up to 20%
water content for the urban aerosol observations.

Several uncertainties exist estimating the PM water content, that could explain
the reduction of the correlation coeflicients. Firstly, the water content depends
on the outdoor humidity at the measurement location as well as the filter trans-
portation and storage conditions, so it cannot be determined, whether the aerosol
is in stable or metastable branch of the hysteresis cycle. Secondly, ISORROPIA2
computes the water content based on the inorganic part of aerosol — SIA, sea salt,
calcium; it does not take into account the water related to the hydrophilic part of
the organic aerosol, which could also influence the water uptake of the inorganic
species (Jing et al., 2015). Thirdly, the aerosols were assumed fully internally
mixed, which lowers the deliquescence humidity compared to external mixtures
and might lead to overestimation of water uptake. Overestimating hydrophilic
compounds, such as sea salt can also lead to overestimation of the water content
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Table 4.2: Annual statistics for the PMs 5 and PMq, dry mass, aerosol bound water
added assuming stable state (lower curve of the hysteresis loop) and metastable
state (higher curve of the hysteresis loop). ScaledBias - bias divided with the mean
observed value, tCor - temporal correlation of the daily values, Fac2 — the fraction of
daily values within factor of two from the observed ones. The shading emphasizes
the range of the values — bias: blue - underestimation, orange - overestimation;
correlation and factor-2 agreement: red - low, green - high. Table 6 of Paper I.

o 50% relative humidity, 20° C, | 50% relative humidity, 20° C,
stable metastable

Species Model Scaled bias tCor Fac2 Scaled bias tCor Fac2 Scaled bias tCor Fac2
PM, 5 CMAQ -0.47 0.50 0.47 -0.44 0.50 0.50 -0.34 0.49 0.58
;“1’;8%/",:?’ EMEP 033 062 0.69 030 062 071 017 062 077
LOTOS-EUROS -0.40 0.46 0.51 -0.34 0.43 0.54 -0.26 0.45 0.58
SILAM -0.26 0.59 0.58 -0.18 0.57 0.61 -0.08 0.57 0.64
median -0.38 0.63 0.61 -0.35 0.63 0.63 -0.26 0.63 0.70
medianComp -0.30 0.60 0.62 -0.28 0.60 0.64 -0.17 0.60 0.71
PMy, CMAQ -0.49 0.46 0.49 -0.40 0.42 0.53 -0.29 0.41 0.59
;‘;Zgﬂg/",:? EMEP 031 057 069 021 051 070 009 051 072
LOTOS-EUROS -0.44 0.40 0.53 -0.32 0.29 0.57 -0.25 0.32 0.61
SILAM -0.34 0.54 0.54 -0.24 0.50 0.58 -0.16 0.51 0.60
median -0.41 0.59 0.59 -0.33 0.53 0.63 -0.23 0.54 0.68
medianComp -0.35 0.57 0.63 -0.26 0.53 0.66 -0.17 0.54 0.70

in PM. Also, in addition to the particle-bound water, the filters themselves can
accumulate humidity and influence the measurement results (Brown et al., 2006).

4.1.3 Comparison with other similar studies

Other model inter-comparison studies have been published, evaluating the models
ability to reproduce the observed concentrations of either PM or some of its com-
ponents. Some of those studies use similar set of observations (daily measurements
of the EMEP network) and some of the participating models are the same as in
Paper I, but different model versions, set-ups and input data are used. Although
these studies concentrate on different time periods, some conclusions about how
well Paper I describes the general skill of PM modelling can still be made by
comparing the results with those studies.

Solazzo et al. (2012a) compared the AQMEII (Air Quality Model Evaluation
International Initiative) ensemble with the PM observations from EMEP and Air-
Base databases for 2006 and Im et al. (2014) compared the AQMEII2 ensemble
with similar set of measurements for 2010. Solazzo et al. (2012a) report underes-
timation of PMjy in Europe ranging from 20 to 65%, with two outlying models
overestimating by about 5%. Temporal correlations of the daily average PM;q val-
ues ranged from 0.2 to 0.7, lowest correlations shown by the overestimating models,
indicating significant modelling errors in those models. The AQMEII 2 results are
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very similar — Im et al. (2014) report all models underestimating PM;g in the rural
stations by 20 to 66 %. Correlation coefficients for the daily values ranged from
0.2 to 0.86. PMj 5 was overestimated by one model by 20%, with almost zero cor-
relation, all other models underestimated by up to 60%, with correlations ranging
from 0.1 to 0.84. These results are very similar to the Paper I evaluation, where
comparing the dry PM with daily EMEP observations resulted in annual mean
biases between 25 and 50% and correlations from 0.4 to 0.62.

A few multi-model assessments have previously been published for the STA com-
ponents. Hass et al. (2003) presented the evaluation of six EUROTRAC models
simulating STA and its precursors in Europe in the summer half-year of 1995. The
models were compared with the daily EMEP observations, making the results com-
parable with those of Paper I. Compared with Paper I the EUROTRAC models
showed much wider range of biases, but most of the models still overestimated NOg
and underestimated SOy4, same as found in Paper I. The best EUROTRAC models
(Hass et al., 2003) outperformed those of Paper I for both temporal correlation
and factor-two agreement fractions.

The EURODELTA seven-model ensemble was compared with the EMEP ob-
sevations for the year 2001 by Vautard et al. (2009), who also found the sulphate
aerosols generally underestimated while nitrate was overestimated and ammonium
modelled in a more balanced way. The correlation coefficients for SIA for individ-
ual models of EURODELTA ensemble ranged from 0.4 to 0.7, being slightly higher
than those shown in Paper 1.

A comprehensive model evaluation was presented by (Bessagnet et al., 2014) for
the seven model ensemble of EURODELTA III (ED-3), comparing both gases and
particulates, although against only one month of observations. The models were
evaluated against EMEP intensive observation campaign and routine measurements
from 25th of February to 26th of March 2009.

Similarily to Paper I, most of the ED-3 models somewhat overestimated sea
salt and heavily underestimated dust concentrations (the modelled dust concen-
trations were compared with calcium observations multiplied by eight), although
most models in ED-3 emitted wind-blown dust inside the modelling domain . The
correlation coefficients for dust were very low, which was also the case in Paper 1.
The underestimation of the carbonaceous aerosols was also confirmed in the ED-3
study. All models underestimated the measured total organic matter concentra-
tions in both fine and coarse fractions by 50 to 80%. The models underestimated
EC in PMsy 5 up to ~50%, while the coarse EC was overestimated. In Paper I
the coarse EC and OC could not be reliably evaluated, as the emission of coarse
anthropogenic PM was not split to components and was modelled as a single sub-
stance.

SIA components were underestimated by some ED-3 models and overestimated
by others, only ammonia was more often overestimated. Correlation coefficients for
nitrates and ammonium were around 0.6-0.75, and somewhat lower for sulphates
(0.3-0.55). This differs from Paper I, where the spring-time concentrations of STA
components were mostly slightly underestimated, and sulphates showed better cor-
relation with observations than nitrates. The springtime emission of NH3 strongly
depends on meteorological conditions and crop fertilizing practices, whereas in the
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models fixed annual cycle of emission intensity is used. On some years this fixed
cycle can reflect the real meteorology worse than on others and thus lead to poorer
correlations between the models and the observations for the related compounds,
making the modelling different years not directly comparable.

For PMs 5 and PM;p, an extended comparison with wider selection of EMEP
observations (four month-long intensive campaigns from 2006 to 2009) is presented
by Bessagnet et al. (2016). Most of the ED-3 models underestimated PM;q for all
campaigns by ~20-30%, while PMs 5 was reproduced with smaller negative bias
an sometimes even slightly overestimated by some models. The smaller bias than
shown in Paper I can be explained by the fact that of the aerosol components
mostly omitted in Paper I, most models in ED-3 had emissions for wind-blown
dust and computed SOA formation. Correlations with the daily observations were
similar to those in Paper I- around 0.6 for PMs 5 and around 0.5 for PM g, with the
exception of the summer campaign 2006, when several models showed correlations
above 0.7 for PMyg. Similarly wide range of spatial correlations as was shown in
Paper I (0.06-0.86) for different models and seasons was also shown by Bessagnet
et al. (2016) for the different campaigns (0.05-0.8).

All in all, the multi-model comparison studies published since 2003 have shown
very similar results for the models ability to reproduce the observed concentrations
of PM components in the background stations in Europe. Carbonaceous and crustal
components have been pointed out as the major contributors to the underestimation
of particulate matter.

4.2 Estimating the health effects of the PM from
wild-land fires

In Paper I, using the IS4FIRES vl emissions in EMEP and LOTOS-EUROS
models resulted in degradation of the model scores for PMs 5 and PMyq, the corre-
lations for EC and OC also reduced when fire contribution was added. In SILAM
a newer version of the emission data was used (IS4FIRES v2, Soares et al. (2015),
together with the dynamic emission vertical profiles of Sofiev et al. (2012), while
in other models the IS4FIRES v1 emission data was spread evenly to the first 1000
m. Mainly due to the vertical profiles that release most of the smoke high aloft, the
ground level concentrations of fire PM were substantially lower in SILAM and the
fire PM did not negatively affect the model performance. This result encouraged
us to use the SILAM predictions of wild-fire smoke in Paper II to assess annual
mortality attributable to short-term exposures to vegetation-fire originated PMs 5
in different regions in Europe. An extra model simulation was made to estimate
the wildfire emitted PM in 2008 with the same model setup as in Paper 1.

The large-scale distributions of the vegetation-fire emitted PMs 5 in 2005 and
2008 were similar: the fires were intensive mainly in northern Portugal and Spain,
southern Italy, the Balkans, the Black Sea area, the Kaliningrad area and other
parts of western Russia (Figure 4.2). The main difference between the two years
was in the relative strength of the fires in the southern and eastern regions, which
is partly explained by the differences in temperature and precipitation in 2005 and
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2008 — year 2005 was hot and dry in the Iberian Peninsula, leading to a large
number of vegetation fires, whereas the cold and wet conditions in 2008 led to
relatively few fires. In contrast, in the Balkan region and southern Italy year 2008
was hotter and dryer than average, resulting in more severe fires compared to 2005.

Concentration, PM2.5 ug/m3, average 2005

Concentration, PM2.5 ug/m3, average 2008

=

[ .| [ .|
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Figure 4.2: Modelled wildfire originated PMy 5 concentration [ug m 3]

over 2005 (left) and 2008 (right).

, average

Mortality impacts were assessed for 27 European countries based on the mod-
elled daily wild-fire induced PMsy 5 concentrations, population data, and the
exposure-response function of Zanobetti and Schwartz (2009) for short-term PMs 5
exposure, combined with the country-level data for background mortality risk. In
the EU 27 countries, more than thousand premature deaths were attributable to
the vegetation-fire originated PMs 5 annually. The highest impacts were found in
southern and eastern Europe. However, all countries were affected by fire PMs 5,
and the lower concentrations in western and northern Europe also contributed
significantly ( 30%) to the overall attributable mortality. The estimates suggest
that the majority (70-80%) of the premature deaths attributable to fire-originated
PMs 5 in 2005 and 2008 were caused by low to moderate increases in daily con-
centrations (<15 pug/m?), particularly in the western and northern regions where
PM, 5 increases of <2 pg/m?® and<15 ug/m?3 were estimated to have caused 60-
80% and > 98% of premature deaths, respectively. The assessment suggests that
air pollution due to PMsy 5 released from vegetation fires is a relevant risk factor
for public health in Europe, and the risk is expected to increase in the future as
climate change proceeds.

4.3 Improvement of emission data

Analysis of the different emission inventories, observational campaigns and regu-
lar air quality monitoring in Northern Lapland, land-use, and sectoral emission
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split allowed detecting problems with the total emission of Kola Peninsula and its
distribution in the EMEP and other existing inventories. In the EMEP data the
emission of the Nikel metallurgy plant was found to be misallocated to the Mur-
mansk city region. A refined emission for Kola Peninsula was suggested, keeping
the totals at the level of the pre-2006 reported EMEP estimates and redistributing
the industrial part of the emission from the city of Murmansk to the location of
the Nikel metallurgy plant.

The consideration was based on individual SNAP sectors. Assuming that the
emission of SNAP sector S1 (large combustion in energy and transformation in-
dustry) is dominated by the Nikel plant, the S1 emissions in Murmansk area were
moved to the Nikel plant location, leaving in the original grid cells only a small
fraction, corresponding to the S1 level in the neighbouring cells. Similar logic was
applied to other sectors and species that contribute to the infrastructure of a large
factory (S2, S3), summing up to roughly 115 kilotons of SO5 per year.

Using forward and adjoint simulations of the SILAM system, the suggested
emission correction was verified against two years of regular SOy monitoring data
in Northern Lapland and the PM measurement campaign at Vérrio in 2003. The
long-term model-measurement comparison showed sharp reduction of the model
underestimation (up to slight over-estimation in the nearest vicinity to the plant)
and noticeable improvement of the temporal correlation. However, even with the
updated emissions the model still underestimated the SO5 and SO4 concentrations
and SO4 wet deposition in majority of the stations, and the adjoint modelling
indicated that the underestimation originated from the Nikel area (Figure 4.3),
suggesting that the revised emission amount could still be underestimated.

Table 4.3 shows the currently available SO, emission estimates from various
sources. The most accurate SO, emission data for Kola Peninsula is available from
the Arctic Monitoring and Assessment Programme (AMAP). AMAP (2006) reports
150 kt SO5 emitted from the Zapolyarnyi an Nikel metallurgy plants in 2000.
Very similar amounts are reported for 2009 by Hongisto (2014) — 136 kt/year SOq
emissions in Nikel and Zapoljarnyi — referring to a presentation no longer available
on the website of the operator of the plants. These numbers are 25-30% higher
than the assessment of Paper III, explaining at least partly the underestimation
still remaining in the modelling results after the emission correction was applied.

For PM, the four model runs based on the two different transport modules
of SILAM and meteorological input from ECMWF and HIRLAM showed widely
varying results in reproducing the observed peak in Vérrio. The model also missed
majority of the PMs 5 most of the time, partly due to the underestimations also
in other emitted species and source sectors, but also due to missing PM compo-
nents, as the simulations included only anthropogenic primary PM and the STA
precursors. Thus, nothing conclusive could be said about the accuracy of the emis-
sion correction based on the PM observations in Véarrié. Due to the uncertainties
introduced by the sparse observational network, and inaccuracies in the emission
vertical distribution and SO, wet deposition, the further refinement of the Kola
Peninsula emissions assessment methods was recommended using activity data.

As reported by Hongisto (2014) and Eckhardt et al. (2015), errors in the emis-
sions of the industrial sources of Kola Peninsula are still common in the emission
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Missed peaks footprint

Figure 4.3: Footprint of the major model-measurement differences (mdl-obs) of
SO5 concentration at monitoring sites (black dots), when the model was run with
the revised emission estimates. The higher footprint values indicate the areas
where the revised SO5 emission is likely to be underestimated. The black circle
surrounds the Nikel area. Presence of hot-spots around individual stations is an
artefact originating from the low density of the observational network. Figure 10
of Paper III.

Table 4.3: SO, emission from large sources on Kola Peninsula (Unit: kilotons of
SO3 per grid cell per year).

Data source Year Nikel Murmansk  Monchegorsk Kola total
EMEP <2006 2003 4.9 157.0 130.0 291.9
EMEP 2009 2003 0.2 10.9 11.5 22.7
EMEP 2016 2003 7.0 1.9 10.8 19.7
EMEP 2016 2000 6.8 3.0 10.6 20.5
EMEP 2016 2009 6.2 1.4 9.3 16.9
Paper III 2003 114.5 47.3 130.0 291.9
AMAP 2000 150 45

Hongisto (2014) 2009 136

TNO-MACC III 2000 ~30 ~80
TNO-MACC III 2010 ~50 ~110
EDGAR v4.3 2010 6.6 38
ECLIPSE v4a 2005 ~33

databases. In 2015 the emissions in EMEP database have again been recomputed.
Table 4.3 shows that the currently available SO, emissions have a more realistic
pattern - higher than average SO, emissions are visible in the Nikel plant location
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for all years. However, emission amounts are still about 10 times too low (Table
4.3). In the TNO-MACC-III inventory (Kuenen et al., 2014), the SO2 emissions
in the period of 2000 to 2010 rise from ~30 to ~50 ktons in the Nikel location
and form ~80 to ~110 kt in the whole Kola Peninsula. In EDGAR v4.3 (Crippa
et al., 2016) 6.6 kt of SOy are emitted in Nikel location in 2010 and 38 kt in the
whole Peninsula. Eckhardt et al. (2015) reports that also in ECLIPSE version 4a
inventory only about 33 kt of SO4 are emitted in the Kola area for the year 2005.

4.4 Pollen modelling

4.4.1 Modelling the emission and dispersion of ragweed
pollen

In order to provide timely warnings for the allergy sufferers, a model was devel-
oped for forecasting ragweed pollen concentrations in the air. An emission module
was developed, incorporating the phenological development of the plant and pollen
release from the inflorescences. The pollen transport by wind, mixing by turbu-
lence, deposition via sedimentation and scavenging by precipitation was evaluated
by the standard SILAM routines. The annual total ragweed pollen emission and
the predicted average seasonal pollen index (SPI, the sum of daily average pollen
counts over the pollen season) are shown on Figure 4.4.

Total emission ave 3 Total pollen ave 3
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Figure 4.4: Average annual ragweed pollen emission [pollen m~2 year~!] (left) and
seasonal pollen index (sum of daily mean concentrations [pollen m~3]) (right).

The evaluation of the new model against multi-annual ragweed pollen obser-
vations from the EAN network demonstrated that the model reproduces well the
main ragweed pollen season in the areas with major plant presence, such as the
Pannonian Plain, the Lyon area in France, the Milan region in Italy, as well as ar-
eas in Ukraine and southern Russia. The predicted start of the season was mostly
within 3 days of the observed for the majority of stations in these areas. The tem-
poral correlation between modelled and observed concentrations exceeded 0.6 for
the bulk of the stations. The hit rate exceeded 0.8 in the main source regions for

42



the exceedances of allergy-relevant concentration thresholds (5 and 20 pollen/m3)
and the false alarm ratio stayed below 10% (Figure 4.5).
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Figure 4.5: Ragweed pollen forecast hit rate (upper panel) and false alarm ratio
(lower panel) for exceeding 20 pollen threshold. Middle panels of Figure 9 of
Paper IV.

The application of the new model outlined the areas of significant probabil-
ity of exceedances of allergy-relevant thresholds, showing that the strong south-
north gradient of ragweed presence and prevailing west-to-east transport direction,
together with natural barriers for pollen dispersion, such as mountains, reduced
ragweed pollen levels in northern and western-most parts of Europe. However, it
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also highlighted the important role of long-range atmospheric transport in forming
the high-concentration patterns - during the long-range transport episodes, high
concentrations can be recorded virtually anywhere in Europe, summing up to sev-
eral days of harmful pollen levels per year even in regions remote from the heavily
invaded areas. As such, our modelling illustrates the potential for a relatively lo-
calised invasive species to produce impacts on human health at a continental scale.

Leiblein-Wild et al. (2015) developed a more complex model for predicting the
timing of the ragweed phenological phases and emitted pollen amount. The model
of Leiblein-Wild et al. (2015) uses 95% of maximum day length as the trigger for the
start of flowering and thus predicts earlier start of the season in north than in south,
while in SILAM the season is supposed to start when the days get shorter than
14.5 hours, leading to earlier flowering in south. A north-south gradient is visible
on Figure 4.6 for the model bias in predicting the season start for the Pannonian
Plain, the most infested area with a well covering observational network, with the
model being late in the northern stations and a few days early in the southernmost
ones. This indicates that the phenological model of Leiblein-Wild et al. (2015)
might be more realistic.
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Figure 4.6: Model-measurement difference for the start of the flowering season
[days], calculated from predicted and observed 2.5% of seasonal pollen count. Left
panel of Figure 4 of Paper IV.

In SILAM, the current ragweed occupancy map of Chapman et al. (2016) was
calibrated with observations to obtain the map of annual pollen emission. The
ragweed emissions from Ukraine and southern Russia needed to be increased sig-
nificantly in order to reproduce the pollen observations in these areas. This resulted
in that area becoming the most infested in Europe. The ragweed habitat and pollen
emission maps produced by Leiblein- Wild et al. (2015) and Storkey et al. (2014) do
not shown a high infestation in that area. Cunze et al. (2013) did not predict high
suitability there with the model based on the European occupancy observations,
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while the model based on the native North American data predicted the area highly
suitable for ragweed.

The climatic suitability and invasion models that produced the ragweed maps
used in SILAM are described in Chapman et al. (2014, 2016); Bullock et al. (2012).
Extention of ragweed habitat towards north is predicted for the future climate,
while decrease is foreseen for the southern populations due to droughts. The SILAM
computations of ragweed pollen in future climate are shown in Bullock et al. (2012).
A similar study was recently published by Hamaoui-Laguel et al. (2015), using
the ragweed distribution of Storkey et al. (2014). They also predict the habitat
extending northwards, though do not agree with its decline in south. Cunze et al.
(2013) predicts further spread northwards and potential extinction in parts of the
current habitat for some climate scenarioes. Leiblein- Wild et al. (2015) found large
parts of Europe climatically suitable for ragweed growth and reproduction, and
reported a higher invasion potential than currently achieved in western Europe
and along parts of the northern edge of its distribution, expecting the invasion to
continue in these directions.

The comparison of the quality of the SILAM predictions for the six pollen
species adapted from Prank et al. (2016) is shown in Table 4.4. The best modelled
species is ragweed, with the spatial correlation of the seasonal pollen index (SPI,
sum of daily mean pollen concentrations over the pollen season) of 0.91 and the
modelled season start within 3 days from the observed in 54% of the cases. Season
start is also well reproduced for birch, the only species where the flowering model
has been calibrated based on phenological observations, not pollen counts.

The worst scores are shown for grass pollen, where the correlation is almost
zero and a large bias exists for the SPI. This stresses the need of calibration of
the habitat map with the pollen observations, to take into account the plants
pollen productivity in different climatic zones, and also to correct the errors in the
underlying land-use data. Following the comparison presented here (from Prank
et al. (2016)), the grass pollen model in SILAM has been recently recalibrated and
the forecasts for the last pollen season (summer 2016) were already made with
improved model.

For all species, the end of the season is reproduced by the model with lower
quality than the beginning, with noticeable biases for several species. However,
the accuracy of the forecasts of season end is much less relevant for the allergy
patients than the accuracy of predicting the start of the season, which is required
for starting their medications in time.

One of the reasons for the low quality in predicting the seasons end is that in
the model the season is assumed to have a single peak. However, in the observa-
tions seasons with multiple peaks are relatively common. This can be caused by
several species with somewhat different flowering times producing indistinguishable
pollens. Another reason for errors in the flowering time can be temperature accu-
mulation in unresolved mountain terrains and seaside, where the large model grid
cell covers microenvironments with noticeably different conditions.
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Table 4.4: Model performance for different pollen species. Norm. bias — bias nor-
malized with the observed average concentration, Correlation — spatial correlation
of observed and modelled SPI values over the stations, Fac2 - fraction of cases (sta-
tions, years) when modelled SPI is within factor of 2 from the observation, Season
start /mid/end — day when 5%, 50% or 95% of the total SPI is reached, <nDays
— Fraction of cases when SILAM is within n days from the observed season start,
midpoint or end. The shading emphasizes the range of the values — bias: blue -
underestimation, red - overestimation; other scores: white - low, green - high.

Birch Grass Olive Ragweed Mugwort Alder

Seasonal pollen index

Correlation 0.52 0.02 0.66 0.91 0.72 0.65
Norm bias [ o1 153 006 0.08 0.02 -0.09
Fac2 0.68 0.45 0.31 0.68 0.75 0.72
Start 5% day

Bias (days) 0.31 4.60 -9.51 3.02 4.49 -0.47
<3Day 0.50 0.25 0.28 0.54 0.39 0.35
<7Day 0.73 0.46 0.46 0.81 0.69 0.55
Mid 50% day

Bias (days) 3.49 9.99 -11.07 0.79 2.37 -2.65
<3Day 0.50 0.17 0.34 0.63 0.27 0.33
<7Day 0.73 0.33 0.54 0.88 0.48 0.54
End 95% day

Bias (days) 2.25 2.00¥i888 153 569 -13.11
<3Day 0.38 0.20 0.19 0.45 0.27 0.23
<7Day 0.61 0.40 0.36 0.77 0.51 0.40

4.4.2 Studying the variability of pollen allergenicity

HIALINE project was launched with the purpose to study the natural variability in
release of the major allergen groups from the pollen of birch, grass and olive trees
across Europe (Bet v 1, Phl p 5 and Ole e 1, respectively). Co-located daily pollen
and allergen measurements were made in 8 stations over Europe during the pollen
seasons of 2009 to 2011. The average daily pollen potency was computed by dividing
the allergen concentration in air with the observed pollen amount. The findings
for birch and olive pollen have been published by Buters et al. (2012) and Galan
et al. (2013), and Paper V analyses the variations in grass pollen potency. Large
variations in the potency were found for all three species (Figure 4.7). Grass pollen
showed a larger natural variability in allergen release than birch or olive pollen,
ranging from less than 1 to 9 pg of Phl p 5 per pollen (5th to 95th percentile).
About 10% of the captured grass pollen released no group 5 allergen at all. This
fraction was noticeably larger than the fraction of cases with low pollen potency
(up to 0.5 pg of allergen per pollen), which is not the case for birch and olive. Large
variability in grass pollen potency is expected, as the pollens from different grass
species, although identical for pollen observations, are known to include different
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amounts of different allergens. In Paper V the observed variability was shown to be
larger than would arise from the experimental errors, proving that the observations
are sensitive enough to capture the day-to-day changes.
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Figure 4.7: Histograms of daily average pollen potency (allergen release per pollen
[pg pollen—1]) for birch, grass and olive pollen, observed during the HIALINE
project.

It can be expected that around every station several grass species contribute to
the grass pollen count, and the main contributors can differ between the regions.
Changing wind direction can bring pollen to the station from areas where different
grass species are abundant. In addition to different habitat preferences, the grass
species also flower at somewhat different times, so the grass pollen potency can
also change during the season. Year-to-year variability could arise from different
species being successful on different years.

In addition, allergen-releasing particles were found in PMs 5_1¢, although this
size-fraction of aerosol should not contain any intact pollens, as the grass pollens
are mostly 20 - 40 ym in diameter. The Phl p 5 amount in PMy 5_1¢ correlated
with ambient humidity.

Some differences in potency related to the geographical origin of the pollen had
been noticed before for birch and olive (Buters et al., 2012; Galan et al., 2013). The
origin of the observed pollen (the observation footprint) was computed by adjoint
modelling with SILAM for every daily observation. In order to study the relation
of the grass pollen potency to the source area, the footprints were scaled with the
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observed pollen potency and combined into annual average potency maps. The
average potency map over the three years (2009-2011) can be seen on the upper
panel of Figure 4.8. While some regions, such as France, consistently appeared
to have higher potency of the emitted pollen (reaching above 5 pg of Phl p 5 per
pollen) and the Easter Europe showed lower potency in all years (going below 2 pg
of Phl p 5 per pollen), in most regions the potency appeared to vary from year to
year. Due to these large variations no clear geographic pattern of pollen potency
was detected.

Potency allYrs

00 05 1.0 1.5 2.0 25 3.0 35 40 45 50 6.0 7.5 10.0

Potency allYrs

gl

o S
Yo -

00 05 1.0 15 20 25 3.0 35 40 45 50 6.0 7.5 10.0

il

Figure 4.8: Grass pollen potency maps [pg pollen™!] for 99% footprint (upper
panel) and 67% footprint (lower panel), mean 2009-2011

48



Due to the large size of the grass pollen (mostly 30-40 pm) their lifetime in
atmosphere is short. In Paper V, in order to avoid mapping potency values to
the areas with very low probability to contribute noticeably to the measurement,
the footprints that were used for making the potency maps were cut so that they
covered the area where 99% of the observed pollen originated. The lower panel
of Figure 4.8 is based on footprints that represent the source area of two thirds
of the observed pollen, showing that majority of the pollen reaching the stations
originates only from a small number of grid cells in the vicinity to the station, so the
potency of the pollen emitted further from the stations is increasingly uncertain.
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Chapter 5

Conclusions and future
outlook

Atmospheric composition has strong influence on human health, ecosystems and
also Earth’s climate. Thus, reliable estimates of emissions and distributions of
pollutants are necessary for assessing the future climate and air-quality related
health effects. Chemistry-transport models are valuable tools for understanding the
processes influencing the atmospheric composition. The thesis presents a collection
of developments and applications of the chemistry-transport model SILAM.

SILAM’s ability to reproduce the observed aerosol composition was evaluated
and compared with three other commonly used CTM-s in Europe in Paper I
When the calculated dry PM mass was compared with the measurements, all mod-
els systematically underestimated PMig and PMs 5 by 10-60%, depending on the
model and the season of the year. For majority of the PM chemical components,
the relative underestimation was smaller than that, exceptions being the carbona-
ceous particles and mineral dust — species that suffer from relatively small amount
of available observational data.

The study highlighted the importance of the contribution of commonly omitted
aerosol components, such as the secondary organic aerosols (SOA), mineral dust
and wildfire smoke and stressed the necessity for high-quality emissions from these
sources. Neglecting the desert dust contribution to the PM budget substantially
worsened the correlation of model predictions with PM observations in summer,
which indicates that accounting for the inflow of Saharan dust is important in PM
simulations, especially for southern Europe. For the central and northern parts
of Furope, agricultural and road dust are more important on an annual basis.
Including SOA in the modelled PM also substantially reduced the model bias in
summer. The impact of wild-land fires was also significant in summer of 2005 in
the western and southern parts of the domain. The need for high quality wild-
fire emission data was pointed out. Providing that all major PM components are
included, the particle-bound water in gravimetric PM observations can explain a
major fraction of the remaining bias. The average water content at laboratory
conditions was estimated between 5 and 20% for PMsy 5 and between 10 and 25%

50



for PMlo.

SILAM produced the annual mean level of the secondary inorganic aerosol (SIA)
with similar quality as the other models, but did not reproduce well the seasonal
variations. In the future the parametrizations of STA formation in SILAM, includ-
ing the heterogeneous SO2 oxidation, gas-particle equilibrium of NH4NO3 and the
seasonality of NH3 emissions, will have to be revised. Indications were also found
that the temperature dependence of the sea salt emissions might be overestimated
in SILAM. Regarding the omitted species, the chemistry-transformation schemes
in SILAM have been extended to include the formation of SOA and the work on
dust emissions is ongoing.

SILAM had the smallest bias in PMs 5 among the models, largely owing to the
high quality wild-fire emission data from IS4FIRES v2 — in EMEP and LOTOS-
EUROS models that used IS4FIRES v1 data, inclusion of this component decreased
the modelling quality of PM significantly and thus it was omitted from their total
PM fields. The good quality of SILAM wild-fire smoke predictions encouraged us to
use the predictions in an health impact assessment study. The predictions were used
to assess the annual mortality attributable to short-term exposures to vegetation-
fire originated PMs 5 in different regions in Europe. PMs 5 emitted from vegetation
fires was found to be a relevant risk factor for public health in Europe, more than
1000 premature deaths per year were attributed to vegetation-fire released PMs 5.

Air quality predictions depend critically on emission data quality. An error
was found in the EMEP anthropogenic emission inventory regarding the SO, and
PM emissions of metallurgy plants on the Kola Peninsula and a correction was
suggested and evaluated using SILAM in bot forward and adjoint modes. However,
this problem is still evident in several currently available emission inventories.

Allergenic pollen is arguably the type of aerosol with most widely recognised
effect on health. SILAM’s ability to predict allergenic pollen was extended to in-
clude common ragweed (Ambrosia Artemisiifolia L) - an invasive weed spreading
in Southern Europe, with extremely allergenic pollen capable of inducing rhinocon-
juctivitis and asthma in the sensitive individuals even in very low concentrations.
The model could reproduce the ragweed pollen levels with similar or better accu-
racy than it had for the previously modelled species and operational forecasts have
been made for ragweed pollen for the last three years.

The future plans in SILAM pollen modelling include further extensions of the
species list, also considering allergenic fungal spores. Regarding the species already
in the model, it will be relevant to start modelling the inter-annual variations in the
plant pollen production - currently the same plant is assumed to produce exactly
the same amount of pollen every year and this is known to lead to large errors
in the forecast. Another possible development foreseen in the future is to start
accounting for the variable potency of pollen grains — as shown by Buters et al.
(2012); Galan et al. (2013) and Paper V the amount of allergen in birch, grass
and olive pollen can vary noticeably from day to day. Thus, although the pollen
counts are an excellent proxy for exposure, more can be learned from the actual
monitoring and modelling of allergens in ambient air.

In Paper V the variations of allergenicity in grass pollen were studied and
mapped to the source areas by adjoint runs with SILAM. Due to the high variabil-
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ity of observed pollen potency, the results were not conclusive. For grass pollen
this is not surprising, as visually indistinguishable pollens are released by many
grass species, and the pollen allergen content varies between the different species.
Similar kind of mapping could provide more interesting results for the other species
measured at the same campaign — indications of pollen potency dependence on the
area of its origin was found for both birch Buters et al. (2012) and olive Galan
et al. (2013).
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